Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms
Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different...
Saved in:
Published in | PeerJ. Computer science Vol. 7; p. e536 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
San Diego
PeerJ. Ltd
19.05.2021
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different types of crops. In this research work, crop classification is performed at different phenological stages using optical images which are obtained from drone. For this purpose, gray level co-occurrence matrix (GLCM) based features are extracted from underlying gray scale images collected by the drone. To classify the different types of crops, different ML algorithms including Random Forest (RF), Naive Bayes (NB), Neural Network (NN) and Support Vector Machine (SVM) are applied. The results showed that the ML algorithms performed much better on GLCM features as compared to gray scale images with a margin of 13.65% in overall accuracy. |
---|---|
AbstractList | Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different types of crops. In this research work, crop classification is performed at different phenological stages using optical images which are obtained from drone. For this purpose, gray level co-occurrence matrix (GLCM) based features are extracted from underlying gray scale images collected by the drone. To classify the different types of crops, different ML algorithms including Random Forest (RF), Naive Bayes (NB), Neural Network (NN) and Support Vector Machine (SVM) are applied. The results showed that the ML algorithms performed much better on GLCM features as compared to gray scale images with a margin of 13.65% in overall accuracy. |
ArticleNumber | e536 |
Audience | Academic |
Author | Zaidi, Syed Mohammad Hassan Iqbal, Naveed Shafi, Uferah Mumtaz, Rafia |
Author_xml | – sequence: 1 fullname: Iqbal, Naveed – sequence: 2 fullname: Mumtaz, Rafia – sequence: 3 fullname: Shafi, Uferah – sequence: 4 fullname: Zaidi, Syed Mohammad Hassan |
BookMark | eNptkk1vEzEQhleoiJbSGz_AEpdWImG9_lpfkKoIQqQgJD7O1qx3NjjaXQfbW9p_j5NUQBCeg63xM6814_d5cTb6EYviJS3nSlH1ZocYtjMb54LJJ8VFxZScCa2rs7_O58VVjNuyLKmgeelnxTnjlNNa1RdFWgZ4ID3eYU-sn3lrpxBwtEgGSMHdk-vlevHxhiS8T1NA0kDEltjgd8T2EKPrnIXk_Eim6MYN6f1PAn1yaWqRBBx8QhJxPNztekidD0N8UTztoI949bhfFt_ev_u6-DBbf1quFrfrmRVCppkGXktOVcM60XFUUotSQ9fkUEKCVAI4U7VGFFRD06oSWyaEtrzSNeqGXRaro27rYWt2wQ0QHowHZw4JHzYGQnK2R2NFIxvGrC3rlrOKNh23pW0BbJ0FQWett0et3dQM2FocU4D-RPT0ZnTfzcbfmZoqKVidBa4fBYL_MWFMZnDRYt_DiH6KphKccc5yxxl99Q-69VMY86gyVen8kaISf6gN5Abc2Pn8rt2Lmlspq4rWsi4zNf8PlaPFwdnsps7l_EnBzUlBZvafv4EpRrP68vmUfX1ksyFiDNj9ngctzd6g5mBQY6PJBmW_AAh_2jU |
CitedBy_id | crossref_primary_10_3390_rs15010170 crossref_primary_10_1080_13682199_2023_2200513 crossref_primary_10_3390_f14020299 crossref_primary_10_1007_s42600_022_00250_y crossref_primary_10_1007_s12524_023_01783_0 crossref_primary_10_1007_s40808_021_01258_6 crossref_primary_10_3389_fonc_2023_1121594 crossref_primary_10_1007_s00530_024_01275_2 crossref_primary_10_3390_rs15225328 crossref_primary_10_1080_13682199_2023_2208963 crossref_primary_10_1109_ACCESS_2023_3290907 crossref_primary_10_3390_s24051543 crossref_primary_10_3390_land12030581 crossref_primary_10_3390_rs16071221 crossref_primary_10_1080_01431161_2022_2142079 crossref_primary_10_1080_13682199_2023_2178611 crossref_primary_10_1016_j_rsase_2022_100782 crossref_primary_10_3390_app122110760 crossref_primary_10_1080_10106049_2024_2364680 crossref_primary_10_3390_rs14246218 crossref_primary_10_1007_s11042_023_17615_9 crossref_primary_10_1016_j_bspc_2024_106380 crossref_primary_10_1080_17538947_2023_2297013 crossref_primary_10_1016_j_heliyon_2023_e21697 crossref_primary_10_1007_s12524_022_01563_2 crossref_primary_10_3390_agriculture13061113 crossref_primary_10_3390_electronics12224626 crossref_primary_10_3390_rs14153715 crossref_primary_10_1016_j_scitotenv_2024_171408 crossref_primary_10_3390_plants12162893 crossref_primary_10_26634_jit_12_4_20209 crossref_primary_10_3390_f14071345 crossref_primary_10_1109_JSTARS_2023_3255541 crossref_primary_10_1016_j_heliyon_2023_e21703 crossref_primary_10_1093_micmic_ozad042 crossref_primary_10_3390_rs15194676 crossref_primary_10_1016_j_aej_2023_01_004 crossref_primary_10_1177_09544089231154959 crossref_primary_10_3390_s22020562 crossref_primary_10_1007_s11517_023_02830_1 crossref_primary_10_1109_ACCESS_2024_3389935 crossref_primary_10_1016_j_medengphy_2022_103939 crossref_primary_10_1016_j_heliyon_2024_e32726 crossref_primary_10_1007_s13198_024_02272_4 crossref_primary_10_1117_1_JRS_18_014514 crossref_primary_10_3390_app12126000 crossref_primary_10_3390_rs14205206 crossref_primary_10_3390_rs16010053 crossref_primary_10_3390_agriengineering6020065 crossref_primary_10_3390_rs16040705 crossref_primary_10_1016_j_compag_2022_107362 crossref_primary_10_3390_e25081170 crossref_primary_10_1186_s13550_023_00959_6 crossref_primary_10_1080_01431161_2023_2176723 crossref_primary_10_3390_agronomy14051084 crossref_primary_10_3390_su14127470 crossref_primary_10_3390_jimaging8090248 crossref_primary_10_1007_s11227_023_05627_z crossref_primary_10_3233_JIFS_237653 crossref_primary_10_3390_horticulturae8090839 crossref_primary_10_1016_j_ymeth_2024_03_005 |
Cites_doi | 10.1023/A:1010933404324 10.3390/rs11243012 10.1016/j.asr.2018.12.005 10.5194/isprs-archives-XLII-3-1023-2018 10.1186/s13007-019-0522-9 10.1109/MGRS.2018.2865815 10.1002/9781118029145 10.1016/j.agrformet.2018.11.002 10.3390/rs10081282 10.1016/j.rse.2003.04.007 10.1145/507338.507355 10.1071/WF01031 10.1109/TSMC.1973.4309314 10.3390/app9040643 10.1142/9789814343138_0010 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 PeerJ. Ltd. 2021 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Iqbal et al. 2021 Iqbal et al. |
Copyright_xml | – notice: COPYRIGHT 2021 PeerJ. Ltd. – notice: 2021 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Iqbal et al. 2021 Iqbal et al. |
DBID | AAYXX CITATION ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.536 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection ProQuest Computing Computer Science Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computing (Alumni Edition) ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
EndPage | e536 |
ExternalDocumentID | oai_doaj_org_article_c5b6b33cc08d4321bf4c0cdaac859ca9 A662218680 10_7717_peerj_cs_536 |
GeographicLocations | United States Pakistan |
GeographicLocations_xml | – name: Pakistan – name: United States |
GrantInformation_xml | – fundername: NRPU program, Pakistan |
GroupedDBID | 3V. 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M0N M~E OK1 P62 PIMPY PQQKQ PROAC RPM 7XB 8AL 8FK JQ2 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c556t-9a486417b3f5f4e769509afbfbf756a675a43789ee519abd70ed3559c4298e9b3 |
IEDL.DBID | RPM |
ISSN | 2376-5992 |
IngestDate | Tue Oct 22 14:55:42 EDT 2024 Tue Sep 17 21:19:29 EDT 2024 Sat Aug 17 02:00:47 EDT 2024 Thu Oct 10 18:23:25 EDT 2024 Thu Feb 22 23:36:31 EST 2024 Sat Dec 16 00:21:28 EST 2023 Thu Aug 01 19:30:15 EDT 2024 Fri Aug 23 00:33:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-9a486417b3f5f4e769509afbfbf756a675a43789ee519abd70ed3559c4298e9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176538/ |
PMID | 34141878 |
PQID | 2529015525 |
PQPubID | 2045934 |
PageCount | e536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5b6b33cc08d4321bf4c0cdaac859ca9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8176538 proquest_miscellaneous_2543443864 proquest_journals_2529015525 gale_infotracmisc_A662218680 gale_infotracacademiconefile_A662218680 gale_incontextgauss_ISR_A662218680 crossref_primary_10_7717_peerj_cs_536 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-19 |
PublicationDateYYYYMMDD | 2021-05-19 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationYear | 2021 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Ding (10.7717/peerj-cs.536/ref-6) 2011; 40 Breiman (10.7717/peerj-cs.536/ref-3) 2001; 45 Haralick (10.7717/peerj-cs.536/ref-10) 1973; SMC-3 Helber (10.7717/peerj-cs.536/ref-11) 2018 Luciani (10.7717/peerj-cs.536/ref-20) 2017 Deng (10.7717/peerj-cs.536/ref-5) 2019; 63 GLCM Equations (10.7717/peerj-cs.536/ref-7) 2011 Seelan (10.7717/peerj-cs.536/ref-22) 2003; 88 Zahid (10.7717/peerj-cs.536/ref-29) 2019; 15 Data Augmentation (10.7717/peerj-cs.536/ref-1) 2020 Böhler (10.7717/peerj-cs.536/ref-2) 2018; 10 Zhao (10.7717/peerj-cs.536/ref-30) 2019; 11 Khaliq (10.7717/peerj-cs.536/ref-15) 2018 Goodfellow (10.7717/peerj-cs.536/ref-8) 2016; 1 Latif (10.7717/peerj-cs.536/ref-18) 2018; 6 Kwak (10.7717/peerj-cs.536/ref-16) 2019; 9 Witten (10.7717/peerj-cs.536/ref-28) 2002; 31 Trujillano (10.7717/peerj-cs.536/ref-26) 2018 Zhou (10.7717/peerj-cs.536/ref-31) 2018 Sivakumar (10.7717/peerj-cs.536/ref-23) 2004; 1182 Liu (10.7717/peerj-cs.536/ref-19) 2018; 42 Navalgund (10.7717/peerj-cs.536/ref-21) 2007; 93 Laben (10.7717/peerj-cs.536/ref-17) 2000 Kantardzic (10.7717/peerj-cs.536/ref-14) 2011 Gunn (10.7717/peerj-cs.536/ref-9) 1998; 14 Hufkens (10.7717/peerj-cs.536/ref-13) 2019; 265 Story (10.7717/peerj-cs.536/ref-24) 1986; 52 Tuceryan (10.7717/peerj-cs.536/ref-27) 1993 Crop Calendar (10.7717/peerj-cs.536/ref-4) 2020 Sun (10.7717/peerj-cs.536/ref-25) 2020 Hu (10.7717/peerj-cs.536/ref-12) 2018 |
References_xml | – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.7717/peerj-cs.536/ref-3 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 11 start-page: 3012 issue: 24 year: 2019 ident: 10.7717/peerj-cs.536/ref-30 article-title: Finer classification of crops by fusing UAV images and sentinel-2a data publication-title: Remote Sensing doi: 10.3390/rs11243012 contributor: fullname: Zhao – volume: 1 volume-title: Deep learning year: 2016 ident: 10.7717/peerj-cs.536/ref-8 contributor: fullname: Goodfellow – volume: 63 start-page: 2144 issue: 7 year: 2019 ident: 10.7717/peerj-cs.536/ref-5 article-title: Land use/land cover classification using time series landsat 8 images in a heavily urbanized area publication-title: Advances in Space Research doi: 10.1016/j.asr.2018.12.005 contributor: fullname: Deng – volume: 42 start-page: 1023 issue: 3 year: 2018 ident: 10.7717/peerj-cs.536/ref-19 article-title: UAV-based crops classification with joint features from orthoimage and DSM data publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences doi: 10.5194/isprs-archives-XLII-3-1023-2018 contributor: fullname: Liu – volume: 1182 year: 2004 ident: 10.7717/peerj-cs.536/ref-23 article-title: Satellite remote sensing and gis applications in agricultural meteorology publication-title: Proceedings of the Training Workshop in Dehradun, India. AGM-8, WMO/TD contributor: fullname: Sivakumar – volume: 15 start-page: 1 issue: 1 year: 2019 ident: 10.7717/peerj-cs.536/ref-29 article-title: Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves publication-title: Plant Methods doi: 10.1186/s13007-019-0522-9 contributor: fullname: Zahid – start-page: 204 year: 2018 ident: 10.7717/peerj-cs.536/ref-11 article-title: Introducing eurosat: a novel dataset and deep learning benchmark for land use and land cover classification contributor: fullname: Helber – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.536/ref-26 article-title: Corn classification using deep learning with UAV imagery: an operational proof of concept contributor: fullname: Trujillano – year: 2000 ident: 10.7717/peerj-cs.536/ref-17 article-title: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening contributor: fullname: Laben – volume: 6 start-page: 10 issue: 4 year: 2018 ident: 10.7717/peerj-cs.536/ref-18 article-title: An agricultural perspective on flying sensors: state of the art, challenges, and future directions publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2018.2865815 contributor: fullname: Latif – volume: 14 start-page: 5 issue: 1 year: 1998 ident: 10.7717/peerj-cs.536/ref-9 article-title: Support vector machines for classification and regression publication-title: ISIS Technical Report contributor: fullname: Gunn – volume: 40 start-page: 2 issue: 1 year: 2011 ident: 10.7717/peerj-cs.536/ref-6 article-title: An overview on theory and algorithm of support vector machines publication-title: Journal of University of Electronic Science and Technology of China contributor: fullname: Ding – volume-title: Data mining: concepts, models, methods, and algorithms year: 2011 ident: 10.7717/peerj-cs.536/ref-14 doi: 10.1002/9781118029145 contributor: fullname: Kantardzic – volume: 265 start-page: 327 issue: 17 year: 2019 ident: 10.7717/peerj-cs.536/ref-13 article-title: Monitoring crop phenology using a smartphone based near-surface remote sensing approach publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2018.11.002 contributor: fullname: Hufkens – volume: 10 start-page: 1282 issue: 8 year: 2018 ident: 10.7717/peerj-cs.536/ref-2 article-title: Crop classification in a heterogeneous arable landscape using uncalibrated UAV data publication-title: Remote Sensing doi: 10.3390/rs10081282 contributor: fullname: Böhler – year: 2020 ident: 10.7717/peerj-cs.536/ref-4 article-title: Crop Calendar of Pakistan contributor: fullname: Crop Calendar – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.536/ref-12 article-title: Fine classification of typical farms in Southern China based on airborne hyperspectral remote sensing images contributor: fullname: Hu – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.536/ref-15 article-title: Land cover and crop classification using multitemporal sentinel-2 images based on crops phenological cycle contributor: fullname: Khaliq – volume: 88 start-page: 157 issue: 1–2 year: 2003 ident: 10.7717/peerj-cs.536/ref-22 article-title: Remote sensing applications for precision agriculture: a learning community approach publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.04.007 contributor: fullname: Seelan – start-page: 4390 year: 2017 ident: 10.7717/peerj-cs.536/ref-20 article-title: Crop species classification: a phenology based approach contributor: fullname: Luciani – volume: 31 start-page: 76 issue: 1 year: 2002 ident: 10.7717/peerj-cs.536/ref-28 article-title: Data mining: practical machine learning tools and techniques with java implementations publication-title: ACM Sigmod Record doi: 10.1145/507338.507355 contributor: fullname: Witten – year: 2020 ident: 10.7717/peerj-cs.536/ref-1 article-title: Data augmentation using Image Data Generator keras contributor: fullname: Data Augmentation – volume: 93 start-page: 1747 issue: 12 year: 2007 ident: 10.7717/peerj-cs.536/ref-21 article-title: Remote sensing applications: an overview publication-title: Current Science contributor: fullname: Navalgund – volume: 52 start-page: 397 issue: 3 year: 1986 ident: 10.7717/peerj-cs.536/ref-24 article-title: Accuracy assessment: a user’s perspective publication-title: Photogrammetric Engineering and Remote Sensing doi: 10.1071/WF01031 contributor: fullname: Story – volume: SMC-3 start-page: 610 issue: 6 year: 1973 ident: 10.7717/peerj-cs.536/ref-10 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick – volume: 9 start-page: 643 issue: 4 year: 2019 ident: 10.7717/peerj-cs.536/ref-16 article-title: Impact of texture information on crop classification with machine learning and UAV images publication-title: Applied Sciences doi: 10.3390/app9040643 contributor: fullname: Kwak – start-page: 235 year: 1993 ident: 10.7717/peerj-cs.536/ref-27 article-title: Texture analysis publication-title: Handbook of Pattern Recognition and Computer Vision doi: 10.1142/9789814343138_0010 contributor: fullname: Tuceryan – start-page: 5300 year: 2018 ident: 10.7717/peerj-cs.536/ref-31 article-title: Crops classification from sentinel-2a multi-spectral remote sensing images based on convolutional neural networks contributor: fullname: Zhou – start-page: 71 year: 2020 ident: 10.7717/peerj-cs.536/ref-25 article-title: IoT enabled smart fertilization and irrigation aid for agricultural purposes contributor: fullname: Sun – year: 2011 ident: 10.7717/peerj-cs.536/ref-7 article-title: Gray Level Co-occurence Matrix equations contributor: fullname: GLCM Equations |
SSID | ssj0001511119 |
Score | 2.4629042 |
Snippet | Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | e536 |
SubjectTerms | Accuracy Algorithms Altitude Cable television broadcasting industry Classification Computer Vision Corn Crops Data Mining and Machine Learning Data Science Decision trees Deep learning Feature extraction Gray scale Image classification Image resolution Low altitude Machine learning Neural networks Platforms Principal components analysis Remote sensing Satellites Smartphones Spatial and Geographic Information Systems Support vector machines Texture analysis Time series Trends Unmanned aerial vehicles Wheat |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1z4RgQKMggEHEKzib9yLBVtQZQDUKk3y57YLWhJVklWwL9nJsmWDRy4oNzWs1IybyYzozw_M_Y0audF5nQaooup0DizmhhlKqQTCjA1w8DNOfmgjk_FuzN5tnXUF3HCRnng0XF7IL3yRQGQmUoU-cJHARlUzoGRJbhx615Wbg1T4_5gehWUI9Nd48iytwqh_ZpC90oOasy_a9Ag1f_3C_lPkuRW1Tm8wa5N7SLfH2_zJrsS6lvs-uYoBj5l5m3WH7XuJ18SA4hDkzYAg-4SBP6NNPh_8BdH7w9OXnLieazbwKl4VZyO7-JA_TMRhgaMOBHhz_my-c4dbc1dV4G3AfEMvCOuO66tlq6nVre7w04P33w-OE6nAxVSkFL1aemEUWKhfRFlFEGrEtsFFz1eWiqHs4MThTZlCNjXOV_pLFTYj5SARcuE0hd32U7d1OEe42VuZI7YFB6x1iCcdtgIeG0gN77ITcKebVxsV6NuhsV5g6CwAxQWOotQJOw1-f_ShtSuhx8wBuwUA_ZfMZCwJ4SeJT2Lmhx57tZdZ99--mj3lcrp2C2TJez5ZBQbBBTctP8An4cksGaWuzNLTDiYL2-CxE4J39lc0gdpKXOZsMeXy_RPIrHVoVmTjSiEKBCChOlZcM0ef75Sf7kYRL_NQissTvf_h78esKs5UXNIhLbcZTt9uw4Psbfq_aMhjX4BnJQoWQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-HCNyJQkEEg4BCaJnbsnFBb9QNEK1So1JtlT5yFapssSVbAv2cm6-0SkNDe4om88fPYM87LG8ZeVMo6kVgV-8pWsVCYs-qqkrGQVuSArukHbs7xSX50Jj6cy_Nw4NYFWuVqTRwW6rIBOiPfSiW98ZMyle_m32OqGkVvV0MJjetsI8VMIZmwjd39k0-n61MWSUtCsWS8K0xdtubetxcxdG_loMq83osGyf5_F-a_yZJ_7D4Ht9nNEDbynSXOd9g1X99lt1YlGXjw0HusP2ztLz4jJhCHJm4ABv0l8PyStPh_8teHH_eO33Dieyxaz2kTKzmV8eJAcTQRhwasOBHip3zW_OCWPtFdlJ63HnH1vCPOO7bNZ7ankLe7z84O9r_sHcWhsEIMUuZ9XFihc7GtXFbJSniVFxg22MrhT8ncYg5hRaZ04T3Gd9aVKvElxiUF4OalfeGyB2xSN7V_yHiRapmCdJlDzBUIqywGBE5pSLXLUh2xl6shNvOlfobBvIOgMAMUBjqDUERsl8b_yoZUr4cLTTs1wYkM9pO7LANIdCky7KYSkEBpLWj8c7aI2HNCz5CuRU0DObWLrjPvP5-anTxPqfyWTiL2KhhVDQIKNnyHgM9DUlgjy82RJToejJtXk8QEx-_MeppG7NlVM91JZLbaNwuyEZkQGUIQMTWaXKPHH7fU374O4t96W-W4ST36f-eP2Y2UyDckM1tssknfLvwTjJ569zS4yG84qB-t priority: 102 providerName: ProQuest |
Title | Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms |
URI | https://www.proquest.com/docview/2529015525 https://search.proquest.com/docview/2543443864 https://pubmed.ncbi.nlm.nih.gov/PMC8176538 https://doaj.org/article/c5b6b33cc08d4321bf4c0cdaac859ca9 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbWceHCb0RgVAaBgEPaNLZj57hVawei0zSYtJtlO0431CZV0gr473kvTacGbii3-EVJ_PnZ7yWfv0fIu1wayyMjQ5-bPOQSclaV5yLkwvDEgWv6hpszO0_OrviXa3F9QMRuL0xD2nf2dlAsloPi9qbhVq6WbrjjiQ0vZmM1kgk46rBHejBA91L07dZgnAXSLcldQrYyXHlf_QhdPRAMKxbBvM1HCuuq7a1EjWD_v9Py31TJvbVn8og8aINGerx9uMfkwBdPyMNdQQba-udTsp5W5jddIA-IujIsnWvUl5ynS1Ti_0U_Tr-OZ58osj02lae4hGUUi3hRh1E00oYapCjS4ed0Uf6kBjfobjJPKw-oeloj4x3aVguzxoC3fkauJqffx2dhW1YhdEIk6zA1XCV8JC3LRc69TFIIGkxu4ZAiMZBBGM6kSr2H6M7YTEY-g6gkdbB0KZ9a9pwcFmXhXxCaxkrETlhmAXHpuJEGwgErlYuVZbEKyPtdF-vVVj1DQ9aBqOgGFe1qDagE5AT7_84GNa-bE2U11y3yGu6TWMaci1TGGdwm5y5ymTFOwcOZNCBvET2NqhYFduTcbOpaf_52qY-TJMbiWyoKyIfWKC8BUGfaXQjwPiiE1bE86liC27lu826Q6Nbtax0L_C0tRCwC8uauGa9EKlvhyw3acMY5AwgCIjuDq_P63RbwhEb6ux35L__7ylfkfoysHNSfTY_I4bra-NcQVq1tn_TUZNon905Ozy8u-83HiX7jWn8AlRcq1w |
link.rule.ids | 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74369,74636 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgPMALvxGBAQaBgIdsXWzHzhMaE20H7R5gk_Zm2RengEpSklbAf89dmq4EJNS3-io3_ny-s_P5O8aeF9p5OXA6DoUrYqlxz2qKQsVSOZkCumZouTnTk3R8Jt-fq_PuwK3paJWbNbFdqPMK6Ix8P1H0xk-pRL1ZfI-pahS9Xe1KaFxmV6TAWE03xYej7RmLogUhW_PdNW5c9hch1F9jaPZUq8m8jUStYP-_y_LfVMk_Ys_wJrveJY38cI3yLXYplLfZjU1BBt755x22HNXuF58TD4hDFVcArfoSBP6NlPh_8lejydH0NSe2x6oOnEJYzqmIFwfKook21CLFiQ4_4_PqB3d0QXeVB14HRDXwhhjv2LaYuyUlvM1ddjZ8d3o0jruyCjEolS7jzEmTygPtRaEKGXSaYdLgCo8frVKHOwgnhTZZCJjdOZ_rQcgxK8kAQ5cJmRf32E5ZleE-41liVALKC4-Ia5BOO0wHvDaQGC8SE7EXmyG2i7V6hsVdB0FhWygsNBahiNhbGv8LG9K8br-o6pntXMhiP6kXAmBgcimwm0LCAHLnwOCfc1nEnhF6llQtShrImVs1jT3-9NEepmlCxbfMIGIvO6OiQkDBdbcQ8HlICKtnuduzRLeDfvNmktjO7Ru7naQRe3rRTL8kKlsZqhXZSCGlQAgipnuTq_f4_Zbyy-dW-tsc6BRD1IP_d_6EXR2fTid2cnzy4SG7lhANhwRns122s6xX4RHmUUv_uHWW3yTsITg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSIgXfiMCAwwCAQ-hWeJfeUJj0G6wTQiYtDfLduwCKklJWgH_PXepuxKQUN_ii1z78_nOyZfvCHkcpLEsMzL1wYSUSTizqhB4yrhhwoFr-p6bc3Qs9k_Y21N-GvlPXaRVrvfEfqOuGofPyEc5xzd-nOd8FCIt4v3r8cv59xQrSOGb1lhO4zy5AFFR4ApX48nmeQvHzaFccd8lHGJGc-_br6nrXvBen3kTlXrx_n-36L9pk3_EofFVcjkmkHR3hfg1cs7X18mVdXEGGn31BllMWvOLzpATRF2TNs71SkzO02-oyv-TPpsc7h09pzjEZesphrOKYkEv6jCjRgpRjxpFavyUzpof1ODHusvK09YDwp52yH6HtvnMLDD57W6Sk_GbT3v7aSyxkDrOxSItDVOC7UhbBB6Yl6KEBMIECz_JhYHThGGFVKX3kOkZW8nMV5ChlA7CmPKlLW6Rrbqp_W1Cy1zx3HFbWEBfOmakgdTASuVyZYtcJeTJeor1fKWkoeEEglDoHgrtOg1QJOQVzv-ZDepf9xeadqqjO2noR9iicC5TFSugm8Bc5ipjnII_Z8qEPEL0NCpc1DiRU7PsOn3w8YPeFSLHQlwqS8jTaBQaANSZ-EUCjAdFsQaW2wNLcEE3bF4vEh23gE5vFmxCHp41451Ia6t9s0QbVjBWAAQJkYPFNRj-sKX-8rmXAVc7UkC4uvP_zh-Qi-An-vDg-N1dcilHRg5qz5bbZGvRLv09SKkW9n7vK78BmYQldg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gray+level+co-occurrence+matrix+texture+based+crop+classification+using+low+altitude+remote+sensing+platforms&rft.jtitle=PeerJ.+Computer+science&rft.au=Iqbal%2C+Naveed&rft.au=Mumtaz%2C+Rafia&rft.au=Shafi%2C+Uferah&rft.au=Zaidi%2C+Syed+Mohammad+Hassan&rft.date=2021-05-19&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=7&rft.spage=e536&rft_id=info:doi/10.7717%2Fpeerj-cs.536&rft.externalDBID=ISR&rft.externalDocID=A662218680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |