DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees

In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 13; pp. 4968 - 4973
Main Authors Foret, Sylvain, Kucharski, Robert, Pellegrini, Matteo, Feng, Suhua, Jacobsen, Steven E., Robinson, Gene E., Maleszka, Ryszard
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.03.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense nonprotein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.
AbstractList In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in APIS:
In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.
In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense nonprotein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.
In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis , but also seems to be regulated by a cis -acting, anti-sense non–protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis .
In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis. [PUBLICATION ABSTRACT]
Author Kucharski, Robert
Robinson, Gene E.
Foret, Sylvain
Maleszka, Ryszard
Jacobsen, Steven E.
Feng, Suhua
Pellegrini, Matteo
Author_xml – sequence: 1
  givenname: Sylvain
  surname: Foret
  fullname: Foret, Sylvain
– sequence: 2
  givenname: Robert
  surname: Kucharski
  fullname: Kucharski, Robert
– sequence: 3
  givenname: Matteo
  surname: Pellegrini
  fullname: Pellegrini, Matteo
– sequence: 4
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
– sequence: 5
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
– sequence: 6
  givenname: Gene E.
  surname: Robinson
  fullname: Robinson, Gene E.
– sequence: 7
  givenname: Ryszard
  surname: Maleszka
  fullname: Maleszka, Ryszard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22416128$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQhy1URLeFMycg4gKHpvX4kcQXpKo8pQoucLYcZ7LrVWKHOFux_z1Od9lCD-ViSzPfb94n5MgHj4Q8B3oOtOQXgzfxHBhlXDGg6hFZpBfyQih6RBaUsjKvBBPH5CTGNaVUyYo-IceMCSiAVQti33-9zHqcVtvOTC74rNl60zsbz2arqUPnbNZ2m1-YLEv0mMUhmZxfnmXGN5npJhx9kt5gNqzQh2k7YMycz1ap0m1WI8an5HFruojP9v8p-fHxw_erz_n1t09fri6vcytlMeVlA7RpqQDFjOEAspbWWGkoMgWiLVkjkdaQXA0tuKqh5YzaVqlSGGyKlp-Sd7u4w6busbHop9F0ehhdb8atDsbpfz3erfQy3GjOmaCsSAHe7AOM4ecG46R7Fy12nfEYNlErqdLQVAWJfPsgCZIrIUFx8X-UQlqgLG7R1_fQddik6XZzalFUVVnMRb78u8tDe392moCLHWDHEOOI7QEBquer0fPV6LurSQp5T2HddHsOaUyue0D3al_K7LjLojRwLVQx1_JiR6zjFMYDIkBWlaCS_wZ289pC
CitedBy_id crossref_primary_10_1371_journal_pone_0131480
crossref_primary_10_1073_pnas_2425004122
crossref_primary_10_1242_jeb_176917
crossref_primary_10_1016_j_cois_2014_04_005
crossref_primary_10_1146_annurev_genet_120116_024456
crossref_primary_10_1371_journal_pbio_3001895
crossref_primary_10_1016_j_cois_2019_06_013
crossref_primary_10_1016_j_isci_2022_104643
crossref_primary_10_1016_j_aspen_2017_01_014
crossref_primary_10_1080_1028415X_2017_1331524
crossref_primary_10_1111_imb_12723
crossref_primary_10_1111_mec_14495
crossref_primary_10_1016_j_ddmod_2019_08_010
crossref_primary_10_3389_fgene_2015_00008
crossref_primary_10_1016_j_cois_2025_101362
crossref_primary_10_1038_s41467_018_02971_0
crossref_primary_10_1093_gbe_evt103
crossref_primary_10_1098_rsos_170248
crossref_primary_10_1038_s41576_022_00514_4
crossref_primary_10_1590_1678_4685_gmb_2020_0173
crossref_primary_10_1002_2211_5463_12084
crossref_primary_10_1242_dev_200623
crossref_primary_10_3389_fncel_2015_00088
crossref_primary_10_1016_j_isci_2023_108193
crossref_primary_10_1093_aesa_saab027
crossref_primary_10_1080_15592294_2017_1348445
crossref_primary_10_3389_fphys_2018_00079
crossref_primary_10_1093_icb_ict003
crossref_primary_10_1016_j_cub_2015_12_040
crossref_primary_10_7717_peerj_215
crossref_primary_10_1016_j_ygcen_2013_12_001
crossref_primary_10_1242_jeb_191890
crossref_primary_10_1042_BJ20121585
crossref_primary_10_1016_j_cobeha_2015_11_007
crossref_primary_10_1038_s41598_018_20831_1
crossref_primary_10_1016_j_ibmb_2012_12_004
crossref_primary_10_1016_j_currproblcancer_2023_100957
crossref_primary_10_1111_mec_13828
crossref_primary_10_1093_eep_dvx004
crossref_primary_10_1146_annurev_biochem_060614_034242
crossref_primary_10_1038_s42003_017_0004_4
crossref_primary_10_1038_s41598_017_10648_9
crossref_primary_10_1007_s00040_016_0518_7
crossref_primary_10_1002_jez_b_22571
crossref_primary_10_1016_j_isci_2023_106308
crossref_primary_10_1177_25168657231213717
crossref_primary_10_1021_acs_jproteome_5b00589
crossref_primary_10_1038_s41598_021_89212_5
crossref_primary_10_1590_1678_4685_gmb_2016_0242
crossref_primary_10_3390_insects12080728
crossref_primary_10_1126_sciadv_aat2142
crossref_primary_10_1016_j_cois_2019_02_007
crossref_primary_10_1111_mec_16098
crossref_primary_10_1051_jbio_2020005
crossref_primary_10_1051_jbio_2020004
crossref_primary_10_1007_s13592_014_0299_9
crossref_primary_10_1073_pnas_1701819114
crossref_primary_10_1534_g3_113_008953
crossref_primary_10_1016_j_cois_2018_05_013
crossref_primary_10_1146_annurev_genom_090413_025437
crossref_primary_10_1038_nrc3606
crossref_primary_10_1093_icb_icu034
crossref_primary_10_1371_journal_pbio_1002005
crossref_primary_10_1242_dev_110163
crossref_primary_10_1159_000355506
crossref_primary_10_1038_s41598_017_17046_1
crossref_primary_10_1111_1755_0998_13566
crossref_primary_10_1038_s41597_020_0556_x
crossref_primary_10_1016_j_ydbio_2013_01_036
crossref_primary_10_1002_ece3_1720
crossref_primary_10_1016_j_bbrep_2016_02_011
crossref_primary_10_1186_s12864_019_5793_z
crossref_primary_10_1371_journal_pone_0073628
crossref_primary_10_1093_nar_gkac992
crossref_primary_10_1111_bij_12011
crossref_primary_10_3389_fgene_2023_1108104
crossref_primary_10_1098_rspb_2016_0558
crossref_primary_10_1111_imb_12888
crossref_primary_10_1371_journal_pone_0215096
crossref_primary_10_1038_s41467_019_09567_2
crossref_primary_10_7717_peerj_15023
crossref_primary_10_3389_fgene_2020_00770
crossref_primary_10_1093_gbe_evu238
crossref_primary_10_1007_s13592_013_0251_4
crossref_primary_10_1186_s12915_025_02176_0
crossref_primary_10_1016_j_exger_2016_02_007
crossref_primary_10_1111_eea_13241
crossref_primary_10_1016_j_mad_2014_01_005
crossref_primary_10_1038_s41467_018_05903_0
crossref_primary_10_1101_gr_196204_115
crossref_primary_10_1111_1755_0998_13542
crossref_primary_10_1186_s12864_015_1868_7
crossref_primary_10_1093_jisesa_iew072
crossref_primary_10_1093_nar_gks1311
crossref_primary_10_1007_s10126_018_09871_w
crossref_primary_10_1016_j_isci_2022_104301
crossref_primary_10_1016_j_tree_2016_06_008
crossref_primary_10_1186_1756_8935_6_38
crossref_primary_10_3390_epigenomes4020010
crossref_primary_10_7717_peerj_3109
crossref_primary_10_1186_1471_2164_15_86
crossref_primary_10_1038_ncomms7513
crossref_primary_10_1371_journal_pone_0204182
crossref_primary_10_3896_IBRA_1_52_4_11
crossref_primary_10_1146_annurev_ento_010814_020803
crossref_primary_10_1073_pnas_1515937112
crossref_primary_10_1186_s12859_016_1158_7
crossref_primary_10_3389_fgene_2014_00321
crossref_primary_10_1186_s12864_023_09411_4
crossref_primary_10_1016_j_cois_2016_05_016
crossref_primary_10_1111_aen_12218
crossref_primary_10_1111_are_14966
crossref_primary_10_7717_peerj_3118
crossref_primary_10_1101_gr_236497_118
crossref_primary_10_3390_genes9040201
crossref_primary_10_1016_j_cois_2015_12_003
crossref_primary_10_3103_S0096392515040100
crossref_primary_10_1002_arch_21651
crossref_primary_10_1371_journal_pbio_3000171
crossref_primary_10_3390_insects12070649
crossref_primary_10_1007_s00114_012_1004_3
crossref_primary_10_1186_s13072_018_0246_5
crossref_primary_10_1007_s13592_019_00647_2
crossref_primary_10_1080_21655979_2021_2014387
crossref_primary_10_1098_rspb_2019_0718
crossref_primary_10_1111_1365_2435_13497
crossref_primary_10_1016_j_exger_2012_07_010
crossref_primary_10_1146_annurev_ento_011118_111914
crossref_primary_10_1098_rspb_2013_2419
crossref_primary_10_1186_s13148_015_0068_2
crossref_primary_10_1098_rsob_140110
crossref_primary_10_1016_j_tig_2013_08_002
crossref_primary_10_1093_bfgp_elt050
crossref_primary_10_1093_bfgp_elt056
crossref_primary_10_1111_mec_15062
crossref_primary_10_1093_bfgp_elt054
crossref_primary_10_3389_fgene_2022_1044980
crossref_primary_10_1093_bib_bbx077
crossref_primary_10_1098_rsbl_2015_1038
crossref_primary_10_1186_1471_2164_16_1
crossref_primary_10_3389_fevo_2016_00057
crossref_primary_10_1111_imb_12214
crossref_primary_10_1146_annurev_genet_120116_024515
crossref_primary_10_1086_690840
crossref_primary_10_1093_icb_icw111
crossref_primary_10_1007_s13592_017_0527_1
crossref_primary_10_1242_jeb_110809
crossref_primary_10_1371_journal_pone_0066482
crossref_primary_10_1242_jeb_188649
crossref_primary_10_1111_mec_13436
crossref_primary_10_1093_gbe_evy066
crossref_primary_10_1016_j_jinsphys_2016_09_010
crossref_primary_10_1038_s41598_018_29377_8
crossref_primary_10_1016_j_yhbeh_2016_11_008
crossref_primary_10_1007_s10681_019_2498_y
crossref_primary_10_1016_j_ibmb_2017_11_005
crossref_primary_10_1007_s00040_016_0515_x
crossref_primary_10_1002_pmic_202000237
crossref_primary_10_3390_insects13020110
crossref_primary_10_1093_gbe_evx087
crossref_primary_10_1371_journal_ppat_1004713
crossref_primary_10_1038_nrg3787
crossref_primary_10_3389_fgene_2015_00193
crossref_primary_10_1186_s12864_021_07371_1
crossref_primary_10_1016_j_ibmb_2020_103476
crossref_primary_10_1242_jeb_153163
crossref_primary_10_1093_jee_toz148
crossref_primary_10_1093_molbev_msac126
crossref_primary_10_13102_sociobiology_v68i1_5935
crossref_primary_10_1007_s00265_016_2071_9
crossref_primary_10_1038_srep14070
crossref_primary_10_1038_srep18794
crossref_primary_10_1098_rstb_2018_0247
crossref_primary_10_1186_1471_2164_15_1109
crossref_primary_10_1186_1471_2164_15_608
crossref_primary_10_1098_rstb_2020_0115
crossref_primary_10_1016_j_cois_2023_101051
crossref_primary_10_3389_fpls_2016_01164
crossref_primary_10_1186_s12864_016_2506_8
crossref_primary_10_3390_ijms24076217
crossref_primary_10_1016_j_cois_2017_11_010
crossref_primary_10_1016_j_ibmb_2012_11_003
crossref_primary_10_1016_j_biomag_2014_03_006
crossref_primary_10_1093_gigascience_giaa143
crossref_primary_10_1186_s12864_024_10870_6
crossref_primary_10_1016_j_cub_2012_07_045
crossref_primary_10_1134_S1062360416030024
crossref_primary_10_1073_pnas_1310735110
crossref_primary_10_1111_1755_0998_13611
crossref_primary_10_1016_j_jgg_2021_04_008
crossref_primary_10_3389_fmars_2021_800745
crossref_primary_10_3390_ijms21197393
crossref_primary_10_1007_s00040_018_0607_x
crossref_primary_10_1016_j_ijbiomac_2021_06_205
crossref_primary_10_1016_j_cub_2012_07_042
crossref_primary_10_1038_s41598_022_25675_4
crossref_primary_10_1016_j_ibmb_2020_103374
crossref_primary_10_1186_s12864_022_08537_1
crossref_primary_10_1016_j_cois_2016_03_003
crossref_primary_10_1098_rspb_2014_0411
crossref_primary_10_1111_eva_12408
crossref_primary_10_1016_j_ibmb_2012_05_003
crossref_primary_10_3389_fgene_2020_602949
crossref_primary_10_1111_mec_13990
crossref_primary_10_1152_physiolgenomics_00030_2014
crossref_primary_10_1186_s12864_018_4594_0
crossref_primary_10_14411_eje_2018_064
crossref_primary_10_1073_pnas_1516636113
crossref_primary_10_1016_j_jip_2019_107210
crossref_primary_10_1111_imb_12010
crossref_primary_10_1016_j_ddmod_2014_06_001
crossref_primary_10_1534_g3_115_017814
crossref_primary_10_1016_j_mad_2016_02_005
crossref_primary_10_1016_j_gene_2017_04_022
crossref_primary_10_1038_srep16223
crossref_primary_10_3389_fgene_2020_00046
crossref_primary_10_1111_imr_12242
crossref_primary_10_1186_1471_2164_14_903
crossref_primary_10_1007_s13744_020_00777_8
crossref_primary_10_1016_j_jff_2018_03_008
crossref_primary_10_1111_brv_12394
crossref_primary_10_1371_journal_ppat_1008397
crossref_primary_10_1007_s12041_018_0937_5
crossref_primary_10_3390_nu7031787
crossref_primary_10_1002_arch_21600
crossref_primary_10_1111_raq_12219
crossref_primary_10_1111_mec_13986
crossref_primary_10_1080_15592294_2015_1107695
crossref_primary_10_1016_j_yhbeh_2019_104588
crossref_primary_10_1038_nrm_2017_27
crossref_primary_10_3390_ijms25063368
crossref_primary_10_1016_j_cois_2020_09_011
crossref_primary_10_3389_fcell_2020_576571
Cites_doi 10.1038/nature10442
10.1016/j.cell.2011.06.040
10.1038/nature06745
10.1093/nar/gkn176
10.1016/S0014-5793(99)01700-7
10.1111/j.1440-169X.2010.01185.x
10.4161/epi.3.4.6697
10.1146/annurev.biochem.75.103004.142422
10.1101/gr.5012006
10.1073/pnas.96.10.5575
10.1038/nbt1010-1049
10.1073/pnas.0800630105
10.1186/1471-213X-7-70
10.1093/nar/gkp896
10.1186/1471-2105-11-203
10.1186/1471-2164-10-472
10.1101/gad.2010510
10.1126/science.1164097
10.1371/journal.pone.0000509
10.1038/embor.2011.9
10.1016/S0070-2153(08)60364-6
10.1152/physrev.00027.2001
10.1002/1521-1878(200101)23:1<62::AID-BIES1008>3.0.CO;2-7
10.1111/j.1570-7458.1972.tb00239.x
10.1016/j.yhbeh.2010.05.016
10.1016/j.cell.2010.11.056
10.1126/science.1153069
10.1371/journal.pbio.1000506
10.1146/annurev.en.11.010166.000455
10.1017/S0029665108008744
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nature10143
10.1016/j.tig.2011.01.003
10.1038/nature09147
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 27, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 27, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1202392109
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts
MEDLINE - Academic

MEDLINE


AGRICOLA
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate DNA methylation dynamics in honey bee larvae
EISSN 1091-6490
EndPage 4973
ExternalDocumentID PMC3324026
2620931451
22416128
10_1073_pnas_1202392109
109_13_4968
41588405
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIH HHS
  grantid: DP1 OD006416
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
– fundername: NIH HHS
  grantid: 1DP1OD006416
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c556t-7d10df04192aa3115b5cac5a0e2914f72d5e0b1a31d0639b1f320cf9974aed6f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:13:40 EDT 2025
Fri Jul 11 03:56:46 EDT 2025
Fri Jul 11 15:43:04 EDT 2025
Fri Jul 11 07:34:52 EDT 2025
Mon Jun 30 08:28:06 EDT 2025
Thu Apr 03 07:09:24 EDT 2025
Tue Jul 01 03:39:14 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Nov 11 00:30:56 EST 2020
Thu May 29 08:40:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-7d10df04192aa3115b5cac5a0e2914f72d5e0b1a31d0639b1f320cf9974aed6f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: M.P., S.E.J., G.E.R., and R.M. designed research; S. Foret, R.K., and S. Feng performed research; S.E.J. and R.M. contributed new reagents/analytic tools; S. Foret, R.K., M.P., and R.M. analyzed data; and R.M. wrote the paper.
Contributed by Steven E. Jacobsen, February 13, 2012 (sent for review November 7, 2011)
PMID 22416128
PQID 954688766
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_22416128
crossref_citationtrail_10_1073_pnas_1202392109
proquest_miscellaneous_1539451934
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324026
proquest_journals_954688766
proquest_miscellaneous_959128981
crossref_primary_10_1073_pnas_1202392109
jstor_primary_41588405
proquest_miscellaneous_1011205634
pnas_primary_109_13_4968
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-27
PublicationDateYYYYMMDD 2012-03-27
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Hartfelder K (e_1_3_4_2_2) 1998; 40
Evans JD (e_1_3_4_3_2) 2001; 23
Wirtz P (e_1_3_4_23_2) 1972; 15
Gabor Miklos GL (e_1_3_4_30_2) 2011; 59
Wilson EO (e_1_3_4_1_2) 1971
Glickman MH (e_1_3_4_17_2) 2002; 82
Patel A (e_1_3_4_16_2) 2007; 2
Mathers JC (e_1_3_4_26_2) 2008; 67
Metallo CM (e_1_3_4_29_2) 2010; 24
Lyko F (e_1_3_4_11_2) 2011; 27
Chen PY (e_1_3_4_32_2) 2010; 11
Spannhoff A (e_1_3_4_13_2) 2011; 12
Shukla S (e_1_3_4_24_2) 2011; 479
Combes AN (e_1_3_4_28_2) 2010; 52
Lyko F (e_1_3_4_9_2) 2010; 8
Luco RF (e_1_3_4_21_2) 2011; 144
Weaver N (e_1_3_4_6_2) 1966; 11
Götz S (e_1_3_4_34_2) 2008; 36
Cheng LY (e_1_3_4_25_2) 2011; 146
Kucharski R (e_1_3_4_8_2) 2008; 319
Barchuk AR (e_1_3_4_4_2) 2007; 7
Fukuda H (e_1_3_4_15_2) 1999; 464
Drapeau MD (e_1_3_4_7_2) 2006; 16
Wellen KE (e_1_3_4_12_2) 2009; 324
Ament SA (e_1_3_4_14_2) 2008; 105
Evans JD (e_1_3_4_22_2) 1999; 96
Kanehisa M (e_1_3_4_35_2) 2010; 38
Benjamini Y (e_1_3_4_33_2) 1995; 57
Foret S (e_1_3_4_10_2) 2009; 10
Chodavarapu RK (e_1_3_4_20_2) 2010; 466
Shilatifard A (e_1_3_4_19_2) 2006; 75
Maleszka R (e_1_3_4_5_2) 2008; 3
Mishra SK (e_1_3_4_18_2) 2011; 474
Cokus SJ (e_1_3_4_31_2) 2008; 452
Feinberg AP (e_1_3_4_27_2) 2010; 28
18445632 - Nucleic Acids Res. 2008 Jun;36(10):3420-35
9673848 - Curr Top Dev Biol. 1998;40:45-77
20608951 - Dev Growth Differ. 2010 Aug;52(6):483-91
19828049 - BMC Genomics. 2009;10:472
21964334 - Nature. 2011 Nov 3;479(7371):74-9
20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52
21072239 - PLoS Biol. 2010;8(11):e1000506
10318926 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5575-80
17551589 - PLoS One. 2007;2(6):e509
18337502 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4226-31
18278030 - Nature. 2008 Mar 13;452(7184):215-9
21614000 - Nature. 2011 Jun 9;474(7350):173-8
21288591 - Trends Genet. 2011 Apr;27(4):127-31
18719401 - Epigenetics. 2008 Jul-Aug;3(4):188-92
18847515 - Proc Nutr Soc. 2008 Nov;67(4):390-4
20594964 - Horm Behav. 2011 Mar;59(3):399-406
20512117 - Nature. 2010 Jul 15;466(7304):388-92
21159812 - Genes Dev. 2010 Dec 15;24(24):2717-22
11135310 - Bioessays. 2001 Jan;23(1):62-8
5321586 - Annu Rev Entomol. 1966;11:79-102
21331099 - EMBO Rep. 2011 Mar;12(3):238-43
21816278 - Cell. 2011 Aug 5;146(3):435-47
21215366 - Cell. 2011 Jan 7;144(1):16-26
19461003 - Science. 2009 May 22;324(5930):1076-80
10618488 - FEBS Lett. 1999 Dec 31;464(3):113-7
18339900 - Science. 2008 Mar 28;319(5871):1827-30
17577409 - BMC Dev Biol. 2007;7:70
11917093 - Physiol Rev. 2002 Apr;82(2):373-428
16756492 - Annu Rev Biochem. 2006;75:243-69
20416082 - BMC Bioinformatics. 2010;11:203
19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60
17065613 - Genome Res. 2006 Nov;16(11):1385-94
References_xml – volume: 479
  start-page: 74
  year: 2011
  ident: e_1_3_4_24_2
  article-title: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
  publication-title: Nature
  doi: 10.1038/nature10442
– volume: 146
  start-page: 435
  year: 2011
  ident: e_1_3_4_25_2
  article-title: Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.040
– volume: 452
  start-page: 215
  year: 2008
  ident: e_1_3_4_31_2
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 36
  start-page: 3420
  year: 2008
  ident: e_1_3_4_34_2
  article-title: High-throughput functional annotation and data mining with the Blast2GO suite
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn176
– volume: 464
  start-page: 113
  year: 1999
  ident: e_1_3_4_15_2
  article-title: Transcriptional regulation of fatty acid synthase gene and ATP citrate-lyase gene by Sp1 and Sp3 in rat hepatocytes(1)
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(99)01700-7
– volume: 52
  start-page: 483
  year: 2010
  ident: e_1_3_4_28_2
  article-title: Epigenetic reprogramming: Enforcer or enabler of developmental fate?
  publication-title: Dev Growth Differ
  doi: 10.1111/j.1440-169X.2010.01185.x
– volume: 3
  start-page: 188
  year: 2008
  ident: e_1_3_4_5_2
  article-title: Epigenetic integration of environmental and genomic signals in honey bees: The critical interplay of nutritional, brain and reproductive networks
  publication-title: Epigenetics
  doi: 10.4161/epi.3.4.6697
– volume: 75
  start-page: 243
  year: 2006
  ident: e_1_3_4_19_2
  article-title: Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.75.103004.142422
– volume: 16
  start-page: 1385
  year: 2006
  ident: e_1_3_4_7_2
  article-title: Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees
  publication-title: Genome Res
  doi: 10.1101/gr.5012006
– volume: 96
  start-page: 5575
  year: 1999
  ident: e_1_3_4_22_2
  article-title: Differential gene expression between developing queens and workers in the honey bee, Apis mellifera
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.10.5575
– volume: 28
  start-page: 1049
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Epigenomics reveals a functional genome anatomy and a new approach to common disease
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1010-1049
– volume: 105
  start-page: 4226
  year: 2008
  ident: e_1_3_4_14_2
  article-title: Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0800630105
– volume: 7
  start-page: 70
  year: 2007
  ident: e_1_3_4_4_2
  article-title: Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera
  publication-title: BMC Dev Biol
  doi: 10.1186/1471-213X-7-70
– volume: 38
  start-page: D355
  year: 2010
  ident: e_1_3_4_35_2
  article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp896
– volume: 11
  start-page: 203
  year: 2010
  ident: e_1_3_4_32_2
  article-title: BS Seeker: Precise mapping for bisulfite sequencing
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-203
– volume: 10
  start-page: 472
  year: 2009
  ident: e_1_3_4_10_2
  article-title: Epigenetic regulation of the honey bee transcriptome: Unravelling the nature of methylated genes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-472
– volume: 24
  start-page: 2717
  year: 2010
  ident: e_1_3_4_29_2
  article-title: Metabolism strikes back: Metabolic flux regulates cell signaling
  publication-title: Genes Dev
  doi: 10.1101/gad.2010510
– volume: 324
  start-page: 1076
  year: 2009
  ident: e_1_3_4_12_2
  article-title: ATP-citrate lyase links cellular metabolism to histone acetylation
  publication-title: Science
  doi: 10.1126/science.1164097
– volume: 2
  start-page: e509
  year: 2007
  ident: e_1_3_4_16_2
  article-title: The making of a queen: TOR pathway is a key player in diphenic caste development
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000509
– volume: 12
  start-page: 238
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees
  publication-title: EMBO Rep
  doi: 10.1038/embor.2011.9
– volume: 40
  start-page: 45
  year: 1998
  ident: e_1_3_4_2_2
  article-title: Social insect polymorphism: Hormonal regulation of plasticity in development and reproduction in the honeybee
  publication-title: Curr Top Dev Biol
  doi: 10.1016/S0070-2153(08)60364-6
– volume: 82
  start-page: 373
  year: 2002
  ident: e_1_3_4_17_2
  article-title: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00027.2001
– volume: 23
  start-page: 62
  year: 2001
  ident: e_1_3_4_3_2
  article-title: Gene expression and the evolution of insect polyphenisms
  publication-title: Bioessays
  doi: 10.1002/1521-1878(200101)23:1<62::AID-BIES1008>3.0.CO;2-7
– volume: 15
  start-page: 517
  year: 1972
  ident: e_1_3_4_23_2
  article-title: Induction of caste differentiation in the honey bee Apis mellifera L. by juvenile hormone
  publication-title: Entomol Exp Appl
  doi: 10.1111/j.1570-7458.1972.tb00239.x
– volume: 59
  start-page: 399
  year: 2011
  ident: e_1_3_4_30_2
  article-title: Epigenomic communication systems in humans and honey bees: From molecules to behavior
  publication-title: Horm Behav
  doi: 10.1016/j.yhbeh.2010.05.016
– volume: 144
  start-page: 16
  year: 2011
  ident: e_1_3_4_21_2
  article-title: Epigenetics in alternative pre-mRNA splicing
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.056
– volume: 319
  start-page: 1827
  year: 2008
  ident: e_1_3_4_8_2
  article-title: Nutritional control of reproductive status in honey bees via DNA methylation
  publication-title: Science
  doi: 10.1126/science.1153069
– volume: 8
  start-page: e1000506
  year: 2010
  ident: e_1_3_4_9_2
  article-title: The honey bee epigenomes: Differential methylation of brain DNA in queens and workers
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000506
– volume-title: The Insect Societies
  year: 1971
  ident: e_1_3_4_1_2
– volume: 11
  start-page: 79
  year: 1966
  ident: e_1_3_4_6_2
  article-title: Physiology of caste determination
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.11.010166.000455
– volume: 67
  start-page: 390
  year: 2008
  ident: e_1_3_4_26_2
  article-title: Session 2: Personalised nutrition. Epigenomics: A basis for understanding individual differences?
  publication-title: Proc Nutr Soc
  doi: 10.1017/S0029665108008744
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_4_33_2
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 474
  start-page: 173
  year: 2011
  ident: e_1_3_4_18_2
  article-title: Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing
  publication-title: Nature
  doi: 10.1038/nature10143
– volume: 27
  start-page: 127
  year: 2011
  ident: e_1_3_4_11_2
  article-title: Insects as innovative models for functional studies of DNA methylation
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2011.01.003
– volume: 466
  start-page: 388
  year: 2010
  ident: e_1_3_4_20_2
  article-title: Relationship between nucleosome positioning and DNA methylation
  publication-title: Nature
  doi: 10.1038/nature09147
– reference: 19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60
– reference: 16756492 - Annu Rev Biochem. 2006;75:243-69
– reference: 20608951 - Dev Growth Differ. 2010 Aug;52(6):483-91
– reference: 21072239 - PLoS Biol. 2010;8(11):e1000506
– reference: 20512117 - Nature. 2010 Jul 15;466(7304):388-92
– reference: 20416082 - BMC Bioinformatics. 2010;11:203
– reference: 18847515 - Proc Nutr Soc. 2008 Nov;67(4):390-4
– reference: 18339900 - Science. 2008 Mar 28;319(5871):1827-30
– reference: 19828049 - BMC Genomics. 2009;10:472
– reference: 18719401 - Epigenetics. 2008 Jul-Aug;3(4):188-92
– reference: 18445632 - Nucleic Acids Res. 2008 Jun;36(10):3420-35
– reference: 20594964 - Horm Behav. 2011 Mar;59(3):399-406
– reference: 21288591 - Trends Genet. 2011 Apr;27(4):127-31
– reference: 17551589 - PLoS One. 2007;2(6):e509
– reference: 21614000 - Nature. 2011 Jun 9;474(7350):173-8
– reference: 19461003 - Science. 2009 May 22;324(5930):1076-80
– reference: 21215366 - Cell. 2011 Jan 7;144(1):16-26
– reference: 20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52
– reference: 5321586 - Annu Rev Entomol. 1966;11:79-102
– reference: 21331099 - EMBO Rep. 2011 Mar;12(3):238-43
– reference: 10318926 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5575-80
– reference: 18278030 - Nature. 2008 Mar 13;452(7184):215-9
– reference: 9673848 - Curr Top Dev Biol. 1998;40:45-77
– reference: 10618488 - FEBS Lett. 1999 Dec 31;464(3):113-7
– reference: 11135310 - Bioessays. 2001 Jan;23(1):62-8
– reference: 11917093 - Physiol Rev. 2002 Apr;82(2):373-428
– reference: 21816278 - Cell. 2011 Aug 5;146(3):435-47
– reference: 17577409 - BMC Dev Biol. 2007;7:70
– reference: 21964334 - Nature. 2011 Nov 3;479(7371):74-9
– reference: 17065613 - Genome Res. 2006 Nov;16(11):1385-94
– reference: 21159812 - Genes Dev. 2010 Dec 15;24(24):2717-22
– reference: 18337502 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4226-31
SSID ssj0009580
Score 2.520536
Snippet In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves...
In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves...
In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4968
SubjectTerms adults
Aging
Aging - genetics
Alternative splicing
Animals
Antisense
Apis
Apis mellifera
Bees
Bees - genetics
Biological Sciences
Brain
Caste determination
Citric Acid Cycle
Citric Acid Cycle - genetics
Data processing
Deoxyribonucleic acid
Development
Diet
Dietary intake
DNA
DNA methylation
DNA Methylation - genetics
DNA methyltransferase
DNA-directed RNA polymerase
Exons
Feeding
Gene Expression Profiling
genes
Genes, Insect
Genes, Insect - genetics
Genetics
Genotype & phenotype
Head
Hierarchy, Social
Honey
Honey bees
Hormones
Insect castes
Insect genetics
Insect larvae
Insect Proteins
Insect Proteins - genetics
Insect Proteins - metabolism
Insulin
Juvenile hormones
Larva
Larva - genetics
Larvae
Larval development
Lymphoma
metabolic flux
Metabolic Networks and Pathways
Metabolic Networks and Pathways - genetics
Metabolism
Methylation
methyltransferases
Models, Genetic
Molecular Sequence Annotation
Nodes
nutrition
Organ Specificity
Organ Specificity - genetics
Phenotype
Proteasome Endopeptidase Complex
Proteasome Endopeptidase Complex - metabolism
Protein-tyrosine kinase
Queen honey bees
Queens
RNA Splicing
RNA Splicing - genetics
RNA-protein interactions
Royal jelly
Signal Transduction
Signal Transduction - genetics
Spliceosomes
Spliceosomes - metabolism
Transcription
Ubiquitin
Ubiquitin - metabolism
Workers
Title DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees
URI https://www.jstor.org/stable/41588405
http://www.pnas.org/content/109/13/4968.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22416128
https://www.proquest.com/docview/954688766
https://www.proquest.com/docview/1011205634
https://www.proquest.com/docview/1539451934
https://www.proquest.com/docview/959128981
https://pubmed.ncbi.nlm.nih.gov/PMC3324026
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAsDJCReBhqU5I4TuLHig9NSFST2KS9RU7iqJWqdKLJxPhH_EvutZ2PjhYBL1GV3CaW78n1tXN8LiFvwqJkikWJmwV-6Iaxx11ASenGjCcZTCBCqXULvsyjs8vw8xW_Go1-DlhLTZ1N8x8795X8j1fhHPgVd8n-g2e7m8IJ-A3-hSN4GI5_5eMP85kuAX1rCG3jwpSX166B8-BflLAuV813EwzgRmq8wS_WtpKJVmpd2TXBGzVGwtcaV2U1S3axriBiZMrSDG0Ke94NeZuWYDBvVxRn_f4UGzQ2Y3d8Pu-rHWMpUB33v96ubuSy5wA0uP_LFtE2dO8-auPaBn5pMpuL6lqt-wzWLnc3i0YOVzCQCsJcIwgwFADf2cZh6A5gOA3NhusudHtiiFE2iMShMOV67KgeClMx5bcRA0Icljmu5GbqYyl5EbQ33ZbhhkQngckwv0fuBzAj0RzSs6G-c2J2O9lWtipSMXt3595bCZDhwKKwLhjtmuTc5eoOkp-LR-ShnbXQmYHgIRmp6jE5bLuPnlrx8rdPSA6YpANM0haTE9ohkhpETijikbZ4nFBAIx2gkfZopMuKajRSRONTcvnp48X7M9cW8nBzzqPajQvfK0oPCQdSorxTxnOZc-mpQPhhGQcFV17mw6UCM-bML1ng5aWAua5URVSyI3JQwUOOCS0TKbNMZJESkItKkcg8Y16hPBUqvywSh0zb3k1zq3KPxVZWqWZbxCzFnk57dzjktPvDtRF42W96pN3V2bWYcMixNu3_L1KfpQhBh5y0Pk1t5NikgocRDO5R5JDX3VUI6_itTlZq3WyQeQkP5hEL_2DDmUB1KLShe2wEF5CBisR3yDMDpK6VmLzD_AaaGG9BrDNA5fntK9VyoRXoGcp4BtHzfR1yQh70L_oLclB_a9RLSN7r7JV-bX4BQE3xzg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+methylation+dynamics%2C+metabolic+fluxes%2C+gene+splicing%2C+and+alternative+phenotypes+in+honey+bees&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Foret%2C+Sylvain&rft.au=Kucharski%2C+Robert&rft.au=Pellegrini%2C+Matteo&rft.au=Feng%2C+Suhua&rft.date=2012-03-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=109&rft.issue=13&rft.spage=4968&rft.epage=4973&rft_id=info:doi/10.1073%2Fpnas.1202392109&rft.externalDocID=41588405
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F13.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F13.cover.gif