An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite
[Display omitted] •A novel ultra-fine natural zeolite supported Fe-Ni composite was synthesized.•The catalytic ability and stability of Z-nZVI-Ni increased significantly.•Z-nZVI-Ni demonstrated remarkable performance for TCE degradation.•The hydroxyl radicals (OH) played the dominant role in TCE deg...
Saved in:
Published in | Applied catalysis. A, General Vol. 531; pp. 177 - 186 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.02.2017
Elsevier Science SA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel ultra-fine natural zeolite supported Fe-Ni composite was synthesized.•The catalytic ability and stability of Z-nZVI-Ni increased significantly.•Z-nZVI-Ni demonstrated remarkable performance for TCE degradation.•The hydroxyl radicals (OH) played the dominant role in TCE degradation.•The slow leaching of Fe and Ni presented its extended stability.
Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH). The quantification of OH elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH. The transformation products were identified using GC–MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. |
---|---|
AbstractList | Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH
•
). The quantification of OH
•
elucidated by using
p-
chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH
•
. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH center dot). The quantification of OH center dot elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH center dot. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. (C) 2016 Elsevier B.V. All rights reserved. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH<img src="http://cdn.els-cdn.com/sd/entities/rad" data-inlimg="/entities/rad" data-loaded="true" />). The quantification of OH<img src="http://cdn.els-cdn.com/sd/entities/rad" data-inlimg="/entities/rad" data-loaded="true" />elucidated by using p- chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH<img src="http://cdn.els-cdn.com/sd/entities/rad" data-inlimg="/entities/rad" data-loaded="true" />. The transformation products were identified using GC–MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH). The quantification of OH elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH ). The quantification of OH elucidated by using chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH . The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH•). The quantification of OH• elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH•. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation.Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH•). The quantification of OH• elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH•. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. [Display omitted] •A novel ultra-fine natural zeolite supported Fe-Ni composite was synthesized.•The catalytic ability and stability of Z-nZVI-Ni increased significantly.•Z-nZVI-Ni demonstrated remarkable performance for TCE degradation.•The hydroxyl radicals (OH) played the dominant role in TCE degradation.•The slow leaching of Fe and Ni presented its extended stability. Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH). The quantification of OH elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH. The transformation products were identified using GC–MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation. |
Author | Danish, Muhammad Miao, Zhouwei Gu, Xiaogang Brusseau, Mark L. Naqvi, Muhammad Zaman, Waqas Qamar Lu, Shuguang Ahmad, Ayyaz Farooq, Usman Fu, Xiaori |
AuthorAffiliation | c Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan d Department of Energy, Building and Environment, Mälardalen University, Västerås 72123, Sweden b Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, United States a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China |
AuthorAffiliation_xml | – name: d Department of Energy, Building and Environment, Mälardalen University, Västerås 72123, Sweden – name: a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – name: b Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, United States – name: c Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan |
Author_xml | – sequence: 1 givenname: Muhammad surname: Danish fullname: Danish, Muhammad organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 2 givenname: Xiaogang surname: Gu fullname: Gu, Xiaogang organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 3 givenname: Shuguang surname: Lu fullname: Lu, Shuguang email: lvshuguang@ecust.edu.cn organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 4 givenname: Mark L. surname: Brusseau fullname: Brusseau, Mark L. organization: Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, United States – sequence: 5 givenname: Ayyaz surname: Ahmad fullname: Ahmad, Ayyaz organization: Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan – sequence: 6 givenname: Muhammad surname: Naqvi fullname: Naqvi, Muhammad organization: Department of Energy, Building and Environment, Mälardalen University, Västerås 72123, Sweden – sequence: 7 givenname: Usman surname: Farooq fullname: Farooq, Usman organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 8 givenname: Waqas Qamar surname: Zaman fullname: Zaman, Waqas Qamar organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 9 givenname: Xiaori surname: Fu fullname: Fu, Xiaori organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China – sequence: 10 givenname: Zhouwei surname: Miao fullname: Miao, Zhouwei organization: State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29104369$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-74908$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-33534$$DView record from Swedish Publication Index |
BookMark | eNqNks1u1DAUhSNURKeFN0DIEhsWZLBjJ3FYIFXlV6rEBhA7y7FvZjxN7NR2Bk1fixfE6QwV7QJYWZa_c3Tv8TnJjqyzkGVPCV4STKpXm6UclYxyWaTbkpAlxuRBtiC8pjnldXmULXBTVDmv8Pfj7CSEDca4YE35KDsuGoIZrZpF9vPMIug6owzYiGa_fheNQhpWXmoZjbPIdSh6o9a98w7iGiwgY5FEI3glfeusjIDCLkQYDg7XoFG7Q1Mfvcw7kwRriODdKmndFNA1uN7MomkcnY-Jvk6vaCv7eQrjnc2tUZfQo9YMkBz7NJJyw-hCkj3OHnayD_DkcJ5mX9-_-3L-Mb_4_OHT-dlFrsqyijnXtcS0JVw3jJVAScFqzSTFTNesA91VmFINdVkAb8uUhirqFoBoDlxJXtHT7OXeN_yAcWrF6M0g_U44acRb8-1MOL8Sg14LSkvK_g-_lJOoWYN5wt_s8cQOoFXa3Mv-juruizVrsXJbUVZVSXmTDF4cDLy7miBEMZigoO_lTciCNBXBlFUFSejze-jGTd6m8ESBi2LGeJmoZ39OdDvK77YkgO0B5V0IHrpbhGAxl1JsxL6UYi6lIESkUibZ63syZeJNtdJepv-X-BATpJ_eGvAizF1VoI0HFYV25u8GvwBezAY5 |
CitedBy_id | crossref_primary_10_1016_j_apcata_2017_07_007 crossref_primary_10_1016_j_scitotenv_2024_177824 crossref_primary_10_1007_s11164_016_2821_3 crossref_primary_10_1016_j_jhazmat_2018_01_037 crossref_primary_10_1016_j_scitotenv_2021_148546 crossref_primary_10_23939_ctas2022_01_001 crossref_primary_10_1016_j_cej_2018_04_120 crossref_primary_10_1007_s10967_023_08789_5 crossref_primary_10_1016_j_cep_2020_107879 crossref_primary_10_1016_j_jhazmat_2018_12_056 crossref_primary_10_1016_j_scitotenv_2018_09_148 crossref_primary_10_1016_j_scitotenv_2022_161201 crossref_primary_10_1016_j_cej_2022_141027 crossref_primary_10_1016_j_jwpe_2020_101838 crossref_primary_10_2166_wst_2018_293 crossref_primary_10_1016_j_jallcom_2019_153410 crossref_primary_10_1016_j_watres_2024_121842 crossref_primary_10_1016_j_cej_2020_124276 crossref_primary_10_1016_j_cej_2023_142424 crossref_primary_10_1016_j_jcis_2025_01_039 crossref_primary_10_1016_j_jclepro_2021_128108 crossref_primary_10_1016_j_envres_2021_111371 crossref_primary_10_1007_s00339_021_04724_1 crossref_primary_10_1016_j_jes_2020_12_031 crossref_primary_10_1002_advs_202004951 crossref_primary_10_1016_j_jece_2020_104023 crossref_primary_10_1016_j_jhazmat_2022_130014 crossref_primary_10_1007_s11356_024_33845_2 crossref_primary_10_1016_j_matchemphys_2019_04_016 crossref_primary_10_1016_j_seppur_2024_129426 crossref_primary_10_1016_j_jece_2022_108702 crossref_primary_10_1016_j_envpol_2021_118565 crossref_primary_10_1016_j_jhazmat_2022_128999 crossref_primary_10_1016_j_surfin_2024_105365 crossref_primary_10_1016_j_cej_2020_126405 crossref_primary_10_1002_jctb_7684 crossref_primary_10_1016_j_cej_2021_130467 crossref_primary_10_1016_j_chemosphere_2021_131435 crossref_primary_10_1016_j_jece_2020_104808 crossref_primary_10_1016_j_apcata_2018_04_019 crossref_primary_10_1016_j_jes_2022_07_037 crossref_primary_10_1007_s11356_024_31823_2 crossref_primary_10_1016_j_cej_2021_130221 crossref_primary_10_1016_j_jes_2017_12_002 crossref_primary_10_1016_j_jwpe_2021_102078 crossref_primary_10_1016_j_jece_2021_105341 crossref_primary_10_1016_j_cej_2024_157832 crossref_primary_10_5004_dwt_2019_24325 crossref_primary_10_1016_j_seppur_2020_116827 crossref_primary_10_1016_j_chemosphere_2020_126916 crossref_primary_10_1016_j_cej_2019_123995 crossref_primary_10_1016_j_colsurfa_2023_132704 crossref_primary_10_2166_wst_2020_587 crossref_primary_10_2166_ws_2017_060 crossref_primary_10_3390_catal10070753 crossref_primary_10_1016_j_jtice_2017_05_017 crossref_primary_10_1016_j_cej_2017_10_019 crossref_primary_10_1016_j_envpol_2023_121352 crossref_primary_10_1016_j_chemosphere_2019_125260 crossref_primary_10_1039_C6EN00575F crossref_primary_10_1016_j_jclepro_2022_134421 crossref_primary_10_1007_s11164_023_05166_5 |
Cites_doi | 10.1021/es049811j 10.1016/j.jhazmat.2010.03.013 10.1016/j.cej.2013.05.096 10.1039/c0jm00577k 10.1016/j.jallcom.2010.01.063 10.1016/S0927-7757(01)00767-1 10.1016/j.jhazmat.2010.10.055 10.1016/j.materresbull.2012.07.021 10.1007/s11270-016-3005-x 10.1007/s11164-016-2509-8 10.1007/s11356-016-6488-5 10.1021/cm020737i 10.1016/j.apcatb.2010.07.006 10.1016/j.catcom.2008.12.066 10.1089/ees.2011.0237 10.1021/cs300534y 10.1007/s11356-015-5034-1 10.1016/j.apcatb.2014.09.047 10.1016/j.foodchem.2016.02.014 10.1016/j.cej.2015.04.014 10.1016/S0022-2860(03)00249-7 10.1039/c2jm31000g 10.1016/j.cej.2016.01.085 10.1016/S0045-6535(00)00263-0 10.1016/S0045-6535(99)00530-5 10.1016/j.chemosphere.2014.09.065 10.1016/j.jhazmat.2011.10.056 10.1021/nn300934k 10.1016/j.apcatb.2011.11.024 10.1016/j.jhazmat.2010.09.068 10.1016/j.chemosphere.2005.07.021 10.1016/j.chemosphere.2013.12.040 10.1080/09593330.2013.852592 10.1016/j.jhazmat.2010.10.116 10.1021/jp980129j 10.1016/j.jcat.2007.07.006 10.1016/j.jhazmat.2007.09.116 10.1023/A:1025520116015 10.1080/10408430601057611 10.1039/B614847F 10.1016/j.apcatb.2013.09.032 10.1016/j.jssc.2005.10.001 10.1021/es061349a |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright Elsevier Science SA Feb 5, 2017 |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright Elsevier Science SA Feb 5, 2017 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM ADTPV AOWAS DG3 DF7 |
DOI | 10.1016/j.apcata.2016.11.001 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Karlstads universitet SWEPUB Mälardalens högskola |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3875 |
EndPage | 186 |
ExternalDocumentID | oai_DiVA_org_mdh_33534 oai_DiVA_org_kau_74908 PMC5665389 29104369 10_1016_j_apcata_2016_11_001 S0926860X16305403 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P42 ES004940 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPD SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIIUN ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ EFKBS NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM ADTPV AOWAS DG3 DF7 |
ID | FETCH-LOGICAL-c556t-8d7a03b18d9445e31247d4a304d74fedf6033de752e8b5369c27bee1d8e8ca863 |
IEDL.DBID | .~1 |
ISSN | 0926-860X 1873-3875 |
IngestDate | Thu Jul 03 05:19:01 EDT 2025 Thu Aug 21 06:49:04 EDT 2025 Thu Aug 21 18:17:01 EDT 2025 Fri Jul 11 12:12:00 EDT 2025 Mon Jul 14 10:19:02 EDT 2025 Mon Jul 21 06:05:48 EDT 2025 Tue Jul 01 00:39:14 EDT 2025 Thu Apr 24 23:20:47 EDT 2025 Fri Feb 23 02:24:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Groundwater remediation Heterogeneous Fenton catalyst Trichloroethene (TCE) Sodium percarbonate (SPC) Z-nZVI-Ni groundwater remediation sodium percarbonate (SPC) heterogeneous Fenton catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-8d7a03b18d9445e31247d4a304d74fedf6033de752e8b5369c27bee1d8e8ca863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29104369 |
PQID | 2022103485 |
PQPubID | 2047481 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_mdh_33534 swepub_primary_oai_DiVA_org_kau_74908 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5665389 proquest_miscellaneous_1961034621 proquest_journals_2022103485 pubmed_primary_29104369 crossref_primary_10_1016_j_apcata_2016_11_001 crossref_citationtrail_10_1016_j_apcata_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_apcata_2016_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-05 |
PublicationDateYYYYMMDD | 2017-02-05 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Applied catalysis. A, General |
PublicationTitleAlternate | Appl Catal A Gen |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier Science SA |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science SA |
References | Hartmann, Kullmann, Keller (bib0170) 2010; 20 Gómez, Caballero, Vazquez, Moreno, de la Hoz, Diaz-Ortiz (bib0035) 2007; 9 Danish, Gu, Lu, Zhang, Fu, Xue, Miao, Ahmad, Naqvi, Qureshi (bib0040) 2016; 227 Fu, Gu, Lu, Miao, Xu, Zhang, Danish, Cui, Farooq, Qiu, Sui (bib0050) 2015 Cheng, Wu (bib0210) 2001; 43 Li, Elliott, Zhang (bib0090) 2006; 31 Rivas, Gimeno, Borralho, Carbajo (bib0075) 2010; 179 Babuponnusami, Muthukumar, Environ (bib0105) 2014; 2 Markovic, Dondur, Dimitrijevic (bib0200) 2003; 654 Salavati-Niasari, Davar, Fereshteh (bib0195) 2010; 494 Nguyen, Phan, Do, Ngo (bib0180) 2011; 185 Habibi, Zolfigol, Safaiee, Shamsian, Ghorbani-Choghamarani (bib0045) 2009; 10 Danish, Gu, Lu, Naqvi (bib0025) 2016; 23 El-Moghazy, Soliman, Ibrahim, Noguer, Marty, Istamboulie (bib0145) 2016; 203 Navalon, Alvaro, Garcia (bib0115) 2010; 99 Zang, Gu, Lu, Qiu, Sui, Lin, Du (bib0010) 2014; 35 Cheng, Zhang, Ye (bib0190) 2006; 179 Segura, Martínez, Melero, Molina, Chand, Bremner (bib0230) 2012; 113 Che, Bae, Lee (bib0020) 2011; 185 Madhavi, Prasad, Madhavi (bib0205) 2013; 3 Schrick, Blough, Jones, Mallouk (bib0135) 2002; 14 Lien, Zhang (bib0125) 2001; 191 Miao, Gu, Lu, Zang, Wu, Xu, Ndong, Qiu, Sui, Fu (bib0055) 2015; 119 Feng, Hu, Yue (bib0130) 2004; 38 Bossmann, Oliveros, Göb, Siegwart, Dahlen, Payawan, Straub, Wörner, Braun (bib0185) 1998; 102 Kong, Wei, Zhao, Wang, Wan (bib0220) 2012; 2 Choi, Lee (bib0225) 2012; 211 Weng, Lin, Zhong, Chen (bib0140) 2013; 229 Yan, Gao, Dong, Han, Qian, Nathanail, Chen (bib0005) 2016; 295 Ahmad, Gu, Li, Lv, Xu, Guo (bib0160) 2015; 22 Danish, Gu, Lu, Xu, Zhang, Fu, Xue, Miao, Naqvi, Nasir (bib0030) 2016; 42 Phenrat, Saleh, Sirk, Tilton, Lowry (bib0095) 2007; 41 Cheng, Wu (bib0215) 2000; 41 Kao, Huang, Wang, Chen, Chien (bib0015) 2008; 153 Zhang (bib0085) 2003; 5 Valdés-Solís, Valle-Vigón, Sevilla, Fuertes (bib0155) 2007; 251 Deng, Wen, Wang (bib0165) 2012; 47 de la Calle, Gimeno, Rivas (bib0065) 2012; 29 Xu, Wang (bib0080) 2011; 186 Wang, Zhao, Zhao (bib0120) 2015; 164 Wu, Ritchie (bib0100) 2006; 63 Fukuchi, Nishimoto, Fukushima, Zhu (bib0110) 2014; 147 Miao, Gu, Lu, Dionysiou, Al-Abed, Zang, Wu, Qiu, Sui, Danish (bib0060) 2015; 275 Sindelar, Brown, Boyer (bib0070) 2014; 105 Zhou, Chen, Yan, Lu (bib0150) 2012; 22 Li, Zhang, Niu, Chen (bib0175) 2012; 6 Xu (10.1016/j.apcata.2016.11.001_bib0080) 2011; 186 Wang (10.1016/j.apcata.2016.11.001_bib0120) 2015; 164 Schrick (10.1016/j.apcata.2016.11.001_bib0135) 2002; 14 Markovic (10.1016/j.apcata.2016.11.001_bib0200) 2003; 654 Segura (10.1016/j.apcata.2016.11.001_bib0230) 2012; 113 Li (10.1016/j.apcata.2016.11.001_bib0090) 2006; 31 Ahmad (10.1016/j.apcata.2016.11.001_bib0160) 2015; 22 Bossmann (10.1016/j.apcata.2016.11.001_bib0185) 1998; 102 Miao (10.1016/j.apcata.2016.11.001_bib0060) 2015; 275 Rivas (10.1016/j.apcata.2016.11.001_bib0075) 2010; 179 Lien (10.1016/j.apcata.2016.11.001_bib0125) 2001; 191 Weng (10.1016/j.apcata.2016.11.001_bib0140) 2013; 229 Habibi (10.1016/j.apcata.2016.11.001_bib0045) 2009; 10 Fukuchi (10.1016/j.apcata.2016.11.001_bib0110) 2014; 147 Che (10.1016/j.apcata.2016.11.001_bib0020) 2011; 185 Sindelar (10.1016/j.apcata.2016.11.001_bib0070) 2014; 105 Hartmann (10.1016/j.apcata.2016.11.001_bib0170) 2010; 20 Li (10.1016/j.apcata.2016.11.001_bib0175) 2012; 6 Salavati-Niasari (10.1016/j.apcata.2016.11.001_bib0195) 2010; 494 Madhavi (10.1016/j.apcata.2016.11.001_bib0205) 2013; 3 Babuponnusami (10.1016/j.apcata.2016.11.001_bib0105) 2014; 2 de la Calle (10.1016/j.apcata.2016.11.001_bib0065) 2012; 29 Valdés-Solís (10.1016/j.apcata.2016.11.001_bib0155) 2007; 251 Navalon (10.1016/j.apcata.2016.11.001_bib0115) 2010; 99 Deng (10.1016/j.apcata.2016.11.001_bib0165) 2012; 47 Gómez (10.1016/j.apcata.2016.11.001_bib0035) 2007; 9 Cheng (10.1016/j.apcata.2016.11.001_bib0210) 2001; 43 Choi (10.1016/j.apcata.2016.11.001_bib0225) 2012; 211 Wu (10.1016/j.apcata.2016.11.001_bib0100) 2006; 63 Zang (10.1016/j.apcata.2016.11.001_bib0010) 2014; 35 Zhang (10.1016/j.apcata.2016.11.001_bib0085) 2003; 5 Danish (10.1016/j.apcata.2016.11.001_bib0025) 2016; 23 Yan (10.1016/j.apcata.2016.11.001_bib0005) 2016; 295 Fu (10.1016/j.apcata.2016.11.001_bib0050) 2015 Feng (10.1016/j.apcata.2016.11.001_bib0130) 2004; 38 Zhou (10.1016/j.apcata.2016.11.001_bib0150) 2012; 22 Cheng (10.1016/j.apcata.2016.11.001_bib0190) 2006; 179 Nguyen (10.1016/j.apcata.2016.11.001_bib0180) 2011; 185 Cheng (10.1016/j.apcata.2016.11.001_bib0215) 2000; 41 Danish (10.1016/j.apcata.2016.11.001_bib0040) 2016; 227 Kong (10.1016/j.apcata.2016.11.001_bib0220) 2012; 2 Kao (10.1016/j.apcata.2016.11.001_bib0015) 2008; 153 El-Moghazy (10.1016/j.apcata.2016.11.001_bib0145) 2016; 203 Danish (10.1016/j.apcata.2016.11.001_bib0030) 2016; 42 Phenrat (10.1016/j.apcata.2016.11.001_bib0095) 2007; 41 Miao (10.1016/j.apcata.2016.11.001_bib0055) 2015; 119 |
References_xml | – volume: 113 start-page: 100 year: 2012 end-page: 106 ident: bib0230 publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 1257 year: 2009 end-page: 1260 ident: bib0045 publication-title: Catal. Commun. – volume: 42 start-page: 6959 year: 2016 end-page: 6973 ident: bib0030 publication-title: Res. Chem. Inter. – volume: 654 start-page: 223 year: 2003 end-page: 234 ident: bib0200 publication-title: J. Mol. Struct. – volume: 43 start-page: 1023 year: 2001 end-page: 1028 ident: bib0210 publication-title: Chemosphere – volume: 22 start-page: 17876 year: 2015 end-page: 17885 ident: bib0160 publication-title: Environ. Sci. Pollut. Res. – volume: 35 start-page: 791 year: 2014 end-page: 798 ident: bib0010 publication-title: Environ. Technol. – volume: 227 start-page: 1 year: 2016 end-page: 14 ident: bib0040 publication-title: Water Air Soil Pollut. – volume: 147 start-page: 411 year: 2014 end-page: 419 ident: bib0110 publication-title: Appl. Catal. B: Environ. – volume: 229 start-page: 27 year: 2013 end-page: 34 ident: bib0140 publication-title: Chem. Eng. J. – volume: 38 start-page: 5773 year: 2004 end-page: 5778 ident: bib0130 publication-title: Environ. Sci. Technol. – volume: 47 start-page: 3369 year: 2012 end-page: 3376 ident: bib0165 publication-title: Mater. Res. Bull. – volume: 105 start-page: 112 year: 2014 end-page: 118 ident: bib0070 publication-title: Chemosphere – volume: 99 start-page: 1 year: 2010 end-page: 26 ident: bib0115 publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 5164 year: 2012 end-page: 5173 ident: bib0175 publication-title: ACS Nano – volume: 203 start-page: 73 year: 2016 end-page: 78 ident: bib0145 publication-title: Food. Chem. – volume: 179 start-page: 91 year: 2006 end-page: 95 ident: bib0190 publication-title: J. Solid State Chem. – volume: 63 start-page: 285 year: 2006 end-page: 292 ident: bib0100 publication-title: Chemosphere – volume: 494 start-page: 410 year: 2010 end-page: 414 ident: bib0195 publication-title: J. Alloys Compd. – volume: 5 start-page: 323 year: 2003 end-page: 332 ident: bib0085 publication-title: J. Nanopart. Res. – volume: 31 start-page: 111 year: 2006 end-page: 122 ident: bib0090 publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 191 start-page: 97 year: 2001 end-page: 105 ident: bib0125 publication-title: Colloids Surf. A: Phys. Chem. Eng. Asp. – volume: 295 start-page: 309 year: 2016 end-page: 316 ident: bib0005 publication-title: Chem. Eng. J. – volume: 179 start-page: 357 year: 2010 end-page: 362 ident: bib0075 publication-title: J. Hazard. Mater. – volume: 9 start-page: 331 year: 2007 end-page: 336 ident: bib0035 publication-title: Green Chem. – volume: 29 start-page: 951 year: 2012 end-page: 956 ident: bib0065 publication-title: Environ. Eng. Sci. – volume: 41 start-page: 284 year: 2007 end-page: 290 ident: bib0095 publication-title: Environ. Sci. Technol. – volume: 20 start-page: 9002 year: 2010 end-page: 9017 ident: bib0170 publication-title: J. Mater. Chem. – volume: 23 start-page: 13298 year: 2016 end-page: 13307 ident: bib0025 publication-title: Environ. Sci. Poll. Res. – volume: 186 start-page: 256 year: 2011 end-page: 264 ident: bib0080 publication-title: J. Hazard. Mater. – volume: 14 start-page: 5140 year: 2002 end-page: 5147 ident: bib0135 publication-title: Chem. Mater. – volume: 2 start-page: 2577 year: 2012 end-page: 2586 ident: bib0220 publication-title: ACS Catal. – volume: 211 start-page: 146 year: 2012 end-page: 153 ident: bib0225 publication-title: J. Hazard. Mater. – start-page: 1 year: 2015 end-page: 9 ident: bib0050 publication-title: Environ. Sci. Pollut. Res. – volume: 275 start-page: 53 year: 2015 end-page: 62 ident: bib0060 publication-title: Chem. Eng. J. – volume: 41 start-page: 1263 year: 2000 end-page: 1270 ident: bib0215 publication-title: Chemosphere – volume: 164 start-page: 396 year: 2015 end-page: 406 ident: bib0120 publication-title: Appl. Catal. B: Environ. – volume: 22 start-page: 13506 year: 2012 end-page: 13516 ident: bib0150 publication-title: J. Mater. Chem. – volume: 251 start-page: 239 year: 2007 end-page: 243 ident: bib0155 publication-title: J. Catal. – volume: 119 start-page: 1120 year: 2015 end-page: 1125 ident: bib0055 publication-title: Chemosphere – volume: 102 start-page: 5542 year: 1998 end-page: 5550 ident: bib0185 publication-title: J. Phys. Chem. A – volume: 2 start-page: 557 year: 2014 end-page: 572 ident: bib0105 publication-title: Chem. Eng. – volume: 185 start-page: 653 year: 2011 end-page: 661 ident: bib0180 publication-title: J. Hazard. Mater. – volume: 3 start-page: 31 year: 2013 end-page: 34 ident: bib0205 publication-title: Int J. Nanomater. Biostruct. – volume: 153 start-page: 919 year: 2008 end-page: 927 ident: bib0015 publication-title: J. Hazard. Mater. – volume: 185 start-page: 1355 year: 2011 end-page: 1361 ident: bib0020 publication-title: J. Hazard. Mater. – volume: 38 start-page: 5773 year: 2004 ident: 10.1016/j.apcata.2016.11.001_bib0130 publication-title: Environ. Sci. Technol. doi: 10.1021/es049811j – volume: 179 start-page: 357 year: 2010 ident: 10.1016/j.apcata.2016.11.001_bib0075 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.013 – volume: 229 start-page: 27 year: 2013 ident: 10.1016/j.apcata.2016.11.001_bib0140 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.05.096 – volume: 20 start-page: 9002 year: 2010 ident: 10.1016/j.apcata.2016.11.001_bib0170 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00577k – volume: 494 start-page: 410 year: 2010 ident: 10.1016/j.apcata.2016.11.001_bib0195 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.01.063 – volume: 191 start-page: 97 year: 2001 ident: 10.1016/j.apcata.2016.11.001_bib0125 publication-title: Colloids Surf. A: Phys. Chem. Eng. Asp. doi: 10.1016/S0927-7757(01)00767-1 – volume: 2 start-page: 557 year: 2014 ident: 10.1016/j.apcata.2016.11.001_bib0105 publication-title: Chem. Eng. – volume: 185 start-page: 1355 year: 2011 ident: 10.1016/j.apcata.2016.11.001_bib0020 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.055 – volume: 47 start-page: 3369 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0165 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.07.021 – volume: 3 start-page: 31 year: 2013 ident: 10.1016/j.apcata.2016.11.001_bib0205 publication-title: Int J. Nanomater. Biostruct. – volume: 227 start-page: 1 year: 2016 ident: 10.1016/j.apcata.2016.11.001_bib0040 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-016-3005-x – volume: 42 start-page: 6959 year: 2016 ident: 10.1016/j.apcata.2016.11.001_bib0030 publication-title: Res. Chem. Inter. doi: 10.1007/s11164-016-2509-8 – volume: 23 start-page: 13298 year: 2016 ident: 10.1016/j.apcata.2016.11.001_bib0025 publication-title: Environ. Sci. Poll. Res. doi: 10.1007/s11356-016-6488-5 – volume: 14 start-page: 5140 year: 2002 ident: 10.1016/j.apcata.2016.11.001_bib0135 publication-title: Chem. Mater. doi: 10.1021/cm020737i – volume: 99 start-page: 1 year: 2010 ident: 10.1016/j.apcata.2016.11.001_bib0115 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2010.07.006 – volume: 10 start-page: 1257 year: 2009 ident: 10.1016/j.apcata.2016.11.001_bib0045 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2008.12.066 – volume: 29 start-page: 951 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0065 publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2011.0237 – volume: 2 start-page: 2577 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0220 publication-title: ACS Catal. doi: 10.1021/cs300534y – start-page: 1 year: 2015 ident: 10.1016/j.apcata.2016.11.001_bib0050 publication-title: Environ. Sci. Pollut. Res. – volume: 22 start-page: 17876 year: 2015 ident: 10.1016/j.apcata.2016.11.001_bib0160 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5034-1 – volume: 164 start-page: 396 year: 2015 ident: 10.1016/j.apcata.2016.11.001_bib0120 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.09.047 – volume: 203 start-page: 73 year: 2016 ident: 10.1016/j.apcata.2016.11.001_bib0145 publication-title: Food. Chem. doi: 10.1016/j.foodchem.2016.02.014 – volume: 275 start-page: 53 year: 2015 ident: 10.1016/j.apcata.2016.11.001_bib0060 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.04.014 – volume: 654 start-page: 223 year: 2003 ident: 10.1016/j.apcata.2016.11.001_bib0200 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(03)00249-7 – volume: 22 start-page: 13506 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0150 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31000g – volume: 295 start-page: 309 year: 2016 ident: 10.1016/j.apcata.2016.11.001_bib0005 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.085 – volume: 43 start-page: 1023 year: 2001 ident: 10.1016/j.apcata.2016.11.001_bib0210 publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00263-0 – volume: 41 start-page: 1263 year: 2000 ident: 10.1016/j.apcata.2016.11.001_bib0215 publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00530-5 – volume: 119 start-page: 1120 year: 2015 ident: 10.1016/j.apcata.2016.11.001_bib0055 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.065 – volume: 211 start-page: 146 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0225 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.056 – volume: 6 start-page: 5164 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0175 publication-title: ACS Nano doi: 10.1021/nn300934k – volume: 113 start-page: 100 year: 2012 ident: 10.1016/j.apcata.2016.11.001_bib0230 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2011.11.024 – volume: 185 start-page: 653 year: 2011 ident: 10.1016/j.apcata.2016.11.001_bib0180 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.09.068 – volume: 63 start-page: 285 year: 2006 ident: 10.1016/j.apcata.2016.11.001_bib0100 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.07.021 – volume: 105 start-page: 112 year: 2014 ident: 10.1016/j.apcata.2016.11.001_bib0070 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.040 – volume: 35 start-page: 791 year: 2014 ident: 10.1016/j.apcata.2016.11.001_bib0010 publication-title: Environ. Technol. doi: 10.1080/09593330.2013.852592 – volume: 186 start-page: 256 year: 2011 ident: 10.1016/j.apcata.2016.11.001_bib0080 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.116 – volume: 102 start-page: 5542 year: 1998 ident: 10.1016/j.apcata.2016.11.001_bib0185 publication-title: J. Phys. Chem. A doi: 10.1021/jp980129j – volume: 251 start-page: 239 year: 2007 ident: 10.1016/j.apcata.2016.11.001_bib0155 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.07.006 – volume: 153 start-page: 919 year: 2008 ident: 10.1016/j.apcata.2016.11.001_bib0015 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.09.116 – volume: 5 start-page: 323 year: 2003 ident: 10.1016/j.apcata.2016.11.001_bib0085 publication-title: J. Nanopart. Res. doi: 10.1023/A:1025520116015 – volume: 31 start-page: 111 year: 2006 ident: 10.1016/j.apcata.2016.11.001_bib0090 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430601057611 – volume: 9 start-page: 331 year: 2007 ident: 10.1016/j.apcata.2016.11.001_bib0035 publication-title: Green Chem. doi: 10.1039/B614847F – volume: 147 start-page: 411 year: 2014 ident: 10.1016/j.apcata.2016.11.001_bib0110 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.09.032 – volume: 179 start-page: 91 year: 2006 ident: 10.1016/j.apcata.2016.11.001_bib0190 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.10.001 – volume: 41 start-page: 284 year: 2007 ident: 10.1016/j.apcata.2016.11.001_bib0095 publication-title: Environ. Sci. Technol. doi: 10.1021/es061349a |
SSID | ssj0002495 |
Score | 2.4726286 |
Snippet | [Display omitted]
•A novel ultra-fine natural zeolite supported Fe-Ni composite was synthesized.•The catalytic ability and stability of Z-nZVI-Ni increased... Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 177 |
SubjectTerms | Bimetals Catalysis Catalytic activity Chemical Engineering Chemical properties Degradation Electron microscopy Electron paramagnetic resonance Electron spin Energy transmission Fourier transforms Groundwater Groundwater remediation Heterogeneous Fenton catalyst Hydroxyl radicals Iron Kemiteknik Leaching Morphology Nickel Organic carbon Oxidation Scanning electron microscopy Sodium percarbonate (SPC) Spectrum analysis Spin resonance Studies Transmission electron microscopy Trichloroethene (TCE) X ray spectra Z-nZVI-Ni Zeolites |
Title | An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite |
URI | https://dx.doi.org/10.1016/j.apcata.2016.11.001 https://www.ncbi.nlm.nih.gov/pubmed/29104369 https://www.proquest.com/docview/2022103485 https://www.proquest.com/docview/1961034621 https://pubmed.ncbi.nlm.nih.gov/PMC5665389 https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-74908 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-33534 |
Volume | 531 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8QA8IBhfZWMyEjxmTeOPuI9VYSog9gJDfbOc-EIzuqTq2oftYf8U_yB3TlKohlSJ19jnXuzr3dn5-XeMvXWxl4PMmUhmAiJp3CDKjBxG4JzKtZACAl3TlzM9OZefpmq6x8bdXRiCVba-v_HpwVu3T_rtbPYXZdn_Gg8TbXQ8xYyC8g5i_JQyJSs_uf0D86DayoFvL9ER9e6uzwWMl1vQIQkBvPQJcXm2pWH-EZ7upp93UZRbXKMhPp0-Zo_axJKPGt2fsD2oDtj9cVfP7YA9_It68Cn7Nao4BPoIHJeHQ5xrlOSeyCOaOku8Ljjx989wS1_TveAKeFlxxxewzN0yo3N34A0VdDvCDXieXfP1HFWNCvw1PiO4TY1WCvX6it8Awe1QaL0IhOoenyxrjtZOWtCNu6gq0a_MeVZeAo44R5UI9U7QMnjGzk8_fBtPoraAQ5QrpVeR8amLRTYwfiilAoG5ROqlE7H0qSzAFzoWwkOqEjCZEnqYJ2kGMPAGTO6MFs_ZflVX8JJxT2U8gdjwYSgzZZyQGFcx0GhTeFWIHhPdutm8ZTenIhtz28HYLmyz2pZWGzc-hObrsWgjtWjYPXb0TzuTsFtWajEA7ZA86izItl7iCtsT3HHjm6gee7NpRrOgjzYuLIxFD0lddIJDvGgMbqNqgrmexGlDtbZMcdOBuMO3W6pyFjjEMYvHUIeS7xqj3RJ5X34f2Xr5w_50a5vSp-Ed_S79zAqhhHz13xN0yB4klDERIF4dsf3Vcg2vMd9bZcfhD33M7o0-fp6c_QaQd1z3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaUcigcGCivQAExA0c3jvWwfMwEOgHaXmiZ3DSytW4MqZ1Jk0N74E_xB9n1I5ApM5nhamnltbRareRP3zL2zoVeDlJnApkKCKRxgyA1MgnAOZVpIQXUdE0np3p8Lj9P1GSHjbq7MASrbH1_49Nrb90-6be92Z8XRf9rmETa6HCCEQXFHeIOuytx-lIag8Off3AelFy5JtyLdEDVu_tzNcjLzemUhBBe-pDIPNvcMP9Yn27Hn7dhlBtko_UCdfSQPWgjSz5slH_EdqDcZ3ujLqHbPrv_F_fgY_ZrWHKo-SOwXV6f4lyjJPfEHtEkWuJVzonAf4p7-oouBpfAi5I7PodF5hYpHbwDb7ig2xZuwPP0mq9mqGqQ49v4lPA2FZopVKsrfgOEt0Oh1bxmVPf4ZFFxNHfSgq7cBWWBjmXG0-ISsMUZqkSwd8KWwRN2fvTxbDQO2gwOQaaUXgbGxy4U6cD4REoFAoOJ2EsnQuljmYPPdSiEh1hFYFIldJJFcQow8AZM5owWT9luWZXwnHFPeTyB6PAhkakyTkhcWHGl0Sb3Khc9Jrpxs1lLb05ZNma2w7F9t81oWxpt3PkQnK_HgrXUvKH32FI_7kzCbpipxRVoi-RBZ0G2dRNXWB7hlhu_RPXY23UxmgX9tXH1wFh0kVRFR9jEs8bg1qpGGOxJ7DZUa8MU1xWIPHyzpCymNYk4hvE4WVDyfWO0GyIfim9DWy0u7A-3sjH9G95S79JPrRBKyBf_3UFv2N747OTYHn86_fKS3YsofCJ0vDpgu8vFCl5h8LdMX9eT-zcAl16F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+catalytic+degradation+of+trichloroethene+in+a+percarbonate+system+catalyzed+by+ultra-fine+heterogeneous+zeolite+supported+zero+valent+iron-nickel+bimetallic+composite&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Danish%2C+Muhammad&rft.au=Gu%2C+Xiaogang&rft.au=Farooq%2C+Usman&rft.au=Lu%2C+Shuguang&rft.date=2017-02-05&rft.issn=1873-3875&rft.volume=531&rft.spage=177&rft_id=info:doi/10.1016%2Fj.apcata.2016.11.001&rft.externalDocID=oai_DiVA_org_mdh_33534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |