Photosensitizer spatial heterogeneity and its impact on personalized interstitial photodynamic therapy treatment planning

Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treat...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical optics Vol. 30; no. 1; p. 018001
Main Authors Saeidi, Tina, Wang, Shuran, Contreras, Hector A., Daly, Michael J., Betz, Vaughn, Lilge, Lothar
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.01.2025
SPIE
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans. We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions. The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation. The studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of for photosensitizer quantification will result in significantly different iPDT planning solutions for each case. Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.
AbstractList Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.SignificancePersonalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.AimWe aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied in silico to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation.ApproachThe spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied in silico to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation.The ex vivo studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of 1    mm 3 for photosensitizer quantification will result in significantly different iPDT planning solutions for each case.ResultsThe ex vivo studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of 1    mm 3 for photosensitizer quantification will result in significantly different iPDT planning solutions for each case.Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.ConclusionsAssuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.
Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans. We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions. The spatial variability of two PSs is imaged at various spatial resolutions for an orthotopic rat glioma model and applied to human glioblastoma models to determine the spatial PDT dose, including in organs at risk. An open-source interstitial photodynamic therapy (iPDT) planning tool is applied to these models, deriving the spatial photosensitizer quantification resolution that consistently impacts iPDT source placement and power allocation. The studies revealed a bimodal photosensitizer distribution in the tumor. The concentration of the PS can vary by a factor of 2 between the tumor core and rim, with slight variation within the core but a factor of 5 in the rim. An average sampling volume of for photosensitizer quantification will result in significantly different iPDT planning solutions for each case. Assuming homogeneous photosensitizer distribution results in suboptimal therapeutic outcomes, we highlight the need to predict the photosensitizer distribution before source placement for effective treatment plans.
Audience Academic
Author Lilge, Lothar
Wang, Shuran
Contreras, Hector A.
Betz, Vaughn
Saeidi, Tina
Daly, Michael J.
Author_xml – sequence: 1
  givenname: Tina
  surname: Saeidi
  fullname: Saeidi, Tina
  email: tina.saeidi@mail.utoronto.ca
  organization: University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada
– sequence: 2
  givenname: Shuran
  orcidid: 0000-0003-4345-7628
  surname: Wang
  fullname: Wang, Shuran
  email: shuran.wang@mail.utoronto.ca
  organization: University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
– sequence: 3
  givenname: Hector A.
  surname: Contreras
  fullname: Contreras, Hector A.
  email: hectoralex.contreras@mail.utoronto.ca
  organization: University of Toronto, University Health Network, Princess Margaret Cancer Centre, Department of Medical Biophysics, Toronto, Ontario, Canada
– sequence: 4
  givenname: Michael J.
  orcidid: 0000-0002-2217-4146
  surname: Daly
  fullname: Daly, Michael J.
  email: michael.daly@uhn.ca
  organization: University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
– sequence: 5
  givenname: Vaughn
  orcidid: 0000-0003-0528-6493
  surname: Betz
  fullname: Betz, Vaughn
  email: vaughn@ece.utoronto.ca
  organization: University of Toronto, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Toronto, Ontario, Canada
– sequence: 6
  givenname: Lothar
  orcidid: 0000-0001-5533-0005
  surname: Lilge
  fullname: Lilge, Lothar
  email: Lothar.Lilge@uhn.ca
  organization: University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39802351$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7AD-CCVuLCJcFerx3nhNpCW1BQewCJm-X1ziYuu7ZrO5XSX8-kWwpBICEf_PW8r2c8c1jsOe-gKF5SMqWUzt7S6aeTyynD3ZRQSQh9UhxQLsikqiTdwzWRbMKEkPvFYUrXhBAp5uJZsc_mklSM04Nic7Xy2SdwyWZ7B7FMQWer-3IFGaJfggObN6V2bWlzKu0QtMmld2WAmLzTPYrwyiGcsr1Xhq1ju3F6sKbMK4g6bMocQecBXC5Dr52zbvm8eNrpPsGLh_mo-Hr24cvpxWRxef7x9HgxMZyLPGlqLiQxBGakMdWsMWJOeF1R1s1pw5mEqmuFaZgAJnTdtSD5DIW1NFyaWUfYUfFu9A3rZoDWYAxR9ypEO-i4UV5btXvj7Eot_a3CH65qJiQ6vHlwiP5mDSmrwSYDPSYCfp0Uo7yWc1KJCtHXI7rUPSjrOo-WZourY1lLKRmrOFLTv1A4WsA_wxp3Fs93BK9-z-Ex-J91RICOgIk-pQjdI0KJ2vaKogp7RTHcqbFXUGNHTQoW1LVfRyxnusdufT-iJ9p8__Z5geW_en-m7mz40-U_iNB2vzLefevfwf0AOrLk-A
Cites_doi https://doi.org/10.1117/1.JBO.24.7.071603
https://doi.org/10.1002/jbio.201800153
https://doi.org/10.1016/S1011-1344(97)00010-9
https://doi.org/10.3390/cancers15092636
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1111/j.1751-1097.2006.tb09835.x
https://doi.org/10.1364/AO.38.004939
https://doi.org/10.3390/cancers14010120
https://doi.org/10.1038/s41598-021-97407-z
https://doi.org/10.1016/j.acra.2014.12.014
https://doi.org/10.1007/s10812-018-0597-5
https://doi.org/10.1111/j.1464-410X.2008.07753.x
https://doi.org/10.1088/0031-9155/53/4/021
https://doi.org/10.1016/S0190-9622(00)90209-3
https://doi.org/10.1111/j.1751-1097.1990.tb01720.x
https://doi.org/10.1002/lsm.10131
https://doi.org/10.1117/12.2040268
https://doi.org/10.1016/S1572-1000(05)00060-8
https://doi.org/10.1364/BOE.3.002142
https://doi.org/10.3322/caac.20114
https://doi.org/10.1364/BOE.6.004923
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1002/lsm.21080
https://doi.org/10.1634/theoncologist.11-9-1034
https://doi.org/10.1007/s11060-023-04284-9
https://doi.org/10.1016/j.jksus.2022.102143
https://doi.org/10.1117/1.JBO.24.3.035006
https://doi.org/10.1088/0031-9155/58/11/R37
https://doi.org/10.1088/0031-9155/54/8/003
https://doi.org/10.1097/01.ju.0000135304.96496.20
https://doi.org/10.1038/jcbfm.2011.153
https://doi.org/10.1038/sj.bjc.6601101
https://doi.org/10.1515/nanoph-2021-0220
https://doi.org/10.1364/BOE.1.000165
https://doi.org/10.1117/12.699903
https://doi.org/10.1109/ACCESS.2018.2890743
https://doi.org/10.1007/s13244-012-0196-6
https://doi.org/10.1006/nimg.2000.0730
https://doi.org/10.1021/nn3058642
https://doi.org/10.1088/0031-9155/47/12/305
https://doi.org/10.1111/j.1464-410X.2005.05512.x
https://doi.org/10.1117/1.JBO.17.5.056008
https://doi.org/10.1117/1.JBO.30.S1.S13706
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.3390/ijms22126425
https://doi.org/10.32383/appdr/141301
https://doi.org/10.1109/TBME.2021.3053197
https://doi.org/10.1117/1.2002978
https://doi.org/10.1016/S1361-8415(02)00054-3
https://doi.org/10.1016/j.ijrobp.2005.11.019
https://doi.org/10.1117/12.854635
https://doi.org/10.1111/j.1751-1097.1998.tb02521.x
https://doi.org/10.3171/2011.2.JNS101451
https://doi.org/10.1158/1078-0432.CCR-04-0359
https://doi.org/10.1016/j.pdpdt.2017.01.018
https://doi.org/10.1364/AO.37.007429
https://doi.org/10.1088/0031-9155/53/9/R01
https://doi.org/10.1117/1.JBO.27.8.083006
https://doi.org/10.1016/S0022-5347(05)00701-9
https://doi.org/10.1016/S0169-409X(00)00131-9
https://doi.org/10.1109/42.712135
https://doi.org/10.1364/BOE.9.000898
https://doi.org/10.3171/2018.7.JNS18422
https://doi.org/10.1117/1.JBO.21.8.084002
https://doi.org/10.1002/lsm.22126
https://doi.org/10.1562/2006-03-25-RA-858
https://doi.org/10.1146/annurev-cancerbio-030419-033413
https://doi.org/10.1016/j.bbcan.2012.10.001
https://doi.org/10.1002/eng2.12149
https://doi.org/10.1186/s12951-021-00898-1
https://doi.org/10.1364/BOE.478217
https://doi.org/10.1002/lsm.22161
https://doi.org/10.1364/BOE.431310
https://doi.org/10.1117/1.3466579
https://doi.org/10.1371/journal.pone.0181654
https://doi.org/10.1117/12.2577832
https://doi.org/10.3390/cells8080793
https://doi.org/10.3389/fchem.2022.967312
https://doi.org/10.1016/j.pdpdt.2021.102320
10.1117/12.2040268
10.1038/jcbfm.2011.153
10.1111/j.1464-410X.2005.05512.x
10.1364/BOE.431310
10.1088/0031-9155/58/11/R37
10.1016/S1361-8415(02)00054-3
10.1016/S0169-409X(00)00131-9
10.1006/nimg.2000.0730
10.1002/lsm.21080
10.1146/annurev-cancerbio-030419-033413
10.1007/s13244-012-0196-6
10.1016/j.pdpdt.2021.102320
10.1364/BOE.1.000165
10.1117/1.JBO.27.8.083006
10.1109/TSMC.1973.4309314
10.1021/nn3058642
10.1016/j.acra.2014.12.014
10.1364/BOE.6.004923
10.1111/j.1751-1097.2006.tb09835.x
10.1002/lsm.22161
10.1117/1.2002978
10.1117/1.JBO.17.5.056008
10.1117/1.JBO.30.S1.S13706
10.1016/S0022-5347(05)00701-9
10.1002/eng2.12149
10.1117/1.3466579
10.1371/journal.pone.0181654
10.1117/12.854635
10.1364/AO.38.004939
10.1002/lsm.10131
10.1111/j.1751-1097.1998.tb02521.x
10.3171/2018.7.JNS18422
10.1109/ICPR.2006.1110
10.1016/S1572-1000(05)00060-8
10.1088/0031-9155/53/9/R01
10.3390/cancers15092636
10.3322/caac.20114
10.1038/sj.bjc.6601101
10.1109/ACCESS.2018.2890743
10.1117/1.JBO.21.8.084002
10.1117/12.2577832
10.1158/1078-0432.CCR-04-0359
10.1109/TBME.2021.3053197
10.1562/2006-03-25-RA-858
10.1002/jbio.201800153
10.1364/BOE.9.000898
10.1007/s11060-023-04284-9
10.1186/s12951-021-00898-1
10.3390/ijms22126425
10.1109/42.712135
10.1088/0031-9155/53/4/021
10.3390/cells8080793
10.1007/s10812-018-0597-5
10.1117/12.699903
10.1364/AO.37.007429
10.3389/fchem.2022.967312
10.32383/appdr/141301
10.1016/j.neuroimage.2006.01.015
10.3390/cancers14010120
10.1117/1.JBO.24.7.071603
10.1364/BOE.478217
10.1088/0031-9155/47/12/305
10.1016/j.ijrobp.2005.11.019
10.1016/j.pdpdt.2017.01.018
10.1038/s41598-021-97407-z
10.1007/s10278-013-9622-7
10.1364/BOE.3.002142
10.1016/S1011-1344(97)00010-9
10.1634/theoncologist.11-9-1034
10.1111/j.1464-410X.2008.07753.x
10.1515/nanoph-2021-0220
10.1002/lsm.22126
10.1016/j.jksus.2022.102143
10.1097/01.ju.0000135304.96496.20
10.1117/1.JBO.24.3.035006
10.3171/2011.2.JNS101451
10.1111/j.1751-1097.1990.tb01720.x
10.1016/S0190-9622(00)90209-3
10.1088/0031-9155/54/8/003
10.1016/j.bbcan.2012.10.001
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
2025 The Authors.
COPYRIGHT 2025 SPIE
2025 The Authors 2025 The Authors
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
– notice: 2025 The Authors.
– notice: COPYRIGHT 2025 SPIE
– notice: 2025 The Authors 2025 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1117/1.JBO.30.1.018001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
Physics
EISSN 1560-2281
EndPage 018001
ExternalDocumentID PMC11724368
A848883325
39802351
10_1117_1_JBO_30_1_018001
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ontario Ministry of Economic Development and Trade
  grantid: ORF RE08-022
– fundername: Princess Margaret Cancer Research Foundation
GroupedDBID ---
0R~
29J
4.4
53G
5GY
AAFWJ
ACBEA
ACGFO
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CS3
DU5
EBS
EMOBN
F5P
FQ0
GROUPED_DOAJ
HCIFZ
HZ~
M4X
M7P
O9-
OK1
P2P
PBYJJ
PHGZT
PIMPY
RNS
RPM
SPBNH
UPT
W2D
YQT
AAYXX
AKROS
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
EJD
HYE
M4W
NPM
NU.
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c556t-b45680c0e70bc27bc69054213f91b538e2fd6cb36e36a4fde85755648c58c7f03
ISSN 1083-3668
1560-2281
IngestDate Thu Aug 21 18:28:43 EDT 2025
Thu Jul 10 16:40:11 EDT 2025
Wed Jul 30 23:58:58 EDT 2025
Tue Jul 29 03:41:14 EDT 2025
Sun Aug 10 01:31:49 EDT 2025
Tue Jul 01 03:17:39 EDT 2025
Thu Mar 06 22:58:55 EST 2025
Thu Mar 06 23:00:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords photosensitizer heterogeneity
PDT-SPACE
interstitial photodynamic therapy
pre-treatment planning
Language English
License 2025 The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-b45680c0e70bc27bc69054213f91b538e2fd6cb36e36a4fde85755648c58c7f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0528-6493
0000-0001-5533-0005
0000-0003-4345-7628
0000-0002-2217-4146
OpenAccessLink http://dx.doi.org/10.1117/1.JBO.30.1.018001
PMID 39802351
PQID 3154890262
PQPubID 23479
PageCount 1
ParticipantIDs gale_infotracmisc_A848883325
pubmed_primary_39802351
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11724368
proquest_miscellaneous_3154890262
spie_journals_10_1117_1_JBO_30_1_018001
gale_infotracacademiconefile_A848883325
crossref_primary_10_1117_1_JBO_30_1_018001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical optics
PublicationTitleAlternate J. Biomed. Opt
PublicationYear 2025
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References Konecky, S. D. 2012; 17
Humeau-Heurtier, A. 2019; 7
Haralick, R.; Shanmugam, K.; Dinstein, I. 1973; SMC-3
Liu, L. 2018; 84
Pinthus, J. H. 2006; 175
Chang, E. 2021; 19
Pogue, B. W.; Burke, G. 1998; 37
Yassine, A.-A.; Lilge, L.; Betz, V. 2021; 12
Davidson, S. R. H. 2009; 54
Jones, H. J.; Vernon, D. I.; Brown, S. B. 2003; 89
Rühm, A. 2014; 8928
Yang, V. X. D. 2003; 32
Zhou, X. 2006; 82
Won, N. J. 2025; 30
Yaroslavsky, A. N. 2002; 47
Nitta, M. 2019; 131
Jacques, S. L. 2013; 58
Yassine, A. A. 2021; 11
Wang, S. 2022; 27
Guidolin, K. 2021; 10
Wagnières, G. A.; Star, W. M.; Wilson, B. C. 1998; 68
Jankun, J. 2005; 95
Wu, M. 2022; 10
Yassine, A.-A.; Lilge, L.; Betz, V. 2021; 68
Daly, M. J. 2021; 11625
Lilge, L.; O’Carroll, C.; Wilson, B. C. 1997; 39
Yushkevich, P. A. 2006; 31
Clement, S. 2021; 22
Cauchon, N. 2006; 82
Wang, S. 2023; 14
Triesscheijn, M. 2006; 11
Ramola, A.; Shakya, A. K.; Van Pham, D. 2020; 2
Fisher, C. J. 2017; 12
Aumiller, M. 2021; 14
Tammela, T.; Sage, J. 2020; 4
Milkovic, L. 2019; 8
Fang, Q. 2010; 1
Yassine, A.-A.; Lilge, L.; Betz, V. 2019; 12
MacLaughlin, C. M. 2016; 21
Kalka, K.; Merk, H.; Mukhtar, H. 2000; 42
Jain, R. K. 2001; 46
Kharkwal, G. B. 2011; 43
Shattuck, D. W. 2001; 13
Milla Sanabria, L. 2013; 1835
Johansson, A. 2013; 45
Castano, A. P.; Demidova, T. N.; Hamblin, M. R. 2005; 2
Elliott, J. T. 2015; 22
Rendon, A.; Beck, J. C.; Lilge, L. 2008; 53
Yassine, A.-A.; Lilge, L.; Betz, V. 2018; 12
Clark, K. 2013; 26
Bevilacqua, F. 1999; 38
Salas-García, I. 2010; 7715
Oakley, E. 2023; 15
Jespersen, S. N.; Østergaard, L. 2012; 32
Trachtenberg, J. 2008; 102
Międzybrodzka, A. 2021; 78
Atif, M. 2022; 34
Bendsoe, N. 2010; 15
Patterson, M. S.; Wilson, B. C.; Graff, R. 1990; 51
Jin, C. S. 2013; 7
Beeson, K. W. 2019; 24
Collins, D. L. 1998; 17
Johansson, A. 2007; 6427
Tan, Y. 2021; 34
Yassine, A.-A. 2018; 9
Pogue, B. W. 2005; 10
Hayakawa, C. K. 2019; 24
Wilson, B. C.; Patterson, M. S. 2008; 53
Zhou, X. 2006; 64
Fisher, C. J. 2013; 45
Sibai, M. 2015; 6
Swartling, J.; Andersson-Engels, S.; Svanberg, K. 2017; 17
Jankun, J. 2004; 172
Busch, T. M. 2004; 10
Shattuck, D. W.; Leahy, R. M. 2002; 6
Valdés, P. 2011; 115
Rohrbach, D. J. 2012; 3
Quach, S. 2023; 162
Davnall, F. 2012; 3
Agostinis, P. 2011; 61
r2
r3
r4
r5
r6
r7
r8
r9
r50
r52
r51
r10
r54
r53
r12
r56
r11
r55
r14
r58
r13
r57
r16
r15
r59
r18
r17
r19
r61
r60
r63
r62
r21
r65
r20
r64
r23
r67
r22
r25
r69
r24
r68
r27
r26
r29
r28
r70
r72
r71
r30
r74
r73
r32
r76
r31
r75
r34
r78
r33
r77
r36
r35
r79
r38
r37
Held (r66) 1998
r39
r81
r80
r82
r41
r40
r43
r42
r45
r44
r47
r46
r49
r48
r1
References_xml – volume: 24
  start-page: 071603
  issn: 1083-3668
  issue: 7
  year: 2019
  article-title: Optical sampling depth in the spatial frequency domain
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.24.7.071603
– volume: 12
  start-page: e201800153
  issue: 1
  year: 2019
  article-title: Optimizing interstitial photodynamic therapy with custom cylindrical diffusers
  publication-title: J. Biophotonics.
  doi: https://doi.org/10.1002/jbio.201800153
– volume: 39
  start-page: 229
  issn: 1011-1344
  issue: 3
  year: 1997
  end-page: 235
  article-title: A solubilization technique for photosensitizer quantification in ex vivo tissue samples
  publication-title: J. Photochem. Photobiol. B
  doi: https://doi.org/10.1016/S1011-1344(97)00010-9
– volume: 15
  start-page: 2636
  issue: 9
  year: 2023
  article-title: Computational optimization of irradiance and fluence for interstitial photodynamic therapy treatment of patients with malignant central airway obstruction
  publication-title: Cancers
  doi: https://doi.org/10.3390/cancers15092636
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digital Imaging
  doi: https://doi.org/10.1007/s10278-013-9622-7
– volume: 82
  start-page: 1712
  issn: 0031-8655
  issue: 6
  year: 2006
  end-page: 1720
  article-title: Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage
  publication-title: Photochem. Photobiol.
  doi: https://doi.org/10.1111/j.1751-1097.2006.tb09835.x
– volume: 38
  start-page: 4939
  issn: 0003-6935
  issue: 22
  year: 1999
  end-page: 4950
  article-title: In vivo local determination of tissue optical properties: applications to human brain
  publication-title: Appl. Opt.
  doi: https://doi.org/10.1364/AO.38.004939
– volume: 14
  start-page: 120
  issue: 1
  year: 2021
  article-title: Interrelation between spectral online monitoring and postoperative T1-weighted MRI in interstitial photodynamic therapy of malignant gliomas
  publication-title: Cancers
  doi: https://doi.org/10.3390/cancers14010120
– volume: 11
  start-page: 17871
  issn: 2045-2322
  issue: 1
  year: 2021
  article-title: Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study
  publication-title: Sci. Rep.
  doi: https://doi.org/10.1038/s41598-021-97407-z
– volume: 22
  start-page: 572
  issue: 5
  year: 2015
  end-page: 579
  article-title: Perfusion CT estimates photosensitizer uptake and biodistribution in a rabbit orthotopic pancreatic cancer model: a pilot study
  publication-title: Acad Radiol.
  doi: https://doi.org/10.1016/j.acra.2014.12.014
– volume: 84
  start-page: 1124
  issn: 0021-9037
  issue: 6
  year: 2018
  end-page: 1130
  article-title: Visualization of porphyrin-based photosensitizer distribution from fluorescence images in vivo using an optimized RGB camera
  publication-title: J. Appl. Spectrosc.
  doi: https://doi.org/10.1007/s10812-018-0597-5
– volume: 102
  start-page: 556
  issn: 1464-410X
  issue: 5
  year: 2008
  end-page: 562
  article-title: Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses
  publication-title: BJU Int.
  doi: https://doi.org/10.1111/j.1464-410X.2008.07753.x
– volume: 53
  start-page: 1131
  issn: 0031-9155
  issue: 4
  year: 2008
  end-page: 1149
  article-title: Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate
  publication-title: Phys. Med. Biol.
  doi: https://doi.org/10.1088/0031-9155/53/4/021
– volume: 42
  start-page: 389
  issn: 0190-9622
  issue: 3
  year: 2000
  end-page: 413
  article-title: Photodynamic therapy in dermatology
  publication-title: J. Am. Acad. Dermatol.
  doi: https://doi.org/10.1016/S0190-9622(00)90209-3
– volume: 51
  start-page: 343
  issn: 0031-8655
  issue: 3
  year: 1990
  end-page: 349
  article-title: In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine
  publication-title: Photochem. Photobiol.
  doi: https://doi.org/10.1111/j.1751-1097.1990.tb01720.x
– volume: 32
  start-page: 224
  issn: 0196-8092
  issue: 3
  year: 2003
  end-page: 232
  article-title: A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative photofrin-photodynamic therapy of brain tumors
  publication-title: Lasers Surg. Med.
  doi: https://doi.org/10.1002/lsm.10131
– volume: 8928
  start-page: 89280E
  issn: 0277-786X
  year: 2014
  article-title: 5-ALA based photodynamic management of glioblastoma
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.2040268
– volume: 2
  start-page: 91
  issue: 2
  year: 2005
  end-page: 106
  article-title: Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction
  publication-title: Photodiagn. Photodyn. Ther.
  doi: https://doi.org/10.1016/S1572-1000(05)00060-8
– volume: 3
  start-page: 2142
  issn: 2156-7085
  issue: 9
  year: 2012
  end-page: 2153
  article-title: Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.3.002142
– volume: 61
  start-page: 250
  issn: 0007-9235
  issue: 4
  year: 2011
  end-page: 281
  article-title: Photodynamic therapy of cancer: an update
  publication-title: CA Cancer J. Clin.
  doi: https://doi.org/10.3322/caac.20114
– volume: 6
  start-page: 4923
  issn: 2156-7085
  issue: 12
  year: 2015
  end-page: 4933
  article-title: Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.6.004923
– volume: 31
  start-page: 1116
  issn: 1053-8119
  issue: 3
  year: 2006
  end-page: 1128
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2006.01.015
– volume: 43
  start-page: 755
  issn: 0196-8092
  issue: 7
  year: 2011
  end-page: 767
  article-title: Photodynamic therapy for infections: clinical applications
  publication-title: Lasers Surg. Med.
  doi: https://doi.org/10.1002/lsm.21080
– volume: 11
  start-page: 1034
  issue: 9
  year: 2006
  end-page: 1044
  article-title: Photodynamic therapy in oncology
  publication-title: Oncologist
  doi: https://doi.org/10.1634/theoncologist.11-9-1034
– volume: 162
  start-page: 217
  issue: 1
  year: 2023
  end-page: 223
  article-title: Interstitial photodynamic therapy for newly diagnosed glioblastoma
  publication-title: J. Neurooncol.
  doi: https://doi.org/10.1007/s11060-023-04284-9
– volume: 34
  start-page: 102143
  issue: 6
  year: 2022
  article-title: Blood volume and structural imaging as an early indicator for photodynamic response
  publication-title: J. King Saud. Univ. Sci.
  doi: https://doi.org/10.1016/j.jksus.2022.102143
– volume: 24
  start-page: 035006
  issn: 1083-3668
  issue: 3
  year: 2019
  article-title: Validation of combined Monte Carlo and photokinetic simulations for the outcome correlation analysis of benzoporphyrin derivative-mediated photodynamic therapy on mice
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.24.3.035006
– volume: 58
  start-page: R37
  issn: 0031-9155
  issue: 11
  year: 2013
  end-page: R61
  article-title: Optical properties of biological tissues: a review
  publication-title: Phys. Med. Biol.
  doi: https://doi.org/10.1088/0031-9155/58/11/R37
– volume: 54
  start-page: 2293
  issn: 0031-9155
  issue: 8
  year: 2009
  end-page: 2313
  article-title: Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer
  publication-title: Phys. Med. Biol.
  doi: https://doi.org/10.1088/0031-9155/54/8/003
– volume: 172
  start-page: 739
  issue: 2
  year: 2004
  end-page: 743
  article-title: Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy
  publication-title: J. Urol.
  doi: https://doi.org/10.1097/01.ju.0000135304.96496.20
– volume: 32
  start-page: 264
  issue: 2
  year: 2012
  end-page: 277
  article-title: The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism
  publication-title: J. Cereb. Blood. Flow Metab.
  doi: https://doi.org/10.1038/jcbfm.2011.153
– volume: 89
  start-page: 398
  issn: 0007-0920
  issue: 2
  year: 2003
  end-page: 404
  article-title: Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics
  publication-title: Br. J. Cancer
  doi: https://doi.org/10.1038/sj.bjc.6601101
– volume: 10
  start-page: 3161
  issue: 12
  year: 2021
  end-page: 3168
  article-title: Porphyrin-lipid nanovesicles (Porphysomes) are effective photosensitizers for photodynamic therapy
  publication-title: Nanophotonics
  doi: https://doi.org/10.1515/nanoph-2021-0220
– volume: 12
  start-page: e201800153
  issue: 1
  year: 2018
  article-title: Optimizing interstitial photodynamic therapy with custom cylindrical diffusers
  publication-title: J. Biophotonics
  doi: https://doi.org/10.1002/jbio.201800153
– volume: 1
  start-page: 165
  issn: 2156-7085
  issue: 1
  year: 2010
  end-page: 175
  article-title: Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.1.000165
– volume: 6427
  start-page: 64270O
  issn: 0277-786X
  year: 2007
  article-title: Interstitial photodynamic therapy for primary prostate cancer incorporating realtime treatment dosimetry
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.699903
– volume: 7
  start-page: 8975
  year: 2019
  end-page: 9000
  article-title: Texture feature extraction methods: a survey
  publication-title: IEEE Access
  doi: https://doi.org/10.1109/ACCESS.2018.2890743
– volume: 3
  start-page: 573
  issue: 6
  year: 2012
  end-page: 589
  article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?
  publication-title: Insights Imaging
  doi: https://doi.org/10.1007/s13244-012-0196-6
– volume: 13
  start-page: 856
  issn: 1053-8119
  issue: 5
  year: 2001
  end-page: 876
  article-title: Magnetic resonance image tissue classification using a partial volume model
  publication-title: Neuroimage
  doi: https://doi.org/10.1006/nimg.2000.0730
– volume: 7
  start-page: 2541
  issn: 1936-0851
  issue: 3
  year: 2013
  end-page: 2550
  article-title: Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly
  publication-title: ACS Nano
  doi: https://doi.org/10.1021/nn3058642
– volume: 47
  start-page: 2059
  issn: 0031-9155
  issue: 12
  year: 2002
  end-page: 2073
  article-title: Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range
  publication-title: Phys. Med. Biol.
  doi: https://doi.org/10.1088/0031-9155/47/12/305
– volume: 95
  start-page: 1237
  issn: 1464-410X
  issue: 9
  year: 2005
  end-page: 1244
  article-title: Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy
  publication-title: BJU Int.
  doi: https://doi.org/10.1111/j.1464-410X.2005.05512.x
– volume: 17
  start-page: 56008
  issn: 1083-3668
  issue: 5
  year: 2012
  article-title: Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.17.5.056008
– volume: 30
  start-page: S13706
  issn: 1083-3668
  issue: Suppl 1
  year: 2025
  article-title: Deep learning-enabled fluorescence imaging for surgical guidance: training for oral cancer depth quantification
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.30.S1.S13706
– volume: SMC-3
  start-page: 610
  issn: 0018-9472
  year: 1973
  end-page: 621
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: https://doi.org/10.1109/TSMC.1973.4309314
– volume: 22
  start-page: 6425
  issn: 1422-0067
  issue: 12
  year: 2021
  article-title: Radiodynamic therapy using tat peptide-targeted verteporfin-encapsulated PLGA nanoparticles
  publication-title: Int. J. Mol. Sci.
  doi: https://doi.org/10.3390/ijms22126425
– volume: 78
  start-page: 457
  year: 2021
  end-page: 465
  article-title: A review of preferential photosensitizers in brain cancer and photodynamic therapy
  publication-title: Acta Pol. Pharm. Drug Res.
  doi: https://doi.org/10.32383/appdr/141301
– volume: 68
  start-page: 1668
  issn: 0018-9294
  issue: 5
  year: 2021
  end-page: 1679
  article-title: Optimizing interstitial photodynamic therapy planning with reinforcement learning-based diffuser placement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: https://doi.org/10.1109/TBME.2021.3053197
– volume: 10
  start-page: 41206
  issn: 1083-3668
  issue: 4
  year: 2005
  article-title: Analysis of sampling volume and tissue heterogeneity on the detection of fluorescence
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.2002978
– volume: 6
  start-page: 129
  issue: 2
  year: 2002
  end-page: 142
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
  doi: https://doi.org/10.1016/S1361-8415(02)00054-3
– volume: 64
  start-page: 1211
  issue: 4
  year: 2006
  end-page: 1220
  article-title: Pretreatment photosensitizer dosimetry reduces variation in tumor response
  publication-title: Int. J. Radiat. Oncol.
  doi: https://doi.org/10.1016/j.ijrobp.2005.11.019
– volume: 7715
  start-page: 77152R
  year: 2010
  article-title: Photochemical predictive analysis of photodynamic therapy with non-homogeneous topical photosensitizer distribution in dermatological applications
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.854635
– volume: 68
  start-page: 603
  issn: 0031-8655
  issue: 5
  year: 1998
  end-page: 632
  article-title: In vivo fluorescence spectroscopy and imaging for oncological applications
  publication-title: Photochem. Photobiol.
  doi: https://doi.org/10.1111/j.1751-1097.1998.tb02521.x
– volume: 115
  start-page: 11
  issn: 0022-3085
  year: 2011
  end-page: 17
  article-title: Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker—clinical article
  publication-title: J. Neurosurg.
  doi: https://doi.org/10.3171/2011.2.JNS101451
– volume: 10
  start-page: 4630
  issue: 14
  year: 2004
  end-page: 4638
  article-title: Hypoxia and photofrin uptake in the intraperitoneal carcinomatosis and sarcomatosis of photodynamic therapy patients
  publication-title: Clin. Cancer Res.
  doi: https://doi.org/10.1158/1078-0432.CCR-04-0359
– volume: 17
  start-page: A7
  year: 2017
  end-page: A8
  article-title: Recurrent prostate cancer—verteporfin-mediated photodynamic therapy with the SpectraCure system
  publication-title: Photodiagn. Photodyn. Ther.
  doi: https://doi.org/10.1016/j.pdpdt.2017.01.018
– volume: 37
  start-page: 7429
  issn: 0003-6935
  issue: 31
  year: 1998
  end-page: 7436
  article-title: Fiber-optic bundle design for quantitative fluorescence measurement from tissue
  publication-title: Appl. Opt.
  doi: https://doi.org/10.1364/AO.37.007429
– volume: 53
  start-page: R61
  issn: 0031-9155
  issue: 9
  year: 2008
  article-title: The physics, biophysics and technology of photodynamic therapy
  publication-title: Phys. Med. Biol.
  doi: https://doi.org/10.1088/0031-9155/53/9/R01
– volume: 27
  start-page: 083006
  issn: 1083-3668
  issue: 8
  year: 2022
  article-title: Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.27.8.083006
– volume: 175
  start-page: 1201
  issue: 4
  year: 2006
  end-page: 1207
  article-title: Photodynamic therapy for urological malignancies: past to current approaches
  publication-title: J. Urol.
  doi: https://doi.org/10.1016/S0022-5347(05)00701-9
– volume: 46
  start-page: 149
  issn: 0169-409X
  issue: 1
  year: 2001
  end-page: 168
  article-title: Delivery of molecular and cellular medicine to solid
  publication-title: Adv. Drug Deliv. Rev.
  doi: https://doi.org/10.1016/S0169-409X(00)00131-9
– volume: 17
  start-page: 463
  issn: 0278-0062
  issue: 3
  year: 1998
  end-page: 468
  article-title: Design and construction of a realistic digital brain phantom
  publication-title: IEEE Trans. Med. Imaging
  doi: https://doi.org/10.1109/42.712135
– volume: 9
  start-page: 898
  issn: 2156-7085
  issue: 2
  year: 2018
  end-page: 920
  article-title: Automatic interstitial photodynamic therapy planning via convex optimization
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.9.000898
– volume: 131
  start-page: 1361
  issue: 5
  year: 2019
  end-page: 1368
  article-title: Role of photodynamic therapy using talaporfin sodium and a semiconductor laser in patients with newly diagnosed glioblastoma
  publication-title: J. Neurosurg.
  doi: https://doi.org/10.3171/2018.7.JNS18422
– volume: 21
  start-page: 84002
  issn: 1083-3668
  issue: 8
  year: 2016
  article-title: Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.JBO.21.8.084002
– volume: 45
  start-page: 225
  issn: 0196-8092
  issue: 4
  year: 2013
  end-page: 234
  article-title: Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis
  publication-title: Lasers Surg. Med.
  doi: https://doi.org/10.1002/lsm.22126
– volume: 82
  start-page: 1348
  issue: 5
  year: 2006
  article-title: Tumor vascular area correlates with photosensitizer uptake: analysis of verteporfin microvascular delivery in the dunning rat prostate tumor
  publication-title: Photochem. Photobiol.
  doi: https://doi.org/10.1562/2006-03-25-RA-858
– volume: 4
  start-page: 99
  issue: 1
  year: 2020
  end-page: 119
  article-title: Investigating tumor heterogeneity in mouse models
  publication-title: Annu. Rev. Cancer Biol.
  doi: https://doi.org/10.1146/annurev-cancerbio-030419-033413
– volume: 1835
  start-page: 36
  issn: 0006-3002
  issue: 1
  year: 2013
  end-page: 45
  article-title: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment
  publication-title: Biochim. Biophys. Acta
  doi: https://doi.org/10.1016/j.bbcan.2012.10.001
– volume: 2
  start-page: e12149
  issue: 4
  year: 2020
  article-title: “Study of statistical methods for texture analysis and their modern evolutions
  publication-title: Eng. Rep.
  doi: https://doi.org/10.1002/eng2.12149
– volume: 19
  start-page: 154
  issue: 1
  year: 2021
  article-title: Porphyrin-lipid stabilized paclitaxel nanoemulsion for combined photodynamic therapy and chemotherapy
  publication-title: J. Nanobiotechnol.
  doi: https://doi.org/10.1186/s12951-021-00898-1
– volume: 14
  start-page: 714
  issn: 2156-7085
  issue: 2
  year: 2023
  end-page: 738
  article-title: Integrating clinical access limitations into iPDT treatment planning with PDT-SPACE
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.478217
– volume: 45
  start-page: 460
  issn: 0196-8092
  issue: 7
  year: 2013
  end-page: 468
  article-title: Modulation of PPIX synthesis and accumulation in various normal and glioma cell lines by modification of the cellular signaling and temperature
  publication-title: Lasers Surg. Med.
  doi: https://doi.org/10.1002/lsm.22161
– volume: 12
  start-page: 5401
  issn: 2156-7085
  issue: 9
  year: 2021
  end-page: 5422
  article-title: Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimulation-based study
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.431310
– volume: 15
  start-page: 041502
  issn: 1083-3668
  issue: 4
  year: 2010
  article-title: Photodynamic therapy: superficial and interstitial illumination
  publication-title: J. Biomed. Opt.
  doi: https://doi.org/10.1117/1.3466579
– volume: 12
  start-page: e0181654
  issn: 1932-6203
  issue: 7
  year: 2017
  article-title: ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia
  publication-title: PLoS One
  doi: https://doi.org/10.1371/journal.pone.0181654
– volume: 11625
  start-page: 116250C
  issn: 0277-786X
  year: 2021
  article-title: Fluorescence depth estimation in pre-clinical oral cancer models using spatial frequency domain imaging
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.2577832
– volume: 8
  start-page: 793
  issue: 8
  year: 2019
  article-title: Short overview of ROS as cell function regulators and their implications in therapy concepts
  publication-title: Cells
  doi: https://doi.org/10.3390/cells8080793
– volume: 10
  start-page: 967312
  year: 2022
  article-title: The application of photodynamic therapy in plastic and reconstructive surgery
  publication-title: Front. Chem.
  doi: https://doi.org/10.3389/fchem.2022.967312
– volume: 34
  start-page: 102320
  year: 2021
  article-title: Light delivery device modelling for homogenous irradiation distribution in photodynamic therapy of non-spherical hollow organs
  publication-title: Photodiagn. Photodyn. Ther.
  doi: https://doi.org/10.1016/j.pdpdt.2021.102320
– ident: r25
  doi: 10.1117/12.2040268
– ident: r82
  doi: 10.1038/jcbfm.2011.153
– ident: r41
  doi: 10.1111/j.1464-410X.2005.05512.x
– start-page: 267
  year: 1998
  ident: r66
  article-title: Momentum method to measure the blast contour
– ident: r43
  doi: 10.1364/BOE.431310
– ident: r61
  doi: 10.1088/0031-9155/58/11/R37
– ident: r71
  doi: 10.1016/S1361-8415(02)00054-3
– ident: r76
  doi: 10.1016/S0169-409X(00)00131-9
– ident: r70
  doi: 10.1006/nimg.2000.0730
– ident: r2
  doi: 10.1002/lsm.21080
– ident: r80
  doi: 10.1146/annurev-cancerbio-030419-033413
– ident: r81
  doi: 10.1007/s13244-012-0196-6
– ident: r17
  doi: 10.1016/j.pdpdt.2021.102320
– ident: r67
  doi: 10.1364/BOE.1.000165
– ident: r39
  doi: 10.1117/1.JBO.27.8.083006
– ident: r65
  doi: 10.1109/TSMC.1973.4309314
– ident: r50
  doi: 10.1021/nn3058642
– ident: r12
  doi: 10.1016/j.acra.2014.12.014
– ident: r56
  doi: 10.1364/BOE.6.004923
– ident: r22
  doi: 10.1111/j.1751-1097.2006.tb09835.x
– ident: r53
  doi: 10.1002/lsm.22161
– ident: r9
  doi: 10.1117/1.2002978
– ident: r55
  doi: 10.1117/1.JBO.17.5.056008
– ident: r58
  doi: 10.1117/1.JBO.30.S1.S13706
– ident: r16
  doi: 10.1016/S0022-5347(05)00701-9
– ident: r62
  doi: 10.1002/eng2.12149
– ident: r15
  doi: 10.1117/1.3466579
– ident: r52
  doi: 10.1371/journal.pone.0181654
– ident: r20
  doi: 10.1117/12.854635
– ident: r73
  doi: 10.1364/AO.38.004939
– ident: r30
  doi: 10.1002/lsm.10131
– ident: r29
  doi: 10.1111/j.1751-1097.1998.tb02521.x
– ident: r46
  doi: 10.3171/2018.7.JNS18422
– ident: r64
  doi: 10.1109/ICPR.2006.1110
– ident: r6
  doi: 10.1016/S1572-1000(05)00060-8
– ident: r5
  doi: 10.1088/0031-9155/53/9/R01
– ident: r35
  doi: 10.3390/cancers15092636
– ident: r4
  doi: 10.3322/caac.20114
– ident: r23
  doi: 10.1038/sj.bjc.6601101
– ident: r63
  doi: 10.1109/ACCESS.2018.2890743
– ident: r75
  doi: 10.1117/1.JBO.21.8.084002
– ident: r57
  doi: 10.1117/12.2577832
– ident: r79
  doi: 10.1158/1078-0432.CCR-04-0359
– ident: r44
  doi: 10.1109/TBME.2021.3053197
– ident: r10
  doi: 10.1562/2006-03-25-RA-858
– ident: r45
  doi: 10.1002/jbio.201800153
– ident: r36
  doi: 10.1364/BOE.9.000898
– ident: r26
  doi: 10.1007/s11060-023-04284-9
– ident: r49
  doi: 10.1186/s12951-021-00898-1
– ident: r51
  doi: 10.3390/ijms22126425
– ident: r68
  doi: 10.1109/42.712135
– ident: r32
  doi: 10.1088/0031-9155/53/4/021
– ident: r8
  doi: 10.3390/cells8080793
– ident: r21
  doi: 10.1007/s10812-018-0597-5
– ident: r19
  doi: 10.1117/12.699903
– ident: r28
  doi: 10.1364/AO.37.007429
– ident: r3
  doi: 10.3389/fchem.2022.967312
– ident: r47
  doi: 10.32383/appdr/141301
– ident: r72
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: r18
  doi: 10.3390/cancers14010120
– ident: r60
  doi: 10.1117/1.JBO.24.7.071603
– ident: r38
  doi: 10.1364/BOE.478217
– ident: r74
  doi: 10.1088/0031-9155/47/12/305
– ident: r11
  doi: 10.1016/j.ijrobp.2005.11.019
– ident: r31
  doi: 10.1016/j.pdpdt.2017.01.018
– ident: r37
  doi: 10.1038/s41598-021-97407-z
– ident: r69
  doi: 10.1007/s10278-013-9622-7
– ident: r14
  doi: 10.1364/BOE.3.002142
– ident: r40
  doi: 10.1002/jbio.201800153
– ident: r54
  doi: 10.1016/S1011-1344(97)00010-9
– ident: r1
  doi: 10.1634/theoncologist.11-9-1034
– ident: r78
  doi: 10.1111/j.1464-410X.2008.07753.x
– ident: r48
  doi: 10.1515/nanoph-2021-0220
– ident: r24
  doi: 10.1002/lsm.22126
– ident: r27
  doi: 10.1016/j.jksus.2022.102143
– ident: r42
  doi: 10.1097/01.ju.0000135304.96496.20
– ident: r34
  doi: 10.1117/1.JBO.24.3.035006
– ident: r59
  doi: 10.3171/2011.2.JNS101451
– ident: r33
  doi: 10.1111/j.1751-1097.1990.tb01720.x
– ident: r13
  doi: 10.1016/S0190-9622(00)90209-3
– ident: r77
  doi: 10.1088/0031-9155/54/8/003
– ident: r7
  doi: 10.1016/j.bbcan.2012.10.001
SSID ssj0008696
Score 2.4465535
Snippet Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs),...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
spie
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 018001
SubjectTerms Animals
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - drug therapy
Cancer
Cell Line, Tumor
Glioblastoma - diagnostic imaging
Glioblastoma - drug therapy
Glioma - diagnostic imaging
Glioma - drug therapy
Humans
Photochemotherapy
Photochemotherapy - methods
Photosensitizing Agents - pharmacokinetics
Photosensitizing Agents - therapeutic use
Precision Medicine - methods
Rats
Therapeutic
Title Photosensitizer spatial heterogeneity and its impact on personalized interstitial photodynamic therapy treatment planning
URI http://www.dx.doi.org/10.1117/1.JBO.30.1.018001
https://www.ncbi.nlm.nih.gov/pubmed/39802351
https://www.proquest.com/docview/3154890262
https://pubmed.ncbi.nlm.nih.gov/PMC11724368
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dq9MwFA9zF0EfRK9f0-slgiAo3e2Sfu3xzrtxuczdoRvsLbRpyorQlrV72B79yz1p0q2dU6YvZUvSpu3v15OT5Hwg9IGHnnB7gWO4xCeG5XuR0bdC2wh8Sh1QkAMSltE-J87t3Lpb2ItW62fNamldBF2-PepX8j-oQhngKr1k_wHZ3UWhAH4DvnAEhOF4EsbTZVqkuTRBL-KtDMsszaNL50Z4WymcJqSOXW0PVA6R0mxca-BbEZYBI1bSYkCemckrhipL_Wflm7WpGaNnOsXRH1Ra5ctfwp5mRc2O_rsv4jBW3Ej2A0G1Vr1cr_YklfGyVtBxrkZFuamwX3C98VVmbG3trze19KoFsWurFlrQOqZBiErX0hVHyrR01rs2dRYqUSsjj6krHhkFyjgC3bvBfZfC_-6-bTPi9uSejebjMZsNF7MH6IzAVGM3LdejueeUOd5296Z3xqGLq986aOg2hyN8TcU5NL9t51ksamrN7Cl6osHD14pcz1BLJOfoocpQujlHj2vxKqG8tBfm-XO0OaAe1tTDDephoB4G6mFFPZwmuE49XKcerlMPa-rhHfVwRb0XaD4azr7cGjqLh8Ft2ymMAFR0z-SmcM2AEzfgTh-mCaRHo34vgOFWkCh0eEAdQR3fikIhc8baICe47XE3MulL1E7SRLxG2I18n_Y49-y-Z4FeG4QwGacWFdwKqWtGHfSpev8sU8FamJrkuqzHACxG4R9TYHXQR4kQk8wBGLiv_VGgKxkSjV17MLZ5lBK7gy4aLUEA80b1-wpjJquk1WIi0nXOqFwP6JvEIR30SmG-uy_al6EXbbgNr8GGXQMZ971Zk8TLMv47PA6RiSPgCSRxmJZI-d-eNWi2lPXwgak2A5__WHwdAyWmNyO2jbPD009okYXRmxPew1v0aC8NLlC7WK3FO9Dqi-ASnQ2Gk-m3y_Lz-wVkS_yh
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosensitizer+spatial+heterogeneity+and+its+impact+on+personalized+interstitial+photodynamic+therapy+treatment+planning&rft.jtitle=Journal+of+biomedical+optics&rft.au=Saeidi%2C+Tina&rft.au=Wang%2C+Shuran&rft.au=Contreras%2C+Hector+A&rft.au=Daly%2C+Michael+J&rft.date=2025-01-01&rft.issn=1560-2281&rft.eissn=1560-2281&rft.volume=30&rft.issue=1&rft.spage=018001&rft_id=info:doi/10.1117%2F1.JBO.30.1.018001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-3668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-3668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-3668&client=summon