EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots

Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, compu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 12; p. 312
Main Authors Tariq, Madiha, Trivailo, Pavel M., Simic, Milan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 06.08.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2018.00312

Cover

Loading…
Abstract Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, computer displays and virtual objects in the real-time. BCI provides an augmentative communication by creating a muscle-free channel between the brain and the output devices, primarily for subjects having neuromotor disorders, or trauma to nervous system, notably spinal cord injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or amputated residual limbs. This review identifies the potentials of electroencephalography (EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis, prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals employed by the aforementioned applications that also provide feasibility for future development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP) and visual evoked potentials (VEP). The review is an effort to progress the development of user's mental task related to LL for BCI reliability and confidence measures. As a novel contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots are presented by a general control framework fitting in hierarchical layers. It reflects informatic interactions, between the user, the BCI operator, the shared controller, the robotic device and the environment. Each sub layer of the BCI operator is discussed in detail, highlighting the feature extraction, classification and execution methods employed by the various systems. All applications' key features and their interaction with the environment are reviewed for the EEG-based activity mode recognition, and presented in form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within the presented framework, for future generation of intent-based multifunctional controllers. Despite the development of controllers, for BCI-based wearable or assistive devices that can seamlessly integrate user intent, practical challenges associated with such systems exist and have been discerned, which can be constructive for future developments in the field.
AbstractList Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, computer displays and virtual objects in the real-time. BCI provides an augmentative communication by creating a muscle-free channel between the brain and the output devices, primarily for subjects having neuromotor disorders, or trauma to nervous system, notably spinal cord injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or amputated residual limbs. This review identifies the potentials of electroencephalography (EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis, prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals employed by the aforementioned applications that also provide feasibility for future development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP) and visual evoked potentials (VEP). The review is an effort to progress the development of user's mental task related to LL for BCI reliability and confidence measures. As a novel contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots are presented by a general control framework fitting in hierarchical layers. It reflects informatic interactions, between the user, the BCI operator, the shared controller, the robotic device and the environment. Each sub layer of the BCI operator is discussed in detail, highlighting the feature extraction, classification and execution methods employed by the various systems. All applications' key features and their interaction with the environment are reviewed for the EEG-based activity mode recognition, and presented in form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within the presented framework, for future generation of intent-based multifunctional controllers. Despite the development of controllers, for BCI-based wearable or assistive devices that can seamlessly integrate user intent, practical challenges associated with such systems exist and have been discerned, which can be constructive for future developments in the field.
Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, computer displays and virtual objects in the real-time. BCI provides an augmentative communication by creating a muscle-free channel between the brain and the output devices, primarily for subjects having neuromotor disorders, or trauma to nervous system, notably spinal cord injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or amputated residual limbs. This review identifies the potentials of electroencephalography (EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis, prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals employed by the aforementioned applications that also provide feasibility for future development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP) and visual evoked potentials (VEP). The review is an effort to progress the development of user's mental task related to LL for BCI reliability and confidence measures. As a novel contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots are presented by a general control framework fitting in hierarchical layers. It reflects informatic interactions, between the user, the BCI operator, the shared controller, the robotic device and the environment. Each sub layer of the BCI operator is discussed in detail, highlighting the feature extraction, classification and execution methods employed by the various systems. All applications' key features and their interaction with the environment are reviewed for the EEG-based activity mode recognition, and presented in form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within the presented framework, for future generation of intent-based multifunctional controllers. Despite the development of controllers, for BCI-based wearable or assistive devices that can seamlessly integrate user intent, practical challenges associated with such systems exist and have been discerned, which can be constructive for future developments in the field.Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered intents, after detecting electrical signals from the human scalp, are translated into control commands used to operate external devices, computer displays and virtual objects in the real-time. BCI provides an augmentative communication by creating a muscle-free channel between the brain and the output devices, primarily for subjects having neuromotor disorders, or trauma to nervous system, notably spinal cord injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or amputated residual limbs. This review identifies the potentials of electroencephalography (EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis, prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals employed by the aforementioned applications that also provide feasibility for future development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP) and visual evoked potentials (VEP). The review is an effort to progress the development of user's mental task related to LL for BCI reliability and confidence measures. As a novel contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots are presented by a general control framework fitting in hierarchical layers. It reflects informatic interactions, between the user, the BCI operator, the shared controller, the robotic device and the environment. Each sub layer of the BCI operator is discussed in detail, highlighting the feature extraction, classification and execution methods employed by the various systems. All applications' key features and their interaction with the environment are reviewed for the EEG-based activity mode recognition, and presented in form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within the presented framework, for future generation of intent-based multifunctional controllers. Despite the development of controllers, for BCI-based wearable or assistive devices that can seamlessly integrate user intent, practical challenges associated with such systems exist and have been discerned, which can be constructive for future developments in the field.
Author Simic, Milan
Tariq, Madiha
Trivailo, Pavel M.
AuthorAffiliation School of Engineering, RMIT University Melbourne , Melbourne, VIC , Australia
AuthorAffiliation_xml – name: School of Engineering, RMIT University Melbourne , Melbourne, VIC , Australia
Author_xml – sequence: 1
  givenname: Madiha
  surname: Tariq
  fullname: Tariq, Madiha
– sequence: 2
  givenname: Pavel M.
  surname: Trivailo
  fullname: Trivailo, Pavel M.
– sequence: 3
  givenname: Milan
  surname: Simic
  fullname: Simic, Milan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30127730$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1r3DAQxUVJaT7ae0_F0Esu3o6klSwdWkiWbbKwUOjHWcjyOKvFtlLJTul_X-1uEpJATxKaNz_eaN4pORrCgIS8pzDjXOlP7bCZ-hkDqmYAnLJX5IRKyUpBJT16cj8mpyltASSTgr4hxxwoqyoOJ-TzcnlVXtqETXG5WBWLMIwxdMUPt8EeU9GGWKzDH4zl2vd1cZGST6O_w_J7qMOY3pLXre0Svrs_z8ivr8ufi-ty_e1qtbhYl04IOZYaraK2sQLnVmhkci6cq7Ov1vGWagEtcpRzYI2uKlkhcIfaQS3yUI1lyM_I6sBtgt2a2-h7G_-aYL3ZP4R4Y2wcvevQCA20AWG5ruRcVUJVKnM5t8Ba6eaQWV8OrNup7rFxmCe23TPo88rgN-Ym3BkJSrFKZsD5PSCG3xOm0fQ-Oew6O2CYkmGgKeOcS5WlH19It2GKQ_4qw5iqQFBNd8APTx09WnnYUhbAQeBiSCli-yihYHZBMPsgmF0QzD4IuUW-aHF-tKPf7df67v-N_wCcGrWk
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_3389_fnbot_2021_605751
crossref_primary_10_1080_2326263X_2021_2002004
crossref_primary_10_36740_WLek202009238
crossref_primary_10_3390_s23042069
crossref_primary_10_1186_s12984_024_01342_9
crossref_primary_10_1007_s11517_023_02770_w
crossref_primary_10_1016_j_isci_2023_106675
crossref_primary_10_1109_ACCESS_2020_2991812
crossref_primary_10_1109_ACCESS_2020_3045225
crossref_primary_10_1088_1742_6596_2096_1_012045
crossref_primary_10_1109_TKDE_2021_3060742
crossref_primary_10_1080_03091902_2021_1936237
crossref_primary_10_3233_TAD_230010
crossref_primary_10_20517_2347_9264_2023_101
crossref_primary_10_1080_10447318_2022_2109248
crossref_primary_10_3389_fnins_2021_699428
crossref_primary_10_1155_2022_4100381
crossref_primary_10_1109_TBME_2021_3138157
crossref_primary_10_35860_iarej_1231288
crossref_primary_10_53941_ijndi_2023_100008
crossref_primary_10_32604_cmc_2022_025823
crossref_primary_10_1088_1741_2552_ac1b6b
crossref_primary_10_1109_TNSRE_2021_3073134
crossref_primary_10_3389_fbioe_2021_765257
crossref_primary_10_3390_s21134312
crossref_primary_10_3390_s22093331
crossref_primary_10_1007_s12652_020_02405_0
crossref_primary_10_1080_2326263X_2022_2050513
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_1016_j_robot_2019_02_015
crossref_primary_10_1109_JSEN_2020_3009629
crossref_primary_10_1016_j_neucom_2021_03_038
crossref_primary_10_1016_j_bspc_2023_104664
crossref_primary_10_1016_j_mechmachtheory_2022_105142
crossref_primary_10_3389_fbioe_2024_1454262
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_3390_s24217016
crossref_primary_10_1109_TNSRE_2020_2998778
crossref_primary_10_1016_j_neuarg_2024_02_001
crossref_primary_10_1109_JSEN_2024_3358911
crossref_primary_10_1088_1741_2552_abd1bf
crossref_primary_10_1016_j_bspc_2021_102550
crossref_primary_10_3390_app8112287
crossref_primary_10_3390_robotics13090133
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_1088_1741_2552_abee51
crossref_primary_10_1515_bmt_2023_0356
crossref_primary_10_3390_sym12111851
crossref_primary_10_1108_IR_05_2021_0086
crossref_primary_10_1109_TIM_2025_3538086
crossref_primary_10_3389_fnins_2023_1086472
crossref_primary_10_3389_fnins_2024_1449208
crossref_primary_10_3390_s20247309
crossref_primary_10_1186_s12984_022_01081_9
crossref_primary_10_3389_fnins_2022_809657
crossref_primary_10_3390_brainsci13111583
crossref_primary_10_1109_TAFFC_2020_3025004
crossref_primary_10_1109_TNSRE_2022_3156269
crossref_primary_10_1051_e3sconf_202455305011
crossref_primary_10_1364_BOE_528275
crossref_primary_10_1016_j_bspc_2021_102783
crossref_primary_10_3389_fnbot_2022_958052
crossref_primary_10_1177_1729881421992269
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_1038_s41551_022_00984_1
crossref_primary_10_1007_s10846_024_02074_7
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_3390_electronics8050479
crossref_primary_10_1016_j_neucom_2019_02_006
crossref_primary_10_1186_s42490_024_00080_2
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1016_j_bspc_2023_105160
crossref_primary_10_3390_s24123968
crossref_primary_10_1016_j_bspc_2023_105324
crossref_primary_10_1080_26941899_2024_2426785
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_3389_fnbot_2020_00040
crossref_primary_10_1016_j_cobme_2021_100338
crossref_primary_10_1016_j_bios_2021_113326
crossref_primary_10_1016_j_procs_2019_09_256
crossref_primary_10_1016_j_procs_2021_09_031
crossref_primary_10_1016_j_procs_2021_09_273
crossref_primary_10_1109_THMS_2021_3090738
crossref_primary_10_3390_electronics13173411
crossref_primary_10_3390_s24227125
crossref_primary_10_1007_s00113_022_01270_0
crossref_primary_10_1016_j_patcog_2019_107017
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1016_j_neucom_2020_03_055
crossref_primary_10_1109_ACCESS_2021_3075253
crossref_primary_10_1007_s11571_022_09801_6
crossref_primary_10_3389_fnbot_2020_00032
crossref_primary_10_4236_aar_2024_135007
crossref_primary_10_3390_s23187908
crossref_primary_10_3390_electronics13091646
crossref_primary_10_1108_IR_07_2020_0137
crossref_primary_10_1109_TNSRE_2023_3236251
crossref_primary_10_3390_s22052028
crossref_primary_10_3390_s21196431
crossref_primary_10_3390_mti7100095
crossref_primary_10_1007_s11517_024_03032_z
crossref_primary_10_1016_j_neucom_2023_03_071
crossref_primary_10_15377_2409_5761_2022_09_3
crossref_primary_10_7717_peerj_15775
crossref_primary_10_3389_fnins_2021_704603
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_3389_fnbot_2021_742163
crossref_primary_10_3390_app11219948
crossref_primary_10_1016_j_bspc_2021_102587
crossref_primary_10_1016_j_jneumeth_2025_110413
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_1088_1741_2552_abf68b
crossref_primary_10_1088_2057_1976_ab54ad
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1109_RBME_2020_3043623
crossref_primary_10_3389_fnbot_2020_00019
crossref_primary_10_3390_bioengineering9120768
crossref_primary_10_1080_14737175_2022_2018301
crossref_primary_10_1039_D2TB00618A
crossref_primary_10_3389_fnhum_2021_749017
crossref_primary_10_1016_j_bspc_2022_104389
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_3233_THC_202619
crossref_primary_10_1109_ACCESS_2024_3443066
crossref_primary_10_1038_s41598_021_96434_0
crossref_primary_10_3390_app11073114
crossref_primary_10_1109_ACCESS_2023_3247133
crossref_primary_10_1088_1741_2552_ad9edf
crossref_primary_10_3389_frobt_2022_909971
crossref_primary_10_3390_s20247198
Cites_doi 10.1113/jphysiol.2012.227397
10.1093/brain/60.4.389
10.2522/ptj.20090029
10.1088/1741-2560/4/2/R01
10.1111/j.1749-6632.1998.tb09062.x
10.1109/ICSMC.2010.5642338
10.1371/journal.pone.0137910
10.1152/physrev.00027.2016
10.3389/fncom.2013.00168
10.1186/1743-0003-10-77
10.1016/j.neuron.2006.09.019
10.1109/IEMBS.2008.4649238
10.1109/ICBEE.2010.5651351
10.1016/0013-4694(95)00040-6
10.1093/brain/awu038
10.1109/IEMBS.2011.6091049
10.1515/bmt-2014-0126
10.1088/1741-2560/9/5/056016
10.1016/j.clinph.2009.01.015
10.1523/JNEUROSCI.6511-10.2011
10.12659/MSM.891361
10.1109/EMBC.2013.6609816
10.1109/TNSRE.2012.2190299
10.1186/1743-0003-12-1
10.1016/j.clinph.2015.04.054
10.1016/j.ijpsycho.2013.09.003
10.1007/s00702-007-0783-8
10.1146/annurev.bb.02.060173.001105
10.1155/2012/375148
10.1152/jn.00549.2010
10.1186/s12984-015-0058-9
10.1109/TSMCB.2011.2177968
10.1016/j.neuropsychologia.2017.02.005
10.1152/jn.00963.2004
10.1109/TBME.2004.827072
10.1109/TBME.2009.2012869
10.3389/fnhum.2018.00014
10.1038/sdata.2018.74
10.1088/1741-2560/5/2/012
10.1109/ROBIO.2009.4913028
10.1145/1690388.1690452
10.3389/fncom.2013.00048
10.1016/j.neulet.2004.12.034
10.1109/MRA.2012.2229936
10.1002/acn3.544
10.1186/1743-0003-10-111
10.1109/EMBC.2012.6346327
10.1007/978-3-319-46532-6_19
10.1186/1743-0003-9-56
10.1145/505008.505019
10.3389/fneur.2018.00212
10.1088/1741-2560/13/3/031001
10.1186/s12984-015-0095-4
10.1155/2014/140863
10.3389/fnins.2017.00400
10.1007/s00221-010-2223-5
10.1016/S1474-4422(08)70223-0
10.1007/978-3-540-88906-9_42
10.1016/j.clinph.2008.06.001
10.1007/978-1-4471-6584-2_7
10.1162/pres.19.1.35
10.1109/TRO.2012.2201310
10.1088/1741-2560/10/5/056014
10.1186/1743-0003-11-7
10.1152/jn.00105.2010
10.3390/s120201211
10.1016/j.neuroimage.2009.12.060
10.3389/fnins.2010.00161
10.1088/1741-2560/12/5/056009
10.1109/MIS.2007.26
10.1177/1073858418775355
10.1152/jn.00366.2013
10.3389/fnhum.2015.00247
10.1109/BRC.2012.6222193
10.1016/j.clinph.2012.08.021
10.1109/TNSRE.2010.2049862
10.1109/JPROC.2015.2407272
10.1109/EMBC.2012.6347462
10.1186/1743-0003-8-66
10.3791/50602
10.1016/j.neuroimage.2005.12.003
10.1007/978-1-84996-272-8_14
10.1186/1743-0003-8-49
10.1002/hbm.10103
10.1586/17434440.4.4.463
10.1109/TRO.2009.2020347
10.1109/RBME.2018.2830805
10.1088/1741-2552/aab2f2
10.1016/j.brainres.2005.11.083
10.1152/jn.00104.2011
10.1016/j.brainres.2008.07.046
10.15406/iratj.2018.04.00105
10.1016/S1388-2457(98)00038-8
10.1109/BioRob.2012.6290688
10.1109/EMBC.2013.6610821
10.1016/j.clinph.2008.09.027
10.1523/JNEUROSCI.6344-11.2012
10.1109/TBME.2014.2313867
10.1038/nature20118
10.1016/j.clinph.2013.05.006
10.1016/j.jneumeth.2010.07.015
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2004.827086
10.1155/2007/25130
10.1113/jphysiol.2007.146605
10.1016/j.clinph.2006.10.019
10.1186/1743-0003-5-10
10.1155/2011/130714
10.1080/09593985.2018.1434579
10.1109/HUMANOIDS.2012.6651494
10.1016/j.medengphy.2011.11.018
10.1007/s40846-018-0379-9
10.1145/2110363.2110366
10.1113/jphysiol.1988.sp017319
10.1523/JNEUROSCI.23-03-01087.2003
10.1109/NER.2015.7146592
10.1177/155005941104200407
10.1073/pnas.0403504101
10.1088/1741-2552/aaa8c0
10.1109/IROS.2011.6094748
10.1177/1545968307313499
10.1109/EMBC.2013.6611154
10.1016/j.neuroimage.2010.08.066
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Tariq, Trivailo and Simic. 2018 Tariq, Trivailo and Simic
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Tariq, Trivailo and Simic. 2018 Tariq, Trivailo and Simic
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2018.00312
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_5901d05a3976487587802d33a02f6c40
PMC6088276
30127730
10_3389_fnhum_2018_00312
Genre Journal Article
Review
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c556t-9ea81ada5e4a59e2645ccb161fc3f1950fe3e6402d97767e03ce9c0b5003da2e3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:30:41 EDT 2025
Thu Aug 21 18:43:08 EDT 2025
Fri Jul 11 06:13:08 EDT 2025
Fri Jul 25 11:46:28 EDT 2025
Mon Jul 21 05:39:28 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 03:44:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography (EEG)
assistive-robot devices
orthosis
brain-computer interface (BCI)
exoskeletons
spinal cord injury (SCI)
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-9ea81ada5e4a59e2645ccb161fc3f1950fe3e6402d97767e03ce9c0b5003da2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Reviewed by: Vera Talis, Institute for Information Transmission Problems (RAS), Russia; Yuri Levik, Institute for Information Transmission Problems (RAS), Russia
Edited by: Mikhail Lebedev, Duke University, United States
OpenAccessLink https://www.proquest.com/docview/2287051916?pq-origsite=%requestingapplication%
PMID 30127730
PQID 2287051916
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_5901d05a3976487587802d33a02f6c40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6088276
proquest_miscellaneous_2091233368
proquest_journals_2287051916
pubmed_primary_30127730
crossref_primary_10_3389_fnhum_2018_00312
crossref_citationtrail_10_3389_fnhum_2018_00312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-06
PublicationDateYYYYMMDD 2018-08-06
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-06
  day: 06
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References He (B55); 15
Bakker (B5) 2007; 114
Yang (B144) 2014; 2014
Chae (B18)
Capogrosso (B13) 2016; 539
Millán (B89) 2010; 4
Lazarou (B72) 2018; 12
Bell (B8) 2008; 5
Lotte (B81) 2009
Tucker (B132) 2015; 12
Escolano (B40) 2012; 42
García-Cossio (B48) 2015; 10
Allison (B1) 2007; 4
Semmlow (B120) 2014
Bulea (B12) 2015; 9
Malouin (B84) 2008; 22
Do (B37) 2012
Gramann (B49) 2014; 91
Carlson (B14) 2013; 20
Jimenez-Fabian (B62) 2012; 34
Pons (B106) 2013
Gwin (B51) 2011; 54
Lee (B74) 2017
Schalk (B115) 2004; 51
Pfurtscheller (B101); 31
Rivet (B113) 2009; 56
Contreras-Vidal (B27) 2016; 13
Do (B36) 2013; 10
Noda (B95) 2012
Takahashi (B123) 2009
Tariq (B127)
Lopes (B77) 2011
Chvatal (B26) 2011; 106
Vasilyev (B134) 2017; 97
Gancet (B47) 2012
Scherrer (B116) 2007
Tsui (B131) 2011; 42
Duvinage (B39) 2012
Kilicarslan (B66) 2013
Murray (B93) 2012
Tariq (B126) 2018; 4
Lebedev (B73) 2017; 97
Kumar (B69) 2015
Huang (B58) 2012; 20
Lotte (B79) 2018; 15
La Fougere (B71) 2010; 50
Mellinger (B87) 2007
Takahashi (B124) 2012; 9
Wang (B138) 2012; 9
Galán (B45) 2008; 119
Nolan (B96) 2010; 192
Wieser (B139) 2010; 203
He (B53) 2016
Wang (B137) 2010
Baykara (B6) 2016; 127
Zelenin (B145) 2011; 31
Müller-Gerking (B92) 1999; 110
Petersen (B99) 2012; 590
Sczesny-Kaiser (B118) 2015; 12
Vanacker (B133) 2007; 2007
Kwak (B70) 2015; 12
Fatourechi (B41) 2007; 118
Marlinski (B86) 2014; 112
Presacco (B108); 106
Chvatal (B24) 2012; 32
Hashimoto (B52) 2013; 124
Pfurtscheller (B104) 2009; 120
Belda-Lois (B7) 2011; 8
Castermans (B15)
Tariq (B125)
Raethjen (B109) 2008; 1236
Viola (B136) 2009; 120
Iturrate (B59)
Castermans (B16)
Daly (B29) 2008; 7
Pfurtscheller (B103) 2005; 378
Xu (B143) 2014; 61
Deng (B32) 2018; 11
Palankar (B97) 2009
Dimitrijevic (B34) 1998; 860
Angeli (B2) 2014; 137
Jain (B61) 2013; 124
Malouin (B83) 2010; 90
Pfurtscheller (B102); 1071
Lotte (B78) 2014
Chéron (B22) 2012; 2012
Millán (B88) 2009
Semprini (B119) 2018; 9
Gancet (B46) 2011
Delorme (B31) 2011; 2011
Chéron (B21) 2011
Belluomo (B9) 2011
Do (B35) 2011; 8
Vidal (B135) 1973; 2
Taylor II (B128) 2001
Mokienko (B91) 2013; 7
Beloozerova (B10) 2003; 23
Kaufmann (B64) 2014; 11
Choi (B23) 2008; 2008
Petrofsky (B100) 2014; 20
Wolpaw (B141) 2002; 113
Armstrong (B4) 1988; 405
Kautz (B65) 2005; 93
Tonin (B130) 2010
Frolov (B44) 2017; 11
De Venuto (B33) 2017
Ferdousy (B42) 2010
Wolpaw (B140) 2012
Maguire (B82) 2018; 5
Chae (B20)
Chvatal (B25) 2013; 7
Delorme (B30) 2010
He (B56); 5
Kothe (B68) 2013; 10
Drew (B38) 2008; 586
Wolpaw (B142) 2004; 101
Kalcher (B63) 1995; 94
Slutzky (B121) 2018
Ferreira (B43) 2008; 5
Contreras-Vidal (B28) 2013
Iturrate (B60); 25
Herr (B57) 2013
Liu (B75) 2018; 4
Salazar-Varas (B114) 2015; 12
King (B67) 2013; 10
Soekadar (B122) 2015; 60
Tonin (B129) 2011
Anthony (B3) 2009
Lotte (B80) 2007; 4
Gwin (B50) 2010; 103
Chae (B19) 2012; 28
Liu (B76) 2015
Nicolas-Alonso (B94) 2012; 12
Pires (B105) 2008
Schwartz (B117) 2006; 52
Malouin (B85) 2003; 19
Penfield (B98) 1937; 60
Renard (B112) 2010; 19
Bulea (B11) 2013; 77
He (B54) 2015; 103
Cervera (B17) 2018; 5
Presacco (B107)
Rebsamen (B111) 2010; 18
Rebsamen (B110) 2007; 22
Millan (B90) 2004; 51
References_xml – start-page: 2318
  volume-title: IEEE International Conference on the Robotics and Automation ICRA'09
  ident: B59
  article-title: Synchronous EEG brain-actuated wheelchair with automated navigation
– volume: 590
  start-page: 2443
  year: 2012
  ident: B99
  article-title: The motor cortex drives the muscles during walking in human subjects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.227397
– volume: 60
  start-page: 389
  year: 1937
  ident: B98
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
  doi: 10.1093/brain/60.4.389
– volume: 90
  start-page: 240
  year: 2010
  ident: B83
  article-title: Mental practice for relearning locomotor skills
  publication-title: Phys. Ther.
  doi: 10.2522/ptj.20090029
– volume: 4
  start-page: R1
  year: 2007
  ident: B80
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– start-page: 519
  volume-title: 2011 5th International IEEE/EMBS Conference on the Neural Engineering (NER)
  ident: B20
  article-title: Brain-actuated humanoid robot navigation control using asynchronous brain-computer interface
– volume: 860
  start-page: 360
  year: 1998
  ident: B34
  article-title: Evidence for a spinal central pattern generator in humans
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1998.tb09062.x
– start-page: 1462
  volume-title: 2010 IEEE International Conference on Systems Man and Cybernetics
  year: 2010
  ident: B130
  article-title: The role of shared-control in BCI-based telepresence
  doi: 10.1109/ICSMC.2010.5642338
– volume: 10
  start-page: e0137910
  year: 2015
  ident: B48
  article-title: Decoding sensorimotor rhythms during robotic-assisted treadmill walking for brain computer interface (BCI) applications
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137910
– year: 2007
  ident: B116
  publication-title: Gaussian Mixture Model Classifiers
– volume: 97
  start-page: 767
  year: 2017
  ident: B73
  article-title: Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00027.2016
– volume: 7
  start-page: 168
  year: 2013
  ident: B91
  article-title: Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00168
– volume: 10
  start-page: 77
  year: 2013
  ident: B67
  article-title: Operation of a brain-computer interface walking simulator for individuals with spinal cord injury
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-77
– volume: 52
  start-page: 205
  year: 2006
  ident: B117
  article-title: Brain-controlled interfaces: movement restoration with neural prosthetics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.019
– start-page: 2215
  volume-title: 2017 11th Asian Control Conference (ASCC)
  ident: B125
  article-title: Detection of knee motor imagery by Mu ERD/ERS quantification for BCI based neurorehabilitation applications
– start-page: 658
  volume-title: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS
  year: 2008
  ident: B105
  article-title: Visual P300-based BCI to steer a wheelchair: a Bayesian approach
  doi: 10.1109/IEMBS.2008.4649238
– start-page: 584
  volume-title: 2011 5th International IEEE/EMBS Conference on the Neural Engineering (NER)
  ident: B15
  article-title: An analysis of EEG signals during voluntary rhythmic foot movements
– start-page: 163
  volume-title: 2010 2nd International Conference on the Chemical, Biological and Environmental Engineering (ICBEE)
  year: 2010
  ident: B42
  article-title: Electrooculographic and electromyographic artifacts removal from EEG
  doi: 10.1109/ICBEE.2010.5651351
– start-page: 316
  volume-title: IEEE International Conference on, IEEE Rehabilitation Robotics
  year: 2009
  ident: B123
  article-title: Fundamental research about electroencephalogram (EEG)-functional electrical stimulation (FES) rehabilitation system
– volume: 94
  start-page: 381
  year: 1995
  ident: B63
  article-title: Discrimination between phase-locked and non-phase-locked event-related EEG activity
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(95)00040-6
– volume: 137
  start-page: 1394
  year: 2014
  ident: B2
  article-title: Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans
  publication-title: Brain
  doi: 10.1093/brain/awu038
– start-page: 4227
  volume-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
  year: 2011
  ident: B129
  article-title: Brain-controlled telepresence robot by motor-disabled people
  doi: 10.1109/IEMBS.2011.6091049
– volume: 60
  start-page: 199
  year: 2015
  ident: B122
  article-title: An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand
  publication-title: Biomed. Tech. (Berl)
  doi: 10.1515/bmt-2014-0126
– volume: 9
  start-page: 056016
  year: 2012
  ident: B138
  article-title: Self-paced brain–computer interface control of ambulation in a virtual reality environment
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/5/056016
– volume: 120
  start-page: 868
  year: 2009
  ident: B136
  article-title: Semi-automatic identification of independent components representing EEG artifact
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.01.015
– volume: 31
  start-page: 4636
  year: 2011
  ident: B145
  article-title: Contribution of different limb controllers to modulation of motor cortex neurons during locomotion
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6511-10.2011
– volume: 20
  start-page: 2695
  year: 2014
  ident: B100
  article-title: Postural sway and motor control in trans-tibial amputees as assessed by electroencephalography during eight balance training tasks
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.891361
– start-page: 1579
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B28
  article-title: NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton
  doi: 10.1109/EMBC.2013.6609816
– volume: 20
  start-page: 379
  year: 2012
  ident: B58
  article-title: Electroencephalography (EEG)-based brain–computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2190299
– volume: 12
  start-page: 1
  year: 2015
  ident: B132
  article-title: Control strategies for active lower extremity prosthetics and orthotics: a review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-12-1
– volume: 127
  start-page: 379
  year: 2016
  ident: B6
  article-title: Effects of training and motivation on auditory P300 brain-computer interface performance
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.04.054
– volume: 91
  start-page: 22
  year: 2014
  ident: B49
  article-title: Imaging natural cognition in action
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.09.003
– volume: 114
  start-page: 1323
  year: 2007
  ident: B5
  article-title: Recent advances in functional neuroimaging of gait
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-007-0783-8
– volume: 2
  start-page: 157
  year: 1973
  ident: B135
  article-title: Toward direct brain-computer communication
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.02.060173.001105
– volume: 2012
  start-page: 375148
  year: 2012
  ident: B22
  article-title: From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation
  publication-title: Neural Plast.
  doi: 10.1155/2012/375148
– volume: 106
  start-page: 999
  year: 2011
  ident: B26
  article-title: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00549.2010
– volume: 12
  start-page: 68
  year: 2015
  ident: B118
  article-title: HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0058-9
– volume: 42
  start-page: 793
  year: 2012
  ident: B40
  article-title: A telepresence mobile robot controlled with a noninvasive brain–computer interface
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2011.2177968
– volume: 97
  start-page: 56
  year: 2017
  ident: B134
  article-title: Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.02.005
– start-page: 3573
  volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2015
  ident: B76
  article-title: A robotic gait training system integrating split-belt treadmill, footprint sensing and synchronous EEG recording for neuro-motor recovery
– volume: 93
  start-page: 2460
  year: 2005
  ident: B65
  article-title: Interlimb influences on paretic leg function in poststroke hemiparesis
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00963.2004
– volume: 51
  start-page: 1034
  year: 2004
  ident: B115
  article-title: BCI2000: a general-purpose brain-computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 56
  start-page: 2035
  year: 2009
  ident: B113
  article-title: xDAWN algorithm to enhance evoked potentials: application to brain–computer interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2012869
– volume: 12
  start-page: 14
  year: 2018
  ident: B72
  article-title: EEG-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: a novel approach of the 21st century
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00014
– volume: 5
  start-page: 180074
  ident: B56
  article-title: A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.74
– volume: 5
  start-page: 214
  year: 2008
  ident: B8
  article-title: Control of a humanoid robot by a noninvasive brain–computer interface in humans
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/2/012
– start-page: 348
  volume-title: 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO
  year: 2009
  ident: B97
  article-title: Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: Initial experiments
  doi: 10.1109/ROBIO.2009.4913028
– start-page: 336
  volume-title: Proceedings of the International Conference on Advances in Computer Enterntainment Technology
  year: 2009
  ident: B81
  article-title: Towards ambulatory brain-computer interfaces: A pilot study with P300 signals
  doi: 10.1145/1690388.1690452
– volume: 7
  start-page: 48
  year: 2013
  ident: B25
  article-title: Common muscle synergies for balance and walking
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00048
– volume: 378
  start-page: 156
  year: 2005
  ident: B103
  article-title: Beta rebound after different types of motor imagery in man
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2004.12.034
– start-page: 3361
  volume-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2009
  ident: B88
  article-title: Asynchronous non-invasive brain-actuated control of an intelligent wheelchair
– volume: 20
  start-page: 65
  year: 2013
  ident: B14
  article-title: Brain-controlled wheelchairs: a robotic architecture
  publication-title: IEEE Rob. Autom. Mag.
  doi: 10.1109/MRA.2012.2229936
– volume: 5
  start-page: 651
  year: 2018
  ident: B17
  article-title: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis
  publication-title: Ann. Clin. Transl. Neurol
  doi: 10.1002/acn3.544
– volume: 10
  start-page: 111
  year: 2013
  ident: B36
  article-title: Brain-computer interface controlled robotic gait orthosis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-111
– start-page: 1912
  volume-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2012
  ident: B93
  article-title: Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits
  doi: 10.1109/EMBC.2012.6346327
– volume-title: Endogenous Control of Powered Lower-Limb Exoskeleton
  year: 2017
  ident: B74
  doi: 10.1007/978-3-319-46532-6_19
– volume: 9
  start-page: 56
  year: 2012
  ident: B124
  article-title: Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-56
– start-page: 55
  volume-title: Proceedings of the ACM Symposium on Virtual Reality Software and Technology
  year: 2001
  ident: B128
  article-title: VRPN: a device-independent, network-transparent VR peripheral system
  doi: 10.1145/505008.505019
– volume: 9
  start-page: 212
  year: 2018
  ident: B119
  article-title: Technological approaches for neurorehabilitation: from robotic devices to brain stimulation and beyond
  publication-title: Fronti. Neurol
  doi: 10.3389/fneur.2018.00212
– volume: 13
  start-page: 031001
  year: 2016
  ident: B27
  article-title: Powered exoskeletons for bipedal locomotion after spinal cord injury
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/3/031001
– volume: 12
  start-page: 101
  year: 2015
  ident: B114
  article-title: Analyzing EEG signals to detect unexpected obstacles during walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0095-4
– volume: 2014
  start-page: 140863
  year: 2014
  ident: B144
  article-title: Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls
  publication-title: ScientificWorldJournal
  doi: 10.1155/2014/140863
– volume: 11
  start-page: 400
  year: 2017
  ident: B44
  article-title: Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00400
– volume: 203
  start-page: 181
  year: 2010
  ident: B139
  article-title: Temporal and spatial patterns of cortical activation during assisted lower limb movement
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2223-5
– volume: 7
  start-page: 1032
  year: 2008
  ident: B29
  article-title: Brain–computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70223-0
– volume: 2008
  start-page: 330
  year: 2008
  ident: B23
  article-title: Control of a wheelchair by motor imagery in real time
  publication-title: Intell. Data Eng. Autom. Learn.
  doi: 10.1007/978-3-540-88906-9_42
– volume: 119
  start-page: 2159
  year: 2008
  ident: B45
  article-title: A brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robots
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.06.001
– start-page: 12
  volume-title: 11th Symposium on Advanced Space Technologies in Robotics and Automation
  year: 2011
  ident: B46
  article-title: MINDWALKER: a brain controlled lower limbs exoskeleton for rehabilitation. Potential applications to space
– volume-title: A Tutorial on EEG Signal-Processing Techniques for Mental-State Recognition in Brain–Computer Interfaces
  year: 2014
  ident: B78
  doi: 10.1007/978-1-4471-6584-2_7
– volume: 19
  start-page: 35
  year: 2010
  ident: B112
  article-title: Openvibe: an open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments
  publication-title: Presence
  doi: 10.1162/pres.19.1.35
– volume: 28
  start-page: 1131
  year: 2012
  ident: B19
  article-title: Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2012.2201310
– volume: 10
  start-page: 056014
  year: 2013
  ident: B68
  article-title: BCILAB: a platform for brain–computer interface development
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056014
– start-page: 685
  volume-title: 2011 IEEE/RSJ International Conference on the Intelligent Robots and Systems (IROS)
  ident: B18
  article-title: Noninvasive brain-computer interface-based control of humanoid navigation
– volume: 11
  start-page: 7
  year: 2014
  ident: B64
  article-title: Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-7
– volume: 103
  start-page: 3526
  year: 2010
  ident: B50
  article-title: Removal of movement artifact from high-density EEG recorded during walking and running
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00105.2010
– volume: 12
  start-page: 1211
  year: 2012
  ident: B94
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 50
  start-page: 1589
  year: 2010
  ident: B71
  article-title: Real versus imagined locomotion: a [18 F]-FDG PET-fMRI comparison
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.060
– start-page: 1031
  volume-title: AIP Conference Proceedings
  year: 2011
  ident: B9
  article-title: Robot control through brain computer interface for patterns generation
– volume: 4
  start-page: 161
  year: 2010
  ident: B89
  article-title: Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00161
– volume: 12
  start-page: 056009
  year: 2015
  ident: B70
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/5/056009
– volume: 22
  start-page: 18
  year: 2007
  ident: B110
  article-title: Controlling a wheelchair indoors using thought
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.26
– start-page: 566
  volume-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
  ident: B16
  article-title: Optimizing the performances of a P300-based brain–computer interface in ambulatory conditions
– year: 2018
  ident: B121
  article-title: Brain-machine interfaces: powerful tools for clinical treatment and neuroscientific investigations
  publication-title: Neuroscientist
  doi: 10.1177/1073858418775355
– start-page: 1014
  volume-title: Proceedings of the Conference on Design, Automation & Test in Europe, European Design and Automation Association
  year: 2017
  ident: B33
  article-title: An embedded system remotely driving mechanical devices by P300 brain activity
– volume: 112
  start-page: 181
  year: 2014
  ident: B86
  article-title: Burst firing of neurons in the thalamic reticular nucleus during locomotion
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00366.2013
– volume: 9
  start-page: 247
  year: 2015
  ident: B12
  article-title: Prefrontal, Posterior parietal and sensorimotor network activity underlying speed control during walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00247
– start-page: 1
  volume-title: Biosignals and Biorobotics Conference (BRC), 2012 ISSNIP
  year: 2012
  ident: B39
  article-title: A five-state P300-based foot lifter orthosis: Proof of concept
  doi: 10.1109/BRC.2012.6222193
– volume: 124
  start-page: 379
  year: 2013
  ident: B61
  article-title: EEG during pedaling: evidence for cortical control of locomotor tasks
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.08.021
– volume: 18
  start-page: 590
  year: 2010
  ident: B111
  article-title: A brain controlled wheelchair to navigate in familiar environments
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2049862
– volume: 103
  start-page: 907
  year: 2015
  ident: B54
  article-title: Noninvasive brain-computer interfaces based on sensorimotor rhythms
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2407272
– start-page: 6414
  volume-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2012
  ident: B37
  article-title: Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke
  doi: 10.1109/EMBC.2012.6347462
– volume: 8
  start-page: 66
  year: 2011
  ident: B7
  article-title: Rehabilitation of gait after stroke: a review towards a top-down approach
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-66
– volume-title: Neural Engineering
  year: 2016
  ident: B53
– volume: 77
  start-page: e50602
  year: 2013
  ident: B11
  article-title: Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding
  publication-title: J. Vis. Exp.
  doi: 10.3791/50602
– volume: 31
  start-page: 153
  ident: B101
  article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume-title: MATLAB-Based Tools for BCI Research
  year: 2010
  ident: B30
  doi: 10.1007/978-1-84996-272-8_14
– volume: 8
  start-page: 49
  year: 2011
  ident: B35
  article-title: Brain-computer interface controlled functional electrical stimulation system for ankle movement
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-8-49
– volume: 19
  start-page: 47
  year: 2003
  ident: B85
  article-title: Brain activations during motor imagery of locomotor-related tasks: a PET study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10103
– volume: 4
  start-page: 463
  year: 2007
  ident: B1
  article-title: Brain–computer interface systems: progress and prospects
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.4.4.463
– volume: 25
  start-page: 614
  ident: B60
  article-title: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2009.2020347
– volume: 11
  start-page: 289
  year: 2018
  ident: B32
  article-title: Advances in automation technologies for lower-extremity neurorehabilitation: a review and future challenges
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2830805
– volume: 15
  start-page: 031005
  year: 2018
  ident: B79
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 1071
  start-page: 145
  ident: B102
  article-title: Walking from thought
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.11.083
– start-page: 67
  volume-title: Recurrent Neural Networks for Temporal Data Processing
  year: 2011
  ident: B21
  article-title: Toward an integrative dynamic recurrent neural network for sensorimotor coordination dynamics
– volume: 106
  start-page: 1875
  ident: B108
  article-title: Neural decoding of treadmill walking from noninvasive electroencephalographic signals
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00104.2011
– volume: 1236
  start-page: 79
  year: 2008
  ident: B109
  article-title: Cortical representation of rhythmic foot movements
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.07.046
– volume: 4
  start-page: 119
  year: 2018
  ident: B126
  article-title: Event-related changes detection in sensorimotor rhythm
  publication-title: Int. Rob. Autom. J.
  doi: 10.15406/iratj.2018.04.00105
– volume: 110
  start-page: 787
  year: 1999
  ident: B92
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(98)00038-8
– start-page: 1794
  volume-title: 2012 4th IEEE RAS & EMBS International Conference on the Biomedical Robotics and Biomechatronics (BioRob)
  year: 2012
  ident: B47
  article-title: MINDWALKER: going one step further with assistive lower limbs exoskeleton for SCI condition subjects
  doi: 10.1109/BioRob.2012.6290688
– start-page: 5606
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B66
  article-title: High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton
  doi: 10.1109/EMBC.2013.6610821
– volume: 120
  start-page: 24
  year: 2009
  ident: B104
  article-title: Could the beta rebound in the EEG be suitable to realize a “brain switch”?
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.09.027
– volume-title: Biosignal and Medical Image Processing
  year: 2014
  ident: B120
– volume: 32
  start-page: 12237
  year: 2012
  ident: B24
  article-title: Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6344-11.2012
– start-page: 000091
  volume-title: 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)
  ident: B127
  article-title: Mu-beta rhythm ERD/ERS quantification for foot motor execution and imagery tasks in BCI applications
– volume: 61
  start-page: 2092
  year: 2014
  ident: B143
  article-title: A closed-loop brain–computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2313867
– volume: 539
  start-page: 284
  year: 2016
  ident: B13
  article-title: A brain–spine interface alleviating gait deficits after spinal cord injury in primates
  publication-title: Nature
  doi: 10.1038/nature20118
– volume: 124
  start-page: 2153
  year: 2013
  ident: B52
  article-title: EEG-based classification of imaginary left and right foot movements using beta rebound
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.05.006
– volume: 192
  start-page: 152
  year: 2010
  ident: B96
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 113
  start-page: 767
  year: 2002
  ident: B141
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 51
  start-page: 1026
  year: 2004
  ident: B90
  article-title: Noninvasive brain-actuated control of a mobile robot by human EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827086
– volume: 2007
  start-page: 3
  year: 2007
  ident: B133
  article-title: Context-based filtering for assisted brain-actuated wheelchair driving
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/25130
– volume: 586
  start-page: 1239
  year: 2008
  ident: B38
  article-title: Muscle synergies during locomotion in the cat: a model for motor cortex control
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.146605
– volume: 118
  start-page: 480
  year: 2007
  ident: B41
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.10.019
– volume-title: BCI2000: A General-Purpose Software Platform for BCI Research
  year: 2007
  ident: B87
– volume: 5
  start-page: 10
  year: 2008
  ident: B43
  article-title: Human-machine interfaces based on EMG and EEG applied to robotic systems
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-10
– volume: 2011
  start-page: 10
  year: 2011
  ident: B31
  article-title: EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/130714
– volume: 5
  start-page: 1
  year: 2018
  ident: B82
  article-title: Movement goals encoded within the cortex and muscle synergies to reduce redundancy pre and post-stroke. The relevance for gait rehabilitation and the prescription of walking-aids. A literature review and scholarly discussion
  publication-title: Physiother. Theory Pract.
  doi: 10.1080/09593985.2018.1434579
– volume-title: Proceedings of RESNA Annual Conference
  year: 2010
  ident: B137
  article-title: BCI controlled walking simulator for a BCI driven FES device
– start-page: 21
  volume-title: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
  year: 2012
  ident: B95
  article-title: Brain-controlled exoskeleton robot for BMI rehabilitation
  doi: 10.1109/HUMANOIDS.2012.6651494
– volume: 34
  start-page: 397
  year: 2012
  ident: B62
  article-title: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.11.018
– volume: 4
  start-page: 1
  year: 2018
  ident: B75
  article-title: Analysis of electroencephalography event-related desynchronisation and synchronisation induced by lower-limb stepping motor imagery
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-018-0379-9
– year: 2012
  ident: B140
  article-title: Brain-Computer Interfaces: Principles and Practice
  doi: 10.1145/2110363.2110366
– volume: 405
  start-page: 1
  year: 1988
  ident: B4
  article-title: The supraspinal control of mammalian locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017319
– volume: 23
  start-page: 1087
  year: 2003
  ident: B10
  article-title: Activity of different classes of neurons of the motor cortex during locomotion
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-03-01087.2003
– start-page: 190
  volume-title: 2015 7th International IEEE/EMBS Conference on the Neural Engineering (NER)
  year: 2015
  ident: B69
  article-title: Engagement-sensitive interactive neuromuscular electrical therapy system for post-stroke balance rehabilitation-a concept study
  doi: 10.1109/NER.2015.7146592
– volume: 42
  start-page: 225
  year: 2011
  ident: B131
  article-title: A self-paced motor imagery based brain-computer interface for robotic wheelchair control
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200407
– volume: 101
  start-page: 17849
  year: 2004
  ident: B142
  article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0403504101
– volume: 15
  start-page: 021004
  ident: B55
  article-title: Brain-machine interfaces for controlling lower-limb powered robotic systems
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaa8c0
– start-page: 4588
  volume-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
  ident: B107
  article-title: Towards a non-invasive brain-machine interface system to restore gait function in humans
– volume-title: Powered Ankle-Foot Prothesis
  year: 2013
  ident: B57
– volume-title: Neural Network Learning: Theoretical Foundations
  year: 2009
  ident: B3
– start-page: 2438
  volume-title: 2011 IEEE/RSJ International Conference on the IEEE Intelligent Robots and Systems (IROS)
  year: 2011
  ident: B77
  article-title: Wheelchair navigation assisted by human-machine shared-control and a P300-based brain computer interface
  doi: 10.1109/IROS.2011.6094748
– volume: 22
  start-page: 330
  year: 2008
  ident: B84
  article-title: Clinical assessment of motor imagery after stroke
  publication-title: Neurorehabil. Neural Repair.
  doi: 10.1177/1545968307313499
– start-page: 6941
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B106
  article-title: Principles of human locomotion: a review
  doi: 10.1109/EMBC.2013.6611154
– volume: 54
  start-page: 1289
  year: 2011
  ident: B51
  article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.066
SSID ssj0062651
Score 2.5536425
SecondaryResourceType review_article
Snippet Over recent years, brain-computer interface (BCI) has emerged as an alternative communication system between the human brain and an output device. Deciphered...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 312
SubjectTerms assistive-robot devices
Brain
Brain injury
brain-computer interface (BCI)
Communication
Communications systems
Computer applications
EEG
Electroencephalography
electroencephalography (EEG)
Electromyography
Event-related potentials
Exoskeleton
exoskeletons
Gait
Implants
Locomotion
Nervous system
Neuroscience
orthosis
Rehabilitation
Robots
Sensorimotor system
Spinal cord injuries
spinal cord injury (SCI)
Trauma
Visual evoked potentials
Walking
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYuo66O-iCCCh7Bt02Tbgwd32fXB6sEHeCtJk6LgdsXdFfz3zqTdshXRi9c2gfSbSeabzmSGkGOplRamI5gvrWaRjgxTiRbMAN8XiQUjp_G-882tvHyMrp_E00KrL8wJK8sDl8C18W6k8YVCu4nkOu7Efmg4V36Yyyxy3jrYvLkzVZ7BwNJFUAYlwQVL2nnxPMNr5wEmTvIgbBghV6v_J4L5PU9ywfAM1shqxRjpebnSdbJkiw3SOi_AWx590hPqcjjdz_EWOev3L1gXDJOh3d4V7ZV56PQeJDOyEwoElQ6xLRobvow0BdHgDv-w7G6sx9PJJnkc9B96l6xqkMAyIeSUJVbFgTJK2EgBsMBtRJZp4HB5xnPs75pbbiV4iCbBoj3W55lNMl8LAMGo0PItslyMC7tDaA48w_pxDs6yiWKjdKgjBVAZJFBRHHqkPUcszarq4djE4jUFLwIxTh3GKWLs6o3CjNN6xltZOeOXsV0UQj0Oa167B6AJaaUJ6V-a4JH9uQjTaiNO0hADucBSA-mRo_o1bCGMi6jCjmcwBvQn5JzL2CPbpcTrlXAMzcMp6JFOQxcaS22-KV6eXZluid5LR-7-x7ftkRVEy2Ueyn2yPH2f2QNgQ1N96BT_C5MqBEQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdge-EFAYOtMFCQENIeomubJtc-ILQ73TbQmKbBpL1V-eo2adeO3R0S_z12mjs4NO21SaTUju2fY8cG-KCMNtINJU-VN7wwheO6MpI7xPuy8mjkDL13_naijs6LrxfyIl64zWJa5VInBkXtOkt35IOcInIINzL1-fYnp65RFF2NLTQewyaq4BKdr83R5OT0bKmLEa3LrA9OoitWDZr2akHPzzNKoBRZvmaMQs3--4Dm__mS_xigg2fwNCJHtt-z-jk88u0L2Npv0Wue_mYfWcjlDJfkW_BpMjnkIzRQjo3GX9i4z0dn35FDUz9jCFTZMbVH48fXU8OQRSTpvzw_60w3n72E84PJj_ERj40SuJVSzXnldZlpp6UvNBIYMY601iCWa6xoqM9r44VX6Cm6ior3-FRYX9nUSCSC07kXr2Cj7Vq_A6xBvOHTskGn2RWl0yY3hUZSOQJSRZknMFhSrLaxijg1s7ip0ZsgGteBxjXRONQdxRV7qxW3fQWNB-aOiAmreVT7Onzo7i7rKEo1vZZ1qdSEpMjdKocl_pkQOs0bZYs0gd0lC-sokLP67_FJ4P1qGEWJ4iO69d0C5yB2yoUQqkxgu-f4aieCQvSoDRMYrp2Fta2uj7TXV6FctyIvZqheP7ytN_CE6BByC9UubMzvFv4t4p25eRcP9R-K0P8-
  priority: 102
  providerName: ProQuest
Title EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots
URI https://www.ncbi.nlm.nih.gov/pubmed/30127730
https://www.proquest.com/docview/2287051916
https://www.proquest.com/docview/2091233368
https://pubmed.ncbi.nlm.nih.gov/PMC6088276
https://doaj.org/article/5901d05a3976487587802d33a02f6c40
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KcumlNE0fal2zhVLoYRtJ-5B0MCU2TtKShJLW4JvY1a6SQCwlfoTm33dmJat1MYVeDLZWRvpmV_N9mtkZQt4ro420iWShcoYJIyzTmZHMAt-XmQMnZ3C_89m5OpmIr1M5_b09ugVwsVXaYT-pyfzm08-7h8-w4AeoOMHfHpTV1Qo3lUeYFsmx5fAu-KUEl-mZ6GIKwNx9M8ZIKZBfQHSaoOXWf9hwUr6W_zYC-nce5R-O6egpedIySnrYTIE98shVz8j-YQVqevZAP1Cf4-lfnu-TwXh8zIbguCwdjr7QUZOnTr-D5WZuQYHA0lNsm8ZOr2eGgunwCXDv2EVt6uXiOZkcjX-MTljbQIEVUqoly5xOI221dEID8MB9ZFEYuPWy4CX2fy0ddwoUpM2wqI8LeeGyIjQSQLA6dvwF2anqyr0itAQe4sK0BDFtRWq1iY3QAJVFgiXSOCAHa8Tyoq0ujk0ubnJQGYhx7jHOEWNfjxTO-NidcdtU1vjH2CEaoRuHNbH9D_X8Mm-XWI67aG0oNTIslGFpksKdca7DuFSFCAPSW5swX8-zPMZAL7DYSAXkXXcYlhjGTXTl6hWMAU4Vc85VGpCXjcW7K-EYuoenZECSjbmwcambR6rrK1_GW6G6SdTr_8DhDXmMX3wCouqRneV85d4CKVqaPtkdjs-_XfT9SwX4PJ5GfT__fwGZ5Ar1
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-AgOMBEg8WE3i2E0eJrSWjpZ1FRqbtLfMjh02iSZjbUH7p_gbuctHoQjtba-JHTnn8_n3853vAF4ro420Pcl95QyPTGS5TozkFvG-TBxucobuOx9M1eg4-nQiTzbgV3sXhsIqW5tYGWpbZnRG3g3JI4dwI1DvL75zqhpF3tW2hEatFvvu6idStvnO-APO75sw3BseDUa8qSrAMynVgidOx4G2WrpI42gQEMgsMwh88kzkVBQ1d8IppFU2oUw3zheZSzLfSNR_q0Mn8Lu3YDMSSGU6sNkfTj8ftrYf2YEMamcoUr-kmxdnS7ruHlDApgjCtc2vqhHwP2D7b3zmXxve3j242yBVtlur1n3YcMUD2NotkKXPrthbVsWOVofyW7AzHH7kfdwQLesPxmxQx7-zL6gRMzdnCIzZhMqx8cn5zDBUCbIsPxw_LE25mD-E4xsR4SPoFGXhngDLEd84P86RpNsottqEJtIoKkvALYpDD7qtxNKsyVpOxTO-pcheSMZpJeOUZFzlOcUe71Y9LuqMHde07dMkrNpRru3qQXn5NW2Wbkq3c60vNSE3ondxL8Y_E0L7Ya6yyPdgu53CtDEA8_SPunrwavUaly75Y3ThyiW2QawWCiFU7MHjesZXIxEUEoDW14Pemi6sDXX9TXF-VqUHV8Saeurp9cN6CbdHRweTdDKe7j-DOySTKq5RbUNncbl0zxFrLcyLRsEZnN70mvoNDXM8pA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IGB8BAYYCZB4sJrEsZs8TGjtWlZWqmkwaW-ZHTtsEk3G2oL2r_HXcZePQhHa214TJ3LO9_H7xec7gNfKaCNtT3JfOcMjE1muEyO5RbwvE4dBztB5509TtX8cfTyRJxvwqz0LQ2mVrU-sHLUtM_pH3g1pRw7hRqC6eZMWcbg3en_xnVMHKdppbdtp1Cpy4K5-In2b74z3cK3fhOFo-GWwz5sOAzyTUi144nQcaKulizTODMGBzDKDICjPRE4NUnMnnEKKZROqeuN8kbkk841EW7A6dALfews2e8iK_A5s9ofTw6M2DiBTkEG9MYo0MOnmxdmSjr4HlLwpgnAtEFb9Av4Hcv_N1fwr-I3uwd0GtbLdWs3uw4YrHsDWboGMfXbF3rIqj7T6Qb8FO8PhB97H4GhZfzBmgzoXnn1G7Zi5OUOQzCbUmo1PzmeGoXqQl_nh-FFpysX8IRzfiAgfQacoC_cEWI5Yx_lxjoTdRrHVJjSRRlFZAnFRHHrQbSWWZk0Fc2qk8S1FJkMyTisZpyTjquYpPvFu9cRFXb3jmrF9WoTVOKq7XV0oL7-mjRmndFLX-lITiiOqF_di_DIhtB_mKot8D7bbJUwbZzBP_6iuB69Wt9GMaW9GF65c4hjEbaEQQsUePK5XfDUTQekB6Ik96K3pwtpU1-8U52dVqXBFDKqnnl4_rZdwG20pnYynB8_gDomkSnFU29BZXC7dc4RdC_Oi0W8GpzdtUr8Bt0FA2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+BCI+Control+Schemes+for+Lower-Limb+Assistive-Robots&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Tariq%2C+Madiha&rft.au=Trivailo%2C+Pavel+M.&rft.au=Simic%2C+Milan&rft.date=2018-08-06&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=12&rft_id=info:doi/10.3389%2Ffnhum.2018.00312&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2018_00312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon