Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins

The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 9; no. 4; p. 292
Main Authors Lo Cigno, Irene, Calati, Federica, Albertini, Silvia, Gariglio, Marisa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.04.2020
MDPI
Subjects
Online AccessGet full text
ISSN2076-0817
2076-0817
DOI10.3390/pathogens9040292

Cover

Abstract The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
AbstractList The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
Author Calati, Federica
Lo Cigno, Irene
Albertini, Silvia
Gariglio, Marisa
AuthorAffiliation Molecular Virology Unit, Department of Translational Medicine, Medical School, University of Piemonte Orientale, 28100 Novara, Italy; irene.locigno@med.uniupo.it (I.L.C.); federica.calati@med.uniupo.it (F.C.); silvia.albertini@med.uniupo.it (S.A.)
AuthorAffiliation_xml – name: Molecular Virology Unit, Department of Translational Medicine, Medical School, University of Piemonte Orientale, 28100 Novara, Italy; irene.locigno@med.uniupo.it (I.L.C.); federica.calati@med.uniupo.it (F.C.); silvia.albertini@med.uniupo.it (S.A.)
Author_xml – sequence: 1
  givenname: Irene
  orcidid: 0000-0001-5521-3642
  surname: Lo Cigno
  fullname: Lo Cigno, Irene
– sequence: 2
  givenname: Federica
  orcidid: 0000-0002-8830-8290
  surname: Calati
  fullname: Calati, Federica
– sequence: 3
  givenname: Silvia
  orcidid: 0000-0002-8540-5378
  surname: Albertini
  fullname: Albertini, Silvia
– sequence: 4
  givenname: Marisa
  orcidid: 0000-0002-5187-0140
  surname: Gariglio
  fullname: Gariglio, Marisa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32316236$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEQgEVJadI0957KQi-9ONVjVytdCiW0sSGQQtuz0NOR2ZW2ktbgfx85TkJiqC56ffMx0sx7cBJisAB8RPCSEA6_TrLcxbUNmcMWYo7fgDMMe7qADPUnL9an4CLnDayDwf3-HTglmCCKCT0D179ntbUp-xia6JplzKVZhSCLbVbjOAdfdo3aNct5lKH5JSc_DHGUW5_m3NwGHacUi_UhfwBvnRyyvXicz8Hfnz_-XC0XN7fXq6vvNwvddbQspOk46ntsLaecO9YSoxlsLTasRz0lUBrXWslhpwl2UDGnWqhcjzumlUKOnIPVwWui3Igp-VGmnYjSi4eDmNZCpuL1YEWPNe6goRwq2VpKOdJGI26Y7njrjKqubwfXNKvRGm1DSXJ4JX19E_ydWMdtNROGIamCL4-CFP_NNhcx-qztMMhg45wFJpx0Pekor-jnI3QT5xTqV-0pzBgiD8JPLzN6TuWpXhWAB0CnmHOy7hlBUOy7Qhx3RQ2hRyHaF1lqweub_PD_wHsGhr81
CitedBy_id crossref_primary_10_1073_pnas_2200206119
crossref_primary_10_1093_molbev_msad012
crossref_primary_10_3390_biology10121232
crossref_primary_10_3390_cancers15153849
crossref_primary_10_1016_j_cellsig_2020_109815
crossref_primary_10_1016_j_jid_2022_12_007
crossref_primary_10_3390_v14071361
crossref_primary_10_1038_s41392_024_02083_w
crossref_primary_10_1016_j_tranon_2023_101714
crossref_primary_10_1158_0008_5472_CAN_21_0785
crossref_primary_10_1002_jmv_29236
crossref_primary_10_3389_fimmu_2022_937736
crossref_primary_10_3389_fcimb_2022_927131
crossref_primary_10_1016_j_semcancer_2022_02_014
crossref_primary_10_1128_jvi_00163_25
crossref_primary_10_1080_01443615_2024_2311658
crossref_primary_10_1136_jitc_2022_005151
crossref_primary_10_1002_mco2_221
crossref_primary_10_3390_biology12050672
crossref_primary_10_3390_v14081797
crossref_primary_10_1016_j_gene_2022_146385
crossref_primary_10_3390_v13091846
crossref_primary_10_12677_ACM_2022_124499
crossref_primary_10_1002_jmv_29815
crossref_primary_10_1128_mbio_02458_23
crossref_primary_10_1038_s41418_023_01242_w
crossref_primary_10_1089_vim_2023_0144
crossref_primary_10_1111_jcmm_16331
crossref_primary_10_3390_v14102138
crossref_primary_10_1002_jmv_29685
crossref_primary_10_1080_15384101_2022_2109899
crossref_primary_10_1371_journal_pone_0266819
crossref_primary_10_3390_ijms242015469
crossref_primary_10_3390_pathogens11111361
crossref_primary_10_1002_jmv_28310
crossref_primary_10_1007_s00262_023_03483_7
crossref_primary_10_3389_fcimb_2024_1359367
crossref_primary_10_1111_omi_12412
crossref_primary_10_3390_microorganisms9050891
crossref_primary_10_3390_pathogens11020175
Cites_doi 10.3390/v5112624
10.1038/nri1391
10.1016/j.coviro.2015.09.001
10.1099/0022-1317-80-7-1725
10.1172/JCI129497
10.1016/S1074-7613(00)00053-4
10.1016/j.celrep.2015.12.029
10.1128/mBio.00270-16
10.1038/ni1087
10.1016/j.micpath.2019.05.004
10.1016/j.antiviral.2011.05.014
10.1111/1348-0421.12669
10.1128/CMR.00046-08
10.1099/vir.0.82098-0
10.1515/hsz-2017-0113
10.3390/v9100268
10.3109/08830185.2010.529976
10.1128/JVI.03370-13
10.1186/s12943-019-1087-y
10.1016/j.immuni.2013.10.019
10.1128/JVI.01737-17
10.1128/JVI.00845-15
10.1016/j.vaccine.2013.10.003
10.1038/nri3921
10.1016/j.coviro.2018.08.015
10.1016/j.mrrev.2016.08.001
10.1016/j.cytogfr.2014.06.006
10.1038/s41579-018-0064-6
10.1002/ijc.25400
10.1093/carcin/bgq176
10.1002/ijc.29283
10.1038/s41577-020-0288-3
10.1016/j.immuni.2013.05.004
10.1016/j.it.2016.12.004
10.1007/s00262-019-02380-2
10.1038/onc.2016.11
10.1128/JVI.75.9.4283-4296.2001
10.1038/nature23449
10.1038/nature05732
10.1128/mSphere.00828-19
10.1146/annurev-micro-102215-095605
10.1128/mBio.00823-18
10.1016/j.virol.2008.11.032
10.1146/annurev-virology-092917-043244
10.1128/JVI.00013-15
10.1016/S0140-6736(18)32470-X
10.1371/journal.pbio.2006134
10.1126/science.aat8657
10.1128/mBio.00944-17
10.1038/nature03464
10.1101/gad.12.13.2061
10.1095/biolreprod.105.048629
10.4049/jimmunol.1701536
10.1039/C6MD00371K
10.1016/S0140-6736(13)60022-7
10.1038/ni.1932
10.1146/annurev-immunol-032414-112240
10.4103/0019-5154.127694
10.1016/j.mrrev.2016.07.002
10.1186/s13027-016-0107-4
10.1038/s41573-019-0043-2
10.1016/j.coviro.2019.07.008
10.1128/JVI.03473-12
10.1007/s00705-007-0022-5
10.1038/srep13446
10.1111/j.1365-2567.2005.02122.x
10.1002/ijc.31027
10.3389/fimmu.2014.00327
10.3390/v3060920
10.1038/nature06013
10.1016/j.virol.2012.09.046
10.1016/j.immuni.2012.03.025
10.1371/journal.pone.0075406
10.1084/jem.20180139
10.1126/science.aab3291
10.1371/annotation/8fa70b21-32e7-4ed3-b397-ab776b5bbf30
10.1016/j.chom.2015.08.012
10.1038/s41590-017-0005-y
10.1038/s41576-019-0151-1
10.1038/nri2690
10.1146/annurev.pathol.4.110807.092239
10.1128/JVI.05007-11
10.1016/j.it.2017.07.013
10.1038/ncomms14392
10.1016/S0304-3835(01)00871-0
10.1128/JVI.01526-15
10.1128/CMR.05028-11
10.1038/nrmicro.2016.45
10.1128/JVI.77.23.12450-12459.2003
10.1016/j.virusres.2016.11.004
10.1371/journal.ppat.1003384
10.1038/nrc2763
10.3390/cancers12030646
10.1016/j.cytogfr.2014.06.005
10.3389/fonc.2019.00682
10.1016/j.radonc.2013.06.004
10.1016/j.vaccine.2012.06.083
10.1099/vir.0.83391-0
10.3390/jcm4020204
10.1002/path.4425
10.1128/MMBR.00061-14
10.1016/j.it.2014.06.003
10.1074/jbc.275.10.6764
10.1038/sj.onc.1202953
10.1128/JVI.02172-12
10.1146/annurev.cellbio.21.122303.115827
10.4161/auto.23026
10.1016/j.mib.2015.03.001
10.1038/nature08476
10.4049/jimmunol.181.4.2694
10.3389/fimmu.2018.00590
10.1016/j.virusres.2016.11.023
10.1126/science.1244040
10.1007/978-981-10-5987-2_8
10.1126/science.1232458
10.1042/CS20160786
10.1016/j.cell.2009.06.015
10.1016/j.virol.2015.03.013
10.4049/jimmunol.178.5.3186
10.1098/rstb.2016.0267
10.1002/cncr.30588
10.1038/gene.2011.21
10.1128/mSphere.00129-19
10.1128/JVI.01812-19
10.1016/S1470-2045(10)70017-6
10.1128/JVI.05279-11
10.1371/journal.pone.0091473
10.1038/nrc2050
10.1016/j.immuni.2011.05.003
10.1371/journal.ppat.1004466
10.1038/nri2569
10.1158/0008-5472.CAN-09-0550
10.1016/j.tim.2017.07.007
10.1002/ijc.31814
10.1016/j.tim.2019.10.008
10.1016/j.virol.2013.04.013
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7T7
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/pathogens9040292
DatabaseName CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-0817
ExternalDocumentID oai_doaj_org_article_72c250d690ba4e6691cdc19d8c594fdb
PMC7238203
32316236
10_3390_pathogens9040292
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  grantid: AGING Project - Department of Excellence - Department of Translational Medicine, University of Piemonte Orientale
– fundername: Associazione Italiana per la Ricerca sul Cancro
  grantid: IG2016 grant to M.G
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  grantid: PRIN 2017 to M.G
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-ad591772ee9699f843dc804e2d8717630adf4ea905c32f0b8fb40bf7258cbb1f3
IEDL.DBID M48
ISSN 2076-0817
IngestDate Wed Aug 27 01:24:08 EDT 2025
Thu Aug 21 13:55:50 EDT 2025
Thu Sep 04 19:50:41 EDT 2025
Fri Jul 25 12:17:15 EDT 2025
Thu Jan 02 22:58:27 EST 2025
Thu Apr 24 23:09:39 EDT 2025
Tue Jul 01 04:15:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords PRR
innate immunity
human papillomavirus
pathogen recognition receptors
E6 and E7 oncoproteins
HPV
HPV-driven cancer
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-ad591772ee9699f843dc804e2d8717630adf4ea905c32f0b8fb40bf7258cbb1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8540-5378
0000-0002-8830-8290
0000-0001-5521-3642
0000-0002-5187-0140
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens9040292
PMID 32316236
PQID 2392881303
PQPubID 2032351
ParticipantIDs doaj_primary_oai_doaj_org_article_72c250d690ba4e6691cdc19d8c594fdb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238203
proquest_miscellaneous_2393573569
proquest_journals_2392881303
pubmed_primary_32316236
crossref_primary_10_3390_pathogens9040292
crossref_citationtrail_10_3390_pathogens9040292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200417
PublicationDateYYYYMMDD 2020-04-17
PublicationDate_xml – month: 4
  year: 2020
  text: 20200417
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Pathogens (Basel)
PublicationTitleAlternate Pathogens
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_136
Unterholzner (ref_55) 2010; 11
White (ref_31) 2013; 435
Calati (ref_96) 2020; 94
Paludan (ref_43) 2015; 79
Yang (ref_81) 2019; 4
Lamoyi (ref_84) 2013; 5
ref_13
Berman (ref_20) 2017; 123
ref_98
ref_133
ref_97
Krump (ref_8) 2018; 16
Saxena (ref_50) 2014; 5
Hong (ref_73) 2017; 231
Chiang (ref_121) 2014; 25
Roman (ref_27) 2013; 445
Dempsey (ref_41) 2015; 479
Cicchini (ref_80) 2016; 7
ref_24
ref_122
Shu (ref_58) 2014; 25
Sato (ref_63) 2000; 13
Halec (ref_104) 2018; 143
Castiello (ref_139) 2019; 68
Westrich (ref_74) 2017; 231
Thomas (ref_7) 1999; 18
Chiang (ref_138) 2015; 89
Ng (ref_107) 2018; 39
Diner (ref_111) 2015; 18
Hoffmann (ref_135) 2019; 18
Tungteakkhun (ref_29) 2008; 153
Barber (ref_105) 2015; 15
ref_70
Lei (ref_117) 2016; 35
Chiu (ref_123) 2009; 138
Kalali (ref_68) 2008; 181
Daud (ref_102) 2011; 128
Loo (ref_54) 2011; 34
Hopcraft (ref_112) 2017; 372
ref_78
Gack (ref_126) 2007; 446
Hornung (ref_57) 2010; 10
Almine (ref_66) 2017; 8
Bussey (ref_113) 2018; 32
Shewale (ref_19) 2019; 39
Ma (ref_40) 2018; 5
Edwards (ref_22) 2011; 91
Chen (ref_51) 2009; 4
Hong (ref_88) 2011; 85
Quint (ref_14) 2015; 235
Takaoka (ref_56) 2007; 448
Halec (ref_87) 2009; 69
Wallace (ref_134) 2020; 28
Shaikh (ref_99) 2019; 132
Randall (ref_35) 2008; 89
Reiser (ref_77) 2011; 85
Cohen (ref_17) 2019; 393
Chan (ref_125) 2016; 14
White (ref_30) 2012; 86
Zhu (ref_109) 2019; 18
Woodman (ref_15) 2007; 7
ref_85
Borgogna (ref_82) 2015; 89
Castaneda (ref_26) 2016; 7
Mittal (ref_6) 2017; 772
Brown (ref_21) 2009; 9
West (ref_45) 2006; 22
Ishikawa (ref_62) 2009; 461
Marur (ref_18) 2010; 11
Li (ref_60) 2013; 341
Steinbach (ref_75) 2018; 142
Haedicke (ref_10) 2013; 108
Galloway (ref_4) 2015; 14
Gantier (ref_110) 2017; 1024
Andersen (ref_128) 2006; 74
Edwards (ref_23) 2013; 87
Kadaja (ref_12) 2009; 384
Sun (ref_49) 2013; 339
Kollisch (ref_69) 2005; 114
Um (ref_92) 2002; 179
Yoneyama (ref_53) 2004; 5
Ablasser (ref_106) 2019; 363
Li (ref_61) 2013; 39
Zhang (ref_119) 2018; 9
Senapati (ref_11) 2016; 11
Abe (ref_44) 2019; 63
Brubaker (ref_36) 2015; 33
Boccardo (ref_83) 2010; 31
Li (ref_131) 2018; 215
Bosch (ref_1) 2013; 31
ref_67
Xia (ref_108) 2016; 14
Chiang (ref_100) 2018; 92
Tan (ref_127) 2018; 72
Beljanski (ref_137) 2015; 89
Nees (ref_71) 2001; 75
Mackenzie (ref_59) 2017; 548
(ref_2) 2018; 26
Park (ref_90) 2000; 275
Kim (ref_86) 2003; 77
Sparrer (ref_39) 2015; 26
Harden (ref_32) 2017; 772
Lau (ref_94) 2015; 350
Kumar (ref_34) 2011; 30
Fisher (ref_33) 2015; 4
Scott (ref_103) 2015; 136
Paludan (ref_42) 2013; 38
Hebner (ref_89) 2006; 87
Lei (ref_115) 2012; 36
Hasan (ref_101) 2007; 178
Bhushan (ref_25) 2014; 59
Zhou (ref_76) 2019; 9
Chatzinikolaou (ref_130) 2014; 35
Ning (ref_64) 2011; 12
James (ref_79) 2020; 5
Perea (ref_91) 2000; 5
Motwani (ref_132) 2019; 20
Meissner (ref_114) 1999; 80
Crosbie (ref_16) 2013; 382
Zevini (ref_124) 2017; 38
Nakaya (ref_52) 2017; 8
Thompson (ref_37) 2011; 3
Mogensen (ref_38) 2009; 22
Albertini (ref_95) 2018; 200
Akira (ref_46) 2004; 4
Graham (ref_9) 2017; 131
McBride (ref_5) 2017; 398
Gack (ref_120) 2014; 88
Stanley (ref_72) 2012; 25
Honda (ref_65) 2005; 434
Doorbar (ref_3) 2012; 30
Shah (ref_129) 2015; 5
Lei (ref_116) 2013; 9
Chiang (ref_118) 2018; 19
Zwerschke (ref_28) 2000; 78
Ronco (ref_93) 1998; 12
Geijtenbeek (ref_47) 2009; 9
Eder (ref_48) 2018; 9
References_xml – volume: 5
  start-page: 2624
  year: 2013
  ident: ref_84
  article-title: Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response
  publication-title: Viruses
  doi: 10.3390/v5112624
– volume: 4
  start-page: 499
  year: 2004
  ident: ref_46
  article-title: Toll-like receptor signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1391
– volume: 5
  start-page: 661
  year: 2000
  ident: ref_91
  article-title: Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1
  publication-title: Int. J. Mol. Med.
– volume: 14
  start-page: 87
  year: 2015
  ident: ref_4
  article-title: Human papillomaviruses: Shared and distinct pathways for pathogenesis
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2015.09.001
– volume: 80
  start-page: 1725
  year: 1999
  ident: ref_114
  article-title: Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-80-7-1725
– ident: ref_97
  doi: 10.1172/JCI129497
– volume: 13
  start-page: 539
  year: 2000
  ident: ref_63
  article-title: Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)00053-4
– volume: 14
  start-page: 282
  year: 2016
  ident: ref_108
  article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.029
– volume: 7
  start-page: e00270-16
  year: 2016
  ident: ref_80
  article-title: Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14
  publication-title: MBio
  doi: 10.1128/mBio.00270-16
– volume: 5
  start-page: 730
  year: 2004
  ident: ref_53
  article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1087
– volume: 132
  start-page: 162
  year: 2019
  ident: ref_99
  article-title: cGAS-STING responses are dampened in high-risk HPV type 16 positive head and neck squamous cell carcinoma cells
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2019.05.004
– volume: 91
  start-page: 177
  year: 2011
  ident: ref_22
  article-title: HPV Episome Levels are Potently Decreased by Pyrrole-Imidazole Polyamides
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2011.05.014
– volume: 63
  start-page: 51
  year: 2019
  ident: ref_44
  article-title: Cytosolic DNA-sensing immune response and viral infection
  publication-title: Microbiol. Immunol.
  doi: 10.1111/1348-0421.12669
– volume: 22
  start-page: 240
  year: 2009
  ident: ref_38
  article-title: Pathogen recognition and inflammatory signaling in innate immune defenses
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00046-08
– volume: 87
  start-page: 3183
  year: 2006
  ident: ref_89
  article-title: Human papillomaviruses target the double-stranded RNA protein kinase pathway
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.82098-0
– volume: 398
  start-page: 919
  year: 2017
  ident: ref_5
  article-title: Mechanisms and strategies of papillomavirus replication
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2017-0113
– ident: ref_133
  doi: 10.3390/v9100268
– volume: 30
  start-page: 16
  year: 2011
  ident: ref_34
  article-title: Pathogen recognition by the innate immune system
  publication-title: Int. Rev. Immunol.
  doi: 10.3109/08830185.2010.529976
– volume: 88
  start-page: 5213
  year: 2014
  ident: ref_120
  article-title: Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens
  publication-title: J. Virol.
  doi: 10.1128/JVI.03370-13
– volume: 18
  start-page: 152
  year: 2019
  ident: ref_109
  article-title: STING: A master regulator in the cancer-immunity cycle
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1087-y
– volume: 39
  start-page: 1019
  year: 2013
  ident: ref_61
  article-title: Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.019
– volume: 92
  start-page: e01737-17
  year: 2018
  ident: ref_100
  article-title: The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01737-17
– volume: 89
  start-page: 8011
  year: 2015
  ident: ref_138
  article-title: Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists
  publication-title: J. Virol.
  doi: 10.1128/JVI.00845-15
– volume: 31
  start-page: H1
  year: 2013
  ident: ref_1
  article-title: Comprehensive control of human papillomavirus infections and related diseases
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2013.10.003
– volume: 15
  start-page: 760
  year: 2015
  ident: ref_105
  article-title: STING: Infection, inflammation and cancer
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3921
– volume: 32
  start-page: 30
  year: 2018
  ident: ref_113
  article-title: Strategies for immune evasion by human tumor viruses
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2018.08.015
– volume: 772
  start-page: 23
  year: 2017
  ident: ref_6
  article-title: Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation
  publication-title: Mutat. Res. Rev. Mutat. Res.
  doi: 10.1016/j.mrrev.2016.08.001
– volume: 25
  start-page: 641
  year: 2014
  ident: ref_58
  article-title: The mechanism of double-stranded DNA sensing through the cGAS-STING pathway
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2014.06.006
– volume: 16
  start-page: 684
  year: 2018
  ident: ref_8
  article-title: Molecular mechanisms of viral oncogenesis in humans
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0064-6
– volume: 128
  start-page: 879
  year: 2011
  ident: ref_102
  article-title: Association between toll-like receptor expression and human papillomavirus type 16 persistence
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.25400
– ident: ref_13
– volume: 31
  start-page: 1905
  year: 2010
  ident: ref_83
  article-title: The role of inflammation in HPV carcinogenesis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgq176
– volume: 136
  start-page: 2402
  year: 2015
  ident: ref_103
  article-title: Expression of nucleic acid-sensing Toll-like receptors predicts HPV16 clearance associated with an E6-directed cell-mediated response
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29283
– ident: ref_122
  doi: 10.1038/s41577-020-0288-3
– volume: 38
  start-page: 870
  year: 2013
  ident: ref_42
  article-title: Immune sensing of DNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.004
– volume: 38
  start-page: 194
  year: 2017
  ident: ref_124
  article-title: Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.12.004
– volume: 68
  start-page: 1479
  year: 2019
  ident: ref_139
  article-title: An optimized retinoic acid-inducible gene I agonist M8 induces immunogenic cell death markers in human cancer cells and dendritic cell activation
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02380-2
– volume: 35
  start-page: 4698
  year: 2016
  ident: ref_117
  article-title: EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex
  publication-title: Oncogene
  doi: 10.1038/onc.2016.11
– volume: 75
  start-page: 4283
  year: 2001
  ident: ref_71
  article-title: Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.9.4283-4296.2001
– volume: 548
  start-page: 461
  year: 2017
  ident: ref_59
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature
  doi: 10.1038/nature23449
– volume: 446
  start-page: 916
  year: 2007
  ident: ref_126
  article-title: TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
  publication-title: Nature
  doi: 10.1038/nature05732
– volume: 5
  start-page: e00828-19
  year: 2020
  ident: ref_79
  article-title: Human Papillomavirus 16 E6 and E7 Synergistically Repress Innate Immune Gene Transcription
  publication-title: mSphere
  doi: 10.1128/mSphere.00828-19
– volume: 72
  start-page: 447
  year: 2018
  ident: ref_127
  article-title: Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-102215-095605
– volume: 9
  start-page: e00823-18
  year: 2018
  ident: ref_119
  article-title: RIG-I Detects Kaposi’s Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner
  publication-title: MBio
  doi: 10.1128/mBio.00823-18
– volume: 384
  start-page: 360
  year: 2009
  ident: ref_12
  article-title: Papillomavirus DNA replication—From initiation to genomic instability
  publication-title: Virology
  doi: 10.1016/j.virol.2008.11.032
– volume: 5
  start-page: 341
  year: 2018
  ident: ref_40
  article-title: Innate Sensing of DNA Virus Genomes
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-092917-043244
– volume: 89
  start-page: 7506
  year: 2015
  ident: ref_82
  article-title: The nuclear DNA sensor IFI16 acts as a restriction factor for human papillomavirus replication through epigenetic modifications of the viral promoters
  publication-title: J. Virol.
  doi: 10.1128/JVI.00013-15
– volume: 393
  start-page: 169
  year: 2019
  ident: ref_17
  article-title: Cervical cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32470-X
– ident: ref_98
  doi: 10.1371/journal.pbio.2006134
– volume: 363
  start-page: eaat8657
  year: 2019
  ident: ref_106
  article-title: cGAS in action: Expanding roles in immunity and inflammation
  publication-title: Science
  doi: 10.1126/science.aat8657
– volume: 8
  start-page: e00944-17
  year: 2017
  ident: ref_52
  article-title: AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA
  publication-title: MBio
  doi: 10.1128/mBio.00944-17
– volume: 434
  start-page: 772
  year: 2005
  ident: ref_65
  article-title: IRF-7 is the master regulator of type-I interferon-dependent immune responses
  publication-title: Nature
  doi: 10.1038/nature03464
– volume: 12
  start-page: 2061
  year: 1998
  ident: ref_93
  article-title: Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.13.2061
– volume: 74
  start-page: 824
  year: 2006
  ident: ref_128
  article-title: Innate immunity at the mucosal surface: Role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.105.048629
– volume: 200
  start-page: 2076
  year: 2018
  ident: ref_95
  article-title: HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ(1) Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701536
– volume: 7
  start-page: 2076
  year: 2016
  ident: ref_26
  article-title: Improved Antiviral Activity of a Polyamide Against High-Risk Human Papillomavirus Via N-Terminal Guanidinium Substitution
  publication-title: Med. Chem. Comm.
  doi: 10.1039/C6MD00371K
– volume: 382
  start-page: 889
  year: 2013
  ident: ref_16
  article-title: Human papillomavirus and cervical cancer
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60022-7
– volume: 11
  start-page: 997
  year: 2010
  ident: ref_55
  article-title: IFI16 is an innate immune sensor for intracellular DNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1932
– volume: 33
  start-page: 257
  year: 2015
  ident: ref_36
  article-title: Innate immune pattern recognition: A cell biological perspective
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032414-112240
– volume: 59
  start-page: 211
  year: 2014
  ident: ref_25
  article-title: Complete clearance of cutaneous warts with hydroxychloroquine: Antiviral action?
  publication-title: Indian J. Dermatol.
  doi: 10.4103/0019-5154.127694
– volume: 772
  start-page: 3
  year: 2017
  ident: ref_32
  article-title: Human papillomavirus molecular biology
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrrev.2016.07.002
– volume: 11
  start-page: 59
  year: 2016
  ident: ref_11
  article-title: Molecular mechanisms of HPV mediated neoplastic progression
  publication-title: Infect. Agent Cancer
  doi: 10.1186/s13027-016-0107-4
– volume: 18
  start-page: 845
  year: 2019
  ident: ref_135
  article-title: Pharmacological modulation of nucleic acid sensors—Therapeutic potential and persisting obstacles
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0043-2
– volume: 39
  start-page: 33
  year: 2019
  ident: ref_19
  article-title: Dynamic factors affecting HPV-attributable fraction for head and neck cancers
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2019.07.008
– volume: 87
  start-page: 3979
  year: 2013
  ident: ref_23
  article-title: Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways
  publication-title: J. Virol.
  doi: 10.1128/JVI.03473-12
– volume: 153
  start-page: 397
  year: 2008
  ident: ref_29
  article-title: Cellular binding partners of the human papillomavirus E6 protein
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-007-0022-5
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_129
  article-title: In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response
  publication-title: Sci. Rep.
  doi: 10.1038/srep13446
– volume: 114
  start-page: 531
  year: 2005
  ident: ref_69
  article-title: Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2005.02122.x
– volume: 142
  start-page: 224
  year: 2018
  ident: ref_75
  article-title: Immune evasion mechanisms of human papillomavirus: An update
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31027
– volume: 5
  start-page: 327
  year: 2014
  ident: ref_50
  article-title: NOD-Like Receptors: Master Regulators of Inflammation and Cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00327
– volume: 3
  start-page: 920
  year: 2011
  ident: ref_37
  article-title: Pattern recognition receptors and the innate immune response to viral infection
  publication-title: Viruses
  doi: 10.3390/v3060920
– volume: 448
  start-page: 501
  year: 2007
  ident: ref_56
  article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
  doi: 10.1038/nature06013
– volume: 435
  start-page: 57
  year: 2013
  ident: ref_31
  article-title: Proteomic approaches to the study of papillomavirus-host interactions
  publication-title: Virology
  doi: 10.1016/j.virol.2012.09.046
– volume: 36
  start-page: 933
  year: 2012
  ident: ref_115
  article-title: The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.025
– ident: ref_24
  doi: 10.1371/journal.pone.0075406
– volume: 215
  start-page: 1287
  year: 2018
  ident: ref_131
  article-title: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20180139
– volume: 350
  start-page: 568
  year: 2015
  ident: ref_94
  article-title: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway
  publication-title: Science
  doi: 10.1126/science.aab3291
– ident: ref_136
  doi: 10.1371/annotation/8fa70b21-32e7-4ed3-b397-ab776b5bbf30
– volume: 18
  start-page: 270
  year: 2015
  ident: ref_111
  article-title: Blowing Off Steam: Virus Inhibition of cGAS DNA Sensing
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.08.012
– volume: 19
  start-page: 53
  year: 2018
  ident: ref_118
  article-title: Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0005-y
– volume: 20
  start-page: 657
  year: 2019
  ident: ref_132
  article-title: DNA sensing by the cGAS-STING pathway in health and disease
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0151-1
– volume: 10
  start-page: 123
  year: 2010
  ident: ref_57
  article-title: Intracellular DNA recognition
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2690
– volume: 4
  start-page: 365
  year: 2009
  ident: ref_51
  article-title: NOD-like4 receptors: Role in innate immunity and inflammatory disease
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev.pathol.4.110807.092239
– volume: 85
  start-page: 9486
  year: 2011
  ident: ref_88
  article-title: Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance
  publication-title: J. Virol.
  doi: 10.1128/JVI.05007-11
– volume: 39
  start-page: 44
  year: 2018
  ident: ref_107
  article-title: cGAS-STING and Cancer: Dichotomous Roles in Tumor Immunity and Development
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.07.013
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_66
  article-title: IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14392
– volume: 179
  start-page: 205
  year: 2002
  ident: ref_92
  article-title: Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(01)00871-0
– volume: 89
  start-page: 10612
  year: 2015
  ident: ref_137
  article-title: Enhanced Influenza Virus-Like Particle Vaccination with a Structurally Optimized RIG-I Agonist as Adjuvant
  publication-title: J. Virol.
  doi: 10.1128/JVI.01526-15
– volume: 25
  start-page: 215
  year: 2012
  ident: ref_72
  article-title: Epithelial cell responses to infection with human papillomavirus
  publication-title: Clin. Microbiol.
  doi: 10.1128/CMR.05028-11
– volume: 14
  start-page: 360
  year: 2016
  ident: ref_125
  article-title: Viral evasion of intracellular DNA and RNA sensing
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.45
– volume: 77
  start-page: 12450
  year: 2003
  ident: ref_86
  article-title: Methylation Patterns of Papillomaviral DNA, Its Influence on E2 Function and Implications in Viral Infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.23.12450-12459.2003
– volume: 78
  start-page: 1
  year: 2000
  ident: ref_28
  article-title: Cell transformation by the E7 oncoprotein of human papillomavirus type 16: Interactions with nuclear and cytoplasmic target proteins
  publication-title: Adv. Cancer Res.
– volume: 231
  start-page: 34
  year: 2017
  ident: ref_73
  article-title: Manipulation of the innate immune response by human papillomaviruses
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.11.004
– ident: ref_67
  doi: 10.1371/journal.ppat.1003384
– volume: 9
  start-page: 862
  year: 2009
  ident: ref_21
  article-title: Awakening guardian angels: Drugging the p53 pathway
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2763
– ident: ref_85
  doi: 10.3390/cancers12030646
– volume: 25
  start-page: 491
  year: 2014
  ident: ref_121
  article-title: Regulation of RIG-I-like receptor signaling by host and viral proteins
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2014.06.005
– volume: 9
  start-page: 682
  year: 2019
  ident: ref_76
  article-title: Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00682
– volume: 108
  start-page: 397
  year: 2013
  ident: ref_10
  article-title: Human papillomaviruses and cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2013.06.004
– volume: 30
  start-page: F55
  year: 2012
  ident: ref_3
  article-title: The biology and life-cycle of human papillomaviruses
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.06.083
– volume: 89
  start-page: 1
  year: 2008
  ident: ref_35
  article-title: Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.83391-0
– volume: 4
  start-page: 204
  year: 2015
  ident: ref_33
  article-title: Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm4020204
– volume: 235
  start-page: 342
  year: 2015
  ident: ref_14
  article-title: Human Beta-papillomavirus infection and keratinocyte carcinomas
  publication-title: J. Pathol.
  doi: 10.1002/path.4425
– volume: 79
  start-page: 225
  year: 2015
  ident: ref_43
  article-title: Activation and regulation of DNA-driven immune responses
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00061-14
– volume: 35
  start-page: 429
  year: 2014
  ident: ref_130
  article-title: DNA damage and innate immunity: Links and trade-offs
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.06.003
– volume: 275
  start-page: 6764
  year: 2000
  ident: ref_90
  article-title: Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.10.6764
– volume: 18
  start-page: 7690
  year: 1999
  ident: ref_7
  article-title: The role of the E6-p53 interaction in the molecular pathogenesis of HPV
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1202953
– volume: 86
  start-page: 13174
  year: 2012
  ident: ref_30
  article-title: Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity
  publication-title: J. Virol.
  doi: 10.1128/JVI.02172-12
– volume: 22
  start-page: 409
  year: 2006
  ident: ref_45
  article-title: Recognition and signaling by toll-like receptors
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.122303.115827
– volume: 9
  start-page: 432
  year: 2013
  ident: ref_116
  article-title: The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.23026
– volume: 26
  start-page: 1
  year: 2015
  ident: ref_39
  article-title: Intracellular detection of viral nucleic acids
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2015.03.001
– volume: 461
  start-page: 788
  year: 2009
  ident: ref_62
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 181
  start-page: 2694
  year: 2008
  ident: ref_68
  article-title: Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.4.2694
– volume: 9
  start-page: 590
  year: 2018
  ident: ref_48
  article-title: C-Type Lectin Receptors in Antiviral Immunity and Viral Escape
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00590
– volume: 231
  start-page: 21
  year: 2017
  ident: ref_74
  article-title: Evasion of host immune defenses by human papillomavirus
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2016.11.023
– volume: 341
  start-page: 1390
  year: 2013
  ident: ref_60
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 1024
  start-page: 175
  year: 2017
  ident: ref_110
  article-title: cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-5987-2_8
– volume: 339
  start-page: 786
  year: 2013
  ident: ref_49
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 131
  start-page: 2201
  year: 2017
  ident: ref_9
  article-title: The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review
  publication-title: Clin. Sci.
  doi: 10.1042/CS20160786
– volume: 138
  start-page: 576
  year: 2009
  ident: ref_123
  article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.015
– volume: 479
  start-page: 146
  year: 2015
  ident: ref_41
  article-title: Innate immune recognition of DNA: A recent history
  publication-title: Virology
  doi: 10.1016/j.virol.2015.03.013
– volume: 178
  start-page: 3186
  year: 2007
  ident: ref_101
  article-title: TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.5.3186
– volume: 372
  start-page: 20160267
  year: 2017
  ident: ref_112
  article-title: Tumour viruses and innate immunity
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2016.0267
– volume: 123
  start-page: 2219
  year: 2017
  ident: ref_20
  article-title: Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases
  publication-title: Cancer
  doi: 10.1002/cncr.30588
– volume: 12
  start-page: 399
  year: 2011
  ident: ref_64
  article-title: IRF7: Activation, regulation, modification and function
  publication-title: Genes Immun.
  doi: 10.1038/gene.2011.21
– volume: 4
  start-page: e00129-19
  year: 2019
  ident: ref_81
  article-title: Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis
  publication-title: mSphere
  doi: 10.1128/mSphere.00129-19
– volume: 94
  start-page: e01812-19
  year: 2020
  ident: ref_96
  article-title: Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes
  publication-title: J. Virol.
  doi: 10.1128/JVI.01812-19
– volume: 11
  start-page: 781
  year: 2010
  ident: ref_18
  article-title: HPV-associated head and neck cancer: A virus-related cancer epidemic
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(10)70017-6
– volume: 85
  start-page: 11372
  year: 2011
  ident: ref_77
  article-title: High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression
  publication-title: J. Virol.
  doi: 10.1128/JVI.05279-11
– ident: ref_70
  doi: 10.1371/journal.pone.0091473
– volume: 7
  start-page: 11
  year: 2007
  ident: ref_15
  article-title: The natural history of cervical HPV infection: Unresolved issues
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2050
– volume: 34
  start-page: 680
  year: 2011
  ident: ref_54
  article-title: Immune signaling by RIG-I-like receptors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.05.003
– ident: ref_78
  doi: 10.1371/journal.ppat.1004466
– volume: 9
  start-page: 465
  year: 2009
  ident: ref_47
  article-title: Signalling through C-type lectin receptors:shaping immune responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2569
– volume: 69
  start-page: 8718
  year: 2009
  ident: ref_87
  article-title: Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-0550
– volume: 26
  start-page: 158
  year: 2018
  ident: ref_2
  article-title: Factors for Viral Carcinogenesis and Therapeutic Targets
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2017.07.007
– volume: 143
  start-page: 2884
  year: 2018
  ident: ref_104
  article-title: Toll-like receptors: Important immune checkpoints in the regression of cervical intra-epithelial neoplasia 2
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31814
– volume: 28
  start-page: 191
  year: 2020
  ident: ref_134
  article-title: Catching HPV in the Homologous Recombination Cookie Jar
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.10.008
– volume: 445
  start-page: 138
  year: 2013
  ident: ref_27
  article-title: The papillomavirus E7 proteins
  publication-title: Virology
  doi: 10.1016/j.virol.2013.04.013
SSID ssj0000800817
Score 2.3326564
SecondaryResourceType review_article
Snippet The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 292
SubjectTerms Adenosine
Apoptosis
Cancer
Cell cycle
Cell death
Cell proliferation
Cervical cancer
Chemotherapy
Cytokines
Deoxyribonucleic acid
Depletion
DNA
E6 and E7 oncoproteins
Gene expression
Genomes
HPV
HPV-driven cancer
Human papillomavirus
Immune response
Immune system
Immunity
Infections
Innate immunity
Interferon
Literature reviews
Oncoproteins
pathogen recognition receptors
Pathogens
Proteins
Review
Signal transduction
Signaling
Target recognition
Therapeutic applications
Toll-like receptors
Transformed cells
Tumorigenesis
Tumors
Vaccines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOiltE0fbtOgQi89mGj11rEtSTeFPg4N5Gb0JFs2coi9gf33HdnOshtKc-nVkkGeGWm-T5K_Qei9ozI4oUjtvAWCkrSpXTSxtoJGrX1gNpb9jm_f5fyMfz0X51ulvsqdsFEeeDTckaIesnQAEucsj1KamQ9-ZoL2wvAUXFl9iSFbZOr3hIP0TI3nkgx4fblffdGCTzoDYUsN3clDg1z_3zDm3auSW7nn5Al6PIFG_HEc7FP0IOZn6OFYRnK9j77A7L8Z971wm_C87Xp8mjOgSHw6_P7Rr7Fb42G_Hv-0V4vlsr20N4vrVYd_ZN8OWg2L3D1HZyfHvz7P66lAQu2FkH1tgwC2pWiMRhqTNGfBa8IjDUCDYOEgNiQerSHCM5qI08lx4pKiQnvnZom9QHu5zfEVws4HarkANhYDV1K6KAKNkivmOeOBVujo1lyNn9TDSxGLZQMsohi4uWvgCn3YvHE1Kmf8o--n4oFNv6J5PTyASGimSGjui4QKHdz6r5kmYtdQwH9al0RdoXebZphC5VzE5tiuhj5MKCakqdDL0d2bkTDAv4AQZYXUTiDsDHW3JS8uBpnuUs6NEvb6f3zbG_SIFqJfRCbVAdrrr1fxLaCh3h0Ogf8HqJEMjw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aIvhSrNfRKhF88WHobO55EiutW8FaxELfhtzGLmwn685sYf-9JzOzY7dIXycZCDknJ993knwHoQ-WCG-5LHLrDBCUSuncBh1yw0lQynlqQsp3fD8T0wv27ZJfDgm3ZrhWuYmJXaD20aUc-SGBjVypFHE_Lf7kqWpUOl0dSmg8RLsQghX4-e7R8dn5zzHLkvCQmsj-fJICv0_3rK8i2KbR4L5Ek639qJPt_x_WvHtl8tYedPIE7Q3gEX_urb2PHoT6KXrUl5NcP0NfIQrc9PkvHCs8jU2LT-sa0CQ-7Z6BtGts17jL2-Nzs5jN5_Ha3MyWqwb_qF3sNBtmdfMcXZwc__oyzYdCCbnjXLS58RxYlyQhaKF1pRj1ThUsEA90CAJIYXzFgtEFd5RUhVWVZYWtJOHKWTup6Au0U8c6vELYOk8M48DKgmdSCBu4J0EwSR2jzJMMHW6mq3SDingqZjEvgU2kCS7vTnCGPo5_LHoFjXv6HiULjP2S9nX3IS5_l8NSKiVxgNs80HprWBBCT5x3E-2V45pV3mboYGO_cliQTfnPfTL0fmyGpZTOR0wd4qrrQ7mkXOgMvezNPY6EAg4GpCgyJLccYWuo2y317KqT605l3UhBX98_rDfoMUlUPslIygO00y5X4S3gnda-G5z6L3BeBOU
  priority: 102
  providerName: ProQuest
Title Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins
URI https://www.ncbi.nlm.nih.gov/pubmed/32316236
https://www.proquest.com/docview/2392881303
https://www.proquest.com/docview/2393573569
https://pubmed.ncbi.nlm.nih.gov/PMC7238203
https://doaj.org/article/72c250d690ba4e6691cdc19d8c594fdb
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBYlodBLSd-bJkaFXnrYdq23DqU0IYlTSBpKDbktem3i4u6m3nWo_31Hu2s3DiZXPUDMjDTfN5JmEHpvifCWyyy1zgBBKZRObdAhNZwEpZynJsR4x9m5GI3Zt0t--f97dC_AeiO1i_WkxrPpx79_Fl9gw3-OjBMoe3w6fV2BuGsNFkk0HMjb4JdEpGJnPdj_1WMjNZTdXeXGiWu-qU3hvwl33n8-eccfHe-gpz2QxF87zT9Dj0L5HD3uSksuXqATOBFuu1gYrgo8quoGn5YlIEt82n4JaRbYLnAbw8cX5mYynVa_ze1kNq_x99JVbf6GSVm_ROPjo5-Ho7QvmpA6zkWTGs-BgUkSghZaF4pR71TGAvFAjeAwyYwvWDA6446SIrOqsCyzhSRcOWuHBX2FtsqqDG8Qts4TwzgwtOCZFMIG7kkQTFLHKPMkQZ-W4spdn1E8FraY5sAsooDz-wJO0IfVjJsum8YDYw-iBlbjYh7stqGaXeX9tsolcYDhPFB8a1gQQg-dd0PtleOaFd4maG-pv3xpWzkBTKhUdN4Jerfqhm0V70pMGap5O4ZySbnQCXrdqXu1EgqYGFCjSJBcM4S1pa73lJPrNnV3LPFGMrr78LLeoick0vqYUlLuoa1mNg_7gH0aO0DbB0fnFz8Gbexg0Br4P2uGCq4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEBw5Rs37FPiBEoWWXtkuFWqm31K_QlZZk2WSL9k_xG7GT7MJWqLdeYzuy5uVvZuwZgNcac6tZmsTaKO-g5ELG2kkXK4adEMYS5UK843DEByf0yyk73YDfy7cw4Vrl0iY2htqWJsTIt7E_yIUIFvf99GccukaF7OqyhUYrFvtu8cu7bNW74SfP3zcY7-0efxzEXVeB2DDG61hZ5l2UFDsnuZS5oMQakVCHrfcdvLYlyubUKZkwQ3CeaJFrmug8xUwYrfs58f-9AZs0vGjtwebO7ujo2yqqE_CX6KdtPpQQmYR73eell4VKenXBEq-df02bgP9h28tXNP858_buwp0OrKIPrXTdgw1X3IebbfvKxQP47K3ORRtvQ2WOBmVVo2FRePSKhs2zk3qB9AI1eQJ0pKbjyaT8oS7Gs3mFvhambGpEjIvqIZxcCwkfQa8oC_cEkDYWK8q8F-gsTTnXjlnsOE2JoYRaHMH2klyZ6aqWh-YZk8x7L4HA2WUCR_B2tWLaVuy4Yu5O4MBqXqi13XwoZ9-zTnWzFBuPEy2XiVbUcS77xpq-tMIwSXOrI9ha8i_rDECV_RXXCF6thr3qhnyMKlw5b-YQlhLGZQSPW3avdkI87vbIlEeQrgnC2lbXR4rxeVMePLSRwwl5evW2XsKtwfHhQXYwHO0_g9s4hBFCCct0C3r1bO6ee6xV6xedgCM4u26d-gNFmEIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqUBcEDuGAkaCAwcrzuxzQIjShoRCiBCVenNnM40U7BAnRflr_DpmbCeQCvXWqz22RvO27y3zHsBLjZjVlKeJNso7KLmQiXbSJYoiJ4SxWLkQ7_g8YoNj8vGEnuzA7_VdmFBWudaJtaK2pQkx8i7yhlyIoHG7eVsWMT7ov539TMIEqZBpXY_TaFjkyK1-efetejM88LR-hVD_8Nv7QdJOGEgMpWyRKEu9u8KRc5JJmQuCrREpcch6P8JLXqpsTpySKTUY5akWuSapzjmiwmjdy7H_7zXY5d4qkg7s7h-Oxl83EZ6AxUSPN7lRjGUaarzPSs8XlfSigyTasoX1yID_4dyL5Zr_2L_-bbjVAtf4XcNpd2DHFXfhejPKcnUPPngNdN7E3uIyjwdltYiHReGRbDysr6AsVrFexXXOIB6r2WQ6LX-o88l8WcVfClPW_SImRXUfjq_kCB9ApygL9whibSxShHqP0FnCGdOOWuQY4dgQTCyKoLs-rsy0HczDII1p5j2ZcMDZxQOO4PXmi1nTveOStfuBApt1oe92_aCcf89aMc44Mh4zWiZTrYhjTPaMNT1phaGS5FZHsLemX9Yqgyr7y7oRvNi89mIccjOqcOWyXoMpx5TJCB425N7sBHsM7lEqi4BvMcLWVrffFJOzulV4GCmHUvz48m09hxtelrJPw9HRE7iJQkQhdLPke9BZzJfuqYddC_2s5e8YTq9apP4A0PdGTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subversion+of+Host+Innate+Immunity+by+Human+Papillomavirus+Oncoproteins&rft.jtitle=Pathogens+%28Basel%29&rft.au=Irene+Lo+Cigno&rft.au=Calati%2C+Federica&rft.au=Albertini%2C+Silvia&rft.au=Gariglio%2C+Marisa&rft.date=2020-04-17&rft.pub=MDPI+AG&rft.eissn=2076-0817&rft.volume=9&rft.issue=4&rft.spage=292&rft_id=info:doi/10.3390%2Fpathogens9040292&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon