Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody

Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the la...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 22; no. 7; pp. 1798 - 1809
Main Authors Kwon, Young D., Chuang, Gwo-Yu, Zhang, Baoshan, Bailer, Robert T., Doria-Rose, Nicole A., Gindin, Tatyana S., Lin, Bob, Louder, Mark K., McKee, Krisha, O’Dell, Sijy, Pegu, Amarendra, Schmidt, Stephen D., Asokan, Mangaiarkarasi, Chen, Xuejun, Choe, Misook, Georgiev, Ivelin S., Jin, Vivian, Pancera, Marie, Rawi, Reda, Wang, Keyun, Chaudhuri, Rajoshi, Kueltzo, Lisa A., Manceva, Slobodanka D., Todd, John-Paul, Scorpio, Diana G., Kim, Mikyung, Reinherz, Ellis L., Wagh, Kshitij, Korber, Bette M., Connors, Mark, Shapiro, Lawrence, Mascola, John R., Kwong, Peter D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.02.2018
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2018.01.023

Cover

Loading…
Abstract Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. [Display omitted] •Development of a surface-matrix screening approach to improve antibody function•Identified hydrophobic mutations that improved 10E8 interaction with HIV-1 membrane•Identified positively charged mutations that improved interactions with HIV-1 glycan•Optimizing semi-specific interactions can improve potency while maintaining breadth Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ∼10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies.
AbstractList Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ~10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ~10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies.
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ~10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. [Display omitted] •Development of a surface-matrix screening approach to improve antibody function•Identified hydrophobic mutations that improved 10E8 interaction with HIV-1 membrane•Identified positively charged mutations that improved interactions with HIV-1 glycan•Optimizing semi-specific interactions can improve potency while maintaining breadth Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ∼10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies.
Author Zhang, Baoshan
Chaudhuri, Rajoshi
Connors, Mark
Manceva, Slobodanka D.
Louder, Mark K.
Jin, Vivian
Kim, Mikyung
Kwong, Peter D.
Pancera, Marie
Asokan, Mangaiarkarasi
McKee, Krisha
Korber, Bette M.
Kueltzo, Lisa A.
Todd, John-Paul
Schmidt, Stephen D.
Georgiev, Ivelin S.
Choe, Misook
Gindin, Tatyana S.
Reinherz, Ellis L.
O’Dell, Sijy
Scorpio, Diana G.
Lin, Bob
Pegu, Amarendra
Rawi, Reda
Kwon, Young D.
Wang, Keyun
Mascola, John R.
Chuang, Gwo-Yu
Doria-Rose, Nicole A.
Chen, Xuejun
Wagh, Kshitij
Bailer, Robert T.
Shapiro, Lawrence
AuthorAffiliation 1 Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
3 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
6 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
5 Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
2 Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
4 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
AuthorAffiliation_xml – name: 3 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– name: 6 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– name: 1 Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– name: 4 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– name: 2 Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
– name: 5 Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Young D.
  surname: Kwon
  fullname: Kwon, Young D.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Gwo-Yu
  surname: Chuang
  fullname: Chuang, Gwo-Yu
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Baoshan
  surname: Zhang
  fullname: Zhang, Baoshan
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Robert T.
  surname: Bailer
  fullname: Bailer, Robert T.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 5
  givenname: Nicole A.
  surname: Doria-Rose
  fullname: Doria-Rose, Nicole A.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Tatyana S.
  surname: Gindin
  fullname: Gindin, Tatyana S.
  organization: Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
– sequence: 7
  givenname: Bob
  surname: Lin
  fullname: Lin, Bob
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Mark K.
  surname: Louder
  fullname: Louder, Mark K.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 9
  givenname: Krisha
  surname: McKee
  fullname: McKee, Krisha
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 10
  givenname: Sijy
  surname: O’Dell
  fullname: O’Dell, Sijy
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 11
  givenname: Amarendra
  surname: Pegu
  fullname: Pegu, Amarendra
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 12
  givenname: Stephen D.
  surname: Schmidt
  fullname: Schmidt, Stephen D.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 13
  givenname: Mangaiarkarasi
  surname: Asokan
  fullname: Asokan, Mangaiarkarasi
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 14
  givenname: Xuejun
  surname: Chen
  fullname: Chen, Xuejun
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 15
  givenname: Misook
  surname: Choe
  fullname: Choe, Misook
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 16
  givenname: Ivelin S.
  surname: Georgiev
  fullname: Georgiev, Ivelin S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 17
  givenname: Vivian
  surname: Jin
  fullname: Jin, Vivian
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 18
  givenname: Marie
  surname: Pancera
  fullname: Pancera, Marie
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 19
  givenname: Reda
  surname: Rawi
  fullname: Rawi, Reda
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 20
  givenname: Keyun
  surname: Wang
  fullname: Wang, Keyun
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 21
  givenname: Rajoshi
  surname: Chaudhuri
  fullname: Chaudhuri, Rajoshi
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 22
  givenname: Lisa A.
  surname: Kueltzo
  fullname: Kueltzo, Lisa A.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 23
  givenname: Slobodanka D.
  surname: Manceva
  fullname: Manceva, Slobodanka D.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 24
  givenname: John-Paul
  surname: Todd
  fullname: Todd, John-Paul
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 25
  givenname: Diana G.
  surname: Scorpio
  fullname: Scorpio, Diana G.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 26
  givenname: Mikyung
  surname: Kim
  fullname: Kim, Mikyung
  organization: Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 27
  givenname: Ellis L.
  surname: Reinherz
  fullname: Reinherz, Ellis L.
  organization: Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
– sequence: 28
  givenname: Kshitij
  surname: Wagh
  fullname: Wagh, Kshitij
  organization: Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 29
  givenname: Bette M.
  surname: Korber
  fullname: Korber, Bette M.
  organization: Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 30
  givenname: Mark
  surname: Connors
  fullname: Connors, Mark
  organization: Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 31
  givenname: Lawrence
  surname: Shapiro
  fullname: Shapiro, Lawrence
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
– sequence: 32
  givenname: John R.
  surname: Mascola
  fullname: Mascola, John R.
  email: jmascola@nih.gov
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
– sequence: 33
  givenname: Peter D.
  surname: Kwong
  fullname: Kwong, Peter D.
  email: pdkwong@nih.gov
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29444432$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1464828$$D View this record in Osti.gov
BookMark eNqFUk1vEzEQXaEiWkr_AUIrTlw2eLz2xssBqaqArlRKpQBXy7FnU0cbO9hORPgB_G68JEUtB_DFX2_evJl5T4sj5x0WxXMgEyDQvF5ONA4B1xNKQEwITAitHxUnlAJUQNn06N75uDiLcUnyaghAy54Ux7RledX0pPg524Reaaw-qhTs93KmA6KzblF2Bl2yvcVYznBlq7hGna-67FzCoHSy3sUy3apUdqt18Fssb3xCp3el70tVXqMK5Y1yVcARnL8vu68VVNe4SUEN9seY5DynmHuze1Y87tUQ8eywnxZf3r_7fHFZXX360F2cX1Wa8yZVYoq85QIaVKQGKjiYnveN6GvekjljoDXRglKjesPMXDdgpoYjBao5Gt3Up0W35zVeLeU62JUKO-mVlb8ffFhIFZLVA0pKBKkVnat2WjNA0wqOreZMt6AZE5i53u651pv5KrPnduW6HpA-_HH2Vi78VnIhWoBRzMs9gY_JyqhtQn2rvXOokwTWMEFFBr06ZAn-2wZjkisb8_AH5dBvYpZJKBNMiDpDX9wX9EfJ3bQz4M0eoIOPMWAvc041DjLrs4MEIkd3yaXcu0uO7pIEZHZXDmZ_Bd_x_yfs0CXMY91aDGOh2SVobBjrNN7-m-AXcoPsAA
CitedBy_id crossref_primary_10_1002_1873_3468_14814
crossref_primary_10_1016_j_immuni_2019_02_008
crossref_primary_10_1097_COH_0000000000000550
crossref_primary_10_1128_JVI_00895_18
crossref_primary_10_1016_j_celrep_2020_108088
crossref_primary_10_1172_jci_insight_175375
crossref_primary_10_1016_j_celrep_2020_03_052
crossref_primary_10_1016_j_compbiomed_2025_109758
crossref_primary_10_1126_science_abd2638
crossref_primary_10_1080_19420862_2021_1946918
crossref_primary_10_1128_jvi_01647_22
crossref_primary_10_3389_fimmu_2024_1484029
crossref_primary_10_1016_j_celrep_2024_114285
crossref_primary_10_3390_cells13010033
crossref_primary_10_3390_v12111210
crossref_primary_10_1038_s41590_018_0235_7
crossref_primary_10_1128_jvi_01604_22
crossref_primary_10_1128_JVI_00159_21
crossref_primary_10_1016_j_bpj_2023_01_026
crossref_primary_10_1128_mbio_03839_24
crossref_primary_10_1016_j_celrep_2021_109922
crossref_primary_10_1016_j_str_2018_10_007
crossref_primary_10_1038_s41467_018_07962_9
crossref_primary_10_1016_j_cell_2019_06_030
crossref_primary_10_1080_19420862_2020_1836719
crossref_primary_10_1016_j_celrep_2024_115223
crossref_primary_10_1186_s12977_018_0439_9
crossref_primary_10_1038_s41467_023_44534_y
crossref_primary_10_1016_j_celrep_2018_04_101
crossref_primary_10_1371_journal_ppat_1007632
crossref_primary_10_1038_s42003_022_04219_6
crossref_primary_10_1093_infdis_jiy450
crossref_primary_10_1038_s41467_019_12973_1
crossref_primary_10_1016_j_immuni_2019_05_007
crossref_primary_10_1021_acsami_4c13353
crossref_primary_10_1073_pnas_2112887119
crossref_primary_10_1021_acs_analchem_8b03594
crossref_primary_10_3389_fimmu_2021_662909
crossref_primary_10_3390_ijms231810767
crossref_primary_10_1016_j_celrep_2023_112711
crossref_primary_10_1016_j_celrep_2023_112755
crossref_primary_10_1016_j_celrep_2024_114518
crossref_primary_10_1016_j_immuni_2018_04_029
crossref_primary_10_1016_j_celrep_2020_107583
crossref_primary_10_1016_j_celrep_2020_108037
crossref_primary_10_1038_s41467_021_26579_z
crossref_primary_10_7554_eLife_65005
crossref_primary_10_1038_s41598_020_71184_7
crossref_primary_10_3390_antib10020023
crossref_primary_10_1097_COH_0000000000000742
Cites_doi 10.1371/journal.pone.0157409
10.1016/j.cell.2016.05.024
10.1016/j.jmb.2007.02.024
10.1016/j.ymeth.2005.01.001
10.1016/j.immuni.2015.12.001
10.1038/nbt.2677
10.1074/jbc.M117.775429
10.1038/nature10696
10.1097/INF.0000000000000240
10.1038/nri2155
10.1371/journal.ppat.1006074
10.1128/JVI.03136-14
10.1073/pnas.0901474106
10.1016/j.tips.2016.09.005
10.1038/nm.4268
10.1056/NEJMoa1608243
10.1093/bioinformatics/bts426
10.1111/j.1476-5381.2009.00190.x
10.1038/nbt.1601
10.1002/pro.5560030501
10.1038/nsmb.3144
10.1016/j.jmb.2006.10.026
10.1126/science.aad2450
10.1126/sciimmunol.aal2200
10.1128/JVI.78.19.10724-10737.2004
10.1128/JVI.03246-15
10.1128/JVI.02257-09
10.1128/JVI.02108-09
10.1128/JVI.79.16.10108-10125.2005
10.1038/nature11544
10.1038/nature11604
10.1126/science.1187659
10.1038/nature14411
10.1371/journal.ppat.1005520
10.1016/j.immuni.2013.04.012
10.1016/j.immuni.2004.12.011
10.1371/journal.ppat.1006212
10.1128/JVI.02213-14
10.1126/science.1207227
10.1126/science.1213782
10.1016/j.immuni.2007.11.018
10.1016/j.jim.2013.11.022
10.1016/j.immuni.2016.10.027
10.1126/science.aan8630
10.1126/science.aaf0972
10.1016/j.cell.2016.04.010
10.1038/nchembio.1651
10.1021/acs.jpcb.6b05604
10.1038/nature18929
ContentType Journal Article
Copyright 2018
Published by Elsevier Inc.
Copyright_xml – notice: 2018
– notice: Published by Elsevier Inc.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1016/j.celrep.2018.01.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1809
ExternalDocumentID oai_doaj_org_article_20803a2ba97341ed985e9c54c91c448e
PMC5889116
1464828
29444432
10_1016_j_celrep_2018_01_023
S2211124718300408
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI126901
– fundername: NIAID NIH HHS
  grantid: P01 AI131251
– fundername: Intramural NIH HHS
  grantid: ZIA AI005022
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c556t-87e595816ea0312851df5f68f3590b441cc0c822dafd4dbc61d7d5e212c5edc63
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:28:25 EDT 2025
Thu Aug 21 14:11:21 EDT 2025
Fri May 19 01:06:35 EDT 2023
Thu Jul 10 17:27:28 EDT 2025
Mon Jul 21 06:05:38 EDT 2025
Tue Jul 01 02:58:54 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Wed May 17 00:14:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords HIV-1
broadly neutralizing antibody
membrane-proximal external region
antibody improvement
MPER
10E8
surface-matrix screening
Language English
License This is an open access article under the CC BY-NC-ND license.
Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-87e595816ea0312851df5f68f3590b441cc0c822dafd4dbc61d7d5e212c5edc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
W-31-109-Eng-38
National Institutes of Health (NIH)
Lead Contact
These authors contributed equally
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.01.023
PMID 29444432
PQID 2002484883
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_20803a2ba97341ed985e9c54c91c448e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889116
osti_scitechconnect_1464828
proquest_miscellaneous_2002484883
pubmed_primary_29444432
crossref_citationtrail_10_1016_j_celrep_2018_01_023
crossref_primary_10_1016_j_celrep_2018_01_023
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_01_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-13
PublicationDateYYYYMMDD 2018-02-13
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Pancera, Zhu, O’Dell, Yang, Zhang, Changela, McLellan, Wu, Zhou, Burton (bib26) 2013; 29
Sarzotti-Kelsoe, Bailer, Turk, Lin, Bilska, Greene, Gao, Todd, Ozaki, Seaman (bib32) 2014; 409
Lee, Ozorowski, Ward (bib21) 2016; 351
Bar, Sneller, Harrison, Justement, Overton, Petrone, Salantes, Seamon, Scheinfeld, Kwan (bib2) 2016; 375
Song, Oren, Franco, Seaman, Ho (bib38) 2013; 31
Caskey, Schoofs, Gruell, Settler, Karagounis, Kreider, Murrell, Pfeifer, Nogueira, Oliveira (bib5) 2017; 23
Hubbard, Thornton (bib14) 1993
Sun, Oh, Kim, Yu, Brusic, Song, Qiao, Wang, Wagner, Reinherz (bib41) 2008; 28
Ofek, McKee, Yang, Yang, Skinner, Guenaga, Wyatt, Zwick, Nabel, Mascola, Kwong (bib25) 2010; 84
Stewart-Jones, Soto, Lemmin, Chuang, Druz, Kong, Thomas, Wagh, Zhou, Behrens (bib40) 2016; 165
Trevino, Scholtz, Pace (bib42) 2007; 366
Chuang, Boyington, Joyce, Zhu, Nabel, Kwong, Georgiev (bib7) 2012; 28
Scheid, Horwitz, Bar-On, Kreider, Lu, Lorenzi, Feldmann, Braunschweig, Nogueira, Oliveira (bib34) 2016; 535
McLellan, Pancera, Carrico, Gorman, Julien, Khayat, Louder, Pejchal, Sastry, Dai (bib23) 2011; 480
Robison, Sun, Poyton, Johnson, Pellois, Jungwirth, Vazdar, Cremer (bib28) 2016; 120
Young, Jernigan, Covell (bib49) 1994; 3
Wu, Yang, Li, Hogerkorp, Schief, Seaman, Zhou, Schmidt, Wu, Xu (bib47) 2010; 329
Zhou, Zhu, Wu, Moquin, Zhang, Acharya, Georgiev, Altae-Tran, Chuang, Joyce (bib51) 2013; 39
Kwon, Georgiev, Ofek, Zhang, Asokan, Bailer, Bao, Caruso, Chen, Choe (bib20) 2016; 90
Hebert, Lamriben, Powers, Kelly (bib10) 2014; 10
Hwang, Foote (bib15) 2005; 36
Ofek, Tang, Sambor, Katinger, Mascola, Wyatt, Kwong (bib24) 2004; 78
Xu, Pegu, Rao, Doria-Rose, Beninga, McKee, Lord, Wei, Deng, Louder (bib48) 2017; 358
Huang, Kang, Ishida, Zhou, Griesman, Sheng, Wu, Doria-Rose, Zhang, McKee (bib12) 2016; 45
Rujas, Caaveiro, Insausti, García-Porras, Tsumoto, Nieva (bib31) 2017; 292
Gorman, Soto, Yang, Davenport, Guttman, Bailer, Chambers, Chuang, DeKosky, Doria-Rose (bib9) 2016; 23
Diskin, Scheid, Marcovecchio, West, Klein, Gao, Gnanapragasam, Abadir, Seaman, Nussenzweig, Bjorkman (bib8) 2011; 334
Irimia, Serra, Sarkar, Jacak, Kalyuzhniy, Sok, Saye-Francisco, Schiffner, Tingle, Kubitz (bib17) 2017; 13
Zalevsky, Chamberlain, Horton, Karki, Leung, Sproule, Lazar, Roopenian, Desjarlais (bib50) 2010; 28
Cardoso, Zwick, Stanfield, Kunert, Binley, Katinger, Burton, Wilson (bib3) 2005; 22
Chames, Van Regenmortel, Weiss, Baty (bib6) 2009; 157
Irimia, Sarkar, Stanfield, Wilson (bib16) 2016; 44
Soto, Ofek, Joyce, Zhang, McKee, Longo, Yang, Huang, Parks, Eudailey (bib39) 2016; 11
Wibmer, Gorman, Ozorowski, Bhiman, Sheward, Elliott, Rouelle, Smira, Joyce, Ndabambi (bib44) 2017; 13
Caskey, Klein, Lorenzi, Seaman, West, Buckley, Kremer, Nogueira, Braunschweig, Scheid (bib4) 2015; 522
Huang, Ofek, Laub, Louder, Doria-Rose, Longo, Imamichi, Bailer, Chakrabarti, Sharma (bib11) 2012; 491
Li, Gao, Mascola, Stamatatos, Polonis, Koutsoukos, Voss, Goepfert, Gilbert, Greene (bib22) 2005; 79
Seaman, Janes, Hawkins, Grandpre, Devoy, Giri, Coffey, Harris, Wood, Daniels (bib36) 2010; 84
Ayyar, Arora, O’Kennedy (bib1) 2016; 37
Kong, Louder, Wagh, Bailer, deCamp, Greene, Gao, Taft, Gazumyan, Liu (bib19) 2015; 89
Schoofs, Klein, Braunschweig, Kreider, Feldmann, Nogueira, Oliveira, Lorenzi, Parrish, Learn (bib35) 2016; 352
Ramilo, Lagos, Sáez-Llorens, Suzich, Wang, Jensen, Harris, Losonsky, Griffin (bib27) 2014; 33
Roopenian, Akilesh (bib29) 2007; 7
Rudicell, Kwon, Ko, Pegu, Louder, Georgiev, Wu, Zhu, Boyington, Chen (bib30) 2014; 88
Song, Sun, Coleman, Zwick, Gach, Wang, Reinherz, Wagner, Kim (bib37) 2009; 106
Wu, Pfarr, Johnson, Brewah, Woods, Patel, White, Young, Kiener (bib46) 2007; 368
Wagh, Bhattacharya, Williamson, Robles, Bayne, Garrity, Rist, Rademeyer, Yoon, Lapedes (bib43) 2016; 12
Williams, Ofek, Schatzle, McDaniel, Lu, Nicely, Wu, Lougheed, Bradley, Louder (bib45) 2017; 2
Huang, Yu, Lanzi, Yao, Andrews, Tsai, Gajjar, Sun, Seaman, Padte, Ho (bib13) 2016; 165
Klein, Halper-Stromberg, Horwitz, Gruell, Scheid, Bournazos, Mouquet, Spatz, Diskin, Abadir (bib18) 2012; 492
Scheid, Mouquet, Ueberheide, Diskin, Klein, Oliveira, Pietzsch, Fenyo, Abadir, Velinzon (bib33) 2011; 333
Song (10.1016/j.celrep.2018.01.023_bib37) 2009; 106
Ayyar (10.1016/j.celrep.2018.01.023_bib1) 2016; 37
Irimia (10.1016/j.celrep.2018.01.023_bib16) 2016; 44
Scheid (10.1016/j.celrep.2018.01.023_bib34) 2016; 535
Hubbard (10.1016/j.celrep.2018.01.023_bib14) 1993
Sun (10.1016/j.celrep.2018.01.023_bib41) 2008; 28
Williams (10.1016/j.celrep.2018.01.023_bib45) 2017; 2
Irimia (10.1016/j.celrep.2018.01.023_bib17) 2017; 13
Ofek (10.1016/j.celrep.2018.01.023_bib24) 2004; 78
Kong (10.1016/j.celrep.2018.01.023_bib19) 2015; 89
Rujas (10.1016/j.celrep.2018.01.023_bib31) 2017; 292
Zhou (10.1016/j.celrep.2018.01.023_bib51) 2013; 39
Schoofs (10.1016/j.celrep.2018.01.023_bib35) 2016; 352
Li (10.1016/j.celrep.2018.01.023_bib22) 2005; 79
Hebert (10.1016/j.celrep.2018.01.023_bib10) 2014; 10
Young (10.1016/j.celrep.2018.01.023_bib49) 1994; 3
Wu (10.1016/j.celrep.2018.01.023_bib47) 2010; 329
Stewart-Jones (10.1016/j.celrep.2018.01.023_bib40) 2016; 165
Gorman (10.1016/j.celrep.2018.01.023_bib9) 2016; 23
Roopenian (10.1016/j.celrep.2018.01.023_bib29) 2007; 7
Seaman (10.1016/j.celrep.2018.01.023_bib36) 2010; 84
Robison (10.1016/j.celrep.2018.01.023_bib28) 2016; 120
Zalevsky (10.1016/j.celrep.2018.01.023_bib50) 2010; 28
Scheid (10.1016/j.celrep.2018.01.023_bib33) 2011; 333
Klein (10.1016/j.celrep.2018.01.023_bib18) 2012; 492
Chames (10.1016/j.celrep.2018.01.023_bib6) 2009; 157
Ramilo (10.1016/j.celrep.2018.01.023_bib27) 2014; 33
Wu (10.1016/j.celrep.2018.01.023_bib46) 2007; 368
Huang (10.1016/j.celrep.2018.01.023_bib11) 2012; 491
Caskey (10.1016/j.celrep.2018.01.023_bib4) 2015; 522
Lee (10.1016/j.celrep.2018.01.023_bib21) 2016; 351
Trevino (10.1016/j.celrep.2018.01.023_bib42) 2007; 366
Wagh (10.1016/j.celrep.2018.01.023_bib43) 2016; 12
Xu (10.1016/j.celrep.2018.01.023_bib48) 2017; 358
Cardoso (10.1016/j.celrep.2018.01.023_bib3) 2005; 22
Song (10.1016/j.celrep.2018.01.023_bib38) 2013; 31
Kwon (10.1016/j.celrep.2018.01.023_bib20) 2016; 90
Bar (10.1016/j.celrep.2018.01.023_bib2) 2016; 375
Caskey (10.1016/j.celrep.2018.01.023_bib5) 2017; 23
McLellan (10.1016/j.celrep.2018.01.023_bib23) 2011; 480
Huang (10.1016/j.celrep.2018.01.023_bib12) 2016; 45
Hwang (10.1016/j.celrep.2018.01.023_bib15) 2005; 36
Sarzotti-Kelsoe (10.1016/j.celrep.2018.01.023_bib32) 2014; 409
Chuang (10.1016/j.celrep.2018.01.023_bib7) 2012; 28
Soto (10.1016/j.celrep.2018.01.023_bib39) 2016; 11
Diskin (10.1016/j.celrep.2018.01.023_bib8) 2011; 334
Rudicell (10.1016/j.celrep.2018.01.023_bib30) 2014; 88
Huang (10.1016/j.celrep.2018.01.023_bib13) 2016; 165
Ofek (10.1016/j.celrep.2018.01.023_bib25) 2010; 84
Wibmer (10.1016/j.celrep.2018.01.023_bib44) 2017; 13
Pancera (10.1016/j.celrep.2018.01.023_bib26) 2013; 29
References_xml – volume: 44
  start-page: 21
  year: 2016
  end-page: 31
  ident: bib16
  article-title: Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10
  publication-title: Immunity
– volume: 165
  start-page: 813
  year: 2016
  end-page: 826
  ident: bib40
  article-title: Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G
  publication-title: Cell
– volume: 7
  start-page: 715
  year: 2007
  end-page: 725
  ident: bib29
  article-title: FcRn: the neonatal Fc receptor comes of age
  publication-title: Nat. Rev. Immunol.
– volume: 106
  start-page: 9057
  year: 2009
  end-page: 9062
  ident: bib37
  article-title: Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 185
  year: 2017
  end-page: 191
  ident: bib5
  article-title: Antibody 10-1074 suppresses viremia in HIV-1-infected individuals
  publication-title: Nat. Med.
– volume: 11
  start-page: e0157409
  year: 2016
  ident: bib39
  article-title: Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8
  publication-title: PLoS ONE
– volume: 23
  start-page: 81
  year: 2016
  end-page: 90
  ident: bib9
  article-title: Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design
  publication-title: Nat. Struct. Mol. Biol.
– volume: 39
  start-page: 245
  year: 2013
  end-page: 258
  ident: bib51
  article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies
  publication-title: Immunity
– volume: 89
  start-page: 2659
  year: 2015
  end-page: 2671
  ident: bib19
  article-title: Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes
  publication-title: J. Virol.
– volume: 28
  start-page: 2249
  year: 2012
  end-page: 2255
  ident: bib7
  article-title: Computational prediction of N-linked glycosylation incorporating structural properties and patterns
  publication-title: Bioinformatics
– volume: 88
  start-page: 12669
  year: 2014
  end-page: 12682
  ident: bib30
  article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo
  publication-title: J. Virol.
– volume: 84
  start-page: 1439
  year: 2010
  end-page: 1452
  ident: bib36
  article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies
  publication-title: J. Virol.
– volume: 368
  start-page: 652
  year: 2007
  end-page: 665
  ident: bib46
  article-title: Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract
  publication-title: J. Mol. Biol.
– volume: 333
  start-page: 1633
  year: 2011
  end-page: 1637
  ident: bib33
  article-title: Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding
  publication-title: Science
– volume: 13
  start-page: e1006212
  year: 2017
  ident: bib17
  article-title: Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design
  publication-title: PLoS Pathog.
– volume: 12
  start-page: e1005520
  year: 2016
  ident: bib43
  article-title: Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection
  publication-title: PLoS Pathog.
– volume: 13
  start-page: e1006074
  year: 2017
  ident: bib44
  article-title: Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape
  publication-title: PLoS Pathog.
– volume: 358
  start-page: 85
  year: 2017
  end-page: 90
  ident: bib48
  article-title: Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques
  publication-title: Science
– volume: 22
  start-page: 163
  year: 2005
  end-page: 173
  ident: bib3
  article-title: Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41
  publication-title: Immunity
– year: 1993
  ident: bib14
  article-title: NACCESS computer program
– volume: 329
  start-page: 856
  year: 2010
  end-page: 861
  ident: bib47
  article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1
  publication-title: Science
– volume: 157
  start-page: 220
  year: 2009
  end-page: 233
  ident: bib6
  article-title: Therapeutic antibodies: successes, limitations and hopes for the future
  publication-title: Br. J. Pharmacol.
– volume: 78
  start-page: 10724
  year: 2004
  end-page: 10737
  ident: bib24
  article-title: Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope
  publication-title: J. Virol.
– volume: 292
  start-page: 5571
  year: 2017
  end-page: 5583
  ident: bib31
  article-title: Peripheral membrane interactions boost the engagement by an anti-HIV-1 broadly neutralizing antibody
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 157
  year: 2010
  end-page: 159
  ident: bib50
  article-title: Enhanced antibody half-life improves in vivo activity
  publication-title: Nat. Biotechnol.
– volume: 352
  start-page: 997
  year: 2016
  end-page: 1001
  ident: bib35
  article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1
  publication-title: Science
– volume: 36
  start-page: 3
  year: 2005
  end-page: 10
  ident: bib15
  article-title: Immunogenicity of engineered antibodies
  publication-title: Methods
– volume: 31
  start-page: 1047
  year: 2013
  end-page: 1052
  ident: bib38
  article-title: Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity
  publication-title: Nat. Biotechnol.
– volume: 165
  start-page: 1621
  year: 2016
  end-page: 1631
  ident: bib13
  article-title: Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity
  publication-title: Cell
– volume: 84
  start-page: 2955
  year: 2010
  end-page: 2962
  ident: bib25
  article-title: Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region
  publication-title: J. Virol.
– volume: 480
  start-page: 336
  year: 2011
  end-page: 343
  ident: bib23
  article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9
  publication-title: Nature
– volume: 366
  start-page: 449
  year: 2007
  end-page: 460
  ident: bib42
  article-title: Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa
  publication-title: J. Mol. Biol.
– volume: 522
  start-page: 487
  year: 2015
  end-page: 491
  ident: bib4
  article-title: Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117
  publication-title: Nature
– volume: 409
  start-page: 131
  year: 2014
  end-page: 146
  ident: bib32
  article-title: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1
  publication-title: J. Immunol. Methods
– volume: 492
  start-page: 118
  year: 2012
  end-page: 122
  ident: bib18
  article-title: HIV therapy by a combination of broadly neutralizing antibodies in humanized mice
  publication-title: Nature
– volume: 351
  start-page: 1043
  year: 2016
  end-page: 1048
  ident: bib21
  article-title: Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer
  publication-title: Science
– volume: 3
  start-page: 717
  year: 1994
  end-page: 729
  ident: bib49
  article-title: A role for surface hydrophobicity in protein-protein recognition
  publication-title: Protein Sci.
– volume: 33
  start-page: 703
  year: 2014
  end-page: 709
  ident: bib27
  article-title: Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness
  publication-title: Pediatr. Infect. Dis. J.
– volume: 491
  start-page: 406
  year: 2012
  end-page: 412
  ident: bib11
  article-title: Broad and potent neutralization of HIV-1 by a gp41-specific human antibody
  publication-title: Nature
– volume: 375
  start-page: 2037
  year: 2016
  end-page: 2050
  ident: bib2
  article-title: Effect of HIV antibody VRC01 on viral rebound after treatment interruption
  publication-title: N. Engl. J. Med.
– volume: 45
  start-page: 1108
  year: 2016
  end-page: 1121
  ident: bib12
  article-title: Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth
  publication-title: Immunity
– volume: 10
  start-page: 902
  year: 2014
  end-page: 910
  ident: bib10
  article-title: The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis
  publication-title: Nat. Chem. Biol.
– volume: 2
  start-page: eaal2200
  year: 2017
  ident: bib45
  article-title: Potent and broad HIV-neutralizing antibodies in memory B cells and plasma
  publication-title: Sci. Immunol.
– volume: 29
  start-page: A59
  year: 2013
  end-page: A60
  ident: bib26
  article-title: Arginine-scanning of PG16 paratope defines quaternary epitope
  publication-title: AIDS Res. Hum. Retroviruses
– volume: 535
  start-page: 556
  year: 2016
  end-page: 560
  ident: bib34
  article-title: HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption
  publication-title: Nature
– volume: 28
  start-page: 52
  year: 2008
  end-page: 63
  ident: bib41
  article-title: HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane
  publication-title: Immunity
– volume: 79
  start-page: 10108
  year: 2005
  end-page: 10125
  ident: bib22
  article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies
  publication-title: J. Virol.
– volume: 90
  start-page: 5899
  year: 2016
  end-page: 5914
  ident: bib20
  article-title: Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design
  publication-title: J. Virol.
– volume: 334
  start-page: 1289
  year: 2011
  end-page: 1293
  ident: bib8
  article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design
  publication-title: Science
– volume: 120
  start-page: 9287
  year: 2016
  end-page: 9296
  ident: bib28
  article-title: Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers
  publication-title: J. Phys. Chem. B
– volume: 37
  start-page: 1009
  year: 2016
  end-page: 1028
  ident: bib1
  article-title: Coming-of-age of antibodies in cancer therapeutics
  publication-title: Trends Pharmacol. Sci.
– volume: 11
  start-page: e0157409
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib39
  article-title: Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157409
– volume: 165
  start-page: 1621
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib13
  article-title: Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.024
– volume: 368
  start-page: 652
  year: 2007
  ident: 10.1016/j.celrep.2018.01.023_bib46
  article-title: Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.02.024
– volume: 36
  start-page: 3
  year: 2005
  ident: 10.1016/j.celrep.2018.01.023_bib15
  article-title: Immunogenicity of engineered antibodies
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.01.001
– volume: 44
  start-page: 21
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib16
  article-title: Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.12.001
– volume: 31
  start-page: 1047
  year: 2013
  ident: 10.1016/j.celrep.2018.01.023_bib38
  article-title: Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2677
– volume: 292
  start-page: 5571
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib31
  article-title: Peripheral membrane interactions boost the engagement by an anti-HIV-1 broadly neutralizing antibody
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.775429
– volume: 480
  start-page: 336
  year: 2011
  ident: 10.1016/j.celrep.2018.01.023_bib23
  article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9
  publication-title: Nature
  doi: 10.1038/nature10696
– volume: 33
  start-page: 703
  year: 2014
  ident: 10.1016/j.celrep.2018.01.023_bib27
  article-title: Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000000240
– volume: 7
  start-page: 715
  year: 2007
  ident: 10.1016/j.celrep.2018.01.023_bib29
  article-title: FcRn: the neonatal Fc receptor comes of age
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2155
– volume: 13
  start-page: e1006074
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib44
  article-title: Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006074
– volume: 89
  start-page: 2659
  year: 2015
  ident: 10.1016/j.celrep.2018.01.023_bib19
  article-title: Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes
  publication-title: J. Virol.
  doi: 10.1128/JVI.03136-14
– volume: 106
  start-page: 9057
  year: 2009
  ident: 10.1016/j.celrep.2018.01.023_bib37
  article-title: Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901474106
– volume: 37
  start-page: 1009
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib1
  article-title: Coming-of-age of antibodies in cancer therapeutics
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2016.09.005
– volume: 23
  start-page: 185
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib5
  article-title: Antibody 10-1074 suppresses viremia in HIV-1-infected individuals
  publication-title: Nat. Med.
  doi: 10.1038/nm.4268
– volume: 375
  start-page: 2037
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib2
  article-title: Effect of HIV antibody VRC01 on viral rebound after treatment interruption
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1608243
– volume: 28
  start-page: 2249
  year: 2012
  ident: 10.1016/j.celrep.2018.01.023_bib7
  article-title: Computational prediction of N-linked glycosylation incorporating structural properties and patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts426
– volume: 157
  start-page: 220
  year: 2009
  ident: 10.1016/j.celrep.2018.01.023_bib6
  article-title: Therapeutic antibodies: successes, limitations and hopes for the future
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2009.00190.x
– volume: 29
  start-page: A59
  year: 2013
  ident: 10.1016/j.celrep.2018.01.023_bib26
  article-title: Arginine-scanning of PG16 paratope defines quaternary epitope
  publication-title: AIDS Res. Hum. Retroviruses
– volume: 28
  start-page: 157
  year: 2010
  ident: 10.1016/j.celrep.2018.01.023_bib50
  article-title: Enhanced antibody half-life improves in vivo activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1601
– volume: 3
  start-page: 717
  year: 1994
  ident: 10.1016/j.celrep.2018.01.023_bib49
  article-title: A role for surface hydrophobicity in protein-protein recognition
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560030501
– volume: 23
  start-page: 81
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib9
  article-title: Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3144
– volume: 366
  start-page: 449
  year: 2007
  ident: 10.1016/j.celrep.2018.01.023_bib42
  article-title: Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.10.026
– volume: 351
  start-page: 1043
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib21
  article-title: Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer
  publication-title: Science
  doi: 10.1126/science.aad2450
– volume: 2
  start-page: eaal2200
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib45
  article-title: Potent and broad HIV-neutralizing antibodies in memory B cells and plasma
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aal2200
– volume: 78
  start-page: 10724
  year: 2004
  ident: 10.1016/j.celrep.2018.01.023_bib24
  article-title: Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.19.10724-10737.2004
– volume: 90
  start-page: 5899
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib20
  article-title: Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design
  publication-title: J. Virol.
  doi: 10.1128/JVI.03246-15
– volume: 84
  start-page: 2955
  year: 2010
  ident: 10.1016/j.celrep.2018.01.023_bib25
  article-title: Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region
  publication-title: J. Virol.
  doi: 10.1128/JVI.02257-09
– volume: 84
  start-page: 1439
  year: 2010
  ident: 10.1016/j.celrep.2018.01.023_bib36
  article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.02108-09
– volume: 79
  start-page: 10108
  year: 2005
  ident: 10.1016/j.celrep.2018.01.023_bib22
  article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.16.10108-10125.2005
– volume: 491
  start-page: 406
  year: 2012
  ident: 10.1016/j.celrep.2018.01.023_bib11
  article-title: Broad and potent neutralization of HIV-1 by a gp41-specific human antibody
  publication-title: Nature
  doi: 10.1038/nature11544
– volume: 492
  start-page: 118
  year: 2012
  ident: 10.1016/j.celrep.2018.01.023_bib18
  article-title: HIV therapy by a combination of broadly neutralizing antibodies in humanized mice
  publication-title: Nature
  doi: 10.1038/nature11604
– volume: 329
  start-page: 856
  year: 2010
  ident: 10.1016/j.celrep.2018.01.023_bib47
  article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1
  publication-title: Science
  doi: 10.1126/science.1187659
– volume: 522
  start-page: 487
  year: 2015
  ident: 10.1016/j.celrep.2018.01.023_bib4
  article-title: Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117
  publication-title: Nature
  doi: 10.1038/nature14411
– volume: 12
  start-page: e1005520
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib43
  article-title: Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005520
– volume: 39
  start-page: 245
  year: 2013
  ident: 10.1016/j.celrep.2018.01.023_bib51
  article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.04.012
– volume: 22
  start-page: 163
  year: 2005
  ident: 10.1016/j.celrep.2018.01.023_bib3
  article-title: Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.12.011
– volume: 13
  start-page: e1006212
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib17
  article-title: Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006212
– year: 1993
  ident: 10.1016/j.celrep.2018.01.023_bib14
– volume: 88
  start-page: 12669
  year: 2014
  ident: 10.1016/j.celrep.2018.01.023_bib30
  article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.02213-14
– volume: 333
  start-page: 1633
  year: 2011
  ident: 10.1016/j.celrep.2018.01.023_bib33
  article-title: Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding
  publication-title: Science
  doi: 10.1126/science.1207227
– volume: 334
  start-page: 1289
  year: 2011
  ident: 10.1016/j.celrep.2018.01.023_bib8
  article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design
  publication-title: Science
  doi: 10.1126/science.1213782
– volume: 28
  start-page: 52
  year: 2008
  ident: 10.1016/j.celrep.2018.01.023_bib41
  article-title: HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.11.018
– volume: 409
  start-page: 131
  year: 2014
  ident: 10.1016/j.celrep.2018.01.023_bib32
  article-title: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2013.11.022
– volume: 45
  start-page: 1108
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib12
  article-title: Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.027
– volume: 358
  start-page: 85
  year: 2017
  ident: 10.1016/j.celrep.2018.01.023_bib48
  article-title: Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques
  publication-title: Science
  doi: 10.1126/science.aan8630
– volume: 352
  start-page: 997
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib35
  article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1
  publication-title: Science
  doi: 10.1126/science.aaf0972
– volume: 165
  start-page: 813
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib40
  article-title: Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.010
– volume: 10
  start-page: 902
  year: 2014
  ident: 10.1016/j.celrep.2018.01.023_bib10
  article-title: The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1651
– volume: 120
  start-page: 9287
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib28
  article-title: Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b05604
– volume: 535
  start-page: 556
  year: 2016
  ident: 10.1016/j.celrep.2018.01.023_bib34
  article-title: HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption
  publication-title: Nature
  doi: 10.1038/nature18929
SSID ssj0000601194
Score 2.4186635
Snippet Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1798
SubjectTerms 10E8
Antibodies, Neutralizing - immunology
antibody improvement
BASIC BIOLOGICAL SCIENCES
broadly neutralizing antibody
Cell Membrane - metabolism
Half-Life
HIV Antibodies - immunology
HIV Envelope Protein gp41 - metabolism
HIV-1
HIV-1 - immunology
Humans
membrane-proximal external region
MPER
Neutralization Tests
Polysaccharides - metabolism
Protein Binding
surface-matrix screening
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIPgifrueSgRfA22TtOnjKR6rcMvBenJvIZ_cytkee11w_QP8u51p2mUrwr7Yx23TbDKTmd-kM78Q8h4EaV0laoZ1mkx4Z5itomfBZDEI71XZZxOeL8vFpfhyJa8OjvrCnLBED5wmDoJzlXFTWFNXYHCDr5UMtZPC1bmD0CKg9QWfdxBMJRuMXGb4SbkoMGerENVYN9cnd7lwswlIV5mrxNrJJ36pp--fuKdZCyvuXyj072TKA-909og8HGAlPU3DeUzuheYJuZ8Omtw9Jb9X2000LrBzZOT_SVcO023Aa9FUqBshXqar8GPNsPISs4dov1WYqh7uaHdtOpr2HwK9aBFn72gbqaFLWCn0wjQMwGdvOuni8zcIGJdh2--h_MJOTqEL2_rdM3J59unrxwUbTmBgTsqyA1MZZC1VXoLoOHgymfsoY6kil3VmAUk5lzmAGN5EL7x1Ze4rLwO4QydhRkr-nMyatgkvCeWSZzYom1UBQESUKgIUksZLUBUbazcnfJx_7QZ6cjwl40aPeWjfdZKaRqnpLNcgtTlh-1a3iZ7jyPMfULT7Z5Fcu_8BVE4PKqePqdycVKNi6AGnJPwBr1of6f4E9QhbIUWvw1wmaAbeSkDkOyfvRvXSsMjxy41pQru9w7NCC6HA1sIbXiR12w-hqAVcvIB_NVHEyRind5r1dU8kLpUCX1e--h-TckIe4EAxoT3nr8ms22zDG8BrnX3bL80__1g9XA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclMNjL2PeydkODvYrYlmTLj21ZyQYNhawjb0bWx5rR2iV1YNkf0L97d5Id5jEozG92JMvSne5DufsdIR-BkLUpRMkwT5MJazSrC2-Z04l3wlqVh2jC80U-vxRfVnJ1QE6HXBgMq-xlf5TpQVr3T2b9as5u1-vZMgPfBbQTCFdEjQoJv1yokMS3OtmfsyDeSBrqIWJ7hh2GDLoQ5mXc9cYhcGWqIn4nH2moAOQ_UlSTFvbev-zRv8Mq_9BTZ0_Jk97ApMdxDs_IgWuek0ex5OTuBblfbjdeG8fOEZv_J10aDLwB_UVjyq4Hz5ku3c2aYQ4mxhHRcGgY8x_uaHelOxpPIhy9aNHi3tHWU00XsGfohW4YmKFBiNL552_gOi7cNpym_MJBjmGIurW7l-Ty7NPX0znrazEwI2XegdB0spQqzYGIHHSaTK2XPleeyzKpwaYyJjFgbFjtrbC1yVNbWOlAMRoJK5LzV2TStI17QyiXPKmdqpPCgTnhpfJgFEltJTBN7UszJXxY_8r0QOVYL-O6GiLSflSRahVSrUrSCqg2JWzf6zYCdTzQ_gRJu2-LMNvhQbv5XvV8Bu1VwnVW67IAbe9sqaQrjRSmTA34tW5KioExqhHXwqvWDwx_iHyEvRCs12BUE3QDvSXAB56SDwN7VbDd8T8c3bh2e4dVQzOhQOrCG15HdttPISsFXDyDrxox4miO41-a9VWAFJdKgdbL3_73fA7JY7zDePaUH5FJt9m6d2CudfX7sB9_A79cPx4
  priority: 102
  providerName: Elsevier
Title Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody
URI https://dx.doi.org/10.1016/j.celrep.2018.01.023
https://www.ncbi.nlm.nih.gov/pubmed/29444432
https://www.proquest.com/docview/2002484883
https://www.osti.gov/servlets/purl/1464828
https://pubmed.ncbi.nlm.nih.gov/PMC5889116
https://doaj.org/article/20803a2ba97341ed985e9c54c91c448e
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6VICQuiDehUC0SVyPb67XXB4RaRJUiJaoUgnKz9klTBRscR2r4AfxuZrx2wKjQHHJI9uHdmdn5Zj0PQl4DIZXOkjzAOM0gMVoGKnMmsDJ0NjFGpK034XSWThbJxyVfHpC-Zmu3gZtrTTusJ7Wo12-uvu_egcC__e2rpe26tph9MhI-CSe7RW6DbsqwmMO0A_z-bMYcZ_iqOY7RlytOsj6e7h8DDfRVm9Z_oLZGFUjidej0byfLP7TW6X1yr4Ob9NjzxwNyYMuH5I4vQLl7RH7Ot7WT2gZTzNR_Reca3XBAm1EfwOvAjqZz-3UVYEQmehXR9grRR0NsaHMhG-rvJSw9rxB_72jlqKQzkCB6LssAQGl7pNLJ2WcwJGd2296t_MBJjmEKVZndY7I4_fDp_SToKjMEmvO0gSPU8pyLKAWSMtBwPDKOu1Q4xvNQAcLSOtQAPYx0JjFKp5HJDLegJjWHHUnZEzIqq9I-I5RxFiorVJhZABeOCwcQiUvDgYWUy_WYsH7_C92lLcfqGeui90-7LDzVCqRaEUYFUG1Mgn2vbz5txw3tT5C0-7aYdLv9oaq_FJ0MQ3sRMhkrmWeg-63JBbe55onOIw1Wrh2TrGeMosMvHpfAUKsbpj9EPsJemLpXo48TdAMtloBFPCavevYqQPjxjY4sbbXdYA3ROBFwBsMITz277ZcQ5wl8WAxPNWDEwRqH_5SrizbBOBcCdGD6_L9PdUju4grQgz1iL8ioqbf2JQC0Rh21FxvwfbY8OWrl7xdAxDwq
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclY2wvY99Luw8N9ipiW5YtP7ZlJdmaUEg78mZkfbQenV1SB5r9Afu7dyfbYR6Dwvxo6yxLd7oP-e4nQj4BIwudxhnDOk0WG61YkTrDrAqcjY2Ric8mnC-S6UX8ZSVWe-S4r4XBtMpO97c63Wvr7s6km83JTVlOlhHELmCdQLkiahQW_D4AbyBB0Z6tjnYbLQg4EvoDEZGAIUVfQufzvLS9XltErgxlC-DJBybKI_kPLNWohsX3L4f077zKPwzVyVPypPMw6WE7iGdkz1bPycP2zMntC_JruVk7pS2bIzj_HV1qzLwBA0bbml0HoTNd2h8lwyJMTCSiftewLYC4pc2Vami7FWHpWY0u95bWjiq6gEVDz1TFwA_1WpROZ98gdlzYjd9O-YmdHEIXRW22L8nFyefz4ynrDmNgWoikAa1pRSZkmAAXORg1ERonXCIdF1lQgFOldaDB2zDKmdgUOglNaoQFy6gFzEjCX5FRVVf2DaFc8KCwsghSC_6EE9KBVySUESA1hcv0mPB-_nPdIZXjgRnXeZ-S9j1vuZYj1_IgzIFrY8J2VDctUsc97Y-Qtbu2iLPtb9Try7wTNGgvA66iQmUpmHtrMilspkWss1BDYGvHJO0FIx-ILbyqvKf7A5QjpEK0Xo1pTUAGhiuGIHhMPvbilcN6x584qrL15haPDY1iCWoX3vC6FbfdEKIshotH8FUDQRyMcfikKq88priQEsxesv_f4_lAHk3P56f56Wzx9YA8xieY3B7yt2TUrDf2HfhuTfHer83f15lCRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Matrix+Screening+Identifies+Semi-specific+Interactions+that+Improve+Potency+of+a+Near+Pan-reactive+HIV-1-Neutralizing+Antibody&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Kwon%2C+Young+D.&rft.au=Chuang%2C+Gwo-Yu&rft.au=Zhang%2C+Baoshan&rft.au=Bailer%2C+Robert+T.&rft.date=2018-02-13&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=22&rft.issue=7&rft_id=info:doi/10.1016%2Fj.celrep.2018.01.023&rft.externalDocID=1464828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon