Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E...
Saved in:
Published in | Pathogens (Basel) Vol. 9; no. 4; p. 292 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-0817 2076-0817 |
DOI | 10.3390/pathogens9040292 |
Cover
Abstract | The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated. |
---|---|
AbstractList | The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated. The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated. |
Author | Calati, Federica Lo Cigno, Irene Albertini, Silvia Gariglio, Marisa |
AuthorAffiliation | Molecular Virology Unit, Department of Translational Medicine, Medical School, University of Piemonte Orientale, 28100 Novara, Italy; irene.locigno@med.uniupo.it (I.L.C.); federica.calati@med.uniupo.it (F.C.); silvia.albertini@med.uniupo.it (S.A.) |
AuthorAffiliation_xml | – name: Molecular Virology Unit, Department of Translational Medicine, Medical School, University of Piemonte Orientale, 28100 Novara, Italy; irene.locigno@med.uniupo.it (I.L.C.); federica.calati@med.uniupo.it (F.C.); silvia.albertini@med.uniupo.it (S.A.) |
Author_xml | – sequence: 1 givenname: Irene orcidid: 0000-0001-5521-3642 surname: Lo Cigno fullname: Lo Cigno, Irene – sequence: 2 givenname: Federica orcidid: 0000-0002-8830-8290 surname: Calati fullname: Calati, Federica – sequence: 3 givenname: Silvia orcidid: 0000-0002-8540-5378 surname: Albertini fullname: Albertini, Silvia – sequence: 4 givenname: Marisa orcidid: 0000-0002-5187-0140 surname: Gariglio fullname: Gariglio, Marisa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32316236$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrGzEQgEVJadI0957KQi-9ONVjVytdCiW0sSGQQtuz0NOR2ZW2ktbgfx85TkJiqC56ffMx0sx7cBJisAB8RPCSEA6_TrLcxbUNmcMWYo7fgDMMe7qADPUnL9an4CLnDayDwf3-HTglmCCKCT0D179ntbUp-xia6JplzKVZhSCLbVbjOAdfdo3aNct5lKH5JSc_DHGUW5_m3NwGHacUi_UhfwBvnRyyvXicz8Hfnz_-XC0XN7fXq6vvNwvddbQspOk46ntsLaecO9YSoxlsLTasRz0lUBrXWslhpwl2UDGnWqhcjzumlUKOnIPVwWui3Igp-VGmnYjSi4eDmNZCpuL1YEWPNe6goRwq2VpKOdJGI26Y7njrjKqubwfXNKvRGm1DSXJ4JX19E_ydWMdtNROGIamCL4-CFP_NNhcx-qztMMhg45wFJpx0Pekor-jnI3QT5xTqV-0pzBgiD8JPLzN6TuWpXhWAB0CnmHOy7hlBUOy7Qhx3RQ2hRyHaF1lqweub_PD_wHsGhr81 |
CitedBy_id | crossref_primary_10_1073_pnas_2200206119 crossref_primary_10_1093_molbev_msad012 crossref_primary_10_3390_biology10121232 crossref_primary_10_3390_cancers15153849 crossref_primary_10_1016_j_cellsig_2020_109815 crossref_primary_10_1016_j_jid_2022_12_007 crossref_primary_10_3390_v14071361 crossref_primary_10_1038_s41392_024_02083_w crossref_primary_10_1016_j_tranon_2023_101714 crossref_primary_10_1158_0008_5472_CAN_21_0785 crossref_primary_10_1002_jmv_29236 crossref_primary_10_3389_fimmu_2022_937736 crossref_primary_10_3389_fcimb_2022_927131 crossref_primary_10_1016_j_semcancer_2022_02_014 crossref_primary_10_1128_jvi_00163_25 crossref_primary_10_1080_01443615_2024_2311658 crossref_primary_10_1136_jitc_2022_005151 crossref_primary_10_1002_mco2_221 crossref_primary_10_3390_biology12050672 crossref_primary_10_3390_v14081797 crossref_primary_10_1016_j_gene_2022_146385 crossref_primary_10_3390_v13091846 crossref_primary_10_12677_ACM_2022_124499 crossref_primary_10_1002_jmv_29815 crossref_primary_10_1128_mbio_02458_23 crossref_primary_10_1038_s41418_023_01242_w crossref_primary_10_1089_vim_2023_0144 crossref_primary_10_1111_jcmm_16331 crossref_primary_10_3390_v14102138 crossref_primary_10_1002_jmv_29685 crossref_primary_10_1080_15384101_2022_2109899 crossref_primary_10_1371_journal_pone_0266819 crossref_primary_10_3390_ijms242015469 crossref_primary_10_3390_pathogens11111361 crossref_primary_10_1002_jmv_28310 crossref_primary_10_1007_s00262_023_03483_7 crossref_primary_10_3389_fcimb_2024_1359367 crossref_primary_10_1111_omi_12412 crossref_primary_10_3390_microorganisms9050891 crossref_primary_10_3390_pathogens11020175 |
Cites_doi | 10.3390/v5112624 10.1038/nri1391 10.1016/j.coviro.2015.09.001 10.1099/0022-1317-80-7-1725 10.1172/JCI129497 10.1016/S1074-7613(00)00053-4 10.1016/j.celrep.2015.12.029 10.1128/mBio.00270-16 10.1038/ni1087 10.1016/j.micpath.2019.05.004 10.1016/j.antiviral.2011.05.014 10.1111/1348-0421.12669 10.1128/CMR.00046-08 10.1099/vir.0.82098-0 10.1515/hsz-2017-0113 10.3390/v9100268 10.3109/08830185.2010.529976 10.1128/JVI.03370-13 10.1186/s12943-019-1087-y 10.1016/j.immuni.2013.10.019 10.1128/JVI.01737-17 10.1128/JVI.00845-15 10.1016/j.vaccine.2013.10.003 10.1038/nri3921 10.1016/j.coviro.2018.08.015 10.1016/j.mrrev.2016.08.001 10.1016/j.cytogfr.2014.06.006 10.1038/s41579-018-0064-6 10.1002/ijc.25400 10.1093/carcin/bgq176 10.1002/ijc.29283 10.1038/s41577-020-0288-3 10.1016/j.immuni.2013.05.004 10.1016/j.it.2016.12.004 10.1007/s00262-019-02380-2 10.1038/onc.2016.11 10.1128/JVI.75.9.4283-4296.2001 10.1038/nature23449 10.1038/nature05732 10.1128/mSphere.00828-19 10.1146/annurev-micro-102215-095605 10.1128/mBio.00823-18 10.1016/j.virol.2008.11.032 10.1146/annurev-virology-092917-043244 10.1128/JVI.00013-15 10.1016/S0140-6736(18)32470-X 10.1371/journal.pbio.2006134 10.1126/science.aat8657 10.1128/mBio.00944-17 10.1038/nature03464 10.1101/gad.12.13.2061 10.1095/biolreprod.105.048629 10.4049/jimmunol.1701536 10.1039/C6MD00371K 10.1016/S0140-6736(13)60022-7 10.1038/ni.1932 10.1146/annurev-immunol-032414-112240 10.4103/0019-5154.127694 10.1016/j.mrrev.2016.07.002 10.1186/s13027-016-0107-4 10.1038/s41573-019-0043-2 10.1016/j.coviro.2019.07.008 10.1128/JVI.03473-12 10.1007/s00705-007-0022-5 10.1038/srep13446 10.1111/j.1365-2567.2005.02122.x 10.1002/ijc.31027 10.3389/fimmu.2014.00327 10.3390/v3060920 10.1038/nature06013 10.1016/j.virol.2012.09.046 10.1016/j.immuni.2012.03.025 10.1371/journal.pone.0075406 10.1084/jem.20180139 10.1126/science.aab3291 10.1371/annotation/8fa70b21-32e7-4ed3-b397-ab776b5bbf30 10.1016/j.chom.2015.08.012 10.1038/s41590-017-0005-y 10.1038/s41576-019-0151-1 10.1038/nri2690 10.1146/annurev.pathol.4.110807.092239 10.1128/JVI.05007-11 10.1016/j.it.2017.07.013 10.1038/ncomms14392 10.1016/S0304-3835(01)00871-0 10.1128/JVI.01526-15 10.1128/CMR.05028-11 10.1038/nrmicro.2016.45 10.1128/JVI.77.23.12450-12459.2003 10.1016/j.virusres.2016.11.004 10.1371/journal.ppat.1003384 10.1038/nrc2763 10.3390/cancers12030646 10.1016/j.cytogfr.2014.06.005 10.3389/fonc.2019.00682 10.1016/j.radonc.2013.06.004 10.1016/j.vaccine.2012.06.083 10.1099/vir.0.83391-0 10.3390/jcm4020204 10.1002/path.4425 10.1128/MMBR.00061-14 10.1016/j.it.2014.06.003 10.1074/jbc.275.10.6764 10.1038/sj.onc.1202953 10.1128/JVI.02172-12 10.1146/annurev.cellbio.21.122303.115827 10.4161/auto.23026 10.1016/j.mib.2015.03.001 10.1038/nature08476 10.4049/jimmunol.181.4.2694 10.3389/fimmu.2018.00590 10.1016/j.virusres.2016.11.023 10.1126/science.1244040 10.1007/978-981-10-5987-2_8 10.1126/science.1232458 10.1042/CS20160786 10.1016/j.cell.2009.06.015 10.1016/j.virol.2015.03.013 10.4049/jimmunol.178.5.3186 10.1098/rstb.2016.0267 10.1002/cncr.30588 10.1038/gene.2011.21 10.1128/mSphere.00129-19 10.1128/JVI.01812-19 10.1016/S1470-2045(10)70017-6 10.1128/JVI.05279-11 10.1371/journal.pone.0091473 10.1038/nrc2050 10.1016/j.immuni.2011.05.003 10.1371/journal.ppat.1004466 10.1038/nri2569 10.1158/0008-5472.CAN-09-0550 10.1016/j.tim.2017.07.007 10.1002/ijc.31814 10.1016/j.tim.2019.10.008 10.1016/j.virol.2013.04.013 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/pathogens9040292 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-0817 |
ExternalDocumentID | oai_doaj_org_article_72c250d690ba4e6691cdc19d8c594fdb PMC7238203 32316236 10_3390_pathogens9040292 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: AGING Project - Department of Excellence - Department of Translational Medicine, University of Piemonte Orientale – fundername: Associazione Italiana per la Ricerca sul Cancro grantid: IG2016 grant to M.G – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: PRIN 2017 to M.G |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c556t-ad591772ee9699f843dc804e2d8717630adf4ea905c32f0b8fb40bf7258cbb1f3 |
IEDL.DBID | M48 |
ISSN | 2076-0817 |
IngestDate | Wed Aug 27 01:24:08 EDT 2025 Thu Aug 21 13:55:50 EDT 2025 Thu Sep 04 19:50:41 EDT 2025 Fri Jul 25 12:17:15 EDT 2025 Thu Jan 02 22:58:27 EST 2025 Thu Apr 24 23:09:39 EDT 2025 Tue Jul 01 04:15:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | PRR innate immunity human papillomavirus pathogen recognition receptors E6 and E7 oncoproteins HPV HPV-driven cancer |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-ad591772ee9699f843dc804e2d8717630adf4ea905c32f0b8fb40bf7258cbb1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8540-5378 0000-0002-8830-8290 0000-0001-5521-3642 0000-0002-5187-0140 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens9040292 |
PMID | 32316236 |
PQID | 2392881303 |
PQPubID | 2032351 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72c250d690ba4e6691cdc19d8c594fdb pubmedcentral_primary_oai_pubmedcentral_nih_gov_7238203 proquest_miscellaneous_2393573569 proquest_journals_2392881303 pubmed_primary_32316236 crossref_primary_10_3390_pathogens9040292 crossref_citationtrail_10_3390_pathogens9040292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200417 |
PublicationDateYYYYMMDD | 2020-04-17 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200417 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Pathogens (Basel) |
PublicationTitleAlternate | Pathogens |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_136 Unterholzner (ref_55) 2010; 11 White (ref_31) 2013; 435 Calati (ref_96) 2020; 94 Paludan (ref_43) 2015; 79 Yang (ref_81) 2019; 4 Lamoyi (ref_84) 2013; 5 ref_13 Berman (ref_20) 2017; 123 ref_98 ref_133 ref_97 Krump (ref_8) 2018; 16 Saxena (ref_50) 2014; 5 Hong (ref_73) 2017; 231 Chiang (ref_121) 2014; 25 Roman (ref_27) 2013; 445 Dempsey (ref_41) 2015; 479 Cicchini (ref_80) 2016; 7 ref_24 ref_122 Shu (ref_58) 2014; 25 Sato (ref_63) 2000; 13 Halec (ref_104) 2018; 143 Castiello (ref_139) 2019; 68 Westrich (ref_74) 2017; 231 Thomas (ref_7) 1999; 18 Chiang (ref_138) 2015; 89 Ng (ref_107) 2018; 39 Diner (ref_111) 2015; 18 Hoffmann (ref_135) 2019; 18 Tungteakkhun (ref_29) 2008; 153 Barber (ref_105) 2015; 15 ref_70 Lei (ref_117) 2016; 35 Chiu (ref_123) 2009; 138 Kalali (ref_68) 2008; 181 Daud (ref_102) 2011; 128 Loo (ref_54) 2011; 34 Hopcraft (ref_112) 2017; 372 ref_78 Gack (ref_126) 2007; 446 Hornung (ref_57) 2010; 10 Almine (ref_66) 2017; 8 Bussey (ref_113) 2018; 32 Shewale (ref_19) 2019; 39 Ma (ref_40) 2018; 5 Edwards (ref_22) 2011; 91 Chen (ref_51) 2009; 4 Hong (ref_88) 2011; 85 Quint (ref_14) 2015; 235 Takaoka (ref_56) 2007; 448 Halec (ref_87) 2009; 69 Wallace (ref_134) 2020; 28 Shaikh (ref_99) 2019; 132 Randall (ref_35) 2008; 89 Reiser (ref_77) 2011; 85 Cohen (ref_17) 2019; 393 Chan (ref_125) 2016; 14 White (ref_30) 2012; 86 Zhu (ref_109) 2019; 18 Woodman (ref_15) 2007; 7 ref_85 Borgogna (ref_82) 2015; 89 Castaneda (ref_26) 2016; 7 Mittal (ref_6) 2017; 772 Brown (ref_21) 2009; 9 West (ref_45) 2006; 22 Ishikawa (ref_62) 2009; 461 Marur (ref_18) 2010; 11 Li (ref_60) 2013; 341 Steinbach (ref_75) 2018; 142 Haedicke (ref_10) 2013; 108 Galloway (ref_4) 2015; 14 Gantier (ref_110) 2017; 1024 Andersen (ref_128) 2006; 74 Edwards (ref_23) 2013; 87 Kadaja (ref_12) 2009; 384 Sun (ref_49) 2013; 339 Kollisch (ref_69) 2005; 114 Um (ref_92) 2002; 179 Yoneyama (ref_53) 2004; 5 Ablasser (ref_106) 2019; 363 Li (ref_61) 2013; 39 Zhang (ref_119) 2018; 9 Senapati (ref_11) 2016; 11 Abe (ref_44) 2019; 63 Brubaker (ref_36) 2015; 33 Boccardo (ref_83) 2010; 31 Li (ref_131) 2018; 215 Bosch (ref_1) 2013; 31 ref_67 Xia (ref_108) 2016; 14 Chiang (ref_100) 2018; 92 Tan (ref_127) 2018; 72 Beljanski (ref_137) 2015; 89 Nees (ref_71) 2001; 75 Mackenzie (ref_59) 2017; 548 (ref_2) 2018; 26 Park (ref_90) 2000; 275 Kim (ref_86) 2003; 77 Sparrer (ref_39) 2015; 26 Harden (ref_32) 2017; 772 Lau (ref_94) 2015; 350 Kumar (ref_34) 2011; 30 Fisher (ref_33) 2015; 4 Scott (ref_103) 2015; 136 Paludan (ref_42) 2013; 38 Hebner (ref_89) 2006; 87 Lei (ref_115) 2012; 36 Hasan (ref_101) 2007; 178 Bhushan (ref_25) 2014; 59 Zhou (ref_76) 2019; 9 Chatzinikolaou (ref_130) 2014; 35 Ning (ref_64) 2011; 12 James (ref_79) 2020; 5 Perea (ref_91) 2000; 5 Motwani (ref_132) 2019; 20 Meissner (ref_114) 1999; 80 Crosbie (ref_16) 2013; 382 Zevini (ref_124) 2017; 38 Nakaya (ref_52) 2017; 8 Thompson (ref_37) 2011; 3 Mogensen (ref_38) 2009; 22 Albertini (ref_95) 2018; 200 Akira (ref_46) 2004; 4 Graham (ref_9) 2017; 131 McBride (ref_5) 2017; 398 Gack (ref_120) 2014; 88 Stanley (ref_72) 2012; 25 Honda (ref_65) 2005; 434 Doorbar (ref_3) 2012; 30 Shah (ref_129) 2015; 5 Lei (ref_116) 2013; 9 Chiang (ref_118) 2018; 19 Zwerschke (ref_28) 2000; 78 Ronco (ref_93) 1998; 12 Geijtenbeek (ref_47) 2009; 9 Eder (ref_48) 2018; 9 |
References_xml | – volume: 5 start-page: 2624 year: 2013 ident: ref_84 article-title: Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response publication-title: Viruses doi: 10.3390/v5112624 – volume: 4 start-page: 499 year: 2004 ident: ref_46 article-title: Toll-like receptor signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1391 – volume: 5 start-page: 661 year: 2000 ident: ref_91 article-title: Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1 publication-title: Int. J. Mol. Med. – volume: 14 start-page: 87 year: 2015 ident: ref_4 article-title: Human papillomaviruses: Shared and distinct pathways for pathogenesis publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2015.09.001 – volume: 80 start-page: 1725 year: 1999 ident: ref_114 article-title: Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-80-7-1725 – ident: ref_97 doi: 10.1172/JCI129497 – volume: 13 start-page: 539 year: 2000 ident: ref_63 article-title: Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction publication-title: Immunity doi: 10.1016/S1074-7613(00)00053-4 – volume: 14 start-page: 282 year: 2016 ident: ref_108 article-title: Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.12.029 – volume: 7 start-page: e00270-16 year: 2016 ident: ref_80 article-title: Suppression of Antitumor Immune Responses by Human Papillomavirus through Epigenetic Downregulation of CXCL14 publication-title: MBio doi: 10.1128/mBio.00270-16 – volume: 5 start-page: 730 year: 2004 ident: ref_53 article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses publication-title: Nat. Immunol. doi: 10.1038/ni1087 – volume: 132 start-page: 162 year: 2019 ident: ref_99 article-title: cGAS-STING responses are dampened in high-risk HPV type 16 positive head and neck squamous cell carcinoma cells publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2019.05.004 – volume: 91 start-page: 177 year: 2011 ident: ref_22 article-title: HPV Episome Levels are Potently Decreased by Pyrrole-Imidazole Polyamides publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2011.05.014 – volume: 63 start-page: 51 year: 2019 ident: ref_44 article-title: Cytosolic DNA-sensing immune response and viral infection publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12669 – volume: 22 start-page: 240 year: 2009 ident: ref_38 article-title: Pathogen recognition and inflammatory signaling in innate immune defenses publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00046-08 – volume: 87 start-page: 3183 year: 2006 ident: ref_89 article-title: Human papillomaviruses target the double-stranded RNA protein kinase pathway publication-title: J. Gen. Virol. doi: 10.1099/vir.0.82098-0 – volume: 398 start-page: 919 year: 2017 ident: ref_5 article-title: Mechanisms and strategies of papillomavirus replication publication-title: Biol. Chem. doi: 10.1515/hsz-2017-0113 – ident: ref_133 doi: 10.3390/v9100268 – volume: 30 start-page: 16 year: 2011 ident: ref_34 article-title: Pathogen recognition by the innate immune system publication-title: Int. Rev. Immunol. doi: 10.3109/08830185.2010.529976 – volume: 88 start-page: 5213 year: 2014 ident: ref_120 article-title: Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens publication-title: J. Virol. doi: 10.1128/JVI.03370-13 – volume: 18 start-page: 152 year: 2019 ident: ref_109 article-title: STING: A master regulator in the cancer-immunity cycle publication-title: Mol. Cancer doi: 10.1186/s12943-019-1087-y – volume: 39 start-page: 1019 year: 2013 ident: ref_61 article-title: Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization publication-title: Immunity doi: 10.1016/j.immuni.2013.10.019 – volume: 92 start-page: e01737-17 year: 2018 ident: ref_100 article-title: The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling publication-title: J. Virol. doi: 10.1128/JVI.01737-17 – volume: 89 start-page: 8011 year: 2015 ident: ref_138 article-title: Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists publication-title: J. Virol. doi: 10.1128/JVI.00845-15 – volume: 31 start-page: H1 year: 2013 ident: ref_1 article-title: Comprehensive control of human papillomavirus infections and related diseases publication-title: Vaccine doi: 10.1016/j.vaccine.2013.10.003 – volume: 15 start-page: 760 year: 2015 ident: ref_105 article-title: STING: Infection, inflammation and cancer publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3921 – volume: 32 start-page: 30 year: 2018 ident: ref_113 article-title: Strategies for immune evasion by human tumor viruses publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2018.08.015 – volume: 772 start-page: 23 year: 2017 ident: ref_6 article-title: Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation publication-title: Mutat. Res. Rev. Mutat. Res. doi: 10.1016/j.mrrev.2016.08.001 – volume: 25 start-page: 641 year: 2014 ident: ref_58 article-title: The mechanism of double-stranded DNA sensing through the cGAS-STING pathway publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.06.006 – volume: 16 start-page: 684 year: 2018 ident: ref_8 article-title: Molecular mechanisms of viral oncogenesis in humans publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0064-6 – volume: 128 start-page: 879 year: 2011 ident: ref_102 article-title: Association between toll-like receptor expression and human papillomavirus type 16 persistence publication-title: Int. J. Cancer doi: 10.1002/ijc.25400 – ident: ref_13 – volume: 31 start-page: 1905 year: 2010 ident: ref_83 article-title: The role of inflammation in HPV carcinogenesis publication-title: Carcinogenesis doi: 10.1093/carcin/bgq176 – volume: 136 start-page: 2402 year: 2015 ident: ref_103 article-title: Expression of nucleic acid-sensing Toll-like receptors predicts HPV16 clearance associated with an E6-directed cell-mediated response publication-title: Int. J. Cancer doi: 10.1002/ijc.29283 – ident: ref_122 doi: 10.1038/s41577-020-0288-3 – volume: 38 start-page: 870 year: 2013 ident: ref_42 article-title: Immune sensing of DNA publication-title: Immunity doi: 10.1016/j.immuni.2013.05.004 – volume: 38 start-page: 194 year: 2017 ident: ref_124 article-title: Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways publication-title: Trends Immunol. doi: 10.1016/j.it.2016.12.004 – volume: 68 start-page: 1479 year: 2019 ident: ref_139 article-title: An optimized retinoic acid-inducible gene I agonist M8 induces immunogenic cell death markers in human cancer cells and dendritic cell activation publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02380-2 – volume: 35 start-page: 4698 year: 2016 ident: ref_117 article-title: EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex publication-title: Oncogene doi: 10.1038/onc.2016.11 – volume: 75 start-page: 4283 year: 2001 ident: ref_71 article-title: Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes publication-title: J. Virol. doi: 10.1128/JVI.75.9.4283-4296.2001 – volume: 548 start-page: 461 year: 2017 ident: ref_59 article-title: cGAS surveillance of micronuclei links genome instability to innate immunity publication-title: Nature doi: 10.1038/nature23449 – volume: 446 start-page: 916 year: 2007 ident: ref_126 article-title: TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity publication-title: Nature doi: 10.1038/nature05732 – volume: 5 start-page: e00828-19 year: 2020 ident: ref_79 article-title: Human Papillomavirus 16 E6 and E7 Synergistically Repress Innate Immune Gene Transcription publication-title: mSphere doi: 10.1128/mSphere.00828-19 – volume: 72 start-page: 447 year: 2018 ident: ref_127 article-title: Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-102215-095605 – volume: 9 start-page: e00823-18 year: 2018 ident: ref_119 article-title: RIG-I Detects Kaposi’s Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner publication-title: MBio doi: 10.1128/mBio.00823-18 – volume: 384 start-page: 360 year: 2009 ident: ref_12 article-title: Papillomavirus DNA replication—From initiation to genomic instability publication-title: Virology doi: 10.1016/j.virol.2008.11.032 – volume: 5 start-page: 341 year: 2018 ident: ref_40 article-title: Innate Sensing of DNA Virus Genomes publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-092917-043244 – volume: 89 start-page: 7506 year: 2015 ident: ref_82 article-title: The nuclear DNA sensor IFI16 acts as a restriction factor for human papillomavirus replication through epigenetic modifications of the viral promoters publication-title: J. Virol. doi: 10.1128/JVI.00013-15 – volume: 393 start-page: 169 year: 2019 ident: ref_17 article-title: Cervical cancer publication-title: Lancet doi: 10.1016/S0140-6736(18)32470-X – ident: ref_98 doi: 10.1371/journal.pbio.2006134 – volume: 363 start-page: eaat8657 year: 2019 ident: ref_106 article-title: cGAS in action: Expanding roles in immunity and inflammation publication-title: Science doi: 10.1126/science.aat8657 – volume: 8 start-page: e00944-17 year: 2017 ident: ref_52 article-title: AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA publication-title: MBio doi: 10.1128/mBio.00944-17 – volume: 434 start-page: 772 year: 2005 ident: ref_65 article-title: IRF-7 is the master regulator of type-I interferon-dependent immune responses publication-title: Nature doi: 10.1038/nature03464 – volume: 12 start-page: 2061 year: 1998 ident: ref_93 article-title: Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity publication-title: Genes Dev. doi: 10.1101/gad.12.13.2061 – volume: 74 start-page: 824 year: 2006 ident: ref_128 article-title: Innate immunity at the mucosal surface: Role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens publication-title: Biol. Reprod. doi: 10.1095/biolreprod.105.048629 – volume: 200 start-page: 2076 year: 2018 ident: ref_95 article-title: HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ(1) Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.1701536 – volume: 7 start-page: 2076 year: 2016 ident: ref_26 article-title: Improved Antiviral Activity of a Polyamide Against High-Risk Human Papillomavirus Via N-Terminal Guanidinium Substitution publication-title: Med. Chem. Comm. doi: 10.1039/C6MD00371K – volume: 382 start-page: 889 year: 2013 ident: ref_16 article-title: Human papillomavirus and cervical cancer publication-title: Lancet doi: 10.1016/S0140-6736(13)60022-7 – volume: 11 start-page: 997 year: 2010 ident: ref_55 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nat. Immunol. doi: 10.1038/ni.1932 – volume: 33 start-page: 257 year: 2015 ident: ref_36 article-title: Innate immune pattern recognition: A cell biological perspective publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032414-112240 – volume: 59 start-page: 211 year: 2014 ident: ref_25 article-title: Complete clearance of cutaneous warts with hydroxychloroquine: Antiviral action? publication-title: Indian J. Dermatol. doi: 10.4103/0019-5154.127694 – volume: 772 start-page: 3 year: 2017 ident: ref_32 article-title: Human papillomavirus molecular biology publication-title: Mutat. Res. doi: 10.1016/j.mrrev.2016.07.002 – volume: 11 start-page: 59 year: 2016 ident: ref_11 article-title: Molecular mechanisms of HPV mediated neoplastic progression publication-title: Infect. Agent Cancer doi: 10.1186/s13027-016-0107-4 – volume: 18 start-page: 845 year: 2019 ident: ref_135 article-title: Pharmacological modulation of nucleic acid sensors—Therapeutic potential and persisting obstacles publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0043-2 – volume: 39 start-page: 33 year: 2019 ident: ref_19 article-title: Dynamic factors affecting HPV-attributable fraction for head and neck cancers publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2019.07.008 – volume: 87 start-page: 3979 year: 2013 ident: ref_23 article-title: Human papillomavirus episome stability is reduced by aphidicolin and controlled by DNA damage response pathways publication-title: J. Virol. doi: 10.1128/JVI.03473-12 – volume: 153 start-page: 397 year: 2008 ident: ref_29 article-title: Cellular binding partners of the human papillomavirus E6 protein publication-title: Arch. Virol. doi: 10.1007/s00705-007-0022-5 – volume: 5 start-page: 1 year: 2015 ident: ref_129 article-title: In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response publication-title: Sci. Rep. doi: 10.1038/srep13446 – volume: 114 start-page: 531 year: 2005 ident: ref_69 article-title: Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes publication-title: Immunology doi: 10.1111/j.1365-2567.2005.02122.x – volume: 142 start-page: 224 year: 2018 ident: ref_75 article-title: Immune evasion mechanisms of human papillomavirus: An update publication-title: Int. J. Cancer doi: 10.1002/ijc.31027 – volume: 5 start-page: 327 year: 2014 ident: ref_50 article-title: NOD-Like Receptors: Master Regulators of Inflammation and Cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00327 – volume: 3 start-page: 920 year: 2011 ident: ref_37 article-title: Pattern recognition receptors and the innate immune response to viral infection publication-title: Viruses doi: 10.3390/v3060920 – volume: 448 start-page: 501 year: 2007 ident: ref_56 article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature doi: 10.1038/nature06013 – volume: 435 start-page: 57 year: 2013 ident: ref_31 article-title: Proteomic approaches to the study of papillomavirus-host interactions publication-title: Virology doi: 10.1016/j.virol.2012.09.046 – volume: 36 start-page: 933 year: 2012 ident: ref_115 article-title: The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy publication-title: Immunity doi: 10.1016/j.immuni.2012.03.025 – ident: ref_24 doi: 10.1371/journal.pone.0075406 – volume: 215 start-page: 1287 year: 2018 ident: ref_131 article-title: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer publication-title: J. Exp. Med. doi: 10.1084/jem.20180139 – volume: 350 start-page: 568 year: 2015 ident: ref_94 article-title: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway publication-title: Science doi: 10.1126/science.aab3291 – ident: ref_136 doi: 10.1371/annotation/8fa70b21-32e7-4ed3-b397-ab776b5bbf30 – volume: 18 start-page: 270 year: 2015 ident: ref_111 article-title: Blowing Off Steam: Virus Inhibition of cGAS DNA Sensing publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.08.012 – volume: 19 start-page: 53 year: 2018 ident: ref_118 article-title: Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0005-y – volume: 20 start-page: 657 year: 2019 ident: ref_132 article-title: DNA sensing by the cGAS-STING pathway in health and disease publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0151-1 – volume: 10 start-page: 123 year: 2010 ident: ref_57 article-title: Intracellular DNA recognition publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2690 – volume: 4 start-page: 365 year: 2009 ident: ref_51 article-title: NOD-like4 receptors: Role in innate immunity and inflammatory disease publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev.pathol.4.110807.092239 – volume: 85 start-page: 9486 year: 2011 ident: ref_88 article-title: Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance publication-title: J. Virol. doi: 10.1128/JVI.05007-11 – volume: 39 start-page: 44 year: 2018 ident: ref_107 article-title: cGAS-STING and Cancer: Dichotomous Roles in Tumor Immunity and Development publication-title: Trends Immunol. doi: 10.1016/j.it.2017.07.013 – volume: 8 start-page: 1 year: 2017 ident: ref_66 article-title: IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes publication-title: Nat. Commun. doi: 10.1038/ncomms14392 – volume: 179 start-page: 205 year: 2002 ident: ref_92 article-title: Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo publication-title: Cancer Lett. doi: 10.1016/S0304-3835(01)00871-0 – volume: 89 start-page: 10612 year: 2015 ident: ref_137 article-title: Enhanced Influenza Virus-Like Particle Vaccination with a Structurally Optimized RIG-I Agonist as Adjuvant publication-title: J. Virol. doi: 10.1128/JVI.01526-15 – volume: 25 start-page: 215 year: 2012 ident: ref_72 article-title: Epithelial cell responses to infection with human papillomavirus publication-title: Clin. Microbiol. doi: 10.1128/CMR.05028-11 – volume: 14 start-page: 360 year: 2016 ident: ref_125 article-title: Viral evasion of intracellular DNA and RNA sensing publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.45 – volume: 77 start-page: 12450 year: 2003 ident: ref_86 article-title: Methylation Patterns of Papillomaviral DNA, Its Influence on E2 Function and Implications in Viral Infection publication-title: J. Virol. doi: 10.1128/JVI.77.23.12450-12459.2003 – volume: 78 start-page: 1 year: 2000 ident: ref_28 article-title: Cell transformation by the E7 oncoprotein of human papillomavirus type 16: Interactions with nuclear and cytoplasmic target proteins publication-title: Adv. Cancer Res. – volume: 231 start-page: 34 year: 2017 ident: ref_73 article-title: Manipulation of the innate immune response by human papillomaviruses publication-title: Virus Res. doi: 10.1016/j.virusres.2016.11.004 – ident: ref_67 doi: 10.1371/journal.ppat.1003384 – volume: 9 start-page: 862 year: 2009 ident: ref_21 article-title: Awakening guardian angels: Drugging the p53 pathway publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2763 – ident: ref_85 doi: 10.3390/cancers12030646 – volume: 25 start-page: 491 year: 2014 ident: ref_121 article-title: Regulation of RIG-I-like receptor signaling by host and viral proteins publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.06.005 – volume: 9 start-page: 682 year: 2019 ident: ref_76 article-title: Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00682 – volume: 108 start-page: 397 year: 2013 ident: ref_10 article-title: Human papillomaviruses and cancer publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2013.06.004 – volume: 30 start-page: F55 year: 2012 ident: ref_3 article-title: The biology and life-cycle of human papillomaviruses publication-title: Vaccine doi: 10.1016/j.vaccine.2012.06.083 – volume: 89 start-page: 1 year: 2008 ident: ref_35 article-title: Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures publication-title: J. Gen. Virol. doi: 10.1099/vir.0.83391-0 – volume: 4 start-page: 204 year: 2015 ident: ref_33 article-title: Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation publication-title: J. Clin. Med. doi: 10.3390/jcm4020204 – volume: 235 start-page: 342 year: 2015 ident: ref_14 article-title: Human Beta-papillomavirus infection and keratinocyte carcinomas publication-title: J. Pathol. doi: 10.1002/path.4425 – volume: 79 start-page: 225 year: 2015 ident: ref_43 article-title: Activation and regulation of DNA-driven immune responses publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00061-14 – volume: 35 start-page: 429 year: 2014 ident: ref_130 article-title: DNA damage and innate immunity: Links and trade-offs publication-title: Trends Immunol. doi: 10.1016/j.it.2014.06.003 – volume: 275 start-page: 6764 year: 2000 ident: ref_90 article-title: Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.10.6764 – volume: 18 start-page: 7690 year: 1999 ident: ref_7 article-title: The role of the E6-p53 interaction in the molecular pathogenesis of HPV publication-title: Oncogene doi: 10.1038/sj.onc.1202953 – volume: 86 start-page: 13174 year: 2012 ident: ref_30 article-title: Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity publication-title: J. Virol. doi: 10.1128/JVI.02172-12 – volume: 22 start-page: 409 year: 2006 ident: ref_45 article-title: Recognition and signaling by toll-like receptors publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.122303.115827 – volume: 9 start-page: 432 year: 2013 ident: ref_116 article-title: The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy publication-title: Autophagy doi: 10.4161/auto.23026 – volume: 26 start-page: 1 year: 2015 ident: ref_39 article-title: Intracellular detection of viral nucleic acids publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2015.03.001 – volume: 461 start-page: 788 year: 2009 ident: ref_62 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 181 start-page: 2694 year: 2008 ident: ref_68 article-title: Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2694 – volume: 9 start-page: 590 year: 2018 ident: ref_48 article-title: C-Type Lectin Receptors in Antiviral Immunity and Viral Escape publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00590 – volume: 231 start-page: 21 year: 2017 ident: ref_74 article-title: Evasion of host immune defenses by human papillomavirus publication-title: Virus Res. doi: 10.1016/j.virusres.2016.11.023 – volume: 341 start-page: 1390 year: 2013 ident: ref_60 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 1024 start-page: 175 year: 2017 ident: ref_110 article-title: cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-5987-2_8 – volume: 339 start-page: 786 year: 2013 ident: ref_49 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 131 start-page: 2201 year: 2017 ident: ref_9 article-title: The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review publication-title: Clin. Sci. doi: 10.1042/CS20160786 – volume: 138 start-page: 576 year: 2009 ident: ref_123 article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway publication-title: Cell doi: 10.1016/j.cell.2009.06.015 – volume: 479 start-page: 146 year: 2015 ident: ref_41 article-title: Innate immune recognition of DNA: A recent history publication-title: Virology doi: 10.1016/j.virol.2015.03.013 – volume: 178 start-page: 3186 year: 2007 ident: ref_101 article-title: TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16 publication-title: J. Immunol. doi: 10.4049/jimmunol.178.5.3186 – volume: 372 start-page: 20160267 year: 2017 ident: ref_112 article-title: Tumour viruses and innate immunity publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2016.0267 – volume: 123 start-page: 2219 year: 2017 ident: ref_20 article-title: Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases publication-title: Cancer doi: 10.1002/cncr.30588 – volume: 12 start-page: 399 year: 2011 ident: ref_64 article-title: IRF7: Activation, regulation, modification and function publication-title: Genes Immun. doi: 10.1038/gene.2011.21 – volume: 4 start-page: e00129-19 year: 2019 ident: ref_81 article-title: Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis publication-title: mSphere doi: 10.1128/mSphere.00129-19 – volume: 94 start-page: e01812-19 year: 2020 ident: ref_96 article-title: Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes publication-title: J. Virol. doi: 10.1128/JVI.01812-19 – volume: 11 start-page: 781 year: 2010 ident: ref_18 article-title: HPV-associated head and neck cancer: A virus-related cancer epidemic publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(10)70017-6 – volume: 85 start-page: 11372 year: 2011 ident: ref_77 article-title: High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression publication-title: J. Virol. doi: 10.1128/JVI.05279-11 – ident: ref_70 doi: 10.1371/journal.pone.0091473 – volume: 7 start-page: 11 year: 2007 ident: ref_15 article-title: The natural history of cervical HPV infection: Unresolved issues publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2050 – volume: 34 start-page: 680 year: 2011 ident: ref_54 article-title: Immune signaling by RIG-I-like receptors publication-title: Immunity doi: 10.1016/j.immuni.2011.05.003 – ident: ref_78 doi: 10.1371/journal.ppat.1004466 – volume: 9 start-page: 465 year: 2009 ident: ref_47 article-title: Signalling through C-type lectin receptors:shaping immune responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2569 – volume: 69 start-page: 8718 year: 2009 ident: ref_87 article-title: Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-0550 – volume: 26 start-page: 158 year: 2018 ident: ref_2 article-title: Factors for Viral Carcinogenesis and Therapeutic Targets publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.07.007 – volume: 143 start-page: 2884 year: 2018 ident: ref_104 article-title: Toll-like receptors: Important immune checkpoints in the regression of cervical intra-epithelial neoplasia 2 publication-title: Int. J. Cancer doi: 10.1002/ijc.31814 – volume: 28 start-page: 191 year: 2020 ident: ref_134 article-title: Catching HPV in the Homologous Recombination Cookie Jar publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.10.008 – volume: 445 start-page: 138 year: 2013 ident: ref_27 article-title: The papillomavirus E7 proteins publication-title: Virology doi: 10.1016/j.virol.2013.04.013 |
SSID | ssj0000800817 |
Score | 2.3326564 |
SecondaryResourceType | review_article |
Snippet | The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 292 |
SubjectTerms | Adenosine Apoptosis Cancer Cell cycle Cell death Cell proliferation Cervical cancer Chemotherapy Cytokines Deoxyribonucleic acid Depletion DNA E6 and E7 oncoproteins Gene expression Genomes HPV HPV-driven cancer Human papillomavirus Immune response Immune system Immunity Infections Innate immunity Interferon Literature reviews Oncoproteins pathogen recognition receptors Pathogens Proteins Review Signal transduction Signaling Target recognition Therapeutic applications Toll-like receptors Transformed cells Tumorigenesis Tumors Vaccines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOiltE0fbtOgQi89mGj11rEtSTeFPg4N5Gb0JFs2coi9gf33HdnOshtKc-nVkkGeGWm-T5K_Qei9ozI4oUjtvAWCkrSpXTSxtoJGrX1gNpb9jm_f5fyMfz0X51ulvsqdsFEeeDTckaIesnQAEucsj1KamQ9-ZoL2wvAUXFl9iSFbZOr3hIP0TI3nkgx4fblffdGCTzoDYUsN3clDg1z_3zDm3auSW7nn5Al6PIFG_HEc7FP0IOZn6OFYRnK9j77A7L8Z971wm_C87Xp8mjOgSHw6_P7Rr7Fb42G_Hv-0V4vlsr20N4vrVYd_ZN8OWg2L3D1HZyfHvz7P66lAQu2FkH1tgwC2pWiMRhqTNGfBa8IjDUCDYOEgNiQerSHCM5qI08lx4pKiQnvnZom9QHu5zfEVws4HarkANhYDV1K6KAKNkivmOeOBVujo1lyNn9TDSxGLZQMsohi4uWvgCn3YvHE1Kmf8o--n4oFNv6J5PTyASGimSGjui4QKHdz6r5kmYtdQwH9al0RdoXebZphC5VzE5tiuhj5MKCakqdDL0d2bkTDAv4AQZYXUTiDsDHW3JS8uBpnuUs6NEvb6f3zbG_SIFqJfRCbVAdrrr1fxLaCh3h0Ogf8HqJEMjw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7aIvhSrNfRKhF88WHobO55EiutW8FaxELfhtzGLmwn685sYf-9JzOzY7dIXycZCDknJ993knwHoQ-WCG-5LHLrDBCUSuncBh1yw0lQynlqQsp3fD8T0wv27ZJfDgm3ZrhWuYmJXaD20aUc-SGBjVypFHE_Lf7kqWpUOl0dSmg8RLsQghX4-e7R8dn5zzHLkvCQmsj-fJICv0_3rK8i2KbR4L5Ek639qJPt_x_WvHtl8tYedPIE7Q3gEX_urb2PHoT6KXrUl5NcP0NfIQrc9PkvHCs8jU2LT-sa0CQ-7Z6BtGts17jL2-Nzs5jN5_Ha3MyWqwb_qF3sNBtmdfMcXZwc__oyzYdCCbnjXLS58RxYlyQhaKF1pRj1ThUsEA90CAJIYXzFgtEFd5RUhVWVZYWtJOHKWTup6Au0U8c6vELYOk8M48DKgmdSCBu4J0EwSR2jzJMMHW6mq3SDingqZjEvgU2kCS7vTnCGPo5_LHoFjXv6HiULjP2S9nX3IS5_l8NSKiVxgNs80HprWBBCT5x3E-2V45pV3mboYGO_cliQTfnPfTL0fmyGpZTOR0wd4qrrQ7mkXOgMvezNPY6EAg4GpCgyJLccYWuo2y317KqT605l3UhBX98_rDfoMUlUPslIygO00y5X4S3gnda-G5z6L3BeBOU priority: 102 providerName: ProQuest |
Title | Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32316236 https://www.proquest.com/docview/2392881303 https://www.proquest.com/docview/2393573569 https://pubmed.ncbi.nlm.nih.gov/PMC7238203 https://doaj.org/article/72c250d690ba4e6691cdc19d8c594fdb |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBYlodBLSd-bJkaFXnrYdq23DqU0IYlTSBpKDbktem3i4u6m3nWo_31Hu2s3DiZXPUDMjDTfN5JmEHpvifCWyyy1zgBBKZRObdAhNZwEpZynJsR4x9m5GI3Zt0t--f97dC_AeiO1i_WkxrPpx79_Fl9gw3-OjBMoe3w6fV2BuGsNFkk0HMjb4JdEpGJnPdj_1WMjNZTdXeXGiWu-qU3hvwl33n8-eccfHe-gpz2QxF87zT9Dj0L5HD3uSksuXqATOBFuu1gYrgo8quoGn5YlIEt82n4JaRbYLnAbw8cX5mYynVa_ze1kNq_x99JVbf6GSVm_ROPjo5-Ho7QvmpA6zkWTGs-BgUkSghZaF4pR71TGAvFAjeAwyYwvWDA6446SIrOqsCyzhSRcOWuHBX2FtsqqDG8Qts4TwzgwtOCZFMIG7kkQTFLHKPMkQZ-W4spdn1E8FraY5sAsooDz-wJO0IfVjJsum8YDYw-iBlbjYh7stqGaXeX9tsolcYDhPFB8a1gQQg-dd0PtleOaFd4maG-pv3xpWzkBTKhUdN4Jerfqhm0V70pMGap5O4ZySbnQCXrdqXu1EgqYGFCjSJBcM4S1pa73lJPrNnV3LPFGMrr78LLeoick0vqYUlLuoa1mNg_7gH0aO0DbB0fnFz8Gbexg0Br4P2uGCq4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEBw5Rs37FPiBEoWWXtkuFWqm31K_QlZZk2WSL9k_xG7GT7MJWqLdeYzuy5uVvZuwZgNcac6tZmsTaKO-g5ELG2kkXK4adEMYS5UK843DEByf0yyk73YDfy7cw4Vrl0iY2htqWJsTIt7E_yIUIFvf99GccukaF7OqyhUYrFvtu8cu7bNW74SfP3zcY7-0efxzEXVeB2DDG61hZ5l2UFDsnuZS5oMQakVCHrfcdvLYlyubUKZkwQ3CeaJFrmug8xUwYrfs58f-9AZs0vGjtwebO7ujo2yqqE_CX6KdtPpQQmYR73eell4VKenXBEq-df02bgP9h28tXNP858_buwp0OrKIPrXTdgw1X3IebbfvKxQP47K3ORRtvQ2WOBmVVo2FRePSKhs2zk3qB9AI1eQJ0pKbjyaT8oS7Gs3mFvhambGpEjIvqIZxcCwkfQa8oC_cEkDYWK8q8F-gsTTnXjlnsOE2JoYRaHMH2klyZ6aqWh-YZk8x7L4HA2WUCR_B2tWLaVuy4Yu5O4MBqXqi13XwoZ9-zTnWzFBuPEy2XiVbUcS77xpq-tMIwSXOrI9ha8i_rDECV_RXXCF6thr3qhnyMKlw5b-YQlhLGZQSPW3avdkI87vbIlEeQrgnC2lbXR4rxeVMePLSRwwl5evW2XsKtwfHhQXYwHO0_g9s4hBFCCct0C3r1bO6ee6xV6xedgCM4u26d-gNFmEIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqUBcEDuGAkaCAwcrzuxzQIjShoRCiBCVenNnM40U7BAnRflr_DpmbCeQCvXWqz22RvO27y3zHsBLjZjVlKeJNso7KLmQiXbSJYoiJ4SxWLkQ7_g8YoNj8vGEnuzA7_VdmFBWudaJtaK2pQkx8i7yhlyIoHG7eVsWMT7ov539TMIEqZBpXY_TaFjkyK1-efetejM88LR-hVD_8Nv7QdJOGEgMpWyRKEu9u8KRc5JJmQuCrREpcch6P8JLXqpsTpySKTUY5akWuSapzjmiwmjdy7H_7zXY5d4qkg7s7h-Oxl83EZ6AxUSPN7lRjGUaarzPSs8XlfSigyTasoX1yID_4dyL5Zr_2L_-bbjVAtf4XcNpd2DHFXfhejPKcnUPPngNdN7E3uIyjwdltYiHReGRbDysr6AsVrFexXXOIB6r2WQ6LX-o88l8WcVfClPW_SImRXUfjq_kCB9ApygL9whibSxShHqP0FnCGdOOWuQY4dgQTCyKoLs-rsy0HczDII1p5j2ZcMDZxQOO4PXmi1nTveOStfuBApt1oe92_aCcf89aMc44Mh4zWiZTrYhjTPaMNT1phaGS5FZHsLemX9Yqgyr7y7oRvNi89mIccjOqcOWyXoMpx5TJCB425N7sBHsM7lEqi4BvMcLWVrffFJOzulV4GCmHUvz48m09hxtelrJPw9HRE7iJQkQhdLPke9BZzJfuqYddC_2s5e8YTq9apP4A0PdGTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subversion+of+Host+Innate+Immunity+by+Human+Papillomavirus+Oncoproteins&rft.jtitle=Pathogens+%28Basel%29&rft.au=Irene+Lo+Cigno&rft.au=Calati%2C+Federica&rft.au=Albertini%2C+Silvia&rft.au=Gariglio%2C+Marisa&rft.date=2020-04-17&rft.pub=MDPI+AG&rft.eissn=2076-0817&rft.volume=9&rft.issue=4&rft.spage=292&rft_id=info:doi/10.3390%2Fpathogens9040292&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon |