Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms

Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 7; p. e536
Main Authors Iqbal, Naveed, Mumtaz, Rafia, Shafi, Uferah, Zaidi, Syed Mohammad Hassan
Format Journal Article
LanguageEnglish
Published San Diego PeerJ. Ltd 19.05.2021
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different types of crops. In this research work, crop classification is performed at different phenological stages using optical images which are obtained from drone. For this purpose, gray level co-occurrence matrix (GLCM) based features are extracted from underlying gray scale images collected by the drone. To classify the different types of crops, different ML algorithms including Random Forest (RF), Naive Bayes (NB), Neural Network (NN) and Support Vector Machine (SVM) are applied. The results showed that the ML algorithms performed much better on GLCM features as compared to gray scale images with a margin of 13.65% in overall accuracy.
AbstractList Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different types of crops. In this research work, crop classification is performed at different phenological stages using optical images which are obtained from drone. For this purpose, gray level co-occurrence matrix (GLCM) based features are extracted from underlying gray scale images collected by the drone. To classify the different types of crops, different ML algorithms including Random Forest (RF), Naive Bayes (NB), Neural Network (NN) and Support Vector Machine (SVM) are applied. The results showed that the ML algorithms performed much better on GLCM features as compared to gray scale images with a margin of 13.65% in overall accuracy.
ArticleNumber e536
Audience Academic
Author Zaidi, Syed Mohammad Hassan
Iqbal, Naveed
Shafi, Uferah
Mumtaz, Rafia
Author_xml – sequence: 1
  fullname: Iqbal, Naveed
– sequence: 2
  fullname: Mumtaz, Rafia
– sequence: 3
  fullname: Shafi, Uferah
– sequence: 4
  fullname: Zaidi, Syed Mohammad Hassan
BookMark eNptkk1vEzEQhleoiJbSGz_AEpdWImG9_lpfkKoIQqQgJD7O1qx3NjjaXQfbW9p_j5NUQBCeg63xM6814_d5cTb6EYviJS3nSlH1ZocYtjMb54LJJ8VFxZScCa2rs7_O58VVjNuyLKmgeelnxTnjlNNa1RdFWgZ4ID3eYU-sn3lrpxBwtEgGSMHdk-vlevHxhiS8T1NA0kDEltjgd8T2EKPrnIXk_Eim6MYN6f1PAn1yaWqRBBx8QhJxPNztekidD0N8UTztoI949bhfFt_ev_u6-DBbf1quFrfrmRVCppkGXktOVcM60XFUUotSQ9fkUEKCVAI4U7VGFFRD06oSWyaEtrzSNeqGXRaro27rYWt2wQ0QHowHZw4JHzYGQnK2R2NFIxvGrC3rlrOKNh23pW0BbJ0FQWett0et3dQM2FocU4D-RPT0ZnTfzcbfmZoqKVidBa4fBYL_MWFMZnDRYt_DiH6KphKccc5yxxl99Q-69VMY86gyVen8kaISf6gN5Abc2Pn8rt2Lmlspq4rWsi4zNf8PlaPFwdnsps7l_EnBzUlBZvafv4EpRrP68vmUfX1ksyFiDNj9ngctzd6g5mBQY6PJBmW_AAh_2jU
CitedBy_id crossref_primary_10_3390_rs15010170
crossref_primary_10_1080_13682199_2023_2200513
crossref_primary_10_3390_f14020299
crossref_primary_10_1007_s42600_022_00250_y
crossref_primary_10_1007_s12524_023_01783_0
crossref_primary_10_1007_s40808_021_01258_6
crossref_primary_10_3389_fonc_2023_1121594
crossref_primary_10_1007_s00530_024_01275_2
crossref_primary_10_3390_rs15225328
crossref_primary_10_1080_13682199_2023_2208963
crossref_primary_10_1109_ACCESS_2023_3290907
crossref_primary_10_3390_s24051543
crossref_primary_10_3390_land12030581
crossref_primary_10_3390_rs16071221
crossref_primary_10_1080_01431161_2022_2142079
crossref_primary_10_1080_13682199_2023_2178611
crossref_primary_10_1016_j_rsase_2022_100782
crossref_primary_10_3390_app122110760
crossref_primary_10_1080_10106049_2024_2364680
crossref_primary_10_3390_rs14246218
crossref_primary_10_1007_s11042_023_17615_9
crossref_primary_10_1016_j_bspc_2024_106380
crossref_primary_10_1080_17538947_2023_2297013
crossref_primary_10_1016_j_heliyon_2023_e21697
crossref_primary_10_1007_s12524_022_01563_2
crossref_primary_10_3390_agriculture13061113
crossref_primary_10_3390_electronics12224626
crossref_primary_10_3390_rs14153715
crossref_primary_10_1016_j_scitotenv_2024_171408
crossref_primary_10_3390_plants12162893
crossref_primary_10_26634_jit_12_4_20209
crossref_primary_10_3390_f14071345
crossref_primary_10_1109_JSTARS_2023_3255541
crossref_primary_10_1016_j_heliyon_2023_e21703
crossref_primary_10_1093_micmic_ozad042
crossref_primary_10_3390_rs15194676
crossref_primary_10_1016_j_aej_2023_01_004
crossref_primary_10_1177_09544089231154959
crossref_primary_10_3390_s22020562
crossref_primary_10_1007_s11517_023_02830_1
crossref_primary_10_1109_ACCESS_2024_3389935
crossref_primary_10_1016_j_medengphy_2022_103939
crossref_primary_10_1016_j_heliyon_2024_e32726
crossref_primary_10_1007_s13198_024_02272_4
crossref_primary_10_1117_1_JRS_18_014514
crossref_primary_10_3390_app12126000
crossref_primary_10_3390_rs14205206
crossref_primary_10_3390_rs16010053
crossref_primary_10_3390_agriengineering6020065
crossref_primary_10_3390_rs16040705
crossref_primary_10_1016_j_compag_2022_107362
crossref_primary_10_3390_e25081170
crossref_primary_10_1186_s13550_023_00959_6
crossref_primary_10_1080_01431161_2023_2176723
crossref_primary_10_3390_agronomy14051084
crossref_primary_10_3390_su14127470
crossref_primary_10_3390_jimaging8090248
crossref_primary_10_1007_s11227_023_05627_z
crossref_primary_10_3233_JIFS_237653
crossref_primary_10_3390_horticulturae8090839
crossref_primary_10_1016_j_ymeth_2024_03_005
Cites_doi 10.1023/A:1010933404324
10.3390/rs11243012
10.1016/j.asr.2018.12.005
10.5194/isprs-archives-XLII-3-1023-2018
10.1186/s13007-019-0522-9
10.1109/MGRS.2018.2865815
10.1002/9781118029145
10.1016/j.agrformet.2018.11.002
10.3390/rs10081282
10.1016/j.rse.2003.04.007
10.1145/507338.507355
10.1071/WF01031
10.1109/TSMC.1973.4309314
10.3390/app9040643
10.1142/9789814343138_0010
ContentType Journal Article
Copyright COPYRIGHT 2021 PeerJ. Ltd.
2021 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Iqbal et al. 2021 Iqbal et al.
Copyright_xml – notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Iqbal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Iqbal et al. 2021 Iqbal et al.
DBID AAYXX
CITATION
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.536
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
ProQuest Computing
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computing (Alumni Edition)
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
EndPage e536
ExternalDocumentID oai_doaj_org_article_c5b6b33cc08d4321bf4c0cdaac859ca9
A662218680
10_7717_peerj_cs_536
GeographicLocations United States
Pakistan
GeographicLocations_xml – name: Pakistan
– name: United States
GrantInformation_xml – fundername: NRPU program, Pakistan
GroupedDBID 3V.
53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
RPM
7XB
8AL
8FK
JQ2
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c556t-9a486417b3f5f4e769509afbfbf756a675a43789ee519abd70ed3559c4298e9b3
IEDL.DBID RPM
ISSN 2376-5992
IngestDate Tue Oct 22 14:55:42 EDT 2024
Tue Sep 17 21:19:29 EDT 2024
Sat Aug 17 02:00:47 EDT 2024
Thu Oct 10 18:23:25 EDT 2024
Thu Feb 22 23:36:31 EST 2024
Sat Dec 16 00:21:28 EST 2023
Thu Aug 01 19:30:15 EDT 2024
Fri Aug 23 00:33:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-9a486417b3f5f4e769509afbfbf756a675a43789ee519abd70ed3559c4298e9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176538/
PMID 34141878
PQID 2529015525
PQPubID 2045934
PageCount e536
ParticipantIDs doaj_primary_oai_doaj_org_article_c5b6b33cc08d4321bf4c0cdaac859ca9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8176538
proquest_miscellaneous_2543443864
proquest_journals_2529015525
gale_infotracmisc_A662218680
gale_infotracacademiconefile_A662218680
gale_incontextgauss_ISR_A662218680
crossref_primary_10_7717_peerj_cs_536
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Ding (10.7717/peerj-cs.536/ref-6) 2011; 40
Breiman (10.7717/peerj-cs.536/ref-3) 2001; 45
Haralick (10.7717/peerj-cs.536/ref-10) 1973; SMC-3
Helber (10.7717/peerj-cs.536/ref-11) 2018
Luciani (10.7717/peerj-cs.536/ref-20) 2017
Deng (10.7717/peerj-cs.536/ref-5) 2019; 63
GLCM Equations (10.7717/peerj-cs.536/ref-7) 2011
Seelan (10.7717/peerj-cs.536/ref-22) 2003; 88
Zahid (10.7717/peerj-cs.536/ref-29) 2019; 15
Data Augmentation (10.7717/peerj-cs.536/ref-1) 2020
Böhler (10.7717/peerj-cs.536/ref-2) 2018; 10
Zhao (10.7717/peerj-cs.536/ref-30) 2019; 11
Khaliq (10.7717/peerj-cs.536/ref-15) 2018
Goodfellow (10.7717/peerj-cs.536/ref-8) 2016; 1
Latif (10.7717/peerj-cs.536/ref-18) 2018; 6
Kwak (10.7717/peerj-cs.536/ref-16) 2019; 9
Witten (10.7717/peerj-cs.536/ref-28) 2002; 31
Trujillano (10.7717/peerj-cs.536/ref-26) 2018
Zhou (10.7717/peerj-cs.536/ref-31) 2018
Sivakumar (10.7717/peerj-cs.536/ref-23) 2004; 1182
Liu (10.7717/peerj-cs.536/ref-19) 2018; 42
Navalgund (10.7717/peerj-cs.536/ref-21) 2007; 93
Laben (10.7717/peerj-cs.536/ref-17) 2000
Kantardzic (10.7717/peerj-cs.536/ref-14) 2011
Gunn (10.7717/peerj-cs.536/ref-9) 1998; 14
Hufkens (10.7717/peerj-cs.536/ref-13) 2019; 265
Story (10.7717/peerj-cs.536/ref-24) 1986; 52
Tuceryan (10.7717/peerj-cs.536/ref-27) 1993
Crop Calendar (10.7717/peerj-cs.536/ref-4) 2020
Sun (10.7717/peerj-cs.536/ref-25) 2020
Hu (10.7717/peerj-cs.536/ref-12) 2018
References_xml – volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.7717/peerj-cs.536/ref-3
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 11
  start-page: 3012
  issue: 24
  year: 2019
  ident: 10.7717/peerj-cs.536/ref-30
  article-title: Finer classification of crops by fusing UAV images and sentinel-2a data
  publication-title: Remote Sensing
  doi: 10.3390/rs11243012
  contributor:
    fullname: Zhao
– volume: 1
  volume-title: Deep learning
  year: 2016
  ident: 10.7717/peerj-cs.536/ref-8
  contributor:
    fullname: Goodfellow
– volume: 63
  start-page: 2144
  issue: 7
  year: 2019
  ident: 10.7717/peerj-cs.536/ref-5
  article-title: Land use/land cover classification using time series landsat 8 images in a heavily urbanized area
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2018.12.005
  contributor:
    fullname: Deng
– volume: 42
  start-page: 1023
  issue: 3
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-19
  article-title: UAV-based crops classification with joint features from orthoimage and DSM data
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLII-3-1023-2018
  contributor:
    fullname: Liu
– volume: 1182
  year: 2004
  ident: 10.7717/peerj-cs.536/ref-23
  article-title: Satellite remote sensing and gis applications in agricultural meteorology
  publication-title: Proceedings of the Training Workshop in Dehradun, India. AGM-8, WMO/TD
  contributor:
    fullname: Sivakumar
– volume: 15
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.536/ref-29
  article-title: Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0522-9
  contributor:
    fullname: Zahid
– start-page: 204
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-11
  article-title: Introducing eurosat: a novel dataset and deep learning benchmark for land use and land cover classification
  contributor:
    fullname: Helber
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-26
  article-title: Corn classification using deep learning with UAV imagery: an operational proof of concept
  contributor:
    fullname: Trujillano
– year: 2000
  ident: 10.7717/peerj-cs.536/ref-17
  article-title: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening
  contributor:
    fullname: Laben
– volume: 6
  start-page: 10
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-18
  article-title: An agricultural perspective on flying sensors: state of the art, challenges, and future directions
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2018.2865815
  contributor:
    fullname: Latif
– volume: 14
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.7717/peerj-cs.536/ref-9
  article-title: Support vector machines for classification and regression
  publication-title: ISIS Technical Report
  contributor:
    fullname: Gunn
– volume: 40
  start-page: 2
  issue: 1
  year: 2011
  ident: 10.7717/peerj-cs.536/ref-6
  article-title: An overview on theory and algorithm of support vector machines
  publication-title: Journal of University of Electronic Science and Technology of China
  contributor:
    fullname: Ding
– volume-title: Data mining: concepts, models, methods, and algorithms
  year: 2011
  ident: 10.7717/peerj-cs.536/ref-14
  doi: 10.1002/9781118029145
  contributor:
    fullname: Kantardzic
– volume: 265
  start-page: 327
  issue: 17
  year: 2019
  ident: 10.7717/peerj-cs.536/ref-13
  article-title: Monitoring crop phenology using a smartphone based near-surface remote sensing approach
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2018.11.002
  contributor:
    fullname: Hufkens
– volume: 10
  start-page: 1282
  issue: 8
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-2
  article-title: Crop classification in a heterogeneous arable landscape using uncalibrated UAV data
  publication-title: Remote Sensing
  doi: 10.3390/rs10081282
  contributor:
    fullname: Böhler
– year: 2020
  ident: 10.7717/peerj-cs.536/ref-4
  article-title: Crop Calendar of Pakistan
  contributor:
    fullname: Crop Calendar
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-12
  article-title: Fine classification of typical farms in Southern China based on airborne hyperspectral remote sensing images
  contributor:
    fullname: Hu
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-15
  article-title: Land cover and crop classification using multitemporal sentinel-2 images based on crops phenological cycle
  contributor:
    fullname: Khaliq
– volume: 88
  start-page: 157
  issue: 1–2
  year: 2003
  ident: 10.7717/peerj-cs.536/ref-22
  article-title: Remote sensing applications for precision agriculture: a learning community approach
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.04.007
  contributor:
    fullname: Seelan
– start-page: 4390
  year: 2017
  ident: 10.7717/peerj-cs.536/ref-20
  article-title: Crop species classification: a phenology based approach
  contributor:
    fullname: Luciani
– volume: 31
  start-page: 76
  issue: 1
  year: 2002
  ident: 10.7717/peerj-cs.536/ref-28
  article-title: Data mining: practical machine learning tools and techniques with java implementations
  publication-title: ACM Sigmod Record
  doi: 10.1145/507338.507355
  contributor:
    fullname: Witten
– year: 2020
  ident: 10.7717/peerj-cs.536/ref-1
  article-title: Data augmentation using Image Data Generator keras
  contributor:
    fullname: Data Augmentation
– volume: 93
  start-page: 1747
  issue: 12
  year: 2007
  ident: 10.7717/peerj-cs.536/ref-21
  article-title: Remote sensing applications: an overview
  publication-title: Current Science
  contributor:
    fullname: Navalgund
– volume: 52
  start-page: 397
  issue: 3
  year: 1986
  ident: 10.7717/peerj-cs.536/ref-24
  article-title: Accuracy assessment: a user’s perspective
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.1071/WF01031
  contributor:
    fullname: Story
– volume: SMC-3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.7717/peerj-cs.536/ref-10
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick
– volume: 9
  start-page: 643
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.536/ref-16
  article-title: Impact of texture information on crop classification with machine learning and UAV images
  publication-title: Applied Sciences
  doi: 10.3390/app9040643
  contributor:
    fullname: Kwak
– start-page: 235
  year: 1993
  ident: 10.7717/peerj-cs.536/ref-27
  article-title: Texture analysis
  publication-title: Handbook of Pattern Recognition and Computer Vision
  doi: 10.1142/9789814343138_0010
  contributor:
    fullname: Tuceryan
– start-page: 5300
  year: 2018
  ident: 10.7717/peerj-cs.536/ref-31
  article-title: Crops classification from sentinel-2a multi-spectral remote sensing images based on convolutional neural networks
  contributor:
    fullname: Zhou
– start-page: 71
  year: 2020
  ident: 10.7717/peerj-cs.536/ref-25
  article-title: IoT enabled smart fertilization and irrigation aid for agricultural purposes
  contributor:
    fullname: Sun
– year: 2011
  ident: 10.7717/peerj-cs.536/ref-7
  article-title: Gray Level Co-occurence Matrix equations
  contributor:
    fullname: GLCM Equations
SSID ssj0001511119
Score 2.4629042
Snippet Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage e536
SubjectTerms Accuracy
Algorithms
Altitude
Cable television broadcasting industry
Classification
Computer Vision
Corn
Crops
Data Mining and Machine Learning
Data Science
Decision trees
Deep learning
Feature extraction
Gray scale
Image classification
Image resolution
Low altitude
Machine learning
Neural networks
Platforms
Principal components analysis
Remote sensing
Satellites
Smartphones
Spatial and Geographic Information Systems
Support vector machines
Texture analysis
Time series
Trends
Unmanned aerial vehicles
Wheat
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1z4RgQKMggEHEKzib9yLBVtQZQDUKk3y57YLWhJVklWwL9nJsmWDRy4oNzWs1IybyYzozw_M_Y0audF5nQaooup0DizmhhlKqQTCjA1w8DNOfmgjk_FuzN5tnXUF3HCRnng0XF7IL3yRQGQmUoU-cJHARlUzoGRJbhx615Wbg1T4_5gehWUI9Nd48iytwqh_ZpC90oOasy_a9Ag1f_3C_lPkuRW1Tm8wa5N7SLfH2_zJrsS6lvs-uYoBj5l5m3WH7XuJ18SA4hDkzYAg-4SBP6NNPh_8BdH7w9OXnLieazbwKl4VZyO7-JA_TMRhgaMOBHhz_my-c4dbc1dV4G3AfEMvCOuO66tlq6nVre7w04P33w-OE6nAxVSkFL1aemEUWKhfRFlFEGrEtsFFz1eWiqHs4MThTZlCNjXOV_pLFTYj5SARcuE0hd32U7d1OEe42VuZI7YFB6x1iCcdtgIeG0gN77ITcKebVxsV6NuhsV5g6CwAxQWOotQJOw1-f_ShtSuhx8wBuwUA_ZfMZCwJ4SeJT2Lmhx57tZdZ99--mj3lcrp2C2TJez5ZBQbBBTctP8An4cksGaWuzNLTDiYL2-CxE4J39lc0gdpKXOZsMeXy_RPIrHVoVmTjSiEKBCChOlZcM0ef75Sf7kYRL_NQissTvf_h78esKs5UXNIhLbcZTt9uw4Psbfq_aMhjX4BnJQoWQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-HCNyJQkEEg4BCaJnbsnFBb9QNEK1So1JtlT5yFapssSVbAv2cm6-0SkNDe4om88fPYM87LG8ZeVMo6kVgV-8pWsVCYs-qqkrGQVuSArukHbs7xSX50Jj6cy_Nw4NYFWuVqTRwW6rIBOiPfSiW98ZMyle_m32OqGkVvV0MJjetsI8VMIZmwjd39k0-n61MWSUtCsWS8K0xdtubetxcxdG_loMq83osGyf5_F-a_yZJ_7D4Ht9nNEDbynSXOd9g1X99lt1YlGXjw0HusP2ztLz4jJhCHJm4ABv0l8PyStPh_8teHH_eO33Dieyxaz2kTKzmV8eJAcTQRhwasOBHip3zW_OCWPtFdlJ63HnH1vCPOO7bNZ7ankLe7z84O9r_sHcWhsEIMUuZ9XFihc7GtXFbJSniVFxg22MrhT8ncYg5hRaZ04T3Gd9aVKvElxiUF4OalfeGyB2xSN7V_yHiRapmCdJlDzBUIqywGBE5pSLXLUh2xl6shNvOlfobBvIOgMAMUBjqDUERsl8b_yoZUr4cLTTs1wYkM9pO7LANIdCky7KYSkEBpLWj8c7aI2HNCz5CuRU0DObWLrjPvP5-anTxPqfyWTiL2KhhVDQIKNnyHgM9DUlgjy82RJToejJtXk8QEx-_MeppG7NlVM91JZLbaNwuyEZkQGUIQMTWaXKPHH7fU374O4t96W-W4ST36f-eP2Y2UyDckM1tssknfLvwTjJ569zS4yG84qB-t
  priority: 102
  providerName: ProQuest
Title Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms
URI https://www.proquest.com/docview/2529015525
https://search.proquest.com/docview/2543443864
https://pubmed.ncbi.nlm.nih.gov/PMC8176538
https://doaj.org/article/c5b6b33cc08d4321bf4c0cdaac859ca9
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbWceHCb0RgVAaBgEPaNLZj57hVawei0zSYtJtlO0431CZV0gr473kvTacGbii3-EVJ_PnZ7yWfv0fIu1wayyMjQ5-bPOQSclaV5yLkwvDEgWv6hpszO0_OrviXa3F9QMRuL0xD2nf2dlAsloPi9qbhVq6WbrjjiQ0vZmM1kgk46rBHejBA91L07dZgnAXSLcldQrYyXHlf_QhdPRAMKxbBvM1HCuuq7a1EjWD_v9Py31TJvbVn8og8aINGerx9uMfkwBdPyMNdQQba-udTsp5W5jddIA-IujIsnWvUl5ynS1Ti_0U_Tr-OZ58osj02lae4hGUUi3hRh1E00oYapCjS4ed0Uf6kBjfobjJPKw-oeloj4x3aVguzxoC3fkauJqffx2dhW1YhdEIk6zA1XCV8JC3LRc69TFIIGkxu4ZAiMZBBGM6kSr2H6M7YTEY-g6gkdbB0KZ9a9pwcFmXhXxCaxkrETlhmAXHpuJEGwgErlYuVZbEKyPtdF-vVVj1DQ9aBqOgGFe1qDagE5AT7_84GNa-bE2U11y3yGu6TWMaci1TGGdwm5y5ymTFOwcOZNCBvET2NqhYFduTcbOpaf_52qY-TJMbiWyoKyIfWKC8BUGfaXQjwPiiE1bE86liC27lu826Q6Nbtax0L_C0tRCwC8uauGa9EKlvhyw3acMY5AwgCIjuDq_P63RbwhEb6ux35L__7ylfkfoysHNSfTY_I4bra-NcQVq1tn_TUZNon905Ozy8u-83HiX7jWn8AlRcq1w
link.rule.ids 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,53804,53806,74369,74636
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgPMALvxGBAQaBgIdsXWzHzhMaE20H7R5gk_Zm2RengEpSklbAf89dmq4EJNS3-io3_ny-s_P5O8aeF9p5OXA6DoUrYqlxz2qKQsVSOZkCumZouTnTk3R8Jt-fq_PuwK3paJWbNbFdqPMK6Ix8P1H0xk-pRL1ZfI-pahS9Xe1KaFxmV6TAWE03xYej7RmLogUhW_PdNW5c9hch1F9jaPZUq8m8jUStYP-_y_LfVMk_Ys_wJrveJY38cI3yLXYplLfZjU1BBt755x22HNXuF58TD4hDFVcArfoSBP6NlPh_8lejydH0NSe2x6oOnEJYzqmIFwfKook21CLFiQ4_4_PqB3d0QXeVB14HRDXwhhjv2LaYuyUlvM1ddjZ8d3o0jruyCjEolS7jzEmTygPtRaEKGXSaYdLgCo8frVKHOwgnhTZZCJjdOZ_rQcgxK8kAQ5cJmRf32E5ZleE-41liVALKC4-Ia5BOO0wHvDaQGC8SE7EXmyG2i7V6hsVdB0FhWygsNBahiNhbGv8LG9K8br-o6pntXMhiP6kXAmBgcimwm0LCAHLnwOCfc1nEnhF6llQtShrImVs1jT3-9NEepmlCxbfMIGIvO6OiQkDBdbcQ8HlICKtnuduzRLeDfvNmktjO7Ru7naQRe3rRTL8kKlsZqhXZSCGlQAgipnuTq_f4_Zbyy-dW-tsc6BRD1IP_d_6EXR2fTid2cnzy4SG7lhANhwRns122s6xX4RHmUUv_uHWW3yTsITg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSIgXfiMCAwwCAQ-hWeJfeUJj0G6wTQiYtDfLduwCKklJWgH_PXepuxKQUN_ii1z78_nOyZfvCHkcpLEsMzL1wYSUSTizqhB4yrhhwoFr-p6bc3Qs9k_Y21N-GvlPXaRVrvfEfqOuGofPyEc5xzd-nOd8FCIt4v3r8cv59xQrSOGb1lhO4zy5AFFR4ApX48nmeQvHzaFccd8lHGJGc-_br6nrXvBen3kTlXrx_n-36L9pk3_EofFVcjkmkHR3hfg1cs7X18mVdXEGGn31BllMWvOLzpATRF2TNs71SkzO02-oyv-TPpsc7h09pzjEZesphrOKYkEv6jCjRgpRjxpFavyUzpof1ODHusvK09YDwp52yH6HtvnMLDD57W6Sk_GbT3v7aSyxkDrOxSItDVOC7UhbBB6Yl6KEBMIECz_JhYHThGGFVKX3kOkZW8nMV5ChlA7CmPKlLW6Rrbqp_W1Cy1zx3HFbWEBfOmakgdTASuVyZYtcJeTJeor1fKWkoeEEglDoHgrtOg1QJOQVzv-ZDepf9xeadqqjO2noR9iicC5TFSugm8Bc5ipjnII_Z8qEPEL0NCpc1DiRU7PsOn3w8YPeFSLHQlwqS8jTaBQaANSZ-EUCjAdFsQaW2wNLcEE3bF4vEh23gE5vFmxCHp41451Ia6t9s0QbVjBWAAQJkYPFNRj-sKX-8rmXAVc7UkC4uvP_zh-Qi-An-vDg-N1dcilHRg5qz5bbZGvRLv09SKkW9n7vK78BmYQldg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gray+level+co-occurrence+matrix+texture+based+crop+classification+using+low+altitude+remote+sensing+platforms&rft.jtitle=PeerJ.+Computer+science&rft.au=Iqbal%2C+Naveed&rft.au=Mumtaz%2C+Rafia&rft.au=Shafi%2C+Uferah&rft.au=Zaidi%2C+Syed+Mohammad+Hassan&rft.date=2021-05-19&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=7&rft.spage=e536&rft_id=info:doi/10.7717%2Fpeerj-cs.536&rft.externalDBID=ISR&rft.externalDocID=A662218680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon