Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise

The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure,...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied physiology Vol. 112; no. 8; pp. 2903 - 2912
Main Authors Loenneke, Jeremy P., Fahs, Christopher A., Rossow, Lindy M., Sherk, Vanessa D., Thiebaud, Robert S., Abe, Takashi, Bemben, Debra A., Bemben, Michael G.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.08.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p  = 0.001, Cohen’s D  = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
AbstractList The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.[PUBLICATION ABSTRACT]
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen’s D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p  = 0.001, Cohen’s D  = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen's D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.
Author Thiebaud, Robert S.
Sherk, Vanessa D.
Abe, Takashi
Rossow, Lindy M.
Bemben, Michael G.
Fahs, Christopher A.
Bemben, Debra A.
Loenneke, Jeremy P.
Author_xml – sequence: 1
  givenname: Jeremy P.
  surname: Loenneke
  fullname: Loenneke, Jeremy P.
  email: jploenneke@ou.edu
  organization: Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma
– sequence: 2
  givenname: Christopher A.
  surname: Fahs
  fullname: Fahs, Christopher A.
  organization: Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma
– sequence: 3
  givenname: Lindy M.
  surname: Rossow
  fullname: Rossow, Lindy M.
  organization: Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma
– sequence: 4
  givenname: Vanessa D.
  surname: Sherk
  fullname: Sherk, Vanessa D.
  organization: Department of Health and Exercise Science, Bone Density Research Laboratory, The University of Oklahoma
– sequence: 5
  givenname: Robert S.
  surname: Thiebaud
  fullname: Thiebaud, Robert S.
  organization: Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma
– sequence: 6
  givenname: Takashi
  surname: Abe
  fullname: Abe, Takashi
  organization: Graduate School of Frontier Sciences, The University of Tokyo
– sequence: 7
  givenname: Debra A.
  surname: Bemben
  fullname: Bemben, Debra A.
  organization: Department of Health and Exercise Science, Bone Density Research Laboratory, The University of Oklahoma
– sequence: 8
  givenname: Michael G.
  surname: Bemben
  fullname: Bemben, Michael G.
  organization: Department of Health and Exercise Science, Neuromuscular Research Laboratory, The University of Oklahoma
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26144139$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22143843$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rVTEQhoNUbHv1B7iRgAhujiaZnI-4EKTUDyi40Z0QcuYkbUpuck3OsfrvzfXe1lpQySIJ88ww78x7TA5iipaQx5y94Iz1LwtjUvCGcd4I0XXNcI8ccQmq6UD0Bzdvrg7JcSmXjLFB8OEBORSihgYJR-TLqXMW50KTo7g4R6_8NF_QFKnJs83eBJoQw1J8iq-oX2-CRzPXT6EuZTqGlCbqQrqi2ZY5e5ztRO13m9EX-5DcdyYU-2h_r8jnt6efTt43Zx_ffTh5c9Zg23ZzY7DFoVNCWSdQYC8AQIwTG40YJtkBji1Cb6HjbnTYS6XaEYBJy0EpaB2syOtd3c0yru2ENs7ZBL3Jfm3yD52M139Gor_Q5-mblhyA17Miz_cFcvq6VCF67QvaEEy0aSmaD9CDhA6G_6NMSAUwKFbRp3fQy7TkWCehueRCtnK7hhV5crv5m66vd1SBZ3vAFDTBZRPrcH9zHZdVh6pcv-Mwp1KydRr9_GtXVbMPtTO9dY3euUZX1-ita_RWE7-TeV38Xzlil1MqG89tviXur0k_AWvQ0yc
CitedBy_id crossref_primary_10_7717_peerj_11554
crossref_primary_10_3389_fphys_2021_747759
crossref_primary_10_3389_fphys_2024_1368646
crossref_primary_10_3389_fphys_2021_656980
crossref_primary_10_1111_cpf_12035
crossref_primary_10_1177_2325967120906822
crossref_primary_10_1111_cpf_12033
crossref_primary_10_1038_s41598_023_44523_7
crossref_primary_10_1152_ajpregu_00112_2017
crossref_primary_10_26603_001c_33151
crossref_primary_10_1016_j_jshs_2014_12_005
crossref_primary_10_2106_JBJS_RVW_22_00062
crossref_primary_10_1111_j_1475_097X_2012_01157_x
crossref_primary_10_1016_j_jshs_2025_101030
crossref_primary_10_1016_j_physbeh_2023_114217
crossref_primary_10_1007_s11332_022_00917_0
crossref_primary_10_1111_cpf_12704
crossref_primary_10_1007_s40279_016_0473_5
crossref_primary_10_35366_SM193_4G
crossref_primary_10_1007_s40279_014_0288_1
crossref_primary_10_3389_fphys_2022_838115
crossref_primary_10_5114_hm_2021_100015
crossref_primary_10_1111_cpf_12394
crossref_primary_10_1139_apnm_2024_0383
crossref_primary_10_1093_milmed_usac055
crossref_primary_10_1113_EP089280
crossref_primary_10_1186_s40798_022_00475_2
crossref_primary_10_3390_ijerph191811548
crossref_primary_10_1007_s00421_023_05352_8
crossref_primary_10_1519_JSC_0000000000004151
crossref_primary_10_2519_jospt_2019_8375
crossref_primary_10_1016_j_orthtr_2025_01_002
crossref_primary_10_1152_japplphysiol_00772_2024
crossref_primary_10_1111_cpf_12732
crossref_primary_10_1186_s11556_022_00294_0
crossref_primary_10_2478_hukin_2020_0055
crossref_primary_10_1249_MSS_0000000000001475
crossref_primary_10_1007_s00421_014_3073_9
crossref_primary_10_1519_JSC_0000000000004702
crossref_primary_10_1249_MSS_0000000000001473
crossref_primary_10_1519_JSC_0000000000003612
crossref_primary_10_1080_02640414_2014_992036
crossref_primary_10_1152_ajpheart_00468_2019
crossref_primary_10_1519_JSC_0000000000003737
crossref_primary_10_1111_sms_12297
crossref_primary_10_1186_s13063_021_05946_7
crossref_primary_10_1007_s00421_017_3770_2
crossref_primary_10_1016_j_jbmt_2024_05_029
crossref_primary_10_1111_j_1475_097X_2012_01158_x
crossref_primary_10_1007_s00421_016_3359_1
crossref_primary_10_1152_japplphysiol_00656_2023
crossref_primary_10_1177_0363546519882652
crossref_primary_10_1556_APhysiol_99_2012_4_4
crossref_primary_10_1080_02640414_2020_1840734
crossref_primary_10_20463_pan_2024_0002
crossref_primary_10_1007_s00421_012_2502_x
crossref_primary_10_1249_JSR_0000000000000473
crossref_primary_10_1186_s13063_024_08203_9
crossref_primary_10_1519_JSC_0000000000003628
crossref_primary_10_1016_j_jesf_2020_09_001
crossref_primary_10_1016_j_jsams_2016_11_013
crossref_primary_10_3389_fphys_2023_1323310
crossref_primary_10_1123_ijatt_2019_0076
crossref_primary_10_1519_JSC_0000000000004716
crossref_primary_10_1186_s40101_022_00304_1
crossref_primary_10_1136_bmjopen_2019_034376
crossref_primary_10_1260_1747_9541_10_5_919
crossref_primary_10_1080_02640414_2025_2474329
crossref_primary_10_1111_cpf_12353
crossref_primary_10_1152_ajpheart_00208_2015
crossref_primary_10_5005_jp_journals_10084_12105
crossref_primary_10_1590_1517_869220192506186803
crossref_primary_10_1556_APhysiol_101_2014_2_4
crossref_primary_10_1556_APhysiol_101_2014_2_3
crossref_primary_10_1007_s11332_023_01135_y
crossref_primary_10_1080_02640414_2025_2454712
crossref_primary_10_14814_phy2_16119
crossref_primary_10_1080_02640414_2017_1284341
crossref_primary_10_7717_peerj_4118
crossref_primary_10_1111_sms_12036
crossref_primary_10_1177_2151458515583088
crossref_primary_10_3390_jcm11143938
crossref_primary_10_1249_MSS_0000000000000722
crossref_primary_10_1007_s00421_012_2449_y
crossref_primary_10_1111_cpf_12228
crossref_primary_10_1097_TGR_0b013e31828aee0d
crossref_primary_10_1111_cpf_12100
crossref_primary_10_1615_CritRevPhysRehabilMed_2024052624
crossref_primary_10_3389_fresc_2021_697082
crossref_primary_10_3390_app13031438
crossref_primary_10_1556_APhysiol_99_2012_3_1
crossref_primary_10_1016_j_physbeh_2017_01_015
crossref_primary_10_1002_mus_24448
crossref_primary_10_1249_MSS_0000000000000833
crossref_primary_10_1519_JSC_0000000000001746
crossref_primary_10_3390_pharmaceutics14071433
crossref_primary_10_1111_cpf_12906
crossref_primary_10_1177_0031512520948295
crossref_primary_10_1016_j_jsams_2018_02_012
crossref_primary_10_1111_sms_14561
crossref_primary_10_1007_s00421_022_05122_y
crossref_primary_10_1007_s12576_016_0457_0
crossref_primary_10_1016_j_mehy_2014_12_001
crossref_primary_10_1080_02640414_2023_2240995
crossref_primary_10_1519_JSC_0000000000004594
crossref_primary_10_1519_JSC_0000000000004104
crossref_primary_10_1111_cpf_12141
crossref_primary_10_1097_JSA_0000000000000240
crossref_primary_10_1016_j_ptsp_2021_02_005
crossref_primary_10_2478_hukin_2018_0101
crossref_primary_10_1002_mus_25560
crossref_primary_10_7717_peerj_4697
crossref_primary_10_1139_apnm_2017_0102
crossref_primary_10_17338_trainology_3_1_1
crossref_primary_10_3389_fphys_2019_00656
crossref_primary_10_3390_jcm10010068
crossref_primary_10_3389_fphys_2019_00533
crossref_primary_10_1007_s00421_017_3644_7
crossref_primary_10_1111_cpf_12925
crossref_primary_10_14789_jmj_62_s206
crossref_primary_10_3389_fphys_2021_626915
crossref_primary_10_3389_fphys_2022_931270
crossref_primary_10_1589_jpts_27_2709
crossref_primary_10_1111_cpf_12246
crossref_primary_10_1111_cpf_12367
crossref_primary_10_1186_s13063_022_05998_3
crossref_primary_10_1097_JCN_0000000000000699
crossref_primary_10_33689_spormetre_532007
crossref_primary_10_3389_fphys_2024_1379605
crossref_primary_10_1177_02692155241271040
crossref_primary_10_1152_ajpregu_00312_2020
crossref_primary_10_1519_SSC_0000000000000553
crossref_primary_10_1080_02640414_2024_2422205
crossref_primary_10_1016_j_jbmt_2025_01_020
crossref_primary_10_1519_SSC_0000000000000556
crossref_primary_10_1016_j_jelekin_2013_07_010
crossref_primary_10_1123_ijspp_2019_0043
crossref_primary_10_1088_2057_1976_aae8c2
crossref_primary_10_12965_jer_2244018_009
crossref_primary_10_1136_bjsports_2017_097738
crossref_primary_10_1111_cpf_12432
crossref_primary_10_1519_JSC_0000000000002110
crossref_primary_10_1055_a_2537_5879
crossref_primary_10_3389_fphys_2023_1244376
crossref_primary_10_14814_phy2_15988
crossref_primary_10_52082_jssm_2025_187
crossref_primary_10_1016_j_ptsp_2020_11_026
crossref_primary_10_3389_fphys_2023_1239582
crossref_primary_10_1007_s00421_014_3030_7
crossref_primary_10_1080_03009742_2020_1829701
crossref_primary_10_14789_jmj_62_s218
crossref_primary_10_1016_j_cct_2015_06_016
crossref_primary_10_1016_j_exger_2024_112450
crossref_primary_10_1093_gerona_glv040
crossref_primary_10_3389_fphys_2023_1149400
crossref_primary_10_1152_ajpheart_00820_2015
crossref_primary_10_3389_fphys_2021_715096
crossref_primary_10_1016_j_ptsp_2023_01_006
crossref_primary_10_1097_MD_0000000000025794
crossref_primary_10_3390_ijerph191912633
crossref_primary_10_1152_ajpregu_00055_2017
crossref_primary_10_1186_s13102_025_01072_y
crossref_primary_10_3389_fphys_2022_882472
crossref_primary_10_1111_cpf_12421
crossref_primary_10_2478_tperj_2019_0008
crossref_primary_10_1007_s00421_015_3253_2
crossref_primary_10_3389_fphys_2020_00567
crossref_primary_10_1016_j_ptsp_2018_05_021
crossref_primary_10_1097_JSM_0000000000000991
crossref_primary_10_1111_sms_13676
crossref_primary_10_1007_s40279_019_01196_5
crossref_primary_10_1556_2060_105_2018_3_18
crossref_primary_10_1111_cpf_12218
crossref_primary_10_1186_2046_7648_1_12
crossref_primary_10_1016_j_exger_2022_111827
crossref_primary_10_1016_j_jshs_2019_07_001
crossref_primary_10_1139_apnm_2020_1082
crossref_primary_10_1016_j_jsams_2018_01_013
crossref_primary_10_1007_s00421_023_05258_5
crossref_primary_10_1111_cpf_12330
crossref_primary_10_1007_s12662_024_00962_6
crossref_primary_10_3389_fphys_2018_01324
crossref_primary_10_1519_JSC_0000000000002485
crossref_primary_10_1139_apnm_2022_0209
crossref_primary_10_1152_japplphysiol_00754_2021
crossref_primary_10_1111_sms_12210
crossref_primary_10_1589_jpts_33_612
crossref_primary_10_1097_MD_0000000000039031
crossref_primary_10_3389_fphys_2021_663665
crossref_primary_10_1002_acr_24787
crossref_primary_10_1007_s40141_020_00291_3
crossref_primary_10_3389_fphys_2018_00463
crossref_primary_10_29328_journal_jsmt_1001076
crossref_primary_10_1055_a_1422_3376
crossref_primary_10_1007_s40279_015_0407_7
crossref_primary_10_1088_1361_6579_aae140
crossref_primary_10_23736_S0022_4707_18_08400_1
crossref_primary_10_1519_JSC_0000000000002384
crossref_primary_10_1519_JSC_0000000000003224
crossref_primary_10_1589_jpts_34_657
crossref_primary_10_17338_trainology_1_1_14
crossref_primary_10_3389_fphys_2021_652896
crossref_primary_10_1186_s13063_019_3238_2
crossref_primary_10_3389_fphys_2023_1089065
crossref_primary_10_3390_jcm8020265
crossref_primary_10_3389_fphys_2024_1446963
crossref_primary_10_1093_gerona_glv178
crossref_primary_10_1111_sms_13092
crossref_primary_10_1139_apnm_2019_0579
crossref_primary_10_1016_j_heliyon_2019_e01146
crossref_primary_10_1111_cpf_12752
crossref_primary_10_12968_ijtr_2017_24_11_483
crossref_primary_10_1371_journal_pone_0278540
crossref_primary_10_1016_j_rh_2020_01_005
crossref_primary_10_1519_JSC_0000000000002665
crossref_primary_10_3390_ijerph17134674
crossref_primary_10_5114_jhk_186064
crossref_primary_10_1002_acr_23911
crossref_primary_10_1152_japplphysiol_00704_2022
crossref_primary_10_1123_ijspp_2018_0878
crossref_primary_10_1016_j_jsams_2015_04_014
crossref_primary_10_1111_cpf_12504
crossref_primary_10_1139_apnm_2015_0561
crossref_primary_10_1007_s00421_013_2808_3
crossref_primary_10_3233_IES_171174
crossref_primary_10_1088_1361_6579_ad278d
crossref_primary_10_1097_BTO_0000000000000259
crossref_primary_10_1097_BTO_0000000000000252
crossref_primary_10_1007_s42978_019_00034_4
crossref_primary_10_1016_j_arthro_2018_05_038
crossref_primary_10_1016_j_eats_2018_06_010
crossref_primary_10_1519_JSC_0000000000002678
crossref_primary_10_1519_JSC_0000000000003525
crossref_primary_10_1007_s00421_016_3447_2
crossref_primary_10_1519_JSC_0000000000003649
crossref_primary_10_1111_sms_12540
crossref_primary_10_1007_s40279_017_0795_y
crossref_primary_10_1111_cpf_12416
crossref_primary_10_1519_JSC_0b013e3182874721
crossref_primary_10_1111_cpf_12414
crossref_primary_10_1111_cpf_12535
crossref_primary_10_52082_jssm_2024_326
crossref_primary_10_1088_1361_6579_ad548c
crossref_primary_10_1111_cpf_12098
crossref_primary_10_1007_s00421_017_3745_3
crossref_primary_10_1016_j_bjpt_2020_03_001
crossref_primary_10_1016_j_ecoenv_2016_07_005
crossref_primary_10_1519_JSC_0000000000004870
crossref_primary_10_1519_JSC_0000000000004079
crossref_primary_10_3390_jcm7100337
crossref_primary_10_1007_s00421_019_04217_3
crossref_primary_10_1007_s40846_018_0397_7
crossref_primary_10_1016_j_scispo_2024_03_007
crossref_primary_10_1177_15593258221123673
crossref_primary_10_1519_JSC_0000000000000385
crossref_primary_10_1519_JSC_0000000000001232
crossref_primary_10_3389_fphys_2024_1482816
crossref_primary_10_1007_s00421_017_3589_x
crossref_primary_10_1136_bjsports_2016_097071
crossref_primary_10_3389_fphys_2024_1409702
crossref_primary_10_1016_j_ijcard_2015_10_009
crossref_primary_10_1007_s00421_016_3399_6
crossref_primary_10_1016_j_exger_2018_10_017
crossref_primary_10_1177_00315125251328726
crossref_primary_10_1080_02640414_2025_2457863
crossref_primary_10_14814_phy2_13142
crossref_primary_10_1519_JSC_0000000000002582
crossref_primary_10_1111_apha_12243
crossref_primary_10_1111_cpf_12090
crossref_primary_10_3390_medicina57090863
crossref_primary_10_1080_02640414_2024_2423136
crossref_primary_10_3389_fphys_2024_1404247
crossref_primary_10_1556_APhysiol_100_2013_4_6
Cites_doi 10.1007/s00421-007-0430-y
10.1519/JSC.0b013e3181bc1c2a
10.1055/s-2007-989405
10.1111/j.1748-1716.2010.02172.x
10.1249/MSS.0b013e3181915670
10.1519/JSC.0b013e3181f0ac3a
10.1016/j.jsams.2010.08.007
10.1519/SSC.0b013e3181a5a352
10.1111/j.1475-097X.2011.01033.x
10.1007/s11135-006-9018-6
10.3109/17453678809149401
10.1080/02640414.2011.572992
10.1055/s-0030-1268472
10.1249/mss.0b013e31812383d6
10.1055/s-0029-1239499
10.1111/j.1600-0838.2010.01290.x
10.1249/MSS.0b013e31815ddac6
10.1007/s00421-010-1796-9
10.1016/j.mehy.2011.07.029
10.1111/j.1475-097X.2011.01038.x
10.1249/MSS.0b013e318233b4bc
10.1080/17461391.2010.551420
10.1111/j.1600-0838.2010.01260.x
10.1249/MSS.0b013e31822f39b3
10.2106/00004623-198264080-00004
10.1080/15438620600985860
10.1007/s00421-011-1899-y
10.1111/j.1475-097X.2011.01059.x
10.1123/japa.19.3.201
10.1007/s00421-011-1927-y
ContentType Journal Article
Copyright Springer-Verlag 2011
2015 INIST-CNRS
Springer-Verlag 2012
Springer-Verlag 2011 2011
Copyright_xml – notice: Springer-Verlag 2011
– notice: 2015 INIST-CNRS
– notice: Springer-Verlag 2012
– notice: Springer-Verlag 2011 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7TS
5PM
DOI 10.1007/s00421-011-2266-8
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing & Allied Health Database (NC LIVE)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList ProQuest Central Student


Physical Education Index
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1439-6327
EndPage 2912
ExternalDocumentID PMC4133131
3028555331
22143843
26144139
10_1007_s00421_011_2266_8
Genre Journal Article
Comparative Study
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T32 DK007658
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
186
199
1N0
2.D
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
78A
7RV
7X7
85S
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUVH
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WIP
WJK
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8Q
Z8R
Z8T
Z8U
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7TS
5PM
ID FETCH-LOGICAL-c556t-ac5c86929ef2c2c723332bd0ba28d463cb5c37e361fbfc74995b3304e139935f3
IEDL.DBID U2A
ISSN 1439-6319
1439-6327
IngestDate Thu Aug 21 18:19:42 EDT 2025
Mon Jul 21 10:08:17 EDT 2025
Mon Jul 21 11:14:04 EDT 2025
Fri Jul 25 19:07:48 EDT 2025
Wed Feb 19 01:49:14 EST 2025
Mon Jul 21 09:15:23 EDT 2025
Tue Jul 01 03:31:58 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Fri Feb 21 02:36:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Vascular occlusion training
Kaatsu
Strength
Hypertrophy
Physical exercise
Human
Physical training
Cardiovascular disease
Blood flow
Arterial disease
Vascular disease
Arterial blood
Hemodynamics
Artery occlusion
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-ac5c86929ef2c2c723332bd0ba28d463cb5c37e361fbfc74995b3304e139935f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Communicated by Keith Phillip George.
PMID 22143843
PQID 1412454214
PQPubID 55471
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4133131
proquest_miscellaneous_1837343638
proquest_miscellaneous_1024933890
proquest_journals_1412454214
pubmed_primary_22143843
pascalfrancis_primary_26144139
crossref_citationtrail_10_1007_s00421_011_2266_8
crossref_primary_10_1007_s00421_011_2266_8
springer_journals_10_1007_s00421_011_2266_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: Germany
PublicationTitle European journal of applied physiology
PublicationTitleAbbrev Eur J Appl Physiol
PublicationTitleAlternate Eur J Appl Physiol
PublicationYear 2012
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Crenshaw, Hargens, Gershuni, Rydevik (CR3) 1988; 59
Sakamaki, Bemben, Abe (CR28) 2011; 10
Sugaya, Yasuda, Suga, Okita, Abe (CR30) 2011; 31
Shaw, Murray (CR29) 1982; 64
Laurentino, Ugrinowitsch, Aihara, Fernandes, Parcell, Ricard, Tricoli (CR12) 2008; 29
Rossow, Fahs, Sherk, Seo, Bemben, Bemben (CR27) 2011; 31
Loenneke, Kearney, Thrower, Collins, Pujol (CR16) 2010; 24
Karabulut, Bemben, Sherk, Anderson, Abe, Bemben (CR8) 2011; 111
CR18
CR13
Karabulut, McCarron, Abe, Sato, Bemben (CR9) 2011; 29
Kubota, Sakuraba, Sawaki, Sumide, Tamura (CR10) 2008; 40
CR31
Wernbom, Augustsson, Thomee (CR33) 2006; 20
Wernbom, Jarrebring, Andreasson, Augustsson (CR34) 2009; 23
Loenneke, Fahs, Wilson, Bemben (CR20) 2011; 77
Loenneke, Wilson, Wilson (CR17) 2010; 31
CR4
Loenneke, Balapur, Thrower, Barnes, Pujol (CR19) 2011; 32
O’Brien (CR25) 2007; 41
CR6
(CR1) 2009; 41
Loenneke, Pujol (CR15) 2011; 15
Loenneke, Pujol (CR14) 2009; 31
Loenneke, Wilson, Wilson, Pujol, Bemben (CR21) 2011; 21
CR7
Kubota, Sakuraba, Koh, Ogura, Tamura (CR11) 2011; 14
CR23
CR22
Iida, Kurano, Takano, Kubota, Morita, Meguro, Sato, Abe, Yamazaki, Uno, Takenaka, Hirose, Nakajima (CR5) 2007; 100
Cook, Clark, Ploutz-Snyder (CR2) 2007; 39
Manini, Vincent, Leeuwenburgh, Lees, Kavazis, Borst, Clark (CR24) 2011; 201
Patterson, Ferguson (CR26) 2011; 19
Teramoto, Golding (CR32) 2006; 14
JP Loenneke (2266_CR20) 2011; 77
L Rossow (2266_CR27) 2011; 31
M Sugaya (2266_CR30) 2011; 31
M Wernbom (2266_CR33) 2006; 20
2266_CR31
H Iida (2266_CR5) 2007; 100
A Kubota (2266_CR11) 2011; 14
JP Loenneke (2266_CR21) 2011; 21
RM O’Brien (2266_CR25) 2007; 41
M Karabulut (2266_CR8) 2011; 111
JA Shaw (2266_CR29) 1982; 64
2266_CR7
2266_CR6
A Kubota (2266_CR10) 2008; 40
2266_CR13
M Wernbom (2266_CR34) 2009; 23
2266_CR4
2266_CR18
SB Cook (2266_CR2) 2007; 39
M Karabulut (2266_CR9) 2011; 29
M Sakamaki (2266_CR28) 2011; 10
JP Loenneke (2266_CR17) 2010; 31
AG Crenshaw (2266_CR3) 1988; 59
G Laurentino (2266_CR12) 2008; 29
2266_CR23
2266_CR22
JP Loenneke (2266_CR16) 2010; 24
JP Loenneke (2266_CR19) 2011; 32
ACSM (2266_CR1) 2009; 41
JP Loenneke (2266_CR14) 2009; 31
SD Patterson (2266_CR26) 2011; 19
JP Loenneke (2266_CR15) 2011; 15
TM Manini (2266_CR24) 2011; 201
M Teramoto (2266_CR32) 2006; 14
19826283 - J Strength Cond Res. 2009 Nov;23(8):2389-95
21445603 - Eur J Appl Physiol. 2011 Dec;111(12):2969-75
18379217 - Med Sci Sports Exerc. 2008 Mar;40(3):529-34
21165798 - Int J Sports Med. 2011 Mar;32(3):181-4
21399959 - Eur J Appl Physiol. 2011 Nov;111(11):2715-21
21207053 - Eur J Appl Physiol. 2011 Aug;111(8):1659-67
18213536 - Int J Sports Med. 2008 Aug;29(8):664-7
20885201 - J Strength Cond Res. 2010 Oct;24(10):2831-4
22110294 - Hippokratia. 2011 Apr;15(2):132-7
21727301 - J Aging Phys Act. 2011 Jul;19(3):201-13
21410544 - Scand J Med Sci Sports. 2011 Aug;21(4):510-8
21981453 - Clin Physiol Funct Imaging. 2011 Nov;31(6):429-34
17214403 - Res Sports Med. 2006 Oct-Dec;14(4):259-71
7130227 - J Bone Joint Surg Am. 1982 Oct;64(8):1148-52
20653608 - Acta Physiol (Oxf). 2011 Feb;201(2):255-63
21385216 - Scand J Med Sci Sports. 2011 Dec;21(6):e231-41
17909396 - Med Sci Sports Exerc. 2007 Oct;39(10):1708-13
21795999 - Med Sci Sports Exerc. 2012 Mar;44(3):413-9
24149880 - J Sports Sci Med. 2011 Jun 01;10(2):338-40
21900845 - Med Sci Sports Exerc. 2012 Mar;44(3):406-12
17342543 - Eur J Appl Physiol. 2007 Jun;100(3):275-85
21035395 - J Sci Med Sport. 2011 Mar;14(2):95-9
21840132 - Med Hypotheses. 2011 Nov;77(5):748-52
21771263 - Clin Physiol Funct Imaging. 2011 Sep;31(5):411-3
19204579 - Med Sci Sports Exerc. 2009 Mar;41(3):687-708
3421083 - Acta Orthop Scand. 1988 Aug;59(4):447-51
19885776 - Int J Sports Med. 2010 Jan;31(1):1-4
21547832 - J Sports Sci. 2011 Jun;29(9):951-8
22152083 - Clin Physiol Funct Imaging. 2012 Jan;32(1):80-2
16686566 - J Strength Cond Res. 2006 May;20(2):372-7
References_xml – volume: 15
  start-page: 132
  issue: 2
  year: 2011
  end-page: 137
  ident: CR15
  article-title: Sarcopenia: an emphasis on occlusion training and dietary protein
  publication-title: Hippokratia
– ident: CR22
– volume: 100
  start-page: 275
  issue: 3
  year: 2007
  end-page: 285
  ident: CR5
  article-title: Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-007-0430-y
– volume: 23
  start-page: 2389
  issue: 8
  year: 2009
  end-page: 2395
  ident: CR34
  article-title: Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load
  publication-title: J Strength Cond Res
  doi: 10.1519/JSC.0b013e3181bc1c2a
– ident: CR18
– ident: CR4
– volume: 29
  start-page: 664
  issue: 8
  year: 2008
  end-page: 667
  ident: CR12
  article-title: Effects of strength training and vascular occlusion
  publication-title: Int J Sports Med
  doi: 10.1055/s-2007-989405
– volume: 201
  start-page: 255
  issue: 2
  year: 2011
  end-page: 263
  ident: CR24
  article-title: Myogenic and proteolytic mRNA expression following blood flow restricted exercise
  publication-title: Acta Physiol (Oxf)
  doi: 10.1111/j.1748-1716.2010.02172.x
– volume: 41
  start-page: 687
  issue: 3
  year: 2009
  end-page: 708
  ident: CR1
  article-title: American College of Sports Medicine position stand. Progression models in resistance training for healthy adults
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3181915670
– volume: 24
  start-page: 2831
  issue: 10
  year: 2010
  end-page: 2834
  ident: CR16
  article-title: The acute response of practical occlusion in the knee extensors
  publication-title: J Strength Cond Res
  doi: 10.1519/JSC.0b013e3181f0ac3a
– volume: 14
  start-page: 95
  issue: 2
  year: 2011
  end-page: 99
  ident: CR11
  article-title: Blood flow restriction by low compressive force prevents disuse muscular weakness
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2010.08.007
– volume: 19
  start-page: 201
  issue: 3
  year: 2011
  end-page: 213
  ident: CR26
  article-title: Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction
  publication-title: J Aging Phys Act
– ident: CR6
– volume: 31
  start-page: 77
  issue: 3
  year: 2009
  end-page: 84
  ident: CR14
  article-title: The use of occlusion training to produce muscle hypertrophy
  publication-title: Strength Cond J
  doi: 10.1519/SSC.0b013e3181a5a352
– volume: 31
  start-page: 411
  issue: 5
  year: 2011
  end-page: 413
  ident: CR30
  article-title: Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise
  publication-title: Clin Physiol Funct Imaging
  doi: 10.1111/j.1475-097X.2011.01033.x
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: CR25
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual Quant
  doi: 10.1007/s11135-006-9018-6
– volume: 10
  start-page: 338
  year: 2011
  end-page: 340
  ident: CR28
  article-title: Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow
  publication-title: J Sports Sci Med
– ident: CR23
– volume: 14
  start-page: 259
  issue: 4
  year: 2006
  end-page: 271
  ident: CR32
  article-title: Low-intensity exercise, vascular occlusion, and muscular adaptations
  publication-title: Res Sports Med
– volume: 20
  start-page: 372
  issue: 2
  year: 2006
  end-page: 377
  ident: CR33
  article-title: Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads
  publication-title: J Strength Cond Res
– volume: 59
  start-page: 447
  issue: 4
  year: 1988
  end-page: 451
  ident: CR3
  article-title: Wide tourniquet cuffs more effective at lower inflation pressures
  publication-title: Acta Orthop Scand
  doi: 10.3109/17453678809149401
– volume: 29
  start-page: 951
  issue: 9
  year: 2011
  end-page: 958
  ident: CR9
  article-title: The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps
  publication-title: J Sports Sci
  doi: 10.1080/02640414.2011.572992
– volume: 32
  start-page: 181
  issue: 3
  year: 2011
  end-page: 184
  ident: CR19
  article-title: The perceptual responses to occluded exercise
  publication-title: Int J Sports Med
  doi: 10.1055/s-0030-1268472
– volume: 39
  start-page: 1708
  issue: 10
  year: 2007
  end-page: 1713
  ident: CR2
  article-title: Effects of exercise load and blood-flow restriction on skeletal muscle function
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/mss.0b013e31812383d6
– volume: 31
  start-page: 1
  issue: 1
  year: 2010
  end-page: 4
  ident: CR17
  article-title: A mechanistic approach to blood flow occlusion
  publication-title: Int J Sports Med
  doi: 10.1055/s-0029-1239499
– volume: 21
  start-page: 510
  issue: 4
  year: 2011
  end-page: 518
  ident: CR21
  article-title: Potential safety issues with blood flow restriction training
  publication-title: Scand J Med Sci Sports
  doi: 10.1111/j.1600-0838.2010.01290.x
– volume: 40
  start-page: 529
  issue: 3
  year: 2008
  end-page: 534
  ident: CR10
  article-title: Prevention of disuse muscular weakness by restriction of blood flow
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31815ddac6
– ident: CR31
– ident: CR13
– volume: 111
  start-page: 1659
  issue: 8
  year: 2011
  end-page: 1667
  ident: CR8
  article-title: Effects of high-intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1796-9
– volume: 64
  start-page: 1148
  issue: 8
  year: 1982
  end-page: 1152
  ident: CR29
  article-title: The relationship between tourniquet pressure and underlying soft-tissue pressure in the thigh
  publication-title: J Bone Joint Surg Am
– volume: 77
  start-page: 748
  issue: 5
  year: 2011
  end-page: 752
  ident: CR20
  article-title: Blood flow restriction: the metabolite/volume threshold theory
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2011.07.029
– ident: CR7
– volume: 31
  start-page: 429
  issue: 6
  year: 2011
  end-page: 434
  ident: CR27
  article-title: The effect of acute blood-flow-restricted resistance exercise on postexercise blood pressure
  publication-title: Clin Physiol Funct Imaging
  doi: 10.1111/j.1475-097X.2011.01038.x
– ident: 2266_CR22
– volume: 31
  start-page: 77
  issue: 3
  year: 2009
  ident: 2266_CR14
  publication-title: Strength Cond J
  doi: 10.1519/SSC.0b013e3181a5a352
– ident: 2266_CR13
  doi: 10.1249/MSS.0b013e318233b4bc
– volume: 14
  start-page: 95
  issue: 2
  year: 2011
  ident: 2266_CR11
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2010.08.007
– volume: 20
  start-page: 372
  issue: 2
  year: 2006
  ident: 2266_CR33
  publication-title: J Strength Cond Res
– volume: 24
  start-page: 2831
  issue: 10
  year: 2010
  ident: 2266_CR16
  publication-title: J Strength Cond Res
  doi: 10.1519/JSC.0b013e3181f0ac3a
– volume: 77
  start-page: 748
  issue: 5
  year: 2011
  ident: 2266_CR20
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2011.07.029
– volume: 41
  start-page: 673
  year: 2007
  ident: 2266_CR25
  publication-title: Qual Quant
  doi: 10.1007/s11135-006-9018-6
– volume: 32
  start-page: 181
  issue: 3
  year: 2011
  ident: 2266_CR19
  publication-title: Int J Sports Med
  doi: 10.1055/s-0030-1268472
– volume: 39
  start-page: 1708
  issue: 10
  year: 2007
  ident: 2266_CR2
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/mss.0b013e31812383d6
– ident: 2266_CR18
  doi: 10.1080/17461391.2010.551420
– volume: 41
  start-page: 687
  issue: 3
  year: 2009
  ident: 2266_CR1
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3181915670
– volume: 201
  start-page: 255
  issue: 2
  year: 2011
  ident: 2266_CR24
  publication-title: Acta Physiol (Oxf)
  doi: 10.1111/j.1748-1716.2010.02172.x
– volume: 59
  start-page: 447
  issue: 4
  year: 1988
  ident: 2266_CR3
  publication-title: Acta Orthop Scand
  doi: 10.3109/17453678809149401
– volume: 10
  start-page: 338
  year: 2011
  ident: 2266_CR28
  publication-title: J Sports Sci Med
– ident: 2266_CR7
  doi: 10.1111/j.1600-0838.2010.01260.x
– volume: 29
  start-page: 951
  issue: 9
  year: 2011
  ident: 2266_CR9
  publication-title: J Sports Sci
  doi: 10.1080/02640414.2011.572992
– ident: 2266_CR31
  doi: 10.1249/MSS.0b013e31822f39b3
– volume: 100
  start-page: 275
  issue: 3
  year: 2007
  ident: 2266_CR5
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-007-0430-y
– volume: 111
  start-page: 1659
  issue: 8
  year: 2011
  ident: 2266_CR8
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1796-9
– volume: 31
  start-page: 411
  issue: 5
  year: 2011
  ident: 2266_CR30
  publication-title: Clin Physiol Funct Imaging
  doi: 10.1111/j.1475-097X.2011.01033.x
– volume: 21
  start-page: 510
  issue: 4
  year: 2011
  ident: 2266_CR21
  publication-title: Scand J Med Sci Sports
  doi: 10.1111/j.1600-0838.2010.01290.x
– volume: 64
  start-page: 1148
  issue: 8
  year: 1982
  ident: 2266_CR29
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-198264080-00004
– volume: 14
  start-page: 259
  issue: 4
  year: 2006
  ident: 2266_CR32
  publication-title: Res Sports Med
  doi: 10.1080/15438620600985860
– volume: 15
  start-page: 132
  issue: 2
  year: 2011
  ident: 2266_CR15
  publication-title: Hippokratia
– volume: 40
  start-page: 529
  issue: 3
  year: 2008
  ident: 2266_CR10
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31815ddac6
– volume: 31
  start-page: 429
  issue: 6
  year: 2011
  ident: 2266_CR27
  publication-title: Clin Physiol Funct Imaging
  doi: 10.1111/j.1475-097X.2011.01038.x
– ident: 2266_CR6
  doi: 10.1007/s00421-011-1899-y
– ident: 2266_CR23
  doi: 10.1111/j.1475-097X.2011.01059.x
– volume: 31
  start-page: 1
  issue: 1
  year: 2010
  ident: 2266_CR17
  publication-title: Int J Sports Med
  doi: 10.1055/s-0029-1239499
– volume: 19
  start-page: 201
  issue: 3
  year: 2011
  ident: 2266_CR26
  publication-title: J Aging Phys Act
  doi: 10.1123/japa.19.3.201
– ident: 2266_CR4
  doi: 10.1007/s00421-011-1927-y
– volume: 23
  start-page: 2389
  issue: 8
  year: 2009
  ident: 2266_CR34
  publication-title: J Strength Cond Res
  doi: 10.1519/JSC.0b013e3181bc1c2a
– volume: 29
  start-page: 664
  issue: 8
  year: 2008
  ident: 2266_CR12
  publication-title: Int J Sports Med
  doi: 10.1055/s-2007-989405
– reference: 22152083 - Clin Physiol Funct Imaging. 2012 Jan;32(1):80-2
– reference: 20653608 - Acta Physiol (Oxf). 2011 Feb;201(2):255-63
– reference: 17342543 - Eur J Appl Physiol. 2007 Jun;100(3):275-85
– reference: 21165798 - Int J Sports Med. 2011 Mar;32(3):181-4
– reference: 21981453 - Clin Physiol Funct Imaging. 2011 Nov;31(6):429-34
– reference: 21795999 - Med Sci Sports Exerc. 2012 Mar;44(3):413-9
– reference: 21771263 - Clin Physiol Funct Imaging. 2011 Sep;31(5):411-3
– reference: 16686566 - J Strength Cond Res. 2006 May;20(2):372-7
– reference: 21410544 - Scand J Med Sci Sports. 2011 Aug;21(4):510-8
– reference: 19204579 - Med Sci Sports Exerc. 2009 Mar;41(3):687-708
– reference: 7130227 - J Bone Joint Surg Am. 1982 Oct;64(8):1148-52
– reference: 21399959 - Eur J Appl Physiol. 2011 Nov;111(11):2715-21
– reference: 22110294 - Hippokratia. 2011 Apr;15(2):132-7
– reference: 17909396 - Med Sci Sports Exerc. 2007 Oct;39(10):1708-13
– reference: 21207053 - Eur J Appl Physiol. 2011 Aug;111(8):1659-67
– reference: 21900845 - Med Sci Sports Exerc. 2012 Mar;44(3):406-12
– reference: 3421083 - Acta Orthop Scand. 1988 Aug;59(4):447-51
– reference: 20885201 - J Strength Cond Res. 2010 Oct;24(10):2831-4
– reference: 21035395 - J Sci Med Sport. 2011 Mar;14(2):95-9
– reference: 19885776 - Int J Sports Med. 2010 Jan;31(1):1-4
– reference: 19826283 - J Strength Cond Res. 2009 Nov;23(8):2389-95
– reference: 21385216 - Scand J Med Sci Sports. 2011 Dec;21(6):e231-41
– reference: 18213536 - Int J Sports Med. 2008 Aug;29(8):664-7
– reference: 21840132 - Med Hypotheses. 2011 Nov;77(5):748-52
– reference: 21547832 - J Sports Sci. 2011 Jun;29(9):951-8
– reference: 17214403 - Res Sports Med. 2006 Oct-Dec;14(4):259-71
– reference: 21445603 - Eur J Appl Physiol. 2011 Dec;111(12):2969-75
– reference: 21727301 - J Aging Phys Act. 2011 Jul;19(3):201-13
– reference: 18379217 - Med Sci Sports Exerc. 2008 Mar;40(3):529-34
– reference: 24149880 - J Sports Sci Med. 2011 Jun 01;10(2):338-40
SSID ssj0008218
Score 2.546006
Snippet The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2903
SubjectTerms Adipose Tissue - diagnostic imaging
Adolescent
Adult
Ankle Brachial Index
Arteries - physiopathology
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Blood Flow Velocity
Blood Pressure
Exercise
Female
Fundamental and applied biological sciences. Psychology
Human Physiology
Humans
Ischemia - physiopathology
Laboratories
Male
Muscle Contraction
Muscle, Skeletal - blood supply
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiopathology
Occupational Medicine/Industrial Medicine
Original Article
Pressure
Regional Blood Flow
Sports Medicine
Thigh
Tomography, X-Ray Computed
Tourniquets
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oBRGKaKt2tC0RxAclOJNMkllfpJSWIuiThX0Qhplc6MI6s7q7FP-952Qu7Vrd52Qgk3OSfOfC9wG8UU4EGaTkygfDc-0sn0yqwDEYwQfW1SoNscv3q764zD9P1bRPuC37tsrhTowXtWst5cg_ZCSTrHKR5Z8WPzmpRlF1tZfQuA8PiLqMvNpMx4ALX7eY30NIMOEafW2oaqYdiaigQDrjCEA0Lzbepd1FtcQtCp22xb_A590eyr8KqfF9On8Cj3tgyU46T3gK93yzB_snDQbVP36ztyy2esYc-h48_NJX1Pfhe0dfvGRtYHYdArueudUVaxsWmz3RO1lr7XxNSbWPbHar_5wh3GWx752FeXvNSOQDL1VEsGzQcXoGl-dn304veK-4wK1SesUrq2yhETH5IKywRkgpRe3SuhKFy7W0tbLSeKmzUAdrMFpSNSVEfEY4RwX5HHaatvEHwAhYauOFV9LkuXCFVqb2xtVBGieDSCAd9ru0PR05qWLMy5FIOZqoRBOVZKKySODd-Mmi4-LYNvl4w4jjF4JCYFxvAoeDVcv-3C7LGy9L4PU4jCeOyihV49s1ziGWRYzsJ-mWORj3y1zi5ZbAi85RbhYgSHI-lwmYDRcaJxDj9-ZIM7uKzN-4bpnJLIH3g7PdWvr_duLl9h99BY8QBIquqfEQdla_1v4IgdaqPo6n6Q-jICPh
  priority: 102
  providerName: ProQuest
Title Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise
URI https://link.springer.com/article/10.1007/s00421-011-2266-8
https://www.ncbi.nlm.nih.gov/pubmed/22143843
https://www.proquest.com/docview/1412454214
https://www.proquest.com/docview/1024933890
https://www.proquest.com/docview/1837343638
https://pubmed.ncbi.nlm.nih.gov/PMC4133131
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5sCyIU0Vbr2vaIID4ogdtkk-z17U7uLIqHiAcnCMsmm9CDc7f07ij-906yP-zVWvApD5ldQmaSfJP5MgPwWhTMccc5FdYpmsjC0MEgdxSdETxgCy36LrB8p_J8lnyci3nzjnvVst3bkGTYqbvHbt6-vOsbU4QMkqY7sCfQdfc8rhkbdttvysKlHuKAAZVoYG0o865fbB1G-5f5CufF1QUt7kKcfxMnb0VPw6E0eQKPGzRJhrX6n8IDWx7A4bBET_rnL_KGBH5nuDg_gIefmzD6IfyocxavSOWI2ThHrhfF-oJUJQkMTzRJUhmz3PibtDOyuEE6J4hxSSC7E7esromv7IE7KcJW0hZvegazyfjb-3PalFmgRgi5prkRJpUIk6xjhhnFOOdMF32ds7RIJDdaGK4sl7HTzih0kYT2tyA29uBGOP4cdsuqtC-AeDQplWVWcJUkrEilUNqqQjuuCu5YBP12vjPT5CD3pTCWWZc9OagoQxVlXkVZGsHb7pPLOgHHfcK9LSV2XzDv9-J4IzhptZo1i3WF3g-CHIF_SiJ41XXjMvOxk7y01QZlfGpFdOcH_Xtk0NnnCccdLYKj2lD-DID5OvMJj0BtmVAn4NN8b_eUi4uQ7hvHzWMeR_CuNbYbQ__XTLz8L-ljeIRAkNXExhPYXV9t7CmCrbXuwY6aqx7sDSej0dS3H75_GmM7Gk-_fO2Fpfcb-yEl-w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQESQrABC4xhJOABZJHYsZ0iITQBU8c-njapD0gh8YdWqUsKbVXtn-Jv5Ow02cpH3_YcO3J857vfz3e5A3gpDHPccU6FdYqm0mja6xWOIhlBB2tKEbuQ5Xss-6fp14EYrMGv9l8Yn1bZ2sRgqE2t_R35u8S3SRYpS9KP4x_Ud43y0dW2hUajFgf2Yo6UbfJh_zPK9xVje19OPvXpoqsA1ULIKS200JlEVGAd00wrxjlnpYnLgmUmlVyXQnNluUxc6bRCRiBKT_pt4n25cBzfewNuouONPdlTg47goTcN94kIQXpUom63UdS4KVrKPHFPKAIeSbMlP3h3XExQJK7ppfEvsPt3zuYfgdvgD_fuw70FkCW7jeY9gDVbbcDmboUk_vyCvCYhtTTc2W_AraNFBH8TvjXlkiekdkTPnCPzoZmekboiIbkUTwOptR7N_CXeezK8ku9OEF6TkGdP3KieE99UBI04ImbS9o16CKfXIotHsF7Vld0C4oGsVJZZwVWaMpNJoUqrTOm4MtyxCOJ2v3O9KH_uu3CM8q5wcxBRjiLKvYjyLII33ZRxU_tj1eCdJSF2M5in3LjeCLZbqeYLOzHJL7U6ghfdYzzhPmxTVLae4Rhf1ZEjsIxXjMm44ilHYxrB40ZRLhfAfIv7lEegllSoG-ArjC8_qYZnodI4rpsnPIngbatsV5b-v514svpDn8Pt_snRYX64f3zwFO4gAGVNQuU2rE9_zuwzBHnTciecLALfr_so_wbGdmAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7ULRRBRFsvU2uNoD4ooTPJJJkVRKrt0lpdiljoQ2HcySR0YTuzurss_Wv-Ok8yl3a97FufJxkyObfvXOYcgBciZ5ZbzqkwVtFY5pp2uwNL0RlBA5tnIrS-yrcvD07iT6fidAV-Nf_CuLLKRid6RZ2X2sXIdyI3JlnELIp3bF0WcbzXez_-Qd0EKZdpbcZpVCxyZC7n6L5N3h3uIa1fMtbb__bxgNYTBqgWQk7pQAudSEQIxjLNtGKcc5blYTZgSR5LrjOhuTJcRjazWqF3IDIXADCRs-vCcnzvLVhVzivqwOqH_f7x19YOJMxHFxGQdKlETm9yqmHVwpQ5Nz6iCH8kTRas4p3xYIIEstVkjX9B378rOP9I43rr2LsHd2tYS3YrPrwPK6ZYh43dAl36i0vyivhCUx_BX4e1L3U-fwPOqubJE1JaomfWkvkwn56TsiC-1BRlg5Raj2YupPeWDK9VvxME28RX3RM7KufEjRhBlY74mTRTpB7AyY1Q4yF0irIwj4E4WCuVYUZwFccsT6RQmVF5ZrnKuWUBhM19p7puhu5mcozSto2zJ1GKJEodidIkgNftlnHVCWTZ4u0FIrY7mHPA8bwBbDVUTWutMUmveDyA5-1jlHeXxBkUppzhGtfjkSPMDJesSbjiMUfVGsCjilGuDsDcwPuYB6AWWKhd4PqNLz4phue-7ziem0c8CuBNw2zXjv6_m9hc_qHPYA3FOP182D96ArcRjbKqunILOtOfM_MUEd80265Fi8D3m5bm33UbZcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+cuff+width+on+arterial+occlusion%3A+implications+for+blood+flow+restricted+exercise&rft.jtitle=European+journal+of+applied+physiology&rft.au=Loenneke%2C+Jeremy+P&rft.au=Fahs%2C+Christopher+A&rft.au=Rossow%2C+Lindy+M&rft.au=Sherk%2C+Vanessa+D&rft.date=2012-08-01&rft.eissn=1439-6327&rft.volume=112&rft.issue=8&rft.spage=2903&rft_id=info:doi/10.1007%2Fs00421-011-2266-8&rft_id=info%3Apmid%2F22143843&rft.externalDocID=22143843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-6319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-6319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-6319&client=summon