Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources

BackgroundIt is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root gr...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 112; no. 2; pp. 277 - 290
Main Authors Carminati, Andrea, Vetterlein, Doris
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BackgroundIt is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age.ScopeWe consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water.OutlookThis concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
AbstractList It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age.BACKGROUNDIt is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age.We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water.SCOPEWe consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water.This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.OUTLOOKThis concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
BackgroundIt is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age.ScopeWe consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water.OutlookThis concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
• Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. • Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. • Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age. Scope We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water. Outlook This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
Author Vetterlein, Doris
Carminati, Andrea
AuthorAffiliation 1 Soil Hydrology, Georg-August Universität Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
2 Soil Physics Department, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany
AuthorAffiliation_xml – name: 1 Soil Hydrology, Georg-August Universität Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
– name: 2 Soil Physics Department, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, D-06120 Halle/Saale, Germany
Author_xml – sequence: 1
  fullname: Carminati, Andrea
– sequence: 2
  fullname: Vetterlein, Doris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23235697$$D View this record in MEDLINE/PubMed
BookMark eNqNktFr1TAUxoNM3N30xXe1j0OoS3KStHkZyHAqDBR0zyFNT3Yze5tr0gp3f73Zug0VQSGQkPM7H-dLvgOyN8YRCXnO6BtGNRzb2B1vXOaKPyKrciPrlmu6R1YUqKwbUGKfHOR8RSnlSrMnZJ8DB6l0syL4ebB5Ci5Muyr6Kq3DdczbNSas1rs-2XkIrtqmuMU0BcyVLav6hrvKx1Sh96UTx6mapzCEazuFON7IZGeTwyphjnM55KfksbdDxmd3-yG5OHv39fRDff7p_cfTt-e1k1JNddv3ugPaUuc99Ew6RAG8Z8iY5YJ1oFpRPFjwVKhGSymUFJbzlorWdh7gkJwsutu522DvymjJDmabwsamnYk2mN8rY1iby_jDgNItNLoIHN0JpPh9xjyZTcgOh8GOGOdsmFIggbGG_xsVxYlshfgPVdDQcgCtCvryVwcPo9__WAHoArgUc07oTfm724cvhsJgGDU3oTAlFGYJRWl5_UfLvepf4RcLfJWnmB5IwRvd6Nv6q6XubTT2MoVsLr5wymRJl2yEZvATQF_NPQ
CitedBy_id crossref_primary_10_1007_s00468_023_02482_6
crossref_primary_10_1093_jxb_erad389
crossref_primary_10_1016_j_ecolmodel_2014_10_028
crossref_primary_10_2136_vzj2016_09_0090
crossref_primary_10_7717_peerj_17137
crossref_primary_10_1111_plb_13478
crossref_primary_10_2136_vzj2019_02_0021
crossref_primary_10_3389_fpls_2021_798992
crossref_primary_10_1111_pce_14395
crossref_primary_10_1111_ejss_13445
crossref_primary_10_1007_s11104_014_2079_8
crossref_primary_10_1007_s11104_015_2749_1
crossref_primary_10_1007_s11104_022_05530_1
crossref_primary_10_1007_s11104_017_3522_4
crossref_primary_10_1139_cgj_2014_0090
crossref_primary_10_1007_s11104_019_03939_9
crossref_primary_10_1016_j_geoderma_2023_116500
crossref_primary_10_1007_s00425_019_03302_3
crossref_primary_10_1007_s00425_022_03911_5
crossref_primary_10_3389_ffgc_2021_704469
crossref_primary_10_1016_j_soilbio_2021_108426
crossref_primary_10_1016_j_advwatres_2021_103896
crossref_primary_10_3389_fenvs_2018_00032
crossref_primary_10_1007_s11104_021_05284_2
crossref_primary_10_1016_j_rhisph_2018_06_004
crossref_primary_10_3389_fagro_2020_00008
crossref_primary_10_1007_s42729_021_00545_6
crossref_primary_10_1007_s11104_017_3424_5
crossref_primary_10_1071_SR18182
crossref_primary_10_1016_j_soilbio_2017_10_041
crossref_primary_10_1007_s11104_022_05633_9
crossref_primary_10_1146_annurev_cellbio_100617_062949
crossref_primary_10_3389_fmicb_2021_625697
crossref_primary_10_1016_j_geoderma_2020_114506
crossref_primary_10_1016_j_tplants_2015_12_005
crossref_primary_10_1029_2021WR029976
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1002_pld3_519
crossref_primary_10_1007_s11104_013_1910_y
crossref_primary_10_2136_vzj2017_05_0107
crossref_primary_10_1016_j_rhisph_2022_100561
crossref_primary_10_2136_vzj2015_09_0131
crossref_primary_10_1111_pce_14898
crossref_primary_10_1007_s11538_017_0350_x
crossref_primary_10_1016_j_agwat_2024_108668
crossref_primary_10_1002_2015WR017071
crossref_primary_10_2136_vzj2014_03_0024
crossref_primary_10_2136_vzj2015_04_0060
crossref_primary_10_1007_s11104_022_05669_x
crossref_primary_10_1007_s11104_022_05577_0
crossref_primary_10_1007_s44307_024_00050_8
crossref_primary_10_1016_j_rhisph_2023_100738
crossref_primary_10_1007_s11104_023_06353_4
crossref_primary_10_3390_su13063303
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_1371_journal_pone_0182188
crossref_primary_10_1007_s11104_019_04234_3
crossref_primary_10_1071_CP15104
crossref_primary_10_1007_s13593_015_0283_4
crossref_primary_10_3390_su11226475
crossref_primary_10_3389_fenvs_2018_00098
crossref_primary_10_1111_pce_14536
crossref_primary_10_1002_jpln_201500511
crossref_primary_10_1016_j_jprot_2021_104450
crossref_primary_10_1002_2015WR018150
crossref_primary_10_1007_s11104_017_3211_3
crossref_primary_10_1002_jpln_201600453
crossref_primary_10_1093_jxb_ery361
crossref_primary_10_5194_hess_24_3057_2020
crossref_primary_10_3389_fagro_2021_622367
crossref_primary_10_1016_j_envexpbot_2017_10_001
crossref_primary_10_1111_nph_16451
crossref_primary_10_1111_ejss_13530
crossref_primary_10_1007_s11104_018_3769_4
crossref_primary_10_1002_2015WR018579
crossref_primary_10_3390_ijms231911477
crossref_primary_10_1002_2014WR015608
crossref_primary_10_1016_j_rhisph_2016_07_003
crossref_primary_10_3389_fenvs_2018_00087
crossref_primary_10_1007_s11104_019_04334_0
crossref_primary_10_24266_0738_2898_42_1_40
crossref_primary_10_1007_s11104_024_06584_z
crossref_primary_10_1071_FP13330
crossref_primary_10_1016_j_soilbio_2023_109026
crossref_primary_10_1104_pp_114_243212
crossref_primary_10_1093_insilicoplants_diab028
crossref_primary_10_2136_vzj2017_01_0013
crossref_primary_10_1093_pcp_pcz047
crossref_primary_10_1016_j_micromeso_2017_07_044
crossref_primary_10_1016_j_ecoleng_2016_02_005
crossref_primary_10_1007_s11104_018_3565_1
crossref_primary_10_1007_s11104_020_04738_3
crossref_primary_10_1007_s11104_023_06126_z
crossref_primary_10_1080_09168451_2014_943689
crossref_primary_10_1016_j_geoderma_2020_114424
crossref_primary_10_1111_nph_14705
crossref_primary_10_1016_j_ecoleng_2022_106668
crossref_primary_10_1371_journal_pone_0209658
crossref_primary_10_1016_j_geoderma_2019_01_013
crossref_primary_10_1093_aob_mcw113
crossref_primary_10_1093_aob_mct123
crossref_primary_10_1016_j_geoderma_2020_114827
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_1007_s00374_024_01827_8
crossref_primary_10_1098_rspa_2017_0141
crossref_primary_10_2136_vzj2013_02_0042
crossref_primary_10_1016_j_rhisph_2021_100408
crossref_primary_10_1007_s11104_022_05508_z
crossref_primary_10_2136_vzj2019_01_0001
crossref_primary_10_1002_2013WR014756
crossref_primary_10_1007_s11104_024_07062_2
crossref_primary_10_1021_acs_est_4c03525
crossref_primary_10_3389_fpls_2018_01084
crossref_primary_10_1002_jpln_201500177
crossref_primary_10_1002_jpln_201800554
crossref_primary_10_1007_s11540_018_9366_3
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1016_j_rhisph_2018_06_010
crossref_primary_10_2136_vzj2017_03_0060
crossref_primary_10_2136_vzj2018_09_0166
crossref_primary_10_1111_nph_14897
crossref_primary_10_1103_PhysRevE_91_042706
crossref_primary_10_1111_ejss_13189
crossref_primary_10_1111_ppl_14470
crossref_primary_10_3390_microorganisms11122910
crossref_primary_10_1007_s11104_016_2849_6
crossref_primary_10_18699_vjgb_24_99
crossref_primary_10_3389_fenvs_2021_785531
crossref_primary_10_1111_pce_13529
crossref_primary_10_1007_s11104_015_2668_1
crossref_primary_10_1016_j_jplph_2013_08_008
crossref_primary_10_1002_jpln_201300249
crossref_primary_10_1016_j_soilbio_2021_108483
crossref_primary_10_1093_aob_mcs296
crossref_primary_10_1007_s11104_014_2121_x
crossref_primary_10_1007_s11104_018_3670_1
crossref_primary_10_3389_fpls_2020_587610
crossref_primary_10_1007_s11104_024_07122_7
Cites_doi 10.1007/s00344-003-0008-9
10.1007/BF02465226
10.1016/0038-0717(93)90147-4
10.1104/pp.57.2.249
10.1016/S0176-1617(88)80042-7
10.1093/annbot/58.4.577
10.2136/vzj2007.0115
10.1016/0016-7061(93)90106-U
10.1016/S1360-1385(00)01556-9
10.1007/BF00384849
10.1007/s11104-011-1039-9
10.2136/vzj2011.0120
10.2136/sssaj1967.03615995003100020027x
10.1038/228083a0
10.1002/pca.920
10.1007/BF01372815
10.1016/0038-0717(72)90059-4
10.1007/s10705-007-9119-1
10.1007/BF02139932
10.1111/j.1365-3040.2005.01473.x
10.1046/j.1365-2389.2000.00327.x
10.1007/s11104-004-7904-z
10.1097/00010694-196002000-00001
10.1007/BF00012850
10.1111/j.1365-2389.2010.01297.x
10.1007/BF00024985
10.1093/aob/mcf040
10.1111/j.1469-8137.1995.tb01823.x
10.1104/pp.45.4.529
10.1007/s102650200012
10.1007/s003740000206
10.1007/BF00393442
10.1111/j.1365-3040.1986.tb01624.x
10.1007/BF00010759
10.1016/S1360-1385(02)02241-0
10.1002/bip.10545
10.1146/annurev.pp.39.060188.001333
10.1007/BF00016280
10.1111/j.1365-2389.1978.tb02025.x
10.1007/BF00260816
10.1046/j.1469-8137.1997.00620.x
10.5194/hess-15-3431-2011
10.1093/aob/mcl028
10.1007/BF00011687
10.1007/978-94-009-3619-5_12
10.1023/A:1022314613217
10.1139/b80-300
10.1104/pp.106.1.179
10.1046/j.1469-8137.2003.00690.x
10.1007/BF02184316
10.1016/S0146-6380(03)00020-2
10.1111/j.1469-8137.1993.tb03883.x
10.1007/s11104-010-0283-8
10.1111/j.1399-3054.1997.tb03445.x
10.1073/pnas.87.3.1203
10.1146/annurev.arplant.52.1.847
10.1016/0031-9422(88)80676-9
10.1111/j.1399-3054.1991.tb00075.x
10.2136/vzj2011.0111
10.1146/annurev.pp.34.060183.000403
10.1093/jxb/31.1.333
10.1016/j.soilbio.2006.12.026
10.1016/j.tplants.2006.11.003
10.1626/pps.11.344
10.1046/j.1365-3040.2003.01035.x
10.2136/vzj2011.0106
10.1046/j.1469-8137.2003.00665.x
10.2136/vzj2008.0147
10.1093/jxb/39.9.1249
10.1093/jxb/erq077
10.1016/0038-0717(96)00070-3
10.1111/j.1469-8137.1992.tb01053.x
10.2136/sssaj1977.03615995004100060004x
10.1007/BF01560654
10.1016/0038-0717(96)00020-X
10.1146/annurev.arplant.59.032607.092734
10.1023/A:1004403009353
10.1111/j.1365-2389.2004.00670.x
10.1104/pp.80.3.771
10.1007/s003740100400
10.1111/j.1365-2389.2011.01385.x
10.1007/s11104-008-9885-9
10.2136/sssaj2005.0414
10.1105/tpc.11.4.643
10.1111/j.1469-8137.2011.03826.x
10.2136/sssaj2008.0103
10.2136/vzj2010.0113
10.1023/A:1011924529885
10.2136/vzj2006.0080
10.1094/MPMI.2001.14.6.775
10.1016/S0031-9422(00)84255-7
ContentType Journal Article
Copyright Annals of Botany Company 2013
The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
Copyright_xml – notice: Annals of Botany Company 2013
– notice: The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
7S9
L.6
5PM
DOI 10.1093/aob/mcs262
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Ecology Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1095-8290
EndPage 290
ExternalDocumentID PMC3698379
23235697
10_1093_aob_mcs262
42797962
US201500057491
Genre Journal Article
Review
GroupedDBID ---
--K
-DZ
-E4
-~X
.2P
.I3
0R~
1B1
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
53G
5GY
5VS
5WA
5WD
6.Y
6J9
7-5
70D
71M
79B
A8Z
AABJS
AABMN
AACTN
AAEDT
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AALCJ
AALRI
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAQFI
AAQXK
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
AAXUO
ABBHK
ABDBF
ABEFU
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFGL
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMUD
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFDAS
AFFNX
AFFZL
AFGWE
AFIYH
AFMIJ
AFOFC
AFRAH
AFSWV
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
AOIJS
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DATOO
DFEDG
DFGAJ
DILTD
DM4
DPORF
DPPUQ
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
ELUNK
EMOBN
ESTFP
ESX
F5P
F9B
FA8
FBQ
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HYE
HZ~
IHE
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
LG5
M-Z
M49
MBTAY
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
OZT
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R2-
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RW1
RXO
RZF
RZO
SA0
SSZ
SV3
TCN
TEORI
TLC
TN5
TR2
UHS
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
XPP
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZCG
ZKX
ZMT
~02
~91
~KM
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABPQP
ABVGC
ABXSQ
ABXVV
ACHIC
ACUHS
ADNBA
ADQBN
AGORE
AJBYB
AJNCP
AKRWK
AQVQM
ATGXG
H13
IPSME
JXSIZ
AAYWO
AAYXX
ABDPE
ABIME
ABNGD
ABPIB
ABWVN
ABZEO
ACRPL
ACUKT
ACVCV
ACZBC
ADNMO
ADXHL
AEHUL
AFSHK
AGMDO
AGQPQ
AHGBF
AJDVS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
7S9
L.6
5PM
ID FETCH-LOGICAL-c556t-8dd9b3080cff3d15cee432d1e11a241b3684002a3f04679554654a228048abf33
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 14:00:51 EDT 2025
Thu Jul 10 23:54:18 EDT 2025
Fri Jul 11 04:12:38 EDT 2025
Fri Jul 11 00:10:10 EDT 2025
Mon Jul 21 05:45:16 EDT 2025
Tue Jul 01 01:39:11 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Sun Aug 24 12:10:51 EDT 2025
Wed Dec 27 19:19:36 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rhizosphere
root–soil contact
mucilage
hydraulic properties
gaps
root water uptake
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-8dd9b3080cff3d15cee432d1e11a241b3684002a3f04679554654a228048abf33
Notes http://dx.doi.org/10.1093/aob/mcs262
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/aob/article-pdf/112/2/277/17008059/mcs262.pdf
PMID 23235697
PQID 1393823396
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3698379
proquest_miscellaneous_1663531172
proquest_miscellaneous_1430858449
proquest_miscellaneous_1393823396
pubmed_primary_23235697
crossref_citationtrail_10_1093_aob_mcs262
crossref_primary_10_1093_aob_mcs262
jstor_primary_42797962
fao_agris_US201500057491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Metselaar ( key 20170512173421_MCS262C55) 2011; 62
Read ( key 20170512173421_MCS262C77) 2003; 157
Hawes ( key 20170512173421_MCS262C36) 1990; 129
Bengough ( key 20170512173421_MCS262C6) 2012; 11
Wang ( key 20170512173421_MCS262C91) 1991; 82
Vollsnes ( key 20170512173421_MCS262C90) 2010; 61
Bacic ( key 20170512173421_MCS262C3) 1986; 80
Gaume ( key 20170512173421_MCS262C31) 2000; 31
Steudle ( key 20170512173421_MCS262C85) 1998; 49
Floyd ( key 20170512173421_MCS262C28) 1971; 34
Knee ( key 20170512173421_MCS262C45) 2001; 14
Deiana ( key 20170512173421_MCS262C21) 2003; 34
Mikutta ( key 20170512173421_MCS262C57) 2006; 70
Passioura ( key 20170512173421_MCS262C72) 1980; 31
Chaboud ( key 20170512173421_MCS262C13) 1983; 73
Battey ( key 20170512173421_MCS262C4) 1993; 125
Carminati ( key 20170512173421_MCS262C9) 2009; 8
North ( key 20170512173421_MCS262C68) 1992; 120
Mooney ( key 20170512173421_MCS262C60) 2012; 352
Battey ( key 20170512173421_MCS262C5) 1999; 11
Weisskopf ( key 20170512173421_MCS262C95) 2006; 29
Jensen ( key 20170512173421_MCS262C44) 1993; 149
Raats ( key 20170512173421_MCS262C75) 2007; 68
Miki ( key 20170512173421_MCS262C56) 1980; 58
Moradi ( key 20170512173421_MCS262C61) 2012; 11
Carminati ( key 20170512173421_MCS262C10) 2010; 332
Maurel ( key 20170512173421_MCS262C52) 2008; 59
Cortez ( key 20170512173421_MCS262C19) 1982; 3
Whalley ( key 20170512173421_MCS262C96) 2005; 56
Moody ( key 20170512173421_MCS262C59) 1988; 27
Veen ( key 20170512173421_MCS262C88) 1992; 139
Mimmo ( key 20170512173421_MCS262C58) 2003; 70
Carminati ( key 20170512173421_MCS262C11) 2011; 10
Doussan ( key 20170512173421_MCS262C23) 2006; 283
Zwieniecki ( key 20170512173421_MCS262C99) 2003; 21
Fincher ( key 20170512173421_MCS262C27) 1983; 34
Watt ( key 20170512173421_MCS262C94) 2006; 97
Paull ( key 20170512173421_MCS262C74) 1976; 57
Czarnes ( key 20170512173421_MCS262C20) 2000; 51
Hart ( key 20170512173421_MCS262C35) 2001; 34
Vermeer ( key 20170512173421_MCS262C89) 1982; 156
Driouich ( key 20170512173421_MCS262C25) 2006; 12
McCully ( key 20170512173421_MCS262C53) 1988; 111
Hawes ( key 20170512173421_MCS262C37) 2000; 5
Ciurli ( key 20170512173421_MCS262C17) 1996; 28
Tuzet ( key 20170512173421_MCS262C87) 2003; 26
Amellal ( key 20170512173421_MCS262C2) 1999; 211
Watt ( key 20170512173421_MCS262C93) 1994; 106
Clarke ( key 20170512173421_MCS262C18) 1979; 18
Chaboud ( key 20170512173421_MCS262C14) 1990; 156
Neumann ( key 20170512173421_MCS262C66) 2002; 7
Foster ( key 20170512173421_MCS262C29) 1988; 6
Chenu ( key 20170512173421_MCS262C16) 1996; 28
Guinel ( key 20170512173421_MCS262C33) 1986; 9
Huck ( key 20170512173421_MCS262C41) 1970; 45
Sobolev ( key 20170512173421_MCS262C81) 2006; 17
Javaux ( key 20170512173421_MCS262C43) 2008; 7
Draye ( key 20170512173421_MCS262C24) 2010; 61
North ( key 20170512173421_MCS262C69) 1997; 135
Häussling ( key 20170512173421_MCS262C38) 1988; 133
Carminati ( key 20170512173421_MCS262C12) 2012
Siquera ( key 20170512173421_MCS262C80) 2008; 44
Benizri ( key 20170512173421_MCS262C7) 2007; 39
Passioura ( key 20170512173421_MCS262C73) 1988; 39
Greaves ( key 20170512173421_MCS262C32) 1972; 4
Jarvis ( key 20170512173421_MCS262C42) 2011; 15
Lecompte ( key 20170512173421_MCS262C47) 2001; 236
St. Aubin ( key 20170512173421_MCS262C83) 1986; 58
Ray ( key 20170512173421_MCS262C76) 1988; 39
Watt ( key 20170512173421_MCS262C92) 1993; 151
Macfall ( key 20170512173421_MCS262C49) 1990; 87
Oades ( key 20170512173421_MCS262C70) 1978; 29
Gardner ( key 20170512173421_MCS262C30) 1960; 89
Nguyen ( key 20170512173421_MCS262C67) 2008; 80
Herkelrath ( key 20170512173421_MCS262C39) 1977; 41
Mary ( key 20170512173421_MCS262C50) 1993; 25
Roy ( key 20170512173421_MCS262C79) 2002; 89
Young ( key 20170512173421_MCS262C97) 1995; 130
Ellerbrock ( key 20170512173421_MCS262C26) 2009; 73
Lamont ( key 20170512173421_MCS262C46) 2003; 248
Steudle ( key 20170512173421_MCS262C84) 2001; 52
McCully ( key 20170512173421_MCS262C54) 1997; 99
Lichner ( key 20170512173421_MCS262C48) 2002; 48
Hallet ( key 20170512173421_MCS262C34) 2003; 157
Somasundaram ( key 20170512173421_MCS262C82) 2008; 11
Zarebanadkouki ( key 20170512173421_MCS262C98) 2012; 11
Or ( key 20170512173421_MCS262C71) 2007; 6
Matar ( key 20170512173421_MCS262C51) 1967; 31
Timotiwu ( key 20170512173421_MCS262C86) 2002; 115
Carminati ( key 20170512173421_MCS262C8) 2012; 11
Chenu ( key 20170512173421_MCS262C15) 1993; 56
Moradi ( key 20170512173421_MCS262C62) 2011; 192
Morel ( key 20170512173421_MCS262C63) 1991; 136
Rinaudo ( key 20170512173421_MCS262C78) 1987
Dinkelaker ( key 20170512173421_MCS262C22) 1993; 156
Hinsinger ( key 20170512173421_MCS262C40) 2009; 321
Morre ( key 20170512173421_MCS262C64) 1967; 74
Nagarajah ( key 20170512173421_MCS262C65) 1970; 228
References_xml – volume: 21
  start-page: 315
  year: 2003
  ident: key 20170512173421_MCS262C99
  article-title: Understanding the hydraulics of porous PIPES: tradeoffs between water uptake and root length utilization
  publication-title: Journal of Plant Growth Regulation
  doi: 10.1007/s00344-003-0008-9
– volume: 136
  start-page: 111
  year: 1991
  ident: key 20170512173421_MCS262C63
  article-title: Influence of maize root mucilage on soil aggregate stability
  publication-title: Plant and Soil
  doi: 10.1007/BF02465226
– volume: 25
  start-page: 1005
  year: 1993
  ident: key 20170512173421_MCS262C50
  article-title: C and N cycling during decomposition of root mucilage, roots and glucose in soil
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(93)90147-4
– volume: 57
  start-page: 249
  year: 1976
  ident: key 20170512173421_MCS262C74
  article-title: Studies on the secretion of maize root cap slime. IV. Evidence for the involvement of dictyosomes
  publication-title: Plant Physiology
  doi: 10.1104/pp.57.2.249
– volume: 133
  start-page: 486
  year: 1988
  ident: key 20170512173421_MCS262C38
  article-title: Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.)
  publication-title: Journal of Plant Physiology
  doi: 10.1016/S0176-1617(88)80042-7
– volume: 58
  start-page: 577
  year: 1986
  ident: key 20170512173421_MCS262C83
  article-title: Living vessel elements in the late metaxylem of sheathed maize roots
  publication-title: Annals of Botany
  doi: 10.1093/annbot/58.4.577
– volume: 7
  start-page: 1079
  year: 2008
  ident: key 20170512173421_MCS262C43
  article-title: Use of a three-dimensional detailed modeling approach for predicting root water uptake
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2007.0115
– volume: 56
  start-page: 143
  year: 1993
  ident: key 20170512173421_MCS262C15
  article-title: Clay- or sand polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure
  publication-title: Geoderma
  doi: 10.1016/0016-7061(93)90106-U
– volume: 5
  start-page: 128
  year: 2000
  ident: key 20170512173421_MCS262C37
  article-title: The role of root border cells in plant defence
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(00)01556-9
– volume: 74
  start-page: 286
  year: 1967
  ident: key 20170512173421_MCS262C64
  article-title: Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. I. Kinetics and secretory pathway
  publication-title: Planta
  doi: 10.1007/BF00384849
– volume: 352
  start-page: 1
  year: 2012
  ident: key 20170512173421_MCS262C60
  article-title: Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-1039-9
– volume: 11
  start-page: 3
  year: 2012
  ident: key 20170512173421_MCS262C61
  article-title: Is the rhizosphere temporarily water repellent?
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2011.0120
– volume: 31
  start-page: 235
  year: 1967
  ident: key 20170512173421_MCS262C51
  article-title: Two-phase experiment with plants growing in phosphate-treated soil
  publication-title: Soil Science Society of America Proceedings
  doi: 10.2136/sssaj1967.03615995003100020027x
– year: 2012
  ident: key 20170512173421_MCS262C12
  article-title: Do roots mind the gap?
  publication-title: Plant and Soil
– volume: 228
  start-page: 83
  year: 1970
  ident: key 20170512173421_MCS262C65
  article-title: Competitive absorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces
  publication-title: Nature
  doi: 10.1038/228083a0
– volume: 17
  start-page: 312
  year: 2006
  ident: key 20170512173421_MCS262C81
  article-title: Prenylated stilbenes from peanut root mucilage
  publication-title: Phytochemical Analysis
  doi: 10.1002/pca.920
– volume: 34
  start-page: 595
  year: 1971
  ident: key 20170512173421_MCS262C28
  article-title: Gel formation on nodal root surfaces of Zea mays. Some observations relevant to understanding its action at the root–soil interface
  publication-title: Plant and Soil
  doi: 10.1007/BF01372815
– volume: 4
  start-page: 443
  year: 1972
  ident: key 20170512173421_MCS262C32
  article-title: The ultrastructure of the mucilaginous layer on plant roots
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(72)90059-4
– volume: 80
  start-page: 39
  year: 2008
  ident: key 20170512173421_MCS262C67
  article-title: Net N immobilisation during the biodegradation of mucilage in soil as affected by repeated mineral and organic fertilisation
  publication-title: Nutrient Cycling in Agroecosystems
  doi: 10.1007/s10705-007-9119-1
– volume: 111
  start-page: 159
  year: 1988
  ident: key 20170512173421_MCS262C53
  article-title: Pathways and processes of water and nutrient movement in roots
  publication-title: Plant and Soil
  doi: 10.1007/BF02139932
– volume: 29
  start-page: 919
  year: 2006
  ident: key 20170512173421_MCS262C95
  article-title: White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.2005.01473.x
– volume: 51
  start-page: 435
  year: 2000
  ident: key 20170512173421_MCS262C20
  article-title: Root- and microbial-derived mucilages affect soil structure and water transport
  publication-title: European Journal of Soil Science
  doi: 10.1046/j.1365-2389.2000.00327.x
– volume: 283
  start-page: 99
  year: 2006
  ident: key 20170512173421_MCS262C23
  article-title: Water uptake by plant roots: II. Modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-7904-z
– volume: 89
  start-page: 63
  year: 1960
  ident: key 20170512173421_MCS262C30
  article-title: Dynamic aspects of water availability to plants
  publication-title: Soil Science
  doi: 10.1097/00010694-196002000-00001
– volume: 68
  start-page: 5
  year: 2007
  ident: key 20170512173421_MCS262C75
  article-title: Uptake of water from soils by plant roots. Transport in Porous Media
– volume: 139
  start-page: 131
  year: 1992
  ident: key 20170512173421_MCS262C88
  article-title: Root–soil contact of maize, as measured by a thin-section technique. III. Effects on shoot growth, nitrate and water uptake efficiency
  publication-title: Plant and Soil
  doi: 10.1007/BF00012850
– volume: 61
  start-page: 926
  year: 2010
  ident: key 20170512173421_MCS262C90
  article-title: Quantifying rhizosphere particle movement around mutant maize roots using time-lapse imaging and particle image velocity
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2010.01297.x
– volume: 156
  start-page: 67
  year: 1993
  ident: key 20170512173421_MCS262C22
  article-title: Non-destructive methods for demonstrating chemical changes in the rhizosphere. 1. Description of methods
  publication-title: Plant and Soil
  doi: 10.1007/BF00024985
– volume: 89
  start-page: 293
  year: 2002
  ident: key 20170512173421_MCS262C79
  article-title: Detection of root mucilage using an anti-fucose antibody
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcf040
– volume: 130
  start-page: 135
  year: 1995
  ident: key 20170512173421_MCS262C97
  article-title: Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley)
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1995.tb01823.x
– volume: 45
  start-page: 529
  year: 1970
  ident: key 20170512173421_MCS262C41
  article-title: Diurnal variation in root diameter
  publication-title: Plant Physiology
  doi: 10.1104/pp.45.4.529
– volume: 115
  start-page: 77
  year: 2002
  ident: key 20170512173421_MCS262C86
  article-title: Identification on mono-, oligo-, and polysaccharides secreted from soybean roots
  publication-title: Journal of Plant Research
  doi: 10.1007/s102650200012
– volume: 31
  start-page: 525
  year: 2000
  ident: key 20170512173421_MCS262C31
  article-title: Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s003740000206
– volume: 156
  start-page: 45
  year: 1982
  ident: key 20170512173421_MCS262C89
  article-title: The rhizosphere in Zea: new insight into its structure and development
  publication-title: Planta
  doi: 10.1007/BF00393442
– volume: 9
  start-page: 657
  year: 1986
  ident: key 20170512173421_MCS262C33
  article-title: Some water-related physical properties of maize root-cap mucilage
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1986.tb01624.x
– volume: 149
  start-page: 1
  year: 1993
  ident: key 20170512173421_MCS262C44
  article-title: Use of the root contact concept, an empirical leaf conductance model and pressure volume curves in simulating crop water relations
  publication-title: Plant and Soil
  doi: 10.1007/BF00010759
– volume: 7
  start-page: 162
  year: 2002
  ident: key 20170512173421_MCS262C66
  article-title: Cluster roots – an underground adaptation for survival in extreme environments
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(02)02241-0
– volume: 70
  start-page: 655
  year: 2003
  ident: key 20170512173421_MCS262C58
  article-title: Effects of aluminium sorption on calcium–polygalacturonate network used as soil–root interface model
  publication-title: Biopolymers
  doi: 10.1002/bip.10545
– volume: 39
  start-page: 245
  year: 1988
  ident: key 20170512173421_MCS262C73
  article-title: Water transport in and to roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.pp.39.060188.001333
– volume: 151
  start-page: 151
  year: 1993
  ident: key 20170512173421_MCS262C92
  article-title: Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system
  publication-title: Plant and Soil
  doi: 10.1007/BF00016280
– volume: 29
  start-page: 1
  year: 1978
  ident: key 20170512173421_MCS262C70
  article-title: Mucilages at the root surface
  publication-title: Journal of Soil Science
  doi: 10.1111/j.1365-2389.1978.tb02025.x
– volume: 6
  start-page: 189
  year: 1988
  ident: key 20170512173421_MCS262C29
  article-title: Microenvironment of soil microorganisms
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00260816
– volume: 135
  start-page: 21
  year: 1997
  ident: key 20170512173421_MCS262C69
  article-title: Root–soil contact for the desert succulent Agave deserti in wet and drying soil
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1997.00620.x
– volume: 15
  start-page: 3431
  year: 2011
  ident: key 20170512173421_MCS262C42
  article-title: Simple physics based models of compensatory plant water uptake: concepts and eco-hydrological consequences
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-15-3431-2011
– volume: 97
  start-page: 839
  year: 2006
  ident: key 20170512173421_MCS262C94
  article-title: Rates of root and organism growth, soil conditions and temporal and spatial development of the rhizosphere
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcl028
– volume: 129
  start-page: 19
  year: 1990
  ident: key 20170512173421_MCS262C36
  article-title: Living plant cells released from the root cap: a regulator of microbial populations in the rhizoshpere?
  publication-title: Plant and Soil
  doi: 10.1007/BF00011687
– volume: 11
  start-page: 3
  year: 2012
  ident: key 20170512173421_MCS262C98
  article-title: Quantification and modeling of local root water uptake using neutron radiography and deuterated water
  publication-title: Vadose Zone Jounal
– start-page: 221
  volume-title: Structure and dynamics of biopolymers
  year: 1987
  ident: key 20170512173421_MCS262C78
  article-title: On the structure and behaviour of ionic polysaccharides in dilute aqueous solutions
  doi: 10.1007/978-94-009-3619-5_12
– volume: 48
  start-page: 203
  year: 2002
  ident: key 20170512173421_MCS262C48
  article-title: Effects of kaolinite and drying temperature on the persistence of soil water repellency induced by humic acids
  publication-title: Rostlinna Vyroba
– volume: 248
  start-page: 1
  year: 2003
  ident: key 20170512173421_MCS262C46
  article-title: Structure, ecology and physiology of root clusters – a review
  publication-title: Plant and Soil
  doi: 10.1023/A:1022314613217
– volume: 44
  start-page: 1
  year: 2008
  ident: key 20170512173421_MCS262C80
  article-title: Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimetres to meters
  publication-title: Water Resources Research
– volume: 58
  start-page: 2581
  year: 1980
  ident: key 20170512173421_MCS262C56
  article-title: A histological and histochemical comparison of the mucilages on the root tips of several grasses
  publication-title: Canadian Journal of Botany
  doi: 10.1139/b80-300
– volume: 49
  start-page: 775
  year: 1998
  ident: key 20170512173421_MCS262C85
  article-title: How does water get through roots?
  publication-title: Journal of Experimental Botany
– volume: 106
  start-page: 179
  year: 1994
  ident: key 20170512173421_MCS262C93
  article-title: Formation and stabilization of rhizosheaths of Zea mays L. Effect of soil water content
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.1.179
– volume: 157
  start-page: 597
  year: 2003
  ident: key 20170512173421_MCS262C34
  article-title: Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00690.x
– volume: 73
  start-page: 395
  year: 1983
  ident: key 20170512173421_MCS262C13
  article-title: Isolation, purification and chemical composition of maize root cap slime
  publication-title: Plant and Soil
  doi: 10.1007/BF02184316
– volume: 34
  start-page: 651
  year: 2003
  ident: key 20170512173421_MCS262C21
  article-title: Influence of organic acids exuded by plants on the interaction of copper with the polysaccharidic components of the root mucilage
  publication-title: Organic Geochemistry
  doi: 10.1016/S0146-6380(03)00020-2
– volume: 125
  start-page: 307
  year: 1993
  ident: key 20170512173421_MCS262C4
  article-title: The control of exocytosis in plant cells
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1993.tb03883.x
– volume: 332
  start-page: 163
  year: 2010
  ident: key 20170512173421_MCS262C10
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0283-8
– volume: 99
  start-page: 169
  year: 1997
  ident: key 20170512173421_MCS262C54
  article-title: The expansion of maize root-cap mucilage during hydration. 3. Changes in water potential and water content
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1997.tb03445.x
– volume: 87
  start-page: 1203
  year: 1990
  ident: key 20170512173421_MCS262C49
  article-title: Observation of a water-depletion region surrounding Loblolly-pine roots by magnetic resonance imaging
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.87.3.1203
– volume: 52
  start-page: 847
  year: 2001
  ident: key 20170512173421_MCS262C84
  article-title: The cohesion–tension mechanism and the acquisition of water by plant roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.arplant.52.1.847
– volume: 3
  start-page: 67
  year: 1982
  ident: key 20170512173421_MCS262C19
  article-title: Role des ions calcium dans la formation du mucigel de Zea mays
  publication-title: Acta Oecologica, Oecologia Plantarum
– volume: 27
  start-page: 2857
  year: 1988
  ident: key 20170512173421_MCS262C59
  article-title: Structural analysis of secreted slime from wheat and cowpea roots
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(88)80676-9
– volume: 82
  start-page: 157
  year: 1991
  ident: key 20170512173421_MCS262C91
  article-title: The water status of the roots of soil-grown maize in relation to the maturity of their xylem
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1991.tb00075.x
– volume: 11
  start-page: 2
  year: 2012
  ident: key 20170512173421_MCS262C6
  article-title: Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2011.0111
– volume: 34
  start-page: 47
  year: 1983
  ident: key 20170512173421_MCS262C27
  article-title: Arabinogalactan-proteins: structure, biosynthesis, and function
  publication-title: Annual Review of Plant Physiology
  doi: 10.1146/annurev.pp.34.060183.000403
– volume: 31
  start-page: 333
  year: 1980
  ident: key 20170512173421_MCS262C72
  article-title: The transport of water from soil to shoot in wheat seedlings
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/31.1.333
– volume: 39
  start-page: 1230
  year: 2007
  ident: key 20170512173421_MCS262C7
  article-title: Additions of maize root mucilage to soil changed the structure of the bacterial community
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2006.12.026
– volume: 12
  start-page: 14
  year: 2006
  ident: key 20170512173421_MCS262C25
  article-title: Formation and separation of root border cells
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2006.11.003
– volume: 11
  start-page: 344
  year: 2008
  ident: key 20170512173421_MCS262C82
  article-title: Functional role of mucilage – border cells: a complex facilitating protozoan effects on plant growth
  publication-title: Plant Production Science
  doi: 10.1626/pps.11.344
– volume: 26
  start-page: 1097
  year: 2003
  ident: key 20170512173421_MCS262C87
  article-title: A coupled model of stomatal conductance, photosynthesis and transpiration
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.2003.01035.x
– volume: 11
  start-page: 3
  year: 2012
  ident: key 20170512173421_MCS262C8
  article-title: A model of root water uptake coupled with rhizosphere dynamics
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2011.0106
– volume: 157
  start-page: 315
  year: 2003
  ident: key 20170512173421_MCS262C77
  article-title: Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00665.x
– volume: 8
  start-page: 805
  year: 2009
  ident: key 20170512173421_MCS262C9
  article-title: When roots lose contact
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2008.0147
– volume: 39
  start-page: 1249
  year: 1988
  ident: key 20170512173421_MCS262C76
  article-title: Composition of root mucilage polysaccharides from Lepidium sativum
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/39.9.1249
– volume: 61
  start-page: 2145
  year: 2010
  ident: key 20170512173421_MCS262C24
  article-title: Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq077
– volume: 28
  start-page: 877
  year: 1996
  ident: key 20170512173421_MCS262C16
  article-title: Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(96)00070-3
– volume: 120
  start-page: 9
  year: 1992
  ident: key 20170512173421_MCS262C68
  article-title: Drought-induced changes in hydraulic conductivity and structure in roots of Ferrocactus aconthodes and Opuntia ficus-indica
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1992.tb01053.x
– volume: 41
  start-page: 1039
  year: 1977
  ident: key 20170512173421_MCS262C39
  article-title: Water uptake by plants. II. The root contact model
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1977.03615995004100060004x
– volume: 156
  start-page: 163
  year: 1990
  ident: key 20170512173421_MCS262C14
  article-title: Comparison of maize root mucilages isolated from root exudates and root surface extracts by complementary cytological and biochemical investigations
  publication-title: Protoplasma
  doi: 10.1007/BF01560654
– volume: 28
  start-page: 811
  year: 1996
  ident: key 20170512173421_MCS262C17
  article-title: Urease from the soil bacterium Bacillus pasteurii: immobilization on Ca-Polygalacturonate
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(96)00020-X
– volume: 59
  start-page: 595
  year: 2008
  ident: key 20170512173421_MCS262C52
  article-title: Plant aquaporins: membrane channels with multiple integrated functions
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092734
– volume: 211
  start-page: 93
  year: 1999
  ident: key 20170512173421_MCS262C2
  article-title: Effects of inoculation of EPS-producing Pantoea agglomerans on wheat rhizosphere aggregation
  publication-title: Plant and Soil
  doi: 10.1023/A:1004403009353
– volume: 56
  start-page: 353
  year: 2005
  ident: key 20170512173421_MCS262C96
  article-title: Structural differences between bulk and rhizosphere soil
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2004.00670.x
– volume: 80
  start-page: 771
  year: 1986
  ident: key 20170512173421_MCS262C3
  article-title: Structural analysis of secreted root slime from maize (Zea mays L.)
  publication-title: Plant Physiology
  doi: 10.1104/pp.80.3.771
– volume: 34
  start-page: 201
  year: 2001
  ident: key 20170512173421_MCS262C35
  article-title: Anion exclusion in microbial and soil polysaccharides
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/s003740100400
– volume: 62
  start-page: 657
  year: 2011
  ident: key 20170512173421_MCS262C55
  article-title: Scales in single root water uptake models: a review, analysis and synthesis
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2011.01385.x
– volume: 321
  start-page: 117
  year: 2009
  ident: key 20170512173421_MCS262C40
  article-title: Rhizosphere: biophysics, biogeochemistry and ecological relevance
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9885-9
– volume: 70
  start-page: 1731
  year: 2006
  ident: key 20170512173421_MCS262C57
  article-title: Phosphate desorption from goethite in the presence of galacturonate, polygalacturonate, and maize mucigel (Zea mays L.)
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2005.0414
– volume: 11
  start-page: 643
  year: 1999
  ident: key 20170512173421_MCS262C5
  article-title: Exocytosis and endocytosis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.11.4.643
– volume: 192
  start-page: 653
  year: 2011
  ident: key 20170512173421_MCS262C62
  article-title: Three-dimensional visualization and quantification of water content in the rhizosphere
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2011.03826.x
– volume: 73
  start-page: 531
  year: 2009
  ident: key 20170512173421_MCS262C26
  article-title: In situ DRIFT characterization of organic matter composition on soil structural surfaces
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2008.0103
– volume: 10
  start-page: 988
  year: 2011
  ident: key 20170512173421_MCS262C11
  article-title: How the rhizosphere may favor water availability to roots
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2010.0113
– volume: 236
  start-page: 19
  year: 2001
  ident: key 20170512173421_MCS262C47
  article-title: The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability
  publication-title: Plant and Soil
  doi: 10.1023/A:1011924529885
– volume: 6
  start-page: 298
  year: 2007
  ident: key 20170512173421_MCS262C71
  article-title: Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils
  publication-title: Vadose Zone Journal
  doi: 10.2136/vzj2006.0080
– volume: 14
  start-page: 775
  year: 2001
  ident: key 20170512173421_MCS262C45
  article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI.2001.14.6.775
– volume: 18
  start-page: 521
  year: 1979
  ident: key 20170512173421_MCS262C18
  article-title: Form and function of arabinogalactans and arabinogalactan-proteins
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)84255-7
SSID ssj0002691
Score 2.4702837
SecondaryResourceType review_article
Snippet BackgroundIt is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil....
• Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil....
It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere...
Background It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Acid soils
Air
analysis
biodegradation
Biological Transport
chemistry
drought tolerance
drying
Hydraulics
Hydrophobic and Hydrophilic Interactions
hydrophobicity
metabolism
Moisture content
Plant Mucilage
Plant Mucilage - chemistry
Plant Mucilage - metabolism
Plant Roots
Plant Roots - chemistry
Plant Roots - metabolism
plant-water relations
Plants
Plants - chemistry
Plants - metabolism
Rhizosphere
root growth
root systems
roots
Sandy soils
Soil
Soil - chemistry
soil compaction
Soil hydraulic properties
soil quality
soil types
Soil water
soil-plant interactions
VIEWPOINT
Water
Water - analysis
Water - metabolism
water holding capacity
Water uptake
Title Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources
URI https://www.jstor.org/stable/42797962
https://www.ncbi.nlm.nih.gov/pubmed/23235697
https://www.proquest.com/docview/1393823396
https://www.proquest.com/docview/1430858449
https://www.proquest.com/docview/1663531172
https://pubmed.ncbi.nlm.nih.gov/PMC3698379
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYxgMviNtYuMkIXlAVVsfOxY8DNk1sDAQt9C1yEptNKs2Utg_w6zknTpwEqmkgVVGVupbl8-Xks33Odwh5ibmbOiqYr4SMfGFy7stxkfiaFSJOlMkjhvnOH86i46l4PwtnXWW6Ortklb3Of23MK_kfq8I9sCtmyf6DZV2ncAO-g33hChaG67Vs_AmoL0ZF26iKCsPnligToEfnP4tKrVHA-hJ32yuUTcWSMmoED62V-a61IzASAAY4b7IxsZtljumPo6rZ11_26Wsnt5yVq9aN1CcYdUiNDQ2oYySdt_9a5wvNm5qa78rqYrDTgFUf4nanwTpHoGM-Hrzad8eGe61HZUEPOkHfP9qaLX_5batppcoMrj_yZdB46IE89tnH9Gh6eppODmeTLbIDXSEj3jk4-fztxL18g6gukuiG1SrSSr4Pve_bvgccZMuosg1G3bTM-DNatkc_JnfI7WbdQA8sCO6SG3pxj9x8U1vhPtEdEmhpaA8J1CGBdkigCj4UkEABCdQhgfaQgN1YJFCHhAdkenQ4eXvsNwU0_DwMo5WfFIXMOKwJcmN4wUIgRIIHBdOMKWBuGUeln3GguBnD-1JiwGIoFAokiURlhvNdsr0oF3qPUB0UOdBBxRIRiMxINWYmjkIgi0YrJZRHXrVTmuaNujwWOZmnNsqBpzD9qZ1-j7xwbS-tpsrGVntgmVR9B1ym0y8Bbs1h6rSQzCO7tbncv0UQy1jif5639kvBTeLZl1rocr1MYaGDJ95cRle0ETBXQMiFvKINMnTOgPZ75KHFhRsFLE54GMnYI_EAMa4BSrkPf1lcnNeS7jySCY_lo2uM_zG51T2cT8j2qlrrp0CMV9mz5mH4DXUjv4s
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+of+rhizosphere+hydraulic+properties+as+a+key+for+efficient+utilization+of+scarce+resources&rft.jtitle=Annals+of+botany&rft.au=Carminati%2C+Andrea&rft.au=Vetterlein%2C+Doris&rft.date=2013-07-01&rft.issn=1095-8290&rft.eissn=1095-8290&rft.volume=112&rft.issue=2&rft.spage=277&rft_id=info:doi/10.1093%2Faob%2Fmcs262&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon