Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the la...
Saved in:
Published in | Cell reports (Cambridge) Vol. 22; no. 7; pp. 1798 - 1809 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2018.01.023 |
Cover
Loading…
Abstract | Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
[Display omitted]
•Development of a surface-matrix screening approach to improve antibody function•Identified hydrophobic mutations that improved 10E8 interaction with HIV-1 membrane•Identified positively charged mutations that improved interactions with HIV-1 glycan•Optimizing semi-specific interactions can improve potency while maintaining breadth
Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ∼10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies. |
---|---|
AbstractList | Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ~10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ~10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies. Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ~10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth. [Display omitted] •Development of a surface-matrix screening approach to improve antibody function•Identified hydrophobic mutations that improved 10E8 interaction with HIV-1 membrane•Identified positively charged mutations that improved interactions with HIV-1 glycan•Optimizing semi-specific interactions can improve potency while maintaining breadth Antibodies could impact the treatment and prevention of HIV-1 if they were sufficiently potent to allow cost-effective delivery. Kwon et al. used a surface-matrix screening approach to improve the potency of antibody 10E8 by ∼10-fold. The improved antibody, 10E8v4-5R+100cF, has among the best breadth and potency of current HIV-1-neutralizing antibodies. |
Author | Zhang, Baoshan Chaudhuri, Rajoshi Connors, Mark Manceva, Slobodanka D. Louder, Mark K. Jin, Vivian Kim, Mikyung Kwong, Peter D. Pancera, Marie Asokan, Mangaiarkarasi McKee, Krisha Korber, Bette M. Kueltzo, Lisa A. Todd, John-Paul Schmidt, Stephen D. Georgiev, Ivelin S. Choe, Misook Gindin, Tatyana S. Reinherz, Ellis L. O’Dell, Sijy Scorpio, Diana G. Lin, Bob Pegu, Amarendra Rawi, Reda Kwon, Young D. Wang, Keyun Mascola, John R. Chuang, Gwo-Yu Doria-Rose, Nicole A. Chen, Xuejun Wagh, Kshitij Bailer, Robert T. Shapiro, Lawrence |
AuthorAffiliation | 1 Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA 3 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA 6 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA 5 Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA 2 Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA 4 Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
AuthorAffiliation_xml | – name: 3 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – name: 6 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – name: 1 Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – name: 4 Los Alamos National Laboratory, Los Alamos, NM 87545, USA – name: 2 Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA – name: 5 Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: Young D. surname: Kwon fullname: Kwon, Young D. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 2 givenname: Gwo-Yu surname: Chuang fullname: Chuang, Gwo-Yu organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 3 givenname: Baoshan surname: Zhang fullname: Zhang, Baoshan organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 4 givenname: Robert T. surname: Bailer fullname: Bailer, Robert T. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 5 givenname: Nicole A. surname: Doria-Rose fullname: Doria-Rose, Nicole A. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 6 givenname: Tatyana S. surname: Gindin fullname: Gindin, Tatyana S. organization: Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA – sequence: 7 givenname: Bob surname: Lin fullname: Lin, Bob organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 8 givenname: Mark K. surname: Louder fullname: Louder, Mark K. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 9 givenname: Krisha surname: McKee fullname: McKee, Krisha organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 10 givenname: Sijy surname: O’Dell fullname: O’Dell, Sijy organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 11 givenname: Amarendra surname: Pegu fullname: Pegu, Amarendra organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 12 givenname: Stephen D. surname: Schmidt fullname: Schmidt, Stephen D. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 13 givenname: Mangaiarkarasi surname: Asokan fullname: Asokan, Mangaiarkarasi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 14 givenname: Xuejun surname: Chen fullname: Chen, Xuejun organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 15 givenname: Misook surname: Choe fullname: Choe, Misook organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 16 givenname: Ivelin S. surname: Georgiev fullname: Georgiev, Ivelin S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 17 givenname: Vivian surname: Jin fullname: Jin, Vivian organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 18 givenname: Marie surname: Pancera fullname: Pancera, Marie organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 19 givenname: Reda surname: Rawi fullname: Rawi, Reda organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 20 givenname: Keyun surname: Wang fullname: Wang, Keyun organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 21 givenname: Rajoshi surname: Chaudhuri fullname: Chaudhuri, Rajoshi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 22 givenname: Lisa A. surname: Kueltzo fullname: Kueltzo, Lisa A. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 23 givenname: Slobodanka D. surname: Manceva fullname: Manceva, Slobodanka D. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 24 givenname: John-Paul surname: Todd fullname: Todd, John-Paul organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 25 givenname: Diana G. surname: Scorpio fullname: Scorpio, Diana G. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 26 givenname: Mikyung surname: Kim fullname: Kim, Mikyung organization: Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 27 givenname: Ellis L. surname: Reinherz fullname: Reinherz, Ellis L. organization: Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA – sequence: 28 givenname: Kshitij surname: Wagh fullname: Wagh, Kshitij organization: Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 29 givenname: Bette M. surname: Korber fullname: Korber, Bette M. organization: Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 30 givenname: Mark surname: Connors fullname: Connors, Mark organization: Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 31 givenname: Lawrence surname: Shapiro fullname: Shapiro, Lawrence organization: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA – sequence: 32 givenname: John R. surname: Mascola fullname: Mascola, John R. email: jmascola@nih.gov organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA – sequence: 33 givenname: Peter D. surname: Kwong fullname: Kwong, Peter D. email: pdkwong@nih.gov organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29444432$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1464828$$D View this record in Osti.gov |
BookMark | eNqFUk1vEzEQXaEiWkr_AUIrTlw2eLz2xssBqaqArlRKpQBXy7FnU0cbO9hORPgB_G68JEUtB_DFX2_evJl5T4sj5x0WxXMgEyDQvF5ONA4B1xNKQEwITAitHxUnlAJUQNn06N75uDiLcUnyaghAy54Ux7RledX0pPg524Reaaw-qhTs93KmA6KzblF2Bl2yvcVYznBlq7hGna-67FzCoHSy3sUy3apUdqt18Fssb3xCp3el70tVXqMK5Y1yVcARnL8vu68VVNe4SUEN9seY5DynmHuze1Y87tUQ8eywnxZf3r_7fHFZXX360F2cX1Wa8yZVYoq85QIaVKQGKjiYnveN6GvekjljoDXRglKjesPMXDdgpoYjBao5Gt3Up0W35zVeLeU62JUKO-mVlb8ffFhIFZLVA0pKBKkVnat2WjNA0wqOreZMt6AZE5i53u651pv5KrPnduW6HpA-_HH2Vi78VnIhWoBRzMs9gY_JyqhtQn2rvXOokwTWMEFFBr06ZAn-2wZjkisb8_AH5dBvYpZJKBNMiDpDX9wX9EfJ3bQz4M0eoIOPMWAvc041DjLrs4MEIkd3yaXcu0uO7pIEZHZXDmZ_Bd_x_yfs0CXMY91aDGOh2SVobBjrNN7-m-AXcoPsAA |
CitedBy_id | crossref_primary_10_1002_1873_3468_14814 crossref_primary_10_1016_j_immuni_2019_02_008 crossref_primary_10_1097_COH_0000000000000550 crossref_primary_10_1128_JVI_00895_18 crossref_primary_10_1016_j_celrep_2020_108088 crossref_primary_10_1172_jci_insight_175375 crossref_primary_10_1016_j_celrep_2020_03_052 crossref_primary_10_1016_j_compbiomed_2025_109758 crossref_primary_10_1126_science_abd2638 crossref_primary_10_1080_19420862_2021_1946918 crossref_primary_10_1128_jvi_01647_22 crossref_primary_10_3389_fimmu_2024_1484029 crossref_primary_10_1016_j_celrep_2024_114285 crossref_primary_10_3390_cells13010033 crossref_primary_10_3390_v12111210 crossref_primary_10_1038_s41590_018_0235_7 crossref_primary_10_1128_jvi_01604_22 crossref_primary_10_1128_JVI_00159_21 crossref_primary_10_1016_j_bpj_2023_01_026 crossref_primary_10_1128_mbio_03839_24 crossref_primary_10_1016_j_celrep_2021_109922 crossref_primary_10_1016_j_str_2018_10_007 crossref_primary_10_1038_s41467_018_07962_9 crossref_primary_10_1016_j_cell_2019_06_030 crossref_primary_10_1080_19420862_2020_1836719 crossref_primary_10_1016_j_celrep_2024_115223 crossref_primary_10_1186_s12977_018_0439_9 crossref_primary_10_1038_s41467_023_44534_y crossref_primary_10_1016_j_celrep_2018_04_101 crossref_primary_10_1371_journal_ppat_1007632 crossref_primary_10_1038_s42003_022_04219_6 crossref_primary_10_1093_infdis_jiy450 crossref_primary_10_1038_s41467_019_12973_1 crossref_primary_10_1016_j_immuni_2019_05_007 crossref_primary_10_1021_acsami_4c13353 crossref_primary_10_1073_pnas_2112887119 crossref_primary_10_1021_acs_analchem_8b03594 crossref_primary_10_3389_fimmu_2021_662909 crossref_primary_10_3390_ijms231810767 crossref_primary_10_1016_j_celrep_2023_112711 crossref_primary_10_1016_j_celrep_2023_112755 crossref_primary_10_1016_j_celrep_2024_114518 crossref_primary_10_1016_j_immuni_2018_04_029 crossref_primary_10_1016_j_celrep_2020_107583 crossref_primary_10_1016_j_celrep_2020_108037 crossref_primary_10_1038_s41467_021_26579_z crossref_primary_10_7554_eLife_65005 crossref_primary_10_1038_s41598_020_71184_7 crossref_primary_10_3390_antib10020023 crossref_primary_10_1097_COH_0000000000000742 |
Cites_doi | 10.1371/journal.pone.0157409 10.1016/j.cell.2016.05.024 10.1016/j.jmb.2007.02.024 10.1016/j.ymeth.2005.01.001 10.1016/j.immuni.2015.12.001 10.1038/nbt.2677 10.1074/jbc.M117.775429 10.1038/nature10696 10.1097/INF.0000000000000240 10.1038/nri2155 10.1371/journal.ppat.1006074 10.1128/JVI.03136-14 10.1073/pnas.0901474106 10.1016/j.tips.2016.09.005 10.1038/nm.4268 10.1056/NEJMoa1608243 10.1093/bioinformatics/bts426 10.1111/j.1476-5381.2009.00190.x 10.1038/nbt.1601 10.1002/pro.5560030501 10.1038/nsmb.3144 10.1016/j.jmb.2006.10.026 10.1126/science.aad2450 10.1126/sciimmunol.aal2200 10.1128/JVI.78.19.10724-10737.2004 10.1128/JVI.03246-15 10.1128/JVI.02257-09 10.1128/JVI.02108-09 10.1128/JVI.79.16.10108-10125.2005 10.1038/nature11544 10.1038/nature11604 10.1126/science.1187659 10.1038/nature14411 10.1371/journal.ppat.1005520 10.1016/j.immuni.2013.04.012 10.1016/j.immuni.2004.12.011 10.1371/journal.ppat.1006212 10.1128/JVI.02213-14 10.1126/science.1207227 10.1126/science.1213782 10.1016/j.immuni.2007.11.018 10.1016/j.jim.2013.11.022 10.1016/j.immuni.2016.10.027 10.1126/science.aan8630 10.1126/science.aaf0972 10.1016/j.cell.2016.04.010 10.1038/nchembio.1651 10.1021/acs.jpcb.6b05604 10.1038/nature18929 |
ContentType | Journal Article |
Copyright | 2018 Published by Elsevier Inc. |
Copyright_xml | – notice: 2018 – notice: Published by Elsevier Inc. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1016/j.celrep.2018.01.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1809 |
ExternalDocumentID | oai_doaj_org_article_20803a2ba97341ed985e9c54c91c448e PMC5889116 1464828 29444432 10_1016_j_celrep_2018_01_023 S2211124718300408 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI126901 – fundername: NIAID NIH HHS grantid: P01 AI131251 – fundername: Intramural NIH HHS grantid: ZIA AI005022 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c556t-87e595816ea0312851df5f68f3590b441cc0c822dafd4dbc61d7d5e212c5edc63 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:28:25 EDT 2025 Thu Aug 21 14:11:21 EDT 2025 Fri May 19 01:06:35 EDT 2023 Thu Jul 10 17:27:28 EDT 2025 Mon Jul 21 06:05:38 EDT 2025 Tue Jul 01 02:58:54 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Wed May 17 00:14:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | HIV-1 broadly neutralizing antibody membrane-proximal external region antibody improvement MPER 10E8 surface-matrix screening |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-87e595816ea0312851df5f68f3590b441cc0c822dafd4dbc61d7d5e212c5edc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) W-31-109-Eng-38 National Institutes of Health (NIH) Lead Contact These authors contributed equally |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.01.023 |
PMID | 29444432 |
PQID | 2002484883 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20803a2ba97341ed985e9c54c91c448e pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889116 osti_scitechconnect_1464828 proquest_miscellaneous_2002484883 pubmed_primary_29444432 crossref_citationtrail_10_1016_j_celrep_2018_01_023 crossref_primary_10_1016_j_celrep_2018_01_023 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_01_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-13 |
PublicationDateYYYYMMDD | 2018-02-13 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Pancera, Zhu, O’Dell, Yang, Zhang, Changela, McLellan, Wu, Zhou, Burton (bib26) 2013; 29 Sarzotti-Kelsoe, Bailer, Turk, Lin, Bilska, Greene, Gao, Todd, Ozaki, Seaman (bib32) 2014; 409 Lee, Ozorowski, Ward (bib21) 2016; 351 Bar, Sneller, Harrison, Justement, Overton, Petrone, Salantes, Seamon, Scheinfeld, Kwan (bib2) 2016; 375 Song, Oren, Franco, Seaman, Ho (bib38) 2013; 31 Caskey, Schoofs, Gruell, Settler, Karagounis, Kreider, Murrell, Pfeifer, Nogueira, Oliveira (bib5) 2017; 23 Hubbard, Thornton (bib14) 1993 Sun, Oh, Kim, Yu, Brusic, Song, Qiao, Wang, Wagner, Reinherz (bib41) 2008; 28 Ofek, McKee, Yang, Yang, Skinner, Guenaga, Wyatt, Zwick, Nabel, Mascola, Kwong (bib25) 2010; 84 Stewart-Jones, Soto, Lemmin, Chuang, Druz, Kong, Thomas, Wagh, Zhou, Behrens (bib40) 2016; 165 Trevino, Scholtz, Pace (bib42) 2007; 366 Chuang, Boyington, Joyce, Zhu, Nabel, Kwong, Georgiev (bib7) 2012; 28 Scheid, Horwitz, Bar-On, Kreider, Lu, Lorenzi, Feldmann, Braunschweig, Nogueira, Oliveira (bib34) 2016; 535 McLellan, Pancera, Carrico, Gorman, Julien, Khayat, Louder, Pejchal, Sastry, Dai (bib23) 2011; 480 Robison, Sun, Poyton, Johnson, Pellois, Jungwirth, Vazdar, Cremer (bib28) 2016; 120 Young, Jernigan, Covell (bib49) 1994; 3 Wu, Yang, Li, Hogerkorp, Schief, Seaman, Zhou, Schmidt, Wu, Xu (bib47) 2010; 329 Zhou, Zhu, Wu, Moquin, Zhang, Acharya, Georgiev, Altae-Tran, Chuang, Joyce (bib51) 2013; 39 Kwon, Georgiev, Ofek, Zhang, Asokan, Bailer, Bao, Caruso, Chen, Choe (bib20) 2016; 90 Hebert, Lamriben, Powers, Kelly (bib10) 2014; 10 Hwang, Foote (bib15) 2005; 36 Ofek, Tang, Sambor, Katinger, Mascola, Wyatt, Kwong (bib24) 2004; 78 Xu, Pegu, Rao, Doria-Rose, Beninga, McKee, Lord, Wei, Deng, Louder (bib48) 2017; 358 Huang, Kang, Ishida, Zhou, Griesman, Sheng, Wu, Doria-Rose, Zhang, McKee (bib12) 2016; 45 Rujas, Caaveiro, Insausti, García-Porras, Tsumoto, Nieva (bib31) 2017; 292 Gorman, Soto, Yang, Davenport, Guttman, Bailer, Chambers, Chuang, DeKosky, Doria-Rose (bib9) 2016; 23 Diskin, Scheid, Marcovecchio, West, Klein, Gao, Gnanapragasam, Abadir, Seaman, Nussenzweig, Bjorkman (bib8) 2011; 334 Irimia, Serra, Sarkar, Jacak, Kalyuzhniy, Sok, Saye-Francisco, Schiffner, Tingle, Kubitz (bib17) 2017; 13 Zalevsky, Chamberlain, Horton, Karki, Leung, Sproule, Lazar, Roopenian, Desjarlais (bib50) 2010; 28 Cardoso, Zwick, Stanfield, Kunert, Binley, Katinger, Burton, Wilson (bib3) 2005; 22 Chames, Van Regenmortel, Weiss, Baty (bib6) 2009; 157 Irimia, Sarkar, Stanfield, Wilson (bib16) 2016; 44 Soto, Ofek, Joyce, Zhang, McKee, Longo, Yang, Huang, Parks, Eudailey (bib39) 2016; 11 Wibmer, Gorman, Ozorowski, Bhiman, Sheward, Elliott, Rouelle, Smira, Joyce, Ndabambi (bib44) 2017; 13 Caskey, Klein, Lorenzi, Seaman, West, Buckley, Kremer, Nogueira, Braunschweig, Scheid (bib4) 2015; 522 Huang, Ofek, Laub, Louder, Doria-Rose, Longo, Imamichi, Bailer, Chakrabarti, Sharma (bib11) 2012; 491 Li, Gao, Mascola, Stamatatos, Polonis, Koutsoukos, Voss, Goepfert, Gilbert, Greene (bib22) 2005; 79 Seaman, Janes, Hawkins, Grandpre, Devoy, Giri, Coffey, Harris, Wood, Daniels (bib36) 2010; 84 Ayyar, Arora, O’Kennedy (bib1) 2016; 37 Kong, Louder, Wagh, Bailer, deCamp, Greene, Gao, Taft, Gazumyan, Liu (bib19) 2015; 89 Schoofs, Klein, Braunschweig, Kreider, Feldmann, Nogueira, Oliveira, Lorenzi, Parrish, Learn (bib35) 2016; 352 Ramilo, Lagos, Sáez-Llorens, Suzich, Wang, Jensen, Harris, Losonsky, Griffin (bib27) 2014; 33 Roopenian, Akilesh (bib29) 2007; 7 Rudicell, Kwon, Ko, Pegu, Louder, Georgiev, Wu, Zhu, Boyington, Chen (bib30) 2014; 88 Song, Sun, Coleman, Zwick, Gach, Wang, Reinherz, Wagner, Kim (bib37) 2009; 106 Wu, Pfarr, Johnson, Brewah, Woods, Patel, White, Young, Kiener (bib46) 2007; 368 Wagh, Bhattacharya, Williamson, Robles, Bayne, Garrity, Rist, Rademeyer, Yoon, Lapedes (bib43) 2016; 12 Williams, Ofek, Schatzle, McDaniel, Lu, Nicely, Wu, Lougheed, Bradley, Louder (bib45) 2017; 2 Huang, Yu, Lanzi, Yao, Andrews, Tsai, Gajjar, Sun, Seaman, Padte, Ho (bib13) 2016; 165 Klein, Halper-Stromberg, Horwitz, Gruell, Scheid, Bournazos, Mouquet, Spatz, Diskin, Abadir (bib18) 2012; 492 Scheid, Mouquet, Ueberheide, Diskin, Klein, Oliveira, Pietzsch, Fenyo, Abadir, Velinzon (bib33) 2011; 333 Song (10.1016/j.celrep.2018.01.023_bib37) 2009; 106 Ayyar (10.1016/j.celrep.2018.01.023_bib1) 2016; 37 Irimia (10.1016/j.celrep.2018.01.023_bib16) 2016; 44 Scheid (10.1016/j.celrep.2018.01.023_bib34) 2016; 535 Hubbard (10.1016/j.celrep.2018.01.023_bib14) 1993 Sun (10.1016/j.celrep.2018.01.023_bib41) 2008; 28 Williams (10.1016/j.celrep.2018.01.023_bib45) 2017; 2 Irimia (10.1016/j.celrep.2018.01.023_bib17) 2017; 13 Ofek (10.1016/j.celrep.2018.01.023_bib24) 2004; 78 Kong (10.1016/j.celrep.2018.01.023_bib19) 2015; 89 Rujas (10.1016/j.celrep.2018.01.023_bib31) 2017; 292 Zhou (10.1016/j.celrep.2018.01.023_bib51) 2013; 39 Schoofs (10.1016/j.celrep.2018.01.023_bib35) 2016; 352 Li (10.1016/j.celrep.2018.01.023_bib22) 2005; 79 Hebert (10.1016/j.celrep.2018.01.023_bib10) 2014; 10 Young (10.1016/j.celrep.2018.01.023_bib49) 1994; 3 Wu (10.1016/j.celrep.2018.01.023_bib47) 2010; 329 Stewart-Jones (10.1016/j.celrep.2018.01.023_bib40) 2016; 165 Gorman (10.1016/j.celrep.2018.01.023_bib9) 2016; 23 Roopenian (10.1016/j.celrep.2018.01.023_bib29) 2007; 7 Seaman (10.1016/j.celrep.2018.01.023_bib36) 2010; 84 Robison (10.1016/j.celrep.2018.01.023_bib28) 2016; 120 Zalevsky (10.1016/j.celrep.2018.01.023_bib50) 2010; 28 Scheid (10.1016/j.celrep.2018.01.023_bib33) 2011; 333 Klein (10.1016/j.celrep.2018.01.023_bib18) 2012; 492 Chames (10.1016/j.celrep.2018.01.023_bib6) 2009; 157 Ramilo (10.1016/j.celrep.2018.01.023_bib27) 2014; 33 Wu (10.1016/j.celrep.2018.01.023_bib46) 2007; 368 Huang (10.1016/j.celrep.2018.01.023_bib11) 2012; 491 Caskey (10.1016/j.celrep.2018.01.023_bib4) 2015; 522 Lee (10.1016/j.celrep.2018.01.023_bib21) 2016; 351 Trevino (10.1016/j.celrep.2018.01.023_bib42) 2007; 366 Wagh (10.1016/j.celrep.2018.01.023_bib43) 2016; 12 Xu (10.1016/j.celrep.2018.01.023_bib48) 2017; 358 Cardoso (10.1016/j.celrep.2018.01.023_bib3) 2005; 22 Song (10.1016/j.celrep.2018.01.023_bib38) 2013; 31 Kwon (10.1016/j.celrep.2018.01.023_bib20) 2016; 90 Bar (10.1016/j.celrep.2018.01.023_bib2) 2016; 375 Caskey (10.1016/j.celrep.2018.01.023_bib5) 2017; 23 McLellan (10.1016/j.celrep.2018.01.023_bib23) 2011; 480 Huang (10.1016/j.celrep.2018.01.023_bib12) 2016; 45 Hwang (10.1016/j.celrep.2018.01.023_bib15) 2005; 36 Sarzotti-Kelsoe (10.1016/j.celrep.2018.01.023_bib32) 2014; 409 Chuang (10.1016/j.celrep.2018.01.023_bib7) 2012; 28 Soto (10.1016/j.celrep.2018.01.023_bib39) 2016; 11 Diskin (10.1016/j.celrep.2018.01.023_bib8) 2011; 334 Rudicell (10.1016/j.celrep.2018.01.023_bib30) 2014; 88 Huang (10.1016/j.celrep.2018.01.023_bib13) 2016; 165 Ofek (10.1016/j.celrep.2018.01.023_bib25) 2010; 84 Wibmer (10.1016/j.celrep.2018.01.023_bib44) 2017; 13 Pancera (10.1016/j.celrep.2018.01.023_bib26) 2013; 29 |
References_xml | – volume: 44 start-page: 21 year: 2016 end-page: 31 ident: bib16 article-title: Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10 publication-title: Immunity – volume: 165 start-page: 813 year: 2016 end-page: 826 ident: bib40 article-title: Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G publication-title: Cell – volume: 7 start-page: 715 year: 2007 end-page: 725 ident: bib29 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat. Rev. Immunol. – volume: 106 start-page: 9057 year: 2009 end-page: 9062 ident: bib37 article-title: Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 185 year: 2017 end-page: 191 ident: bib5 article-title: Antibody 10-1074 suppresses viremia in HIV-1-infected individuals publication-title: Nat. Med. – volume: 11 start-page: e0157409 year: 2016 ident: bib39 article-title: Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8 publication-title: PLoS ONE – volume: 23 start-page: 81 year: 2016 end-page: 90 ident: bib9 article-title: Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design publication-title: Nat. Struct. Mol. Biol. – volume: 39 start-page: 245 year: 2013 end-page: 258 ident: bib51 article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies publication-title: Immunity – volume: 89 start-page: 2659 year: 2015 end-page: 2671 ident: bib19 article-title: Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes publication-title: J. Virol. – volume: 28 start-page: 2249 year: 2012 end-page: 2255 ident: bib7 article-title: Computational prediction of N-linked glycosylation incorporating structural properties and patterns publication-title: Bioinformatics – volume: 88 start-page: 12669 year: 2014 end-page: 12682 ident: bib30 article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo publication-title: J. Virol. – volume: 84 start-page: 1439 year: 2010 end-page: 1452 ident: bib36 article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies publication-title: J. Virol. – volume: 368 start-page: 652 year: 2007 end-page: 665 ident: bib46 article-title: Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract publication-title: J. Mol. Biol. – volume: 333 start-page: 1633 year: 2011 end-page: 1637 ident: bib33 article-title: Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding publication-title: Science – volume: 13 start-page: e1006212 year: 2017 ident: bib17 article-title: Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design publication-title: PLoS Pathog. – volume: 12 start-page: e1005520 year: 2016 ident: bib43 article-title: Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection publication-title: PLoS Pathog. – volume: 13 start-page: e1006074 year: 2017 ident: bib44 article-title: Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape publication-title: PLoS Pathog. – volume: 358 start-page: 85 year: 2017 end-page: 90 ident: bib48 article-title: Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques publication-title: Science – volume: 22 start-page: 163 year: 2005 end-page: 173 ident: bib3 article-title: Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41 publication-title: Immunity – year: 1993 ident: bib14 article-title: NACCESS computer program – volume: 329 start-page: 856 year: 2010 end-page: 861 ident: bib47 article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 publication-title: Science – volume: 157 start-page: 220 year: 2009 end-page: 233 ident: bib6 article-title: Therapeutic antibodies: successes, limitations and hopes for the future publication-title: Br. J. Pharmacol. – volume: 78 start-page: 10724 year: 2004 end-page: 10737 ident: bib24 article-title: Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope publication-title: J. Virol. – volume: 292 start-page: 5571 year: 2017 end-page: 5583 ident: bib31 article-title: Peripheral membrane interactions boost the engagement by an anti-HIV-1 broadly neutralizing antibody publication-title: J. Biol. Chem. – volume: 28 start-page: 157 year: 2010 end-page: 159 ident: bib50 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. – volume: 352 start-page: 997 year: 2016 end-page: 1001 ident: bib35 article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 publication-title: Science – volume: 36 start-page: 3 year: 2005 end-page: 10 ident: bib15 article-title: Immunogenicity of engineered antibodies publication-title: Methods – volume: 31 start-page: 1047 year: 2013 end-page: 1052 ident: bib38 article-title: Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity publication-title: Nat. Biotechnol. – volume: 165 start-page: 1621 year: 2016 end-page: 1631 ident: bib13 article-title: Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity publication-title: Cell – volume: 84 start-page: 2955 year: 2010 end-page: 2962 ident: bib25 article-title: Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region publication-title: J. Virol. – volume: 480 start-page: 336 year: 2011 end-page: 343 ident: bib23 article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 publication-title: Nature – volume: 366 start-page: 449 year: 2007 end-page: 460 ident: bib42 article-title: Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa publication-title: J. Mol. Biol. – volume: 522 start-page: 487 year: 2015 end-page: 491 ident: bib4 article-title: Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 publication-title: Nature – volume: 409 start-page: 131 year: 2014 end-page: 146 ident: bib32 article-title: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1 publication-title: J. Immunol. Methods – volume: 492 start-page: 118 year: 2012 end-page: 122 ident: bib18 article-title: HIV therapy by a combination of broadly neutralizing antibodies in humanized mice publication-title: Nature – volume: 351 start-page: 1043 year: 2016 end-page: 1048 ident: bib21 article-title: Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer publication-title: Science – volume: 3 start-page: 717 year: 1994 end-page: 729 ident: bib49 article-title: A role for surface hydrophobicity in protein-protein recognition publication-title: Protein Sci. – volume: 33 start-page: 703 year: 2014 end-page: 709 ident: bib27 article-title: Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness publication-title: Pediatr. Infect. Dis. J. – volume: 491 start-page: 406 year: 2012 end-page: 412 ident: bib11 article-title: Broad and potent neutralization of HIV-1 by a gp41-specific human antibody publication-title: Nature – volume: 375 start-page: 2037 year: 2016 end-page: 2050 ident: bib2 article-title: Effect of HIV antibody VRC01 on viral rebound after treatment interruption publication-title: N. Engl. J. Med. – volume: 45 start-page: 1108 year: 2016 end-page: 1121 ident: bib12 article-title: Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth publication-title: Immunity – volume: 10 start-page: 902 year: 2014 end-page: 910 ident: bib10 article-title: The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis publication-title: Nat. Chem. Biol. – volume: 2 start-page: eaal2200 year: 2017 ident: bib45 article-title: Potent and broad HIV-neutralizing antibodies in memory B cells and plasma publication-title: Sci. Immunol. – volume: 29 start-page: A59 year: 2013 end-page: A60 ident: bib26 article-title: Arginine-scanning of PG16 paratope defines quaternary epitope publication-title: AIDS Res. Hum. Retroviruses – volume: 535 start-page: 556 year: 2016 end-page: 560 ident: bib34 article-title: HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption publication-title: Nature – volume: 28 start-page: 52 year: 2008 end-page: 63 ident: bib41 article-title: HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane publication-title: Immunity – volume: 79 start-page: 10108 year: 2005 end-page: 10125 ident: bib22 article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies publication-title: J. Virol. – volume: 90 start-page: 5899 year: 2016 end-page: 5914 ident: bib20 article-title: Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design publication-title: J. Virol. – volume: 334 start-page: 1289 year: 2011 end-page: 1293 ident: bib8 article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design publication-title: Science – volume: 120 start-page: 9287 year: 2016 end-page: 9296 ident: bib28 article-title: Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers publication-title: J. Phys. Chem. B – volume: 37 start-page: 1009 year: 2016 end-page: 1028 ident: bib1 article-title: Coming-of-age of antibodies in cancer therapeutics publication-title: Trends Pharmacol. Sci. – volume: 11 start-page: e0157409 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib39 article-title: Developmental pathway of the MPER-directed HIV-1-neutralizing antibody 10E8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0157409 – volume: 165 start-page: 1621 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib13 article-title: Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity publication-title: Cell doi: 10.1016/j.cell.2016.05.024 – volume: 368 start-page: 652 year: 2007 ident: 10.1016/j.celrep.2018.01.023_bib46 article-title: Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.02.024 – volume: 36 start-page: 3 year: 2005 ident: 10.1016/j.celrep.2018.01.023_bib15 article-title: Immunogenicity of engineered antibodies publication-title: Methods doi: 10.1016/j.ymeth.2005.01.001 – volume: 44 start-page: 21 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib16 article-title: Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10 publication-title: Immunity doi: 10.1016/j.immuni.2015.12.001 – volume: 31 start-page: 1047 year: 2013 ident: 10.1016/j.celrep.2018.01.023_bib38 article-title: Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2677 – volume: 292 start-page: 5571 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib31 article-title: Peripheral membrane interactions boost the engagement by an anti-HIV-1 broadly neutralizing antibody publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.775429 – volume: 480 start-page: 336 year: 2011 ident: 10.1016/j.celrep.2018.01.023_bib23 article-title: Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 publication-title: Nature doi: 10.1038/nature10696 – volume: 33 start-page: 703 year: 2014 ident: 10.1016/j.celrep.2018.01.023_bib27 article-title: Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness publication-title: Pediatr. Infect. Dis. J. doi: 10.1097/INF.0000000000000240 – volume: 7 start-page: 715 year: 2007 ident: 10.1016/j.celrep.2018.01.023_bib29 article-title: FcRn: the neonatal Fc receptor comes of age publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2155 – volume: 13 start-page: e1006074 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib44 article-title: Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006074 – volume: 89 start-page: 2659 year: 2015 ident: 10.1016/j.celrep.2018.01.023_bib19 article-title: Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes publication-title: J. Virol. doi: 10.1128/JVI.03136-14 – volume: 106 start-page: 9057 year: 2009 ident: 10.1016/j.celrep.2018.01.023_bib37 article-title: Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901474106 – volume: 37 start-page: 1009 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib1 article-title: Coming-of-age of antibodies in cancer therapeutics publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2016.09.005 – volume: 23 start-page: 185 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib5 article-title: Antibody 10-1074 suppresses viremia in HIV-1-infected individuals publication-title: Nat. Med. doi: 10.1038/nm.4268 – volume: 375 start-page: 2037 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib2 article-title: Effect of HIV antibody VRC01 on viral rebound after treatment interruption publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1608243 – volume: 28 start-page: 2249 year: 2012 ident: 10.1016/j.celrep.2018.01.023_bib7 article-title: Computational prediction of N-linked glycosylation incorporating structural properties and patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts426 – volume: 157 start-page: 220 year: 2009 ident: 10.1016/j.celrep.2018.01.023_bib6 article-title: Therapeutic antibodies: successes, limitations and hopes for the future publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2009.00190.x – volume: 29 start-page: A59 year: 2013 ident: 10.1016/j.celrep.2018.01.023_bib26 article-title: Arginine-scanning of PG16 paratope defines quaternary epitope publication-title: AIDS Res. Hum. Retroviruses – volume: 28 start-page: 157 year: 2010 ident: 10.1016/j.celrep.2018.01.023_bib50 article-title: Enhanced antibody half-life improves in vivo activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1601 – volume: 3 start-page: 717 year: 1994 ident: 10.1016/j.celrep.2018.01.023_bib49 article-title: A role for surface hydrophobicity in protein-protein recognition publication-title: Protein Sci. doi: 10.1002/pro.5560030501 – volume: 23 start-page: 81 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib9 article-title: Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3144 – volume: 366 start-page: 449 year: 2007 ident: 10.1016/j.celrep.2018.01.023_bib42 article-title: Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.10.026 – volume: 351 start-page: 1043 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib21 article-title: Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer publication-title: Science doi: 10.1126/science.aad2450 – volume: 2 start-page: eaal2200 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib45 article-title: Potent and broad HIV-neutralizing antibodies in memory B cells and plasma publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aal2200 – volume: 78 start-page: 10724 year: 2004 ident: 10.1016/j.celrep.2018.01.023_bib24 article-title: Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope publication-title: J. Virol. doi: 10.1128/JVI.78.19.10724-10737.2004 – volume: 90 start-page: 5899 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib20 article-title: Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design publication-title: J. Virol. doi: 10.1128/JVI.03246-15 – volume: 84 start-page: 2955 year: 2010 ident: 10.1016/j.celrep.2018.01.023_bib25 article-title: Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region publication-title: J. Virol. doi: 10.1128/JVI.02257-09 – volume: 84 start-page: 1439 year: 2010 ident: 10.1016/j.celrep.2018.01.023_bib36 article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.02108-09 – volume: 79 start-page: 10108 year: 2005 ident: 10.1016/j.celrep.2018.01.023_bib22 article-title: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.79.16.10108-10125.2005 – volume: 491 start-page: 406 year: 2012 ident: 10.1016/j.celrep.2018.01.023_bib11 article-title: Broad and potent neutralization of HIV-1 by a gp41-specific human antibody publication-title: Nature doi: 10.1038/nature11544 – volume: 492 start-page: 118 year: 2012 ident: 10.1016/j.celrep.2018.01.023_bib18 article-title: HIV therapy by a combination of broadly neutralizing antibodies in humanized mice publication-title: Nature doi: 10.1038/nature11604 – volume: 329 start-page: 856 year: 2010 ident: 10.1016/j.celrep.2018.01.023_bib47 article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 publication-title: Science doi: 10.1126/science.1187659 – volume: 522 start-page: 487 year: 2015 ident: 10.1016/j.celrep.2018.01.023_bib4 article-title: Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 publication-title: Nature doi: 10.1038/nature14411 – volume: 12 start-page: e1005520 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib43 article-title: Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005520 – volume: 39 start-page: 245 year: 2013 ident: 10.1016/j.celrep.2018.01.023_bib51 article-title: Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies publication-title: Immunity doi: 10.1016/j.immuni.2013.04.012 – volume: 22 start-page: 163 year: 2005 ident: 10.1016/j.celrep.2018.01.023_bib3 article-title: Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41 publication-title: Immunity doi: 10.1016/j.immuni.2004.12.011 – volume: 13 start-page: e1006212 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib17 article-title: Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006212 – year: 1993 ident: 10.1016/j.celrep.2018.01.023_bib14 – volume: 88 start-page: 12669 year: 2014 ident: 10.1016/j.celrep.2018.01.023_bib30 article-title: Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo publication-title: J. Virol. doi: 10.1128/JVI.02213-14 – volume: 333 start-page: 1633 year: 2011 ident: 10.1016/j.celrep.2018.01.023_bib33 article-title: Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding publication-title: Science doi: 10.1126/science.1207227 – volume: 334 start-page: 1289 year: 2011 ident: 10.1016/j.celrep.2018.01.023_bib8 article-title: Increasing the potency and breadth of an HIV antibody by using structure-based rational design publication-title: Science doi: 10.1126/science.1213782 – volume: 28 start-page: 52 year: 2008 ident: 10.1016/j.celrep.2018.01.023_bib41 article-title: HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane publication-title: Immunity doi: 10.1016/j.immuni.2007.11.018 – volume: 409 start-page: 131 year: 2014 ident: 10.1016/j.celrep.2018.01.023_bib32 article-title: Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1 publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2013.11.022 – volume: 45 start-page: 1108 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib12 article-title: Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth publication-title: Immunity doi: 10.1016/j.immuni.2016.10.027 – volume: 358 start-page: 85 year: 2017 ident: 10.1016/j.celrep.2018.01.023_bib48 article-title: Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques publication-title: Science doi: 10.1126/science.aan8630 – volume: 352 start-page: 997 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib35 article-title: HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 publication-title: Science doi: 10.1126/science.aaf0972 – volume: 165 start-page: 813 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib40 article-title: Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G publication-title: Cell doi: 10.1016/j.cell.2016.04.010 – volume: 10 start-page: 902 year: 2014 ident: 10.1016/j.celrep.2018.01.023_bib10 article-title: The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1651 – volume: 120 start-page: 9287 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib28 article-title: Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b05604 – volume: 535 start-page: 556 year: 2016 ident: 10.1016/j.celrep.2018.01.023_bib34 article-title: HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption publication-title: Nature doi: 10.1038/nature18929 |
SSID | ssj0000601194 |
Score | 2.4186635 |
Snippet | Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1798 |
SubjectTerms | 10E8 Antibodies, Neutralizing - immunology antibody improvement BASIC BIOLOGICAL SCIENCES broadly neutralizing antibody Cell Membrane - metabolism Half-Life HIV Antibodies - immunology HIV Envelope Protein gp41 - metabolism HIV-1 HIV-1 - immunology Humans membrane-proximal external region MPER Neutralization Tests Polysaccharides - metabolism Protein Binding surface-matrix screening |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIPgifrueSgRfA22TtOnjKR6rcMvBenJvIZ_cytkee11w_QP8u51p2mUrwr7Yx23TbDKTmd-kM78Q8h4EaV0laoZ1mkx4Z5itomfBZDEI71XZZxOeL8vFpfhyJa8OjvrCnLBED5wmDoJzlXFTWFNXYHCDr5UMtZPC1bmD0CKg9QWfdxBMJRuMXGb4SbkoMGerENVYN9cnd7lwswlIV5mrxNrJJ36pp--fuKdZCyvuXyj072TKA-909og8HGAlPU3DeUzuheYJuZ8Omtw9Jb9X2000LrBzZOT_SVcO023Aa9FUqBshXqar8GPNsPISs4dov1WYqh7uaHdtOpr2HwK9aBFn72gbqaFLWCn0wjQMwGdvOuni8zcIGJdh2--h_MJOTqEL2_rdM3J59unrxwUbTmBgTsqyA1MZZC1VXoLoOHgymfsoY6kil3VmAUk5lzmAGN5EL7x1Ze4rLwO4QydhRkr-nMyatgkvCeWSZzYom1UBQESUKgIUksZLUBUbazcnfJx_7QZ6cjwl40aPeWjfdZKaRqnpLNcgtTlh-1a3iZ7jyPMfULT7Z5Fcu_8BVE4PKqePqdycVKNi6AGnJPwBr1of6f4E9QhbIUWvw1wmaAbeSkDkOyfvRvXSsMjxy41pQru9w7NCC6HA1sIbXiR12w-hqAVcvIB_NVHEyRind5r1dU8kLpUCX1e--h-TckIe4EAxoT3nr8ms22zDG8BrnX3bL80__1g9XA priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclMNjL2PeydkODvYrYlmTLj21ZyQYNhawjb0bWx5rR2iV1YNkf0L97d5Id5jEozG92JMvSne5DufsdIR-BkLUpRMkwT5MJazSrC2-Z04l3wlqVh2jC80U-vxRfVnJ1QE6HXBgMq-xlf5TpQVr3T2b9as5u1-vZMgPfBbQTCFdEjQoJv1yokMS3OtmfsyDeSBrqIWJ7hh2GDLoQ5mXc9cYhcGWqIn4nH2moAOQ_UlSTFvbev-zRv8Mq_9BTZ0_Jk97ApMdxDs_IgWuek0ex5OTuBblfbjdeG8fOEZv_J10aDLwB_UVjyq4Hz5ku3c2aYQ4mxhHRcGgY8x_uaHelOxpPIhy9aNHi3tHWU00XsGfohW4YmKFBiNL552_gOi7cNpym_MJBjmGIurW7l-Ty7NPX0znrazEwI2XegdB0spQqzYGIHHSaTK2XPleeyzKpwaYyJjFgbFjtrbC1yVNbWOlAMRoJK5LzV2TStI17QyiXPKmdqpPCgTnhpfJgFEltJTBN7UszJXxY_8r0QOVYL-O6GiLSflSRahVSrUrSCqg2JWzf6zYCdTzQ_gRJu2-LMNvhQbv5XvV8Bu1VwnVW67IAbe9sqaQrjRSmTA34tW5KioExqhHXwqvWDwx_iHyEvRCs12BUE3QDvSXAB56SDwN7VbDd8T8c3bh2e4dVQzOhQOrCG15HdttPISsFXDyDrxox4miO41-a9VWAFJdKgdbL3_73fA7JY7zDePaUH5FJt9m6d2CudfX7sB9_A79cPx4 priority: 102 providerName: Elsevier |
Title | Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody |
URI | https://dx.doi.org/10.1016/j.celrep.2018.01.023 https://www.ncbi.nlm.nih.gov/pubmed/29444432 https://www.proquest.com/docview/2002484883 https://www.osti.gov/servlets/purl/1464828 https://pubmed.ncbi.nlm.nih.gov/PMC5889116 https://doaj.org/article/20803a2ba97341ed985e9c54c91c448e |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6VICQuiDehUC0SVyPb67XXB4RaRJUiJaoUgnKz9klTBRscR2r4AfxuZrx2wKjQHHJI9uHdmdn5Zj0PQl4DIZXOkjzAOM0gMVoGKnMmsDJ0NjFGpK034XSWThbJxyVfHpC-Zmu3gZtrTTusJ7Wo12-uvu_egcC__e2rpe26tph9MhI-CSe7RW6DbsqwmMO0A_z-bMYcZ_iqOY7RlytOsj6e7h8DDfRVm9Z_oLZGFUjidej0byfLP7TW6X1yr4Ob9NjzxwNyYMuH5I4vQLl7RH7Ot7WT2gZTzNR_Reca3XBAm1EfwOvAjqZz-3UVYEQmehXR9grRR0NsaHMhG-rvJSw9rxB_72jlqKQzkCB6LssAQGl7pNLJ2WcwJGd2296t_MBJjmEKVZndY7I4_fDp_SToKjMEmvO0gSPU8pyLKAWSMtBwPDKOu1Q4xvNQAcLSOtQAPYx0JjFKp5HJDLegJjWHHUnZEzIqq9I-I5RxFiorVJhZABeOCwcQiUvDgYWUy_WYsH7_C92lLcfqGeui90-7LDzVCqRaEUYFUG1Mgn2vbz5txw3tT5C0-7aYdLv9oaq_FJ0MQ3sRMhkrmWeg-63JBbe55onOIw1Wrh2TrGeMosMvHpfAUKsbpj9EPsJemLpXo48TdAMtloBFPCavevYqQPjxjY4sbbXdYA3ROBFwBsMITz277ZcQ5wl8WAxPNWDEwRqH_5SrizbBOBcCdGD6_L9PdUju4grQgz1iL8ioqbf2JQC0Rh21FxvwfbY8OWrl7xdAxDwq |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBclY2wvY99Luw8N9ipiW5YtP7ZlJdmaUEg78mZkfbQenV1SB5r9Afu7dyfbYR6Dwvxo6yxLd7oP-e4nQj4BIwudxhnDOk0WG61YkTrDrAqcjY2Ric8mnC-S6UX8ZSVWe-S4r4XBtMpO97c63Wvr7s6km83JTVlOlhHELmCdQLkiahQW_D4AbyBB0Z6tjnYbLQg4EvoDEZGAIUVfQufzvLS9XltErgxlC-DJBybKI_kPLNWohsX3L4f077zKPwzVyVPypPMw6WE7iGdkz1bPycP2zMntC_JruVk7pS2bIzj_HV1qzLwBA0bbml0HoTNd2h8lwyJMTCSiftewLYC4pc2Vami7FWHpWY0u95bWjiq6gEVDz1TFwA_1WpROZ98gdlzYjd9O-YmdHEIXRW22L8nFyefz4ynrDmNgWoikAa1pRSZkmAAXORg1ERonXCIdF1lQgFOldaDB2zDKmdgUOglNaoQFy6gFzEjCX5FRVVf2DaFc8KCwsghSC_6EE9KBVySUESA1hcv0mPB-_nPdIZXjgRnXeZ-S9j1vuZYj1_IgzIFrY8J2VDctUsc97Y-Qtbu2iLPtb9Try7wTNGgvA66iQmUpmHtrMilspkWss1BDYGvHJO0FIx-ILbyqvKf7A5QjpEK0Xo1pTUAGhiuGIHhMPvbilcN6x584qrL15haPDY1iCWoX3vC6FbfdEKIshotH8FUDQRyMcfikKq88priQEsxesv_f4_lAHk3P56f56Wzx9YA8xieY3B7yt2TUrDf2HfhuTfHer83f15lCRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Matrix+Screening+Identifies+Semi-specific+Interactions+that+Improve+Potency+of+a+Near+Pan-reactive+HIV-1-Neutralizing+Antibody&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Kwon%2C+Young+D.&rft.au=Chuang%2C+Gwo-Yu&rft.au=Zhang%2C+Baoshan&rft.au=Bailer%2C+Robert+T.&rft.date=2018-02-13&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=22&rft.issue=7&rft_id=info:doi/10.1016%2Fj.celrep.2018.01.023&rft.externalDocID=1464828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |