Photosensitizer spatial heterogeneity and its impact on personalized interstitial photodynamic therapy treatment planning
Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treat...
Saved in:
Published in | Journal of biomedical optics Vol. 30; no. 1; p. 018001 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.01.2025
SPIE |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.
We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.
The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied
to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation.
The
studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of
for photosensitizer quantification will result in significantly different iPDT planning solutions for each case.
Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans. |
---|---|
AbstractList | Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.SignificancePersonalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.AimWe aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied in silico to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation.ApproachThe spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied in silico to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation.The ex vivo studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of 1 mm 3 for photosensitizer quantification will result in significantly different iPDT planning solutions for each case.ResultsThe ex vivo studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of 1 mm 3 for photosensitizer quantification will result in significantly different iPDT planning solutions for each case.Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.ConclusionsAssuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans. Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans. We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions. The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation. The studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of for photosensitizer quantification will result in significantly different iPDT planning solutions for each case. Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans. |
Audience | Academic |
Author | Lilge, Lothar Wang, Shuran Contreras, Hector A. Betz, Vaughn Saeidi, Tina Daly, Michael J. |
Author_xml | – sequence: 1 givenname: Tina surname: Saeidi fullname: Saeidi, Tina email: tina.saeidi@mail.utoronto.ca organization: University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada – sequence: 2 givenname: Shuran orcidid: 0000-0003-4345-7628 surname: Wang fullname: Wang, Shuran email: shuran.wang@mail.utoronto.ca organization: University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada – sequence: 3 givenname: Hector A. surname: Contreras fullname: Contreras, Hector A. email: hectoralex.contreras@mail.utoronto.ca organization: University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada – sequence: 4 givenname: Michael J. orcidid: 0000-0002-2217-4146 surname: Daly fullname: Daly, Michael J. email: michael.daly@uhn.ca organization: University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada – sequence: 5 givenname: Vaughn orcidid: 0000-0003-0528-6493 surname: Betz fullname: Betz, Vaughn email: vaughn@ece.utoronto.ca organization: University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada – sequence: 6 givenname: Lothar orcidid: 0000-0001-5533-0005 surname: Lilge fullname: Lilge, Lothar email: Lothar.Lilge@uhn.ca organization: University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39802351$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhleoiH7AD-CCVuLCJcFerx3nhNpCW1BQewCJm-X1ziYuu7ZrO5XSX8-kWwpBICEf_PW8r2c8c1jsOe-gKF5SMqWUzt7S6aeTyynD3ZRQSQh9UhxQLsikqiTdwzWRbMKEkPvFYUrXhBAp5uJZsc_mklSM04Nic7Xy2SdwyWZ7B7FMQWer-3IFGaJfggObN6V2bWlzKu0QtMmld2WAmLzTPYrwyiGcsr1Xhq1ju3F6sKbMK4g6bMocQecBXC5Dr52zbvm8eNrpPsGLh_mo-Hr24cvpxWRxef7x9HgxMZyLPGlqLiQxBGakMdWsMWJOeF1R1s1pw5mEqmuFaZgAJnTdtSD5DIW1NFyaWUfYUfFu9A3rZoDWYAxR9ypEO-i4UV5btXvj7Eot_a3CH65qJiQ6vHlwiP5mDSmrwSYDPSYCfp0Uo7yWc1KJCtHXI7rUPSjrOo-WZourY1lLKRmrOFLTv1A4WsA_wxp3Fs93BK9-z-Ex-J91RICOgIk-pQjdI0KJ2vaKogp7RTHcqbFXUGNHTQoW1LVfRyxnusdufT-iJ9p8__Z5geW_en-m7mz40-U_iNB2vzLefevfwf0AOrLk-A |
Cites_doi | https://doi.org/10.1117/1.JBO.24.7.071603 https://doi.org/10.1002/jbio.201800153 https://doi.org/10.1016/S1011-1344(97)00010-9 https://doi.org/10.3390/cancers15092636 https://doi.org/10.1007/s10278-013-9622-7 https://doi.org/10.1111/j.1751-1097.2006.tb09835.x https://doi.org/10.1364/AO.38.004939 https://doi.org/10.3390/cancers14010120 https://doi.org/10.1038/s41598-021-97407-z https://doi.org/10.1016/j.acra.2014.12.014 https://doi.org/10.1007/s10812-018-0597-5 https://doi.org/10.1111/j.1464-410X.2008.07753.x https://doi.org/10.1088/0031-9155/53/4/021 https://doi.org/10.1016/S0190-9622(00)90209-3 https://doi.org/10.1111/j.1751-1097.1990.tb01720.x https://doi.org/10.1002/lsm.10131 https://doi.org/10.1117/12.2040268 https://doi.org/10.1016/S1572-1000(05)00060-8 https://doi.org/10.1364/BOE.3.002142 https://doi.org/10.3322/caac.20114 https://doi.org/10.1364/BOE.6.004923 https://doi.org/10.1016/j.neuroimage.2006.01.015 https://doi.org/10.1002/lsm.21080 https://doi.org/10.1634/theoncologist.11-9-1034 https://doi.org/10.1007/s11060-023-04284-9 https://doi.org/10.1016/j.jksus.2022.102143 https://doi.org/10.1117/1.JBO.24.3.035006 https://doi.org/10.1088/0031-9155/58/11/R37 https://doi.org/10.1088/0031-9155/54/8/003 https://doi.org/10.1097/01.ju.0000135304.96496.20 https://doi.org/10.1038/jcbfm.2011.153 https://doi.org/10.1038/sj.bjc.6601101 https://doi.org/10.1515/nanoph-2021-0220 https://doi.org/10.1364/BOE.1.000165 https://doi.org/10.1117/12.699903 https://doi.org/10.1109/ACCESS.2018.2890743 https://doi.org/10.1007/s13244-012-0196-6 https://doi.org/10.1006/nimg.2000.0730 https://doi.org/10.1021/nn3058642 https://doi.org/10.1088/0031-9155/47/12/305 https://doi.org/10.1111/j.1464-410X.2005.05512.x https://doi.org/10.1117/1.JBO.17.5.056008 https://doi.org/10.1117/1.JBO.30.S1.S13706 https://doi.org/10.1109/TSMC.1973.4309314 https://doi.org/10.3390/ijms22126425 https://doi.org/10.32383/appdr/141301 https://doi.org/10.1109/TBME.2021.3053197 https://doi.org/10.1117/1.2002978 https://doi.org/10.1016/S1361-8415(02)00054-3 https://doi.org/10.1016/j.ijrobp.2005.11.019 https://doi.org/10.1117/12.854635 https://doi.org/10.1111/j.1751-1097.1998.tb02521.x https://doi.org/10.3171/2011.2.JNS101451 https://doi.org/10.1158/1078-0432.CCR-04-0359 https://doi.org/10.1016/j.pdpdt.2017.01.018 https://doi.org/10.1364/AO.37.007429 https://doi.org/10.1088/0031-9155/53/9/R01 https://doi.org/10.1117/1.JBO.27.8.083006 https://doi.org/10.1016/S0022-5347(05)00701-9 https://doi.org/10.1016/S0169-409X(00)00131-9 https://doi.org/10.1109/42.712135 https://doi.org/10.1364/BOE.9.000898 https://doi.org/10.3171/2018.7.JNS18422 https://doi.org/10.1117/1.JBO.21.8.084002 https://doi.org/10.1002/lsm.22126 https://doi.org/10.1562/2006-03-25-RA-858 https://doi.org/10.1146/annurev-cancerbio-030419-033413 https://doi.org/10.1016/j.bbcan.2012.10.001 https://doi.org/10.1002/eng2.12149 https://doi.org/10.1186/s12951-021-00898-1 https://doi.org/10.1364/BOE.478217 https://doi.org/10.1002/lsm.22161 https://doi.org/10.1364/BOE.431310 https://doi.org/10.1117/1.3466579 https://doi.org/10.1371/journal.pone.0181654 https://doi.org/10.1117/12.2577832 https://doi.org/10.3390/cells8080793 https://doi.org/10.3389/fchem.2022.967312 https://doi.org/10.1016/j.pdpdt.2021.102320 10.1117/12.2040268 10.1038/jcbfm.2011.153 10.1111/j.1464-410X.2005.05512.x 10.1364/BOE.431310 10.1088/0031-9155/58/11/R37 10.1016/S1361-8415(02)00054-3 10.1016/S0169-409X(00)00131-9 10.1006/nimg.2000.0730 10.1002/lsm.21080 10.1146/annurev-cancerbio-030419-033413 10.1007/s13244-012-0196-6 10.1016/j.pdpdt.2021.102320 10.1364/BOE.1.000165 10.1117/1.JBO.27.8.083006 10.1109/TSMC.1973.4309314 10.1021/nn3058642 10.1016/j.acra.2014.12.014 10.1364/BOE.6.004923 10.1111/j.1751-1097.2006.tb09835.x 10.1002/lsm.22161 10.1117/1.2002978 10.1117/1.JBO.17.5.056008 10.1117/1.JBO.30.S1.S13706 10.1016/S0022-5347(05)00701-9 10.1002/eng2.12149 10.1117/1.3466579 10.1371/journal.pone.0181654 10.1117/12.854635 10.1364/AO.38.004939 10.1002/lsm.10131 10.1111/j.1751-1097.1998.tb02521.x 10.3171/2018.7.JNS18422 10.1109/ICPR.2006.1110 10.1016/S1572-1000(05)00060-8 10.1088/0031-9155/53/9/R01 10.3390/cancers15092636 10.3322/caac.20114 10.1038/sj.bjc.6601101 10.1109/ACCESS.2018.2890743 10.1117/1.JBO.21.8.084002 10.1117/12.2577832 10.1158/1078-0432.CCR-04-0359 10.1109/TBME.2021.3053197 10.1562/2006-03-25-RA-858 10.1002/jbio.201800153 10.1364/BOE.9.000898 10.1007/s11060-023-04284-9 10.1186/s12951-021-00898-1 10.3390/ijms22126425 10.1109/42.712135 10.1088/0031-9155/53/4/021 10.3390/cells8080793 10.1007/s10812-018-0597-5 10.1117/12.699903 10.1364/AO.37.007429 10.3389/fchem.2022.967312 10.32383/appdr/141301 10.1016/j.neuroimage.2006.01.015 10.3390/cancers14010120 10.1117/1.JBO.24.7.071603 10.1364/BOE.478217 10.1088/0031-9155/47/12/305 10.1016/j.ijrobp.2005.11.019 10.1016/j.pdpdt.2017.01.018 10.1038/s41598-021-97407-z 10.1007/s10278-013-9622-7 10.1364/BOE.3.002142 10.1016/S1011-1344(97)00010-9 10.1634/theoncologist.11-9-1034 10.1111/j.1464-410X.2008.07753.x 10.1515/nanoph-2021-0220 10.1002/lsm.22126 10.1016/j.jksus.2022.102143 10.1097/01.ju.0000135304.96496.20 10.1117/1.JBO.24.3.035006 10.3171/2011.2.JNS101451 10.1111/j.1751-1097.1990.tb01720.x 10.1016/S0190-9622(00)90209-3 10.1088/0031-9155/54/8/003 10.1016/j.bbcan.2012.10.001 |
ContentType | Journal Article |
Copyright | The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. 2025 The Authors. COPYRIGHT 2025 SPIE 2025 The Authors 2025 The Authors |
Copyright_xml | – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. – notice: 2025 The Authors. – notice: COPYRIGHT 2025 SPIE – notice: 2025 The Authors 2025 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1117/1.JBO.30.1.018001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology Physics |
EISSN | 1560-2281 |
EndPage | 018001 |
ExternalDocumentID | PMC11724368 A848883325 39802351 10_1117_1_JBO_30_1_018001 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ontario Ministry of Economic Development and Trade grantid: ORF RE08-022 – fundername: Princess Margaret Cancer Research Foundation |
GroupedDBID | --- 0R~ 29J 4.4 53G 5GY AAFWJ ACBEA ACGFO ACGFS ADBBV AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BHPHI CCPQU CS3 DU5 EBS EMOBN F5P FQ0 GROUPED_DOAJ HCIFZ HZ~ M4X M7P O9- OK1 P2P PBYJJ PHGZT PIMPY RNS RPM SPBNH UPT W2D YQT AAYXX AKROS CITATION PHGZM CGR CUY CVF ECM EIF EJD HYE M4W NPM NU. PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c556t-b45680c0e70bc27bc69054213f91b538e2fd6cb36e36a4fde85755648c58c7f03 |
ISSN | 1083-3668 1560-2281 |
IngestDate | Thu Aug 21 18:28:43 EDT 2025 Thu Jul 10 16:40:11 EDT 2025 Wed Jul 30 23:58:58 EDT 2025 Tue Jul 29 03:41:14 EDT 2025 Sun Aug 10 01:31:49 EDT 2025 Tue Jul 01 03:17:39 EDT 2025 Thu Mar 06 22:58:55 EST 2025 Thu Mar 06 23:00:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | photosensitizer heterogeneity PDT-SPACE interstitial photodynamic therapy pre-treatment planning |
Language | English |
License | 2025 The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c556t-b45680c0e70bc27bc69054213f91b538e2fd6cb36e36a4fde85755648c58c7f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0528-6493 0000-0001-5533-0005 0000-0003-4345-7628 0000-0002-2217-4146 |
OpenAccessLink | http://dx.doi.org/10.1117/1.JBO.30.1.018001 |
PMID | 39802351 |
PQID | 3154890262 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | gale_infotracmisc_A848883325 pubmed_primary_39802351 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11724368 proquest_miscellaneous_3154890262 spie_journals_10_1117_1_JBO_30_1_018001 gale_infotracacademiconefile_A848883325 crossref_primary_10_1117_1_JBO_30_1_018001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical optics |
PublicationTitleAlternate | J. Biomed. Opt |
PublicationYear | 2025 |
Publisher | Society of Photo-Optical Instrumentation Engineers SPIE |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers – name: SPIE |
References | Konecky, S. D. 2012; 17 Humeau-Heurtier, A. 2019; 7 Haralick, R.; Shanmugam, K.; Dinstein, I. 1973; SMC-3 Liu, L. 2018; 84 Pinthus, J. H. 2006; 175 Chang, E. 2021; 19 Pogue, B. W.; Burke, G. 1998; 37 Yassine, A.-A.; Lilge, L.; Betz, V. 2021; 12 Davidson, S. R. H. 2009; 54 Jones, H. J.; Vernon, D. I.; Brown, S. B. 2003; 89 Rühm, A. 2014; 8928 Yang, V. X. D. 2003; 32 Zhou, X. 2006; 82 Won, N. J. 2025; 30 Yaroslavsky, A. N. 2002; 47 Nitta, M. 2019; 131 Jacques, S. L. 2013; 58 Yassine, A. A. 2021; 11 Wang, S. 2022; 27 Guidolin, K. 2021; 10 Wagnières, G. A.; Star, W. M.; Wilson, B. C. 1998; 68 Jankun, J. 2005; 95 Wu, M. 2022; 10 Yassine, A.-A.; Lilge, L.; Betz, V. 2021; 68 Daly, M. J. 2021; 11625 Lilge, L.; O’Carroll, C.; Wilson, B. C. 1997; 39 Yushkevich, P. A. 2006; 31 Clement, S. 2021; 22 Cauchon, N. 2006; 82 Wang, S. 2023; 14 Triesscheijn, M. 2006; 11 Ramola, A.; Shakya, A. K.; Van Pham, D. 2020; 2 Fisher, C. J. 2017; 12 Aumiller, M. 2021; 14 Tammela, T.; Sage, J. 2020; 4 Milkovic, L. 2019; 8 Fang, Q. 2010; 1 Yassine, A.-A.; Lilge, L.; Betz, V. 2019; 12 MacLaughlin, C. M. 2016; 21 Kalka, K.; Merk, H.; Mukhtar, H. 2000; 42 Jain, R. K. 2001; 46 Kharkwal, G. B. 2011; 43 Shattuck, D. W. 2001; 13 Milla Sanabria, L. 2013; 1835 Johansson, A. 2013; 45 Castano, A. P.; Demidova, T. N.; Hamblin, M. R. 2005; 2 Elliott, J. T. 2015; 22 Rendon, A.; Beck, J. C.; Lilge, L. 2008; 53 Yassine, A.-A.; Lilge, L.; Betz, V. 2018; 12 Clark, K. 2013; 26 Bevilacqua, F. 1999; 38 Salas-García, I. 2010; 7715 Oakley, E. 2023; 15 Jespersen, S. N.; Østergaard, L. 2012; 32 Trachtenberg, J. 2008; 102 Międzybrodzka, A. 2021; 78 Atif, M. 2022; 34 Bendsoe, N. 2010; 15 Patterson, M. S.; Wilson, B. C.; Graff, R. 1990; 51 Jin, C. S. 2013; 7 Beeson, K. W. 2019; 24 Collins, D. L. 1998; 17 Johansson, A. 2007; 6427 Tan, Y. 2021; 34 Yassine, A.-A. 2018; 9 Pogue, B. W. 2005; 10 Hayakawa, C. K. 2019; 24 Wilson, B. C.; Patterson, M. S. 2008; 53 Zhou, X. 2006; 64 Fisher, C. J. 2013; 45 Sibai, M. 2015; 6 Swartling, J.; Andersson-Engels, S.; Svanberg, K. 2017; 17 Jankun, J. 2004; 172 Busch, T. M. 2004; 10 Shattuck, D. W.; Leahy, R. M. 2002; 6 Valdés, P. 2011; 115 Rohrbach, D. J. 2012; 3 Quach, S. 2023; 162 Davnall, F. 2012; 3 Agostinis, P. 2011; 61 r2 r3 r4 r5 r6 r7 r8 r9 r50 r52 r51 r10 r54 r53 r12 r56 r11 r55 r14 r58 r13 r57 r16 r15 r59 r18 r17 r19 r61 r60 r63 r62 r21 r65 r20 r64 r23 r67 r22 r25 r69 r24 r68 r27 r26 r29 r28 r70 r72 r71 r30 r74 r73 r32 r76 r31 r75 r34 r78 r33 r77 r36 r35 r79 r38 r37 Held (r66) 1998 r39 r81 r80 r82 r41 r40 r43 r42 r45 r44 r47 r46 r49 r48 r1 |
References_xml | – volume: 24 start-page: 071603 issn: 1083-3668 issue: 7 year: 2019 article-title: Optical sampling depth in the spatial frequency domain publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.24.7.071603 – volume: 12 start-page: e201800153 issue: 1 year: 2019 article-title: Optimizing interstitial photodynamic therapy with custom cylindrical diffusers publication-title: J. Biophotonics. doi: https://doi.org/10.1002/jbio.201800153 – volume: 39 start-page: 229 issn: 1011-1344 issue: 3 year: 1997 end-page: 235 article-title: A solubilization technique for photosensitizer quantification in ex vivo tissue samples publication-title: J. Photochem. Photobiol. B doi: https://doi.org/10.1016/S1011-1344(97)00010-9 – volume: 15 start-page: 2636 issue: 9 year: 2023 article-title: Computational optimization of irradiance and fluence for interstitial photodynamic therapy treatment of patients with malignant central airway obstruction publication-title: Cancers doi: https://doi.org/10.3390/cancers15092636 – volume: 26 start-page: 1045 issue: 6 year: 2013 end-page: 1057 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J. Digital Imaging doi: https://doi.org/10.1007/s10278-013-9622-7 – volume: 82 start-page: 1712 issn: 0031-8655 issue: 6 year: 2006 end-page: 1720 article-title: Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage publication-title: Photochem. Photobiol. doi: https://doi.org/10.1111/j.1751-1097.2006.tb09835.x – volume: 38 start-page: 4939 issn: 0003-6935 issue: 22 year: 1999 end-page: 4950 article-title: In vivo local determination of tissue optical properties: applications to human brain publication-title: Appl. Opt. doi: https://doi.org/10.1364/AO.38.004939 – volume: 14 start-page: 120 issue: 1 year: 2021 article-title: Interrelation between spectral online monitoring and postoperative T1-weighted MRI in interstitial photodynamic therapy of malignant gliomas publication-title: Cancers doi: https://doi.org/10.3390/cancers14010120 – volume: 11 start-page: 17871 issn: 2045-2322 issue: 1 year: 2021 article-title: Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study publication-title: Sci. Rep. doi: https://doi.org/10.1038/s41598-021-97407-z – volume: 22 start-page: 572 issue: 5 year: 2015 end-page: 579 article-title: Perfusion CT estimates photosensitizer uptake and biodistribution in a rabbit orthotopic pancreatic cancer model: a pilot study publication-title: Acad Radiol. doi: https://doi.org/10.1016/j.acra.2014.12.014 – volume: 84 start-page: 1124 issn: 0021-9037 issue: 6 year: 2018 end-page: 1130 article-title: Visualization of porphyrin-based photosensitizer distribution from fluorescence images in vivo using an optimized RGB camera publication-title: J. Appl. Spectrosc. doi: https://doi.org/10.1007/s10812-018-0597-5 – volume: 102 start-page: 556 issn: 1464-410X issue: 5 year: 2008 end-page: 562 article-title: Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses publication-title: BJU Int. doi: https://doi.org/10.1111/j.1464-410X.2008.07753.x – volume: 53 start-page: 1131 issn: 0031-9155 issue: 4 year: 2008 end-page: 1149 article-title: Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate publication-title: Phys. Med. Biol. doi: https://doi.org/10.1088/0031-9155/53/4/021 – volume: 42 start-page: 389 issn: 0190-9622 issue: 3 year: 2000 end-page: 413 article-title: Photodynamic therapy in dermatology publication-title: J. Am. Acad. Dermatol. doi: https://doi.org/10.1016/S0190-9622(00)90209-3 – volume: 51 start-page: 343 issn: 0031-8655 issue: 3 year: 1990 end-page: 349 article-title: In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine publication-title: Photochem. Photobiol. doi: https://doi.org/10.1111/j.1751-1097.1990.tb01720.x – volume: 32 start-page: 224 issn: 0196-8092 issue: 3 year: 2003 end-page: 232 article-title: A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative photofrin-photodynamic therapy of brain tumors publication-title: Lasers Surg. Med. doi: https://doi.org/10.1002/lsm.10131 – volume: 8928 start-page: 89280E issn: 0277-786X year: 2014 article-title: 5-ALA based photodynamic management of glioblastoma publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.2040268 – volume: 2 start-page: 91 issue: 2 year: 2005 end-page: 106 article-title: Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction publication-title: Photodiagn. Photodyn. Ther. doi: https://doi.org/10.1016/S1572-1000(05)00060-8 – volume: 3 start-page: 2142 issn: 2156-7085 issue: 9 year: 2012 end-page: 2153 article-title: Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.3.002142 – volume: 61 start-page: 250 issn: 0007-9235 issue: 4 year: 2011 end-page: 281 article-title: Photodynamic therapy of cancer: an update publication-title: CA Cancer J. Clin. doi: https://doi.org/10.3322/caac.20114 – volume: 6 start-page: 4923 issn: 2156-7085 issue: 12 year: 2015 end-page: 4933 article-title: Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.6.004923 – volume: 31 start-page: 1116 issn: 1053-8119 issue: 3 year: 2006 end-page: 1128 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2006.01.015 – volume: 43 start-page: 755 issn: 0196-8092 issue: 7 year: 2011 end-page: 767 article-title: Photodynamic therapy for infections: clinical applications publication-title: Lasers Surg. Med. doi: https://doi.org/10.1002/lsm.21080 – volume: 11 start-page: 1034 issue: 9 year: 2006 end-page: 1044 article-title: Photodynamic therapy in oncology publication-title: Oncologist doi: https://doi.org/10.1634/theoncologist.11-9-1034 – volume: 162 start-page: 217 issue: 1 year: 2023 end-page: 223 article-title: Interstitial photodynamic therapy for newly diagnosed glioblastoma publication-title: J. Neurooncol. doi: https://doi.org/10.1007/s11060-023-04284-9 – volume: 34 start-page: 102143 issue: 6 year: 2022 article-title: Blood volume and structural imaging as an early indicator for photodynamic response publication-title: J. King Saud. Univ. Sci. doi: https://doi.org/10.1016/j.jksus.2022.102143 – volume: 24 start-page: 035006 issn: 1083-3668 issue: 3 year: 2019 article-title: Validation of combined Monte Carlo and photokinetic simulations for the outcome correlation analysis of benzoporphyrin derivative-mediated photodynamic therapy on mice publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.24.3.035006 – volume: 58 start-page: R37 issn: 0031-9155 issue: 11 year: 2013 end-page: R61 article-title: Optical properties of biological tissues: a review publication-title: Phys. Med. Biol. doi: https://doi.org/10.1088/0031-9155/58/11/R37 – volume: 54 start-page: 2293 issn: 0031-9155 issue: 8 year: 2009 end-page: 2313 article-title: Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer publication-title: Phys. Med. Biol. doi: https://doi.org/10.1088/0031-9155/54/8/003 – volume: 172 start-page: 739 issue: 2 year: 2004 end-page: 743 article-title: Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy publication-title: J. Urol. doi: https://doi.org/10.1097/01.ju.0000135304.96496.20 – volume: 32 start-page: 264 issue: 2 year: 2012 end-page: 277 article-title: The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism publication-title: J. Cereb. Blood. Flow Metab. doi: https://doi.org/10.1038/jcbfm.2011.153 – volume: 89 start-page: 398 issn: 0007-0920 issue: 2 year: 2003 end-page: 404 article-title: Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics publication-title: Br. J. Cancer doi: https://doi.org/10.1038/sj.bjc.6601101 – volume: 10 start-page: 3161 issue: 12 year: 2021 end-page: 3168 article-title: Porphyrin-lipid nanovesicles (Porphysomes) are effective photosensitizers for photodynamic therapy publication-title: Nanophotonics doi: https://doi.org/10.1515/nanoph-2021-0220 – volume: 12 start-page: e201800153 issue: 1 year: 2018 article-title: Optimizing interstitial photodynamic therapy with custom cylindrical diffusers publication-title: J. Biophotonics doi: https://doi.org/10.1002/jbio.201800153 – volume: 1 start-page: 165 issn: 2156-7085 issue: 1 year: 2010 end-page: 175 article-title: Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.1.000165 – volume: 6427 start-page: 64270O issn: 0277-786X year: 2007 article-title: Interstitial photodynamic therapy for primary prostate cancer incorporating realtime treatment dosimetry publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.699903 – volume: 7 start-page: 8975 year: 2019 end-page: 9000 article-title: Texture feature extraction methods: a survey publication-title: IEEE Access doi: https://doi.org/10.1109/ACCESS.2018.2890743 – volume: 3 start-page: 573 issue: 6 year: 2012 end-page: 589 article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? publication-title: Insights Imaging doi: https://doi.org/10.1007/s13244-012-0196-6 – volume: 13 start-page: 856 issn: 1053-8119 issue: 5 year: 2001 end-page: 876 article-title: Magnetic resonance image tissue classification using a partial volume model publication-title: Neuroimage doi: https://doi.org/10.1006/nimg.2000.0730 – volume: 7 start-page: 2541 issn: 1936-0851 issue: 3 year: 2013 end-page: 2550 article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly publication-title: ACS Nano doi: https://doi.org/10.1021/nn3058642 – volume: 47 start-page: 2059 issn: 0031-9155 issue: 12 year: 2002 end-page: 2073 article-title: Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range publication-title: Phys. Med. Biol. doi: https://doi.org/10.1088/0031-9155/47/12/305 – volume: 95 start-page: 1237 issn: 1464-410X issue: 9 year: 2005 end-page: 1244 article-title: Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy publication-title: BJU Int. doi: https://doi.org/10.1111/j.1464-410X.2005.05512.x – volume: 17 start-page: 56008 issn: 1083-3668 issue: 5 year: 2012 article-title: Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.17.5.056008 – volume: 30 start-page: S13706 issn: 1083-3668 issue: Suppl 1 year: 2025 article-title: Deep learning-enabled fluorescence imaging for surgical guidance: training for oral cancer depth quantification publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.30.S1.S13706 – volume: SMC-3 start-page: 610 issn: 0018-9472 year: 1973 end-page: 621 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man. Cybern. doi: https://doi.org/10.1109/TSMC.1973.4309314 – volume: 22 start-page: 6425 issn: 1422-0067 issue: 12 year: 2021 article-title: Radiodynamic therapy using tat peptide-targeted verteporfin-encapsulated PLGA nanoparticles publication-title: Int. J. Mol. Sci. doi: https://doi.org/10.3390/ijms22126425 – volume: 78 start-page: 457 year: 2021 end-page: 465 article-title: A review of preferential photosensitizers in brain cancer and photodynamic therapy publication-title: Acta Pol. Pharm. Drug Res. doi: https://doi.org/10.32383/appdr/141301 – volume: 68 start-page: 1668 issn: 0018-9294 issue: 5 year: 2021 end-page: 1679 article-title: Optimizing interstitial photodynamic therapy planning with reinforcement learning-based diffuser placement publication-title: IEEE Trans. Biomed. Eng. doi: https://doi.org/10.1109/TBME.2021.3053197 – volume: 10 start-page: 41206 issn: 1083-3668 issue: 4 year: 2005 article-title: Analysis of sampling volume and tissue heterogeneity on the detection of fluorescence publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.2002978 – volume: 6 start-page: 129 issue: 2 year: 2002 end-page: 142 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Med. Image Anal. doi: https://doi.org/10.1016/S1361-8415(02)00054-3 – volume: 64 start-page: 1211 issue: 4 year: 2006 end-page: 1220 article-title: Pretreatment photosensitizer dosimetry reduces variation in tumor response publication-title: Int. J. Radiat. Oncol. doi: https://doi.org/10.1016/j.ijrobp.2005.11.019 – volume: 7715 start-page: 77152R year: 2010 article-title: Photochemical predictive analysis of photodynamic therapy with non-homogeneous topical photosensitizer distribution in dermatological applications publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.854635 – volume: 68 start-page: 603 issn: 0031-8655 issue: 5 year: 1998 end-page: 632 article-title: In vivo fluorescence spectroscopy and imaging for oncological applications publication-title: Photochem. Photobiol. doi: https://doi.org/10.1111/j.1751-1097.1998.tb02521.x – volume: 115 start-page: 11 issn: 0022-3085 year: 2011 end-page: 17 article-title: Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker—clinical article publication-title: J. Neurosurg. doi: https://doi.org/10.3171/2011.2.JNS101451 – volume: 10 start-page: 4630 issue: 14 year: 2004 end-page: 4638 article-title: Hypoxia and photofrin uptake in the intraperitoneal carcinomatosis and sarcomatosis of photodynamic therapy patients publication-title: Clin. Cancer Res. doi: https://doi.org/10.1158/1078-0432.CCR-04-0359 – volume: 17 start-page: A7 year: 2017 end-page: A8 article-title: Recurrent prostate cancer—verteporfin-mediated photodynamic therapy with the SpectraCure system publication-title: Photodiagn. Photodyn. Ther. doi: https://doi.org/10.1016/j.pdpdt.2017.01.018 – volume: 37 start-page: 7429 issn: 0003-6935 issue: 31 year: 1998 end-page: 7436 article-title: Fiber-optic bundle design for quantitative fluorescence measurement from tissue publication-title: Appl. Opt. doi: https://doi.org/10.1364/AO.37.007429 – volume: 53 start-page: R61 issn: 0031-9155 issue: 9 year: 2008 article-title: The physics, biophysics and technology of photodynamic therapy publication-title: Phys. Med. Biol. doi: https://doi.org/10.1088/0031-9155/53/9/R01 – volume: 27 start-page: 083006 issn: 1083-3668 issue: 8 year: 2022 article-title: Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.27.8.083006 – volume: 175 start-page: 1201 issue: 4 year: 2006 end-page: 1207 article-title: Photodynamic therapy for urological malignancies: past to current approaches publication-title: J. Urol. doi: https://doi.org/10.1016/S0022-5347(05)00701-9 – volume: 46 start-page: 149 issn: 0169-409X issue: 1 year: 2001 end-page: 168 article-title: Delivery of molecular and cellular medicine to solid publication-title: Adv. Drug Deliv. Rev. doi: https://doi.org/10.1016/S0169-409X(00)00131-9 – volume: 17 start-page: 463 issn: 0278-0062 issue: 3 year: 1998 end-page: 468 article-title: Design and construction of a realistic digital brain phantom publication-title: IEEE Trans. Med. Imaging doi: https://doi.org/10.1109/42.712135 – volume: 9 start-page: 898 issn: 2156-7085 issue: 2 year: 2018 end-page: 920 article-title: Automatic interstitial photodynamic therapy planning via convex optimization publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.9.000898 – volume: 131 start-page: 1361 issue: 5 year: 2019 end-page: 1368 article-title: Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnosed glioblastoma publication-title: J. Neurosurg. doi: https://doi.org/10.3171/2018.7.JNS18422 – volume: 21 start-page: 84002 issn: 1083-3668 issue: 8 year: 2016 article-title: Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.JBO.21.8.084002 – volume: 45 start-page: 225 issn: 0196-8092 issue: 4 year: 2013 end-page: 234 article-title: Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis publication-title: Lasers Surg. Med. doi: https://doi.org/10.1002/lsm.22126 – volume: 82 start-page: 1348 issue: 5 year: 2006 article-title: Tumor vascular area correlates with photosensitizer uptake: analysis of verteporfin microvascular delivery in the dunning rat prostate tumor publication-title: Photochem. Photobiol. doi: https://doi.org/10.1562/2006-03-25-RA-858 – volume: 4 start-page: 99 issue: 1 year: 2020 end-page: 119 article-title: Investigating tumor heterogeneity in mouse models publication-title: Annu. Rev. Cancer Biol. doi: https://doi.org/10.1146/annurev-cancerbio-030419-033413 – volume: 1835 start-page: 36 issn: 0006-3002 issue: 1 year: 2013 end-page: 45 article-title: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment publication-title: Biochim. Biophys. Acta doi: https://doi.org/10.1016/j.bbcan.2012.10.001 – volume: 2 start-page: e12149 issue: 4 year: 2020 article-title: “Study of statistical methods for texture analysis and their modern evolutions publication-title: Eng. Rep. doi: https://doi.org/10.1002/eng2.12149 – volume: 19 start-page: 154 issue: 1 year: 2021 article-title: Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy publication-title: J. Nanobiotechnol. doi: https://doi.org/10.1186/s12951-021-00898-1 – volume: 14 start-page: 714 issn: 2156-7085 issue: 2 year: 2023 end-page: 738 article-title: Integrating clinical access limitations into iPDT treatment planning with PDT-SPACE publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.478217 – volume: 45 start-page: 460 issn: 0196-8092 issue: 7 year: 2013 end-page: 468 article-title: Modulation of PPIX synthesis and accumulation in various normal and glioma cell lines by modification of the cellular signaling and temperature publication-title: Lasers Surg. Med. doi: https://doi.org/10.1002/lsm.22161 – volume: 12 start-page: 5401 issn: 2156-7085 issue: 9 year: 2021 end-page: 5422 article-title: Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimulation-based study publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.431310 – volume: 15 start-page: 041502 issn: 1083-3668 issue: 4 year: 2010 article-title: Photodynamic therapy: superficial and interstitial illumination publication-title: J. Biomed. Opt. doi: https://doi.org/10.1117/1.3466579 – volume: 12 start-page: e0181654 issn: 1932-6203 issue: 7 year: 2017 article-title: ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia publication-title: PLoS One doi: https://doi.org/10.1371/journal.pone.0181654 – volume: 11625 start-page: 116250C issn: 0277-786X year: 2021 article-title: Fluorescence depth estimation in pre-clinical oral cancer models using spatial frequency domain imaging publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.2577832 – volume: 8 start-page: 793 issue: 8 year: 2019 article-title: Short overview of ROS as cell function regulators and their implications in therapy concepts publication-title: Cells doi: https://doi.org/10.3390/cells8080793 – volume: 10 start-page: 967312 year: 2022 article-title: The application of photodynamic therapy in plastic and reconstructive surgery publication-title: Front. Chem. doi: https://doi.org/10.3389/fchem.2022.967312 – volume: 34 start-page: 102320 year: 2021 article-title: Light delivery device modelling for homogenous irradiation distribution in photodynamic therapy of non-spherical hollow organs publication-title: Photodiagn. Photodyn. Ther. doi: https://doi.org/10.1016/j.pdpdt.2021.102320 – ident: r25 doi: 10.1117/12.2040268 – ident: r82 doi: 10.1038/jcbfm.2011.153 – ident: r41 doi: 10.1111/j.1464-410X.2005.05512.x – start-page: 267 year: 1998 ident: r66 article-title: Momentum method to measure the blast contour – ident: r43 doi: 10.1364/BOE.431310 – ident: r61 doi: 10.1088/0031-9155/58/11/R37 – ident: r71 doi: 10.1016/S1361-8415(02)00054-3 – ident: r76 doi: 10.1016/S0169-409X(00)00131-9 – ident: r70 doi: 10.1006/nimg.2000.0730 – ident: r2 doi: 10.1002/lsm.21080 – ident: r80 doi: 10.1146/annurev-cancerbio-030419-033413 – ident: r81 doi: 10.1007/s13244-012-0196-6 – ident: r17 doi: 10.1016/j.pdpdt.2021.102320 – ident: r67 doi: 10.1364/BOE.1.000165 – ident: r39 doi: 10.1117/1.JBO.27.8.083006 – ident: r65 doi: 10.1109/TSMC.1973.4309314 – ident: r50 doi: 10.1021/nn3058642 – ident: r12 doi: 10.1016/j.acra.2014.12.014 – ident: r56 doi: 10.1364/BOE.6.004923 – ident: r22 doi: 10.1111/j.1751-1097.2006.tb09835.x – ident: r53 doi: 10.1002/lsm.22161 – ident: r9 doi: 10.1117/1.2002978 – ident: r55 doi: 10.1117/1.JBO.17.5.056008 – ident: r58 doi: 10.1117/1.JBO.30.S1.S13706 – ident: r16 doi: 10.1016/S0022-5347(05)00701-9 – ident: r62 doi: 10.1002/eng2.12149 – ident: r15 doi: 10.1117/1.3466579 – ident: r52 doi: 10.1371/journal.pone.0181654 – ident: r20 doi: 10.1117/12.854635 – ident: r73 doi: 10.1364/AO.38.004939 – ident: r30 doi: 10.1002/lsm.10131 – ident: r29 doi: 10.1111/j.1751-1097.1998.tb02521.x – ident: r46 doi: 10.3171/2018.7.JNS18422 – ident: r64 doi: 10.1109/ICPR.2006.1110 – ident: r6 doi: 10.1016/S1572-1000(05)00060-8 – ident: r5 doi: 10.1088/0031-9155/53/9/R01 – ident: r35 doi: 10.3390/cancers15092636 – ident: r4 doi: 10.3322/caac.20114 – ident: r23 doi: 10.1038/sj.bjc.6601101 – ident: r63 doi: 10.1109/ACCESS.2018.2890743 – ident: r75 doi: 10.1117/1.JBO.21.8.084002 – ident: r57 doi: 10.1117/12.2577832 – ident: r79 doi: 10.1158/1078-0432.CCR-04-0359 – ident: r44 doi: 10.1109/TBME.2021.3053197 – ident: r10 doi: 10.1562/2006-03-25-RA-858 – ident: r45 doi: 10.1002/jbio.201800153 – ident: r36 doi: 10.1364/BOE.9.000898 – ident: r26 doi: 10.1007/s11060-023-04284-9 – ident: r49 doi: 10.1186/s12951-021-00898-1 – ident: r51 doi: 10.3390/ijms22126425 – ident: r68 doi: 10.1109/42.712135 – ident: r32 doi: 10.1088/0031-9155/53/4/021 – ident: r8 doi: 10.3390/cells8080793 – ident: r21 doi: 10.1007/s10812-018-0597-5 – ident: r19 doi: 10.1117/12.699903 – ident: r28 doi: 10.1364/AO.37.007429 – ident: r3 doi: 10.3389/fchem.2022.967312 – ident: r47 doi: 10.32383/appdr/141301 – ident: r72 doi: 10.1016/j.neuroimage.2006.01.015 – ident: r18 doi: 10.3390/cancers14010120 – ident: r60 doi: 10.1117/1.JBO.24.7.071603 – ident: r38 doi: 10.1364/BOE.478217 – ident: r74 doi: 10.1088/0031-9155/47/12/305 – ident: r11 doi: 10.1016/j.ijrobp.2005.11.019 – ident: r31 doi: 10.1016/j.pdpdt.2017.01.018 – ident: r37 doi: 10.1038/s41598-021-97407-z – ident: r69 doi: 10.1007/s10278-013-9622-7 – ident: r14 doi: 10.1364/BOE.3.002142 – ident: r40 doi: 10.1002/jbio.201800153 – ident: r54 doi: 10.1016/S1011-1344(97)00010-9 – ident: r1 doi: 10.1634/theoncologist.11-9-1034 – ident: r78 doi: 10.1111/j.1464-410X.2008.07753.x – ident: r48 doi: 10.1515/nanoph-2021-0220 – ident: r24 doi: 10.1002/lsm.22126 – ident: r27 doi: 10.1016/j.jksus.2022.102143 – ident: r42 doi: 10.1097/01.ju.0000135304.96496.20 – ident: r34 doi: 10.1117/1.JBO.24.3.035006 – ident: r59 doi: 10.3171/2011.2.JNS101451 – ident: r33 doi: 10.1111/j.1751-1097.1990.tb01720.x – ident: r13 doi: 10.1016/S0190-9622(00)90209-3 – ident: r77 doi: 10.1088/0031-9155/54/8/003 – ident: r7 doi: 10.1016/j.bbcan.2012.10.001 |
SSID | ssj0008696 |
Score | 2.4465535 |
Snippet | Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs),... |
SourceID | pubmedcentral proquest gale pubmed crossref spie |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 018001 |
SubjectTerms | Animals Brain Neoplasms - diagnostic imaging Brain Neoplasms - drug therapy Cancer Cell Line, Tumor Glioblastoma - diagnostic imaging Glioblastoma - drug therapy Glioma - diagnostic imaging Glioma - drug therapy Humans Photochemotherapy Photochemotherapy - methods Photosensitizing Agents - pharmacokinetics Photosensitizing Agents - therapeutic use Precision Medicine - methods Rats Therapeutic |
Title | Photosensitizer spatial heterogeneity and its impact on personalized interstitial photodynamic therapy treatment planning |
URI | http://www.dx.doi.org/10.1117/1.JBO.30.1.018001 https://www.ncbi.nlm.nih.gov/pubmed/39802351 https://www.proquest.com/docview/3154890262 https://pubmed.ncbi.nlm.nih.gov/PMC11724368 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dq9MwFA9zF0EfRK9f0-slgiAo3e2Sfu3xzrtxuczdoRvsLbRpyorQlrV72B79yz1p0q2dU6YvZUvSpu3v15OT5Hwg9IGHnnB7gWO4xCeG5XuR0bdC2wh8Sh1QkAMSltE-J87t3Lpb2ItW62fNamldBF2-PepX8j-oQhngKr1k_wHZ3UWhAH4DvnAEhOF4EsbTZVqkuTRBL-KtDMsszaNL50Z4WymcJqSOXW0PVA6R0mxca-BbEZYBI1bSYkCemckrhipL_Wflm7WpGaNnOsXRH1Ra5ctfwp5mRc2O_rsv4jBW3Ej2A0G1Vr1cr_YklfGyVtBxrkZFuamwX3C98VVmbG3trze19KoFsWurFlrQOqZBiErX0hVHyrR01rs2dRYqUSsjj6krHhkFyjgC3bvBfZfC_-6-bTPi9uSejebjMZsNF7MH6IzAVGM3LdejueeUOd5296Z3xqGLq986aOg2hyN8TcU5NL9t51ksamrN7Cl6osHD14pcz1BLJOfoocpQujlHj2vxKqG8tBfm-XO0OaAe1tTDDephoB4G6mFFPZwmuE49XKcerlMPa-rhHfVwRb0XaD4azr7cGjqLh8Ft2ymMAFR0z-SmcM2AEzfgTh-mCaRHo34vgOFWkCh0eEAdQR3fikIhc8baICe47XE3MulL1E7SRLxG2I18n_Y49-y-Z4FeG4QwGacWFdwKqWtGHfSpev8sU8FamJrkuqzHACxG4R9TYHXQR4kQk8wBGLiv_VGgKxkSjV17MLZ5lBK7gy4aLUEA80b1-wpjJquk1WIi0nXOqFwP6JvEIR30SmG-uy_al6EXbbgNr8GGXQMZ971Zk8TLMv47PA6RiSPgCSRxmJZI-d-eNWi2lPXwgak2A5__WHwdAyWmNyO2jbPD009okYXRmxPew1v0aC8NLlC7WK3FO9Dqi-ASnQ2Gk-m3y_Lz-wVkS_yh |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosensitizer+spatial+heterogeneity+and+its+impact+on+personalized+interstitial+photodynamic+therapy+treatment+planning&rft.jtitle=Journal+of+biomedical+optics&rft.au=Saeidi%2C+Tina&rft.au=Wang%2C+Shuran&rft.au=Contreras%2C+Hector+A&rft.au=Daly%2C+Michael+J&rft.date=2025-01-01&rft.issn=1560-2281&rft.eissn=1560-2281&rft.volume=30&rft.issue=1&rft.spage=018001&rft_id=info:doi/10.1117%2F1.JBO.30.1.018001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon |