DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees
In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in b...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 13; pp. 4968 - 4973 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.03.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense nonprotein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis. |
---|---|
AbstractList | In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in APIS: In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis.In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis. In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense nonprotein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis. In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis , but also seems to be regulated by a cis -acting, anti-sense non–protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis . In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves epigenomic modifications by DNA methyltransferases. To understand the role of DNA methylation in this process we sequenced the larval methylomes in both queens and workers. We show that the number of differentially methylated genes (DMGs) in larval head is significantly increased relative to adult brain (2,399 vs. 560) with more than 80% of DMGs up-methylated in worker larvae. Several highly conserved metabolic and signaling pathways are enriched in methylated genes, underscoring the connection between dietary intake and metabolic flux. This includes genes related to juvenile hormone and insulin, two hormones shown previously to regulate caste determination. We also tie methylation data to expressional profiling and describe a distinct role for one of the DMGs encoding anaplastic lymphoma kinase (ALK), an important regulator of metabolism. We show that alk is not only differentially methylated and alternatively spliced in Apis, but also seems to be regulated by a cis-acting, anti-sense non-protein-coding transcript. The unusually complex regulation of ALK in Apis suggests that this protein could represent a previously unknown node in a process that activates downstream signaling according to a nutritional context. The correlation between methylation and alternative splicing of alk is consistent with the recently described mechanism involving RNA polymerase II pausing. Our study offers insights into diet-controlled development in Apis. [PUBLICATION ABSTRACT] |
Author | Kucharski, Robert Robinson, Gene E. Foret, Sylvain Maleszka, Ryszard Jacobsen, Steven E. Feng, Suhua Pellegrini, Matteo |
Author_xml | – sequence: 1 givenname: Sylvain surname: Foret fullname: Foret, Sylvain – sequence: 2 givenname: Robert surname: Kucharski fullname: Kucharski, Robert – sequence: 3 givenname: Matteo surname: Pellegrini fullname: Pellegrini, Matteo – sequence: 4 givenname: Suhua surname: Feng fullname: Feng, Suhua – sequence: 5 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. – sequence: 6 givenname: Gene E. surname: Robinson fullname: Robinson, Gene E. – sequence: 7 givenname: Ryszard surname: Maleszka fullname: Maleszka, Ryszard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22416128$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQhy1URLeFMycg4gKHpvX4kcQXpKo8pQoucLYcZ7LrVWKHOFux_z1Od9lCD-ViSzPfb94n5MgHj4Q8B3oOtOQXgzfxHBhlXDGg6hFZpBfyQih6RBaUsjKvBBPH5CTGNaVUyYo-IceMCSiAVQti33-9zHqcVtvOTC74rNl60zsbz2arqUPnbNZ2m1-YLEv0mMUhmZxfnmXGN5npJhx9kt5gNqzQh2k7YMycz1ap0m1WI8an5HFruojP9v8p-fHxw_erz_n1t09fri6vcytlMeVlA7RpqQDFjOEAspbWWGkoMgWiLVkjkdaQXA0tuKqh5YzaVqlSGGyKlp-Sd7u4w6busbHop9F0ehhdb8atDsbpfz3erfQy3GjOmaCsSAHe7AOM4ecG46R7Fy12nfEYNlErqdLQVAWJfPsgCZIrIUFx8X-UQlqgLG7R1_fQddik6XZzalFUVVnMRb78u8tDe392moCLHWDHEOOI7QEBquer0fPV6LurSQp5T2HddHsOaUyue0D3al_K7LjLojRwLVQx1_JiR6zjFMYDIkBWlaCS_wZ289pC |
CitedBy_id | crossref_primary_10_1371_journal_pone_0131480 crossref_primary_10_1073_pnas_2425004122 crossref_primary_10_1242_jeb_176917 crossref_primary_10_1016_j_cois_2014_04_005 crossref_primary_10_1146_annurev_genet_120116_024456 crossref_primary_10_1371_journal_pbio_3001895 crossref_primary_10_1016_j_cois_2019_06_013 crossref_primary_10_1016_j_isci_2022_104643 crossref_primary_10_1016_j_aspen_2017_01_014 crossref_primary_10_1080_1028415X_2017_1331524 crossref_primary_10_1111_imb_12723 crossref_primary_10_1111_mec_14495 crossref_primary_10_1016_j_ddmod_2019_08_010 crossref_primary_10_3389_fgene_2015_00008 crossref_primary_10_1016_j_cois_2025_101362 crossref_primary_10_1038_s41467_018_02971_0 crossref_primary_10_1093_gbe_evt103 crossref_primary_10_1098_rsos_170248 crossref_primary_10_1038_s41576_022_00514_4 crossref_primary_10_1590_1678_4685_gmb_2020_0173 crossref_primary_10_1002_2211_5463_12084 crossref_primary_10_1242_dev_200623 crossref_primary_10_3389_fncel_2015_00088 crossref_primary_10_1016_j_isci_2023_108193 crossref_primary_10_1093_aesa_saab027 crossref_primary_10_1080_15592294_2017_1348445 crossref_primary_10_3389_fphys_2018_00079 crossref_primary_10_1093_icb_ict003 crossref_primary_10_1016_j_cub_2015_12_040 crossref_primary_10_7717_peerj_215 crossref_primary_10_1016_j_ygcen_2013_12_001 crossref_primary_10_1242_jeb_191890 crossref_primary_10_1042_BJ20121585 crossref_primary_10_1016_j_cobeha_2015_11_007 crossref_primary_10_1038_s41598_018_20831_1 crossref_primary_10_1016_j_ibmb_2012_12_004 crossref_primary_10_1016_j_currproblcancer_2023_100957 crossref_primary_10_1111_mec_13828 crossref_primary_10_1093_eep_dvx004 crossref_primary_10_1146_annurev_biochem_060614_034242 crossref_primary_10_1038_s42003_017_0004_4 crossref_primary_10_1038_s41598_017_10648_9 crossref_primary_10_1007_s00040_016_0518_7 crossref_primary_10_1002_jez_b_22571 crossref_primary_10_1016_j_isci_2023_106308 crossref_primary_10_1177_25168657231213717 crossref_primary_10_1021_acs_jproteome_5b00589 crossref_primary_10_1038_s41598_021_89212_5 crossref_primary_10_1590_1678_4685_gmb_2016_0242 crossref_primary_10_3390_insects12080728 crossref_primary_10_1126_sciadv_aat2142 crossref_primary_10_1016_j_cois_2019_02_007 crossref_primary_10_1111_mec_16098 crossref_primary_10_1051_jbio_2020005 crossref_primary_10_1051_jbio_2020004 crossref_primary_10_1007_s13592_014_0299_9 crossref_primary_10_1073_pnas_1701819114 crossref_primary_10_1534_g3_113_008953 crossref_primary_10_1016_j_cois_2018_05_013 crossref_primary_10_1146_annurev_genom_090413_025437 crossref_primary_10_1038_nrc3606 crossref_primary_10_1093_icb_icu034 crossref_primary_10_1371_journal_pbio_1002005 crossref_primary_10_1242_dev_110163 crossref_primary_10_1159_000355506 crossref_primary_10_1038_s41598_017_17046_1 crossref_primary_10_1111_1755_0998_13566 crossref_primary_10_1038_s41597_020_0556_x crossref_primary_10_1016_j_ydbio_2013_01_036 crossref_primary_10_1002_ece3_1720 crossref_primary_10_1016_j_bbrep_2016_02_011 crossref_primary_10_1186_s12864_019_5793_z crossref_primary_10_1371_journal_pone_0073628 crossref_primary_10_1093_nar_gkac992 crossref_primary_10_1111_bij_12011 crossref_primary_10_3389_fgene_2023_1108104 crossref_primary_10_1098_rspb_2016_0558 crossref_primary_10_1111_imb_12888 crossref_primary_10_1371_journal_pone_0215096 crossref_primary_10_1038_s41467_019_09567_2 crossref_primary_10_7717_peerj_15023 crossref_primary_10_3389_fgene_2020_00770 crossref_primary_10_1093_gbe_evu238 crossref_primary_10_1007_s13592_013_0251_4 crossref_primary_10_1186_s12915_025_02176_0 crossref_primary_10_1016_j_exger_2016_02_007 crossref_primary_10_1111_eea_13241 crossref_primary_10_1016_j_mad_2014_01_005 crossref_primary_10_1038_s41467_018_05903_0 crossref_primary_10_1101_gr_196204_115 crossref_primary_10_1111_1755_0998_13542 crossref_primary_10_1186_s12864_015_1868_7 crossref_primary_10_1093_jisesa_iew072 crossref_primary_10_1093_nar_gks1311 crossref_primary_10_1007_s10126_018_09871_w crossref_primary_10_1016_j_isci_2022_104301 crossref_primary_10_1016_j_tree_2016_06_008 crossref_primary_10_1186_1756_8935_6_38 crossref_primary_10_3390_epigenomes4020010 crossref_primary_10_7717_peerj_3109 crossref_primary_10_1186_1471_2164_15_86 crossref_primary_10_1038_ncomms7513 crossref_primary_10_1371_journal_pone_0204182 crossref_primary_10_3896_IBRA_1_52_4_11 crossref_primary_10_1146_annurev_ento_010814_020803 crossref_primary_10_1073_pnas_1515937112 crossref_primary_10_1186_s12859_016_1158_7 crossref_primary_10_3389_fgene_2014_00321 crossref_primary_10_1186_s12864_023_09411_4 crossref_primary_10_1016_j_cois_2016_05_016 crossref_primary_10_1111_aen_12218 crossref_primary_10_1111_are_14966 crossref_primary_10_7717_peerj_3118 crossref_primary_10_1101_gr_236497_118 crossref_primary_10_3390_genes9040201 crossref_primary_10_1016_j_cois_2015_12_003 crossref_primary_10_3103_S0096392515040100 crossref_primary_10_1002_arch_21651 crossref_primary_10_1371_journal_pbio_3000171 crossref_primary_10_3390_insects12070649 crossref_primary_10_1007_s00114_012_1004_3 crossref_primary_10_1186_s13072_018_0246_5 crossref_primary_10_1007_s13592_019_00647_2 crossref_primary_10_1080_21655979_2021_2014387 crossref_primary_10_1098_rspb_2019_0718 crossref_primary_10_1111_1365_2435_13497 crossref_primary_10_1016_j_exger_2012_07_010 crossref_primary_10_1146_annurev_ento_011118_111914 crossref_primary_10_1098_rspb_2013_2419 crossref_primary_10_1186_s13148_015_0068_2 crossref_primary_10_1098_rsob_140110 crossref_primary_10_1016_j_tig_2013_08_002 crossref_primary_10_1093_bfgp_elt050 crossref_primary_10_1093_bfgp_elt056 crossref_primary_10_1111_mec_15062 crossref_primary_10_1093_bfgp_elt054 crossref_primary_10_3389_fgene_2022_1044980 crossref_primary_10_1093_bib_bbx077 crossref_primary_10_1098_rsbl_2015_1038 crossref_primary_10_1186_1471_2164_16_1 crossref_primary_10_3389_fevo_2016_00057 crossref_primary_10_1111_imb_12214 crossref_primary_10_1146_annurev_genet_120116_024515 crossref_primary_10_1086_690840 crossref_primary_10_1093_icb_icw111 crossref_primary_10_1007_s13592_017_0527_1 crossref_primary_10_1242_jeb_110809 crossref_primary_10_1371_journal_pone_0066482 crossref_primary_10_1242_jeb_188649 crossref_primary_10_1111_mec_13436 crossref_primary_10_1093_gbe_evy066 crossref_primary_10_1016_j_jinsphys_2016_09_010 crossref_primary_10_1038_s41598_018_29377_8 crossref_primary_10_1016_j_yhbeh_2016_11_008 crossref_primary_10_1007_s10681_019_2498_y crossref_primary_10_1016_j_ibmb_2017_11_005 crossref_primary_10_1007_s00040_016_0515_x crossref_primary_10_1002_pmic_202000237 crossref_primary_10_3390_insects13020110 crossref_primary_10_1093_gbe_evx087 crossref_primary_10_1371_journal_ppat_1004713 crossref_primary_10_1038_nrg3787 crossref_primary_10_3389_fgene_2015_00193 crossref_primary_10_1186_s12864_021_07371_1 crossref_primary_10_1016_j_ibmb_2020_103476 crossref_primary_10_1242_jeb_153163 crossref_primary_10_1093_jee_toz148 crossref_primary_10_1093_molbev_msac126 crossref_primary_10_13102_sociobiology_v68i1_5935 crossref_primary_10_1007_s00265_016_2071_9 crossref_primary_10_1038_srep14070 crossref_primary_10_1038_srep18794 crossref_primary_10_1098_rstb_2018_0247 crossref_primary_10_1186_1471_2164_15_1109 crossref_primary_10_1186_1471_2164_15_608 crossref_primary_10_1098_rstb_2020_0115 crossref_primary_10_1016_j_cois_2023_101051 crossref_primary_10_3389_fpls_2016_01164 crossref_primary_10_1186_s12864_016_2506_8 crossref_primary_10_3390_ijms24076217 crossref_primary_10_1016_j_cois_2017_11_010 crossref_primary_10_1016_j_ibmb_2012_11_003 crossref_primary_10_1016_j_biomag_2014_03_006 crossref_primary_10_1093_gigascience_giaa143 crossref_primary_10_1186_s12864_024_10870_6 crossref_primary_10_1016_j_cub_2012_07_045 crossref_primary_10_1134_S1062360416030024 crossref_primary_10_1073_pnas_1310735110 crossref_primary_10_1111_1755_0998_13611 crossref_primary_10_1016_j_jgg_2021_04_008 crossref_primary_10_3389_fmars_2021_800745 crossref_primary_10_3390_ijms21197393 crossref_primary_10_1007_s00040_018_0607_x crossref_primary_10_1016_j_ijbiomac_2021_06_205 crossref_primary_10_1016_j_cub_2012_07_042 crossref_primary_10_1038_s41598_022_25675_4 crossref_primary_10_1016_j_ibmb_2020_103374 crossref_primary_10_1186_s12864_022_08537_1 crossref_primary_10_1016_j_cois_2016_03_003 crossref_primary_10_1098_rspb_2014_0411 crossref_primary_10_1111_eva_12408 crossref_primary_10_1016_j_ibmb_2012_05_003 crossref_primary_10_3389_fgene_2020_602949 crossref_primary_10_1111_mec_13990 crossref_primary_10_1152_physiolgenomics_00030_2014 crossref_primary_10_1186_s12864_018_4594_0 crossref_primary_10_14411_eje_2018_064 crossref_primary_10_1073_pnas_1516636113 crossref_primary_10_1016_j_jip_2019_107210 crossref_primary_10_1111_imb_12010 crossref_primary_10_1016_j_ddmod_2014_06_001 crossref_primary_10_1534_g3_115_017814 crossref_primary_10_1016_j_mad_2016_02_005 crossref_primary_10_1016_j_gene_2017_04_022 crossref_primary_10_1038_srep16223 crossref_primary_10_3389_fgene_2020_00046 crossref_primary_10_1111_imr_12242 crossref_primary_10_1186_1471_2164_14_903 crossref_primary_10_1007_s13744_020_00777_8 crossref_primary_10_1016_j_jff_2018_03_008 crossref_primary_10_1111_brv_12394 crossref_primary_10_1371_journal_ppat_1008397 crossref_primary_10_1007_s12041_018_0937_5 crossref_primary_10_3390_nu7031787 crossref_primary_10_1002_arch_21600 crossref_primary_10_1111_raq_12219 crossref_primary_10_1111_mec_13986 crossref_primary_10_1080_15592294_2015_1107695 crossref_primary_10_1016_j_yhbeh_2019_104588 crossref_primary_10_1038_nrm_2017_27 crossref_primary_10_3390_ijms25063368 crossref_primary_10_1016_j_cois_2020_09_011 crossref_primary_10_3389_fcell_2020_576571 |
Cites_doi | 10.1038/nature10442 10.1016/j.cell.2011.06.040 10.1038/nature06745 10.1093/nar/gkn176 10.1016/S0014-5793(99)01700-7 10.1111/j.1440-169X.2010.01185.x 10.4161/epi.3.4.6697 10.1146/annurev.biochem.75.103004.142422 10.1101/gr.5012006 10.1073/pnas.96.10.5575 10.1038/nbt1010-1049 10.1073/pnas.0800630105 10.1186/1471-213X-7-70 10.1093/nar/gkp896 10.1186/1471-2105-11-203 10.1186/1471-2164-10-472 10.1101/gad.2010510 10.1126/science.1164097 10.1371/journal.pone.0000509 10.1038/embor.2011.9 10.1016/S0070-2153(08)60364-6 10.1152/physrev.00027.2001 10.1002/1521-1878(200101)23:1<62::AID-BIES1008>3.0.CO;2-7 10.1111/j.1570-7458.1972.tb00239.x 10.1016/j.yhbeh.2010.05.016 10.1016/j.cell.2010.11.056 10.1126/science.1153069 10.1371/journal.pbio.1000506 10.1146/annurev.en.11.010166.000455 10.1017/S0029665108008744 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nature10143 10.1016/j.tig.2011.01.003 10.1038/nature09147 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 27, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 27, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1202392109 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic MEDLINE AGRICOLA CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | DNA methylation dynamics in honey bee larvae |
EISSN | 1091-6490 |
EndPage | 4973 |
ExternalDocumentID | PMC3324026 2620931451 22416128 10_1073_pnas_1202392109 109_13_4968 41588405 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIH HHS grantid: DP1 OD006416 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 – fundername: NIH HHS grantid: 1DP1OD006416 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c556t-7d10df04192aa3115b5cac5a0e2914f72d5e0b1a31d0639b1f320cf9974aed6f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:13:40 EDT 2025 Fri Jul 11 03:56:46 EDT 2025 Fri Jul 11 15:43:04 EDT 2025 Fri Jul 11 07:34:52 EDT 2025 Mon Jun 30 08:28:06 EDT 2025 Thu Apr 03 07:09:24 EDT 2025 Tue Jul 01 03:39:14 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Wed Nov 11 00:30:56 EST 2020 Thu May 29 08:40:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c556t-7d10df04192aa3115b5cac5a0e2914f72d5e0b1a31d0639b1f320cf9974aed6f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: M.P., S.E.J., G.E.R., and R.M. designed research; S. Foret, R.K., and S. Feng performed research; S.E.J. and R.M. contributed new reagents/analytic tools; S. Foret, R.K., M.P., and R.M. analyzed data; and R.M. wrote the paper. Contributed by Steven E. Jacobsen, February 13, 2012 (sent for review November 7, 2011) |
PMID | 22416128 |
PQID | 954688766 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_22416128 crossref_citationtrail_10_1073_pnas_1202392109 proquest_miscellaneous_1539451934 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3324026 proquest_journals_954688766 proquest_miscellaneous_959128981 crossref_primary_10_1073_pnas_1202392109 jstor_primary_41588405 proquest_miscellaneous_1011205634 pnas_primary_109_13_4968 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-27 |
PublicationDateYYYYMMDD | 2012-03-27 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Hartfelder K (e_1_3_4_2_2) 1998; 40 Evans JD (e_1_3_4_3_2) 2001; 23 Wirtz P (e_1_3_4_23_2) 1972; 15 Gabor Miklos GL (e_1_3_4_30_2) 2011; 59 Wilson EO (e_1_3_4_1_2) 1971 Glickman MH (e_1_3_4_17_2) 2002; 82 Patel A (e_1_3_4_16_2) 2007; 2 Mathers JC (e_1_3_4_26_2) 2008; 67 Metallo CM (e_1_3_4_29_2) 2010; 24 Lyko F (e_1_3_4_11_2) 2011; 27 Chen PY (e_1_3_4_32_2) 2010; 11 Spannhoff A (e_1_3_4_13_2) 2011; 12 Shukla S (e_1_3_4_24_2) 2011; 479 Combes AN (e_1_3_4_28_2) 2010; 52 Lyko F (e_1_3_4_9_2) 2010; 8 Luco RF (e_1_3_4_21_2) 2011; 144 Weaver N (e_1_3_4_6_2) 1966; 11 Götz S (e_1_3_4_34_2) 2008; 36 Cheng LY (e_1_3_4_25_2) 2011; 146 Kucharski R (e_1_3_4_8_2) 2008; 319 Barchuk AR (e_1_3_4_4_2) 2007; 7 Fukuda H (e_1_3_4_15_2) 1999; 464 Drapeau MD (e_1_3_4_7_2) 2006; 16 Wellen KE (e_1_3_4_12_2) 2009; 324 Ament SA (e_1_3_4_14_2) 2008; 105 Evans JD (e_1_3_4_22_2) 1999; 96 Kanehisa M (e_1_3_4_35_2) 2010; 38 Benjamini Y (e_1_3_4_33_2) 1995; 57 Foret S (e_1_3_4_10_2) 2009; 10 Chodavarapu RK (e_1_3_4_20_2) 2010; 466 Shilatifard A (e_1_3_4_19_2) 2006; 75 Maleszka R (e_1_3_4_5_2) 2008; 3 Mishra SK (e_1_3_4_18_2) 2011; 474 Cokus SJ (e_1_3_4_31_2) 2008; 452 Feinberg AP (e_1_3_4_27_2) 2010; 28 18445632 - Nucleic Acids Res. 2008 Jun;36(10):3420-35 9673848 - Curr Top Dev Biol. 1998;40:45-77 20608951 - Dev Growth Differ. 2010 Aug;52(6):483-91 19828049 - BMC Genomics. 2009;10:472 21964334 - Nature. 2011 Nov 3;479(7371):74-9 20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52 21072239 - PLoS Biol. 2010;8(11):e1000506 10318926 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5575-80 17551589 - PLoS One. 2007;2(6):e509 18337502 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4226-31 18278030 - Nature. 2008 Mar 13;452(7184):215-9 21614000 - Nature. 2011 Jun 9;474(7350):173-8 21288591 - Trends Genet. 2011 Apr;27(4):127-31 18719401 - Epigenetics. 2008 Jul-Aug;3(4):188-92 18847515 - Proc Nutr Soc. 2008 Nov;67(4):390-4 20594964 - Horm Behav. 2011 Mar;59(3):399-406 20512117 - Nature. 2010 Jul 15;466(7304):388-92 21159812 - Genes Dev. 2010 Dec 15;24(24):2717-22 11135310 - Bioessays. 2001 Jan;23(1):62-8 5321586 - Annu Rev Entomol. 1966;11:79-102 21331099 - EMBO Rep. 2011 Mar;12(3):238-43 21816278 - Cell. 2011 Aug 5;146(3):435-47 21215366 - Cell. 2011 Jan 7;144(1):16-26 19461003 - Science. 2009 May 22;324(5930):1076-80 10618488 - FEBS Lett. 1999 Dec 31;464(3):113-7 18339900 - Science. 2008 Mar 28;319(5871):1827-30 17577409 - BMC Dev Biol. 2007;7:70 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 16756492 - Annu Rev Biochem. 2006;75:243-69 20416082 - BMC Bioinformatics. 2010;11:203 19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 17065613 - Genome Res. 2006 Nov;16(11):1385-94 |
References_xml | – volume: 479 start-page: 74 year: 2011 ident: e_1_3_4_24_2 article-title: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing publication-title: Nature doi: 10.1038/nature10442 – volume: 146 start-page: 435 year: 2011 ident: e_1_3_4_25_2 article-title: Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila publication-title: Cell doi: 10.1016/j.cell.2011.06.040 – volume: 452 start-page: 215 year: 2008 ident: e_1_3_4_31_2 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 36 start-page: 3420 year: 2008 ident: e_1_3_4_34_2 article-title: High-throughput functional annotation and data mining with the Blast2GO suite publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn176 – volume: 464 start-page: 113 year: 1999 ident: e_1_3_4_15_2 article-title: Transcriptional regulation of fatty acid synthase gene and ATP citrate-lyase gene by Sp1 and Sp3 in rat hepatocytes(1) publication-title: FEBS Lett doi: 10.1016/S0014-5793(99)01700-7 – volume: 52 start-page: 483 year: 2010 ident: e_1_3_4_28_2 article-title: Epigenetic reprogramming: Enforcer or enabler of developmental fate? publication-title: Dev Growth Differ doi: 10.1111/j.1440-169X.2010.01185.x – volume: 3 start-page: 188 year: 2008 ident: e_1_3_4_5_2 article-title: Epigenetic integration of environmental and genomic signals in honey bees: The critical interplay of nutritional, brain and reproductive networks publication-title: Epigenetics doi: 10.4161/epi.3.4.6697 – volume: 75 start-page: 243 year: 2006 ident: e_1_3_4_19_2 article-title: Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.75.103004.142422 – volume: 16 start-page: 1385 year: 2006 ident: e_1_3_4_7_2 article-title: Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees publication-title: Genome Res doi: 10.1101/gr.5012006 – volume: 96 start-page: 5575 year: 1999 ident: e_1_3_4_22_2 article-title: Differential gene expression between developing queens and workers in the honey bee, Apis mellifera publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.10.5575 – volume: 28 start-page: 1049 year: 2010 ident: e_1_3_4_27_2 article-title: Epigenomics reveals a functional genome anatomy and a new approach to common disease publication-title: Nat Biotechnol doi: 10.1038/nbt1010-1049 – volume: 105 start-page: 4226 year: 2008 ident: e_1_3_4_14_2 article-title: Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0800630105 – volume: 7 start-page: 70 year: 2007 ident: e_1_3_4_4_2 article-title: Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera publication-title: BMC Dev Biol doi: 10.1186/1471-213X-7-70 – volume: 38 start-page: D355 year: 2010 ident: e_1_3_4_35_2 article-title: KEGG for representation and analysis of molecular networks involving diseases and drugs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp896 – volume: 11 start-page: 203 year: 2010 ident: e_1_3_4_32_2 article-title: BS Seeker: Precise mapping for bisulfite sequencing publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-203 – volume: 10 start-page: 472 year: 2009 ident: e_1_3_4_10_2 article-title: Epigenetic regulation of the honey bee transcriptome: Unravelling the nature of methylated genes publication-title: BMC Genomics doi: 10.1186/1471-2164-10-472 – volume: 24 start-page: 2717 year: 2010 ident: e_1_3_4_29_2 article-title: Metabolism strikes back: Metabolic flux regulates cell signaling publication-title: Genes Dev doi: 10.1101/gad.2010510 – volume: 324 start-page: 1076 year: 2009 ident: e_1_3_4_12_2 article-title: ATP-citrate lyase links cellular metabolism to histone acetylation publication-title: Science doi: 10.1126/science.1164097 – volume: 2 start-page: e509 year: 2007 ident: e_1_3_4_16_2 article-title: The making of a queen: TOR pathway is a key player in diphenic caste development publication-title: PLoS ONE doi: 10.1371/journal.pone.0000509 – volume: 12 start-page: 238 year: 2011 ident: e_1_3_4_13_2 article-title: Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees publication-title: EMBO Rep doi: 10.1038/embor.2011.9 – volume: 40 start-page: 45 year: 1998 ident: e_1_3_4_2_2 article-title: Social insect polymorphism: Hormonal regulation of plasticity in development and reproduction in the honeybee publication-title: Curr Top Dev Biol doi: 10.1016/S0070-2153(08)60364-6 – volume: 82 start-page: 373 year: 2002 ident: e_1_3_4_17_2 article-title: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction publication-title: Physiol Rev doi: 10.1152/physrev.00027.2001 – volume: 23 start-page: 62 year: 2001 ident: e_1_3_4_3_2 article-title: Gene expression and the evolution of insect polyphenisms publication-title: Bioessays doi: 10.1002/1521-1878(200101)23:1<62::AID-BIES1008>3.0.CO;2-7 – volume: 15 start-page: 517 year: 1972 ident: e_1_3_4_23_2 article-title: Induction of caste differentiation in the honey bee Apis mellifera L. by juvenile hormone publication-title: Entomol Exp Appl doi: 10.1111/j.1570-7458.1972.tb00239.x – volume: 59 start-page: 399 year: 2011 ident: e_1_3_4_30_2 article-title: Epigenomic communication systems in humans and honey bees: From molecules to behavior publication-title: Horm Behav doi: 10.1016/j.yhbeh.2010.05.016 – volume: 144 start-page: 16 year: 2011 ident: e_1_3_4_21_2 article-title: Epigenetics in alternative pre-mRNA splicing publication-title: Cell doi: 10.1016/j.cell.2010.11.056 – volume: 319 start-page: 1827 year: 2008 ident: e_1_3_4_8_2 article-title: Nutritional control of reproductive status in honey bees via DNA methylation publication-title: Science doi: 10.1126/science.1153069 – volume: 8 start-page: e1000506 year: 2010 ident: e_1_3_4_9_2 article-title: The honey bee epigenomes: Differential methylation of brain DNA in queens and workers publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000506 – volume-title: The Insect Societies year: 1971 ident: e_1_3_4_1_2 – volume: 11 start-page: 79 year: 1966 ident: e_1_3_4_6_2 article-title: Physiology of caste determination publication-title: Annu Rev Entomol doi: 10.1146/annurev.en.11.010166.000455 – volume: 67 start-page: 390 year: 2008 ident: e_1_3_4_26_2 article-title: Session 2: Personalised nutrition. Epigenomics: A basis for understanding individual differences? publication-title: Proc Nutr Soc doi: 10.1017/S0029665108008744 – volume: 57 start-page: 289 year: 1995 ident: e_1_3_4_33_2 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 474 start-page: 173 year: 2011 ident: e_1_3_4_18_2 article-title: Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing publication-title: Nature doi: 10.1038/nature10143 – volume: 27 start-page: 127 year: 2011 ident: e_1_3_4_11_2 article-title: Insects as innovative models for functional studies of DNA methylation publication-title: Trends Genet doi: 10.1016/j.tig.2011.01.003 – volume: 466 start-page: 388 year: 2010 ident: e_1_3_4_20_2 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature doi: 10.1038/nature09147 – reference: 19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60 – reference: 16756492 - Annu Rev Biochem. 2006;75:243-69 – reference: 20608951 - Dev Growth Differ. 2010 Aug;52(6):483-91 – reference: 21072239 - PLoS Biol. 2010;8(11):e1000506 – reference: 20512117 - Nature. 2010 Jul 15;466(7304):388-92 – reference: 20416082 - BMC Bioinformatics. 2010;11:203 – reference: 18847515 - Proc Nutr Soc. 2008 Nov;67(4):390-4 – reference: 18339900 - Science. 2008 Mar 28;319(5871):1827-30 – reference: 19828049 - BMC Genomics. 2009;10:472 – reference: 18719401 - Epigenetics. 2008 Jul-Aug;3(4):188-92 – reference: 18445632 - Nucleic Acids Res. 2008 Jun;36(10):3420-35 – reference: 20594964 - Horm Behav. 2011 Mar;59(3):399-406 – reference: 21288591 - Trends Genet. 2011 Apr;27(4):127-31 – reference: 17551589 - PLoS One. 2007;2(6):e509 – reference: 21614000 - Nature. 2011 Jun 9;474(7350):173-8 – reference: 19461003 - Science. 2009 May 22;324(5930):1076-80 – reference: 21215366 - Cell. 2011 Jan 7;144(1):16-26 – reference: 20944596 - Nat Biotechnol. 2010 Oct;28(10):1049-52 – reference: 5321586 - Annu Rev Entomol. 1966;11:79-102 – reference: 21331099 - EMBO Rep. 2011 Mar;12(3):238-43 – reference: 10318926 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5575-80 – reference: 18278030 - Nature. 2008 Mar 13;452(7184):215-9 – reference: 9673848 - Curr Top Dev Biol. 1998;40:45-77 – reference: 10618488 - FEBS Lett. 1999 Dec 31;464(3):113-7 – reference: 11135310 - Bioessays. 2001 Jan;23(1):62-8 – reference: 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 – reference: 21816278 - Cell. 2011 Aug 5;146(3):435-47 – reference: 17577409 - BMC Dev Biol. 2007;7:70 – reference: 21964334 - Nature. 2011 Nov 3;479(7371):74-9 – reference: 17065613 - Genome Res. 2006 Nov;16(11):1385-94 – reference: 21159812 - Genes Dev. 2010 Dec 15;24(24):2717-22 – reference: 18337502 - Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4226-31 |
SSID | ssj0009580 |
Score | 2.520536 |
Snippet | In honey bees (Apis mellifera), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves... In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves... In honey bees ( Apis mellifera ), the development of a larva into either a queen or worker depends on differential feeding with royal jelly and involves... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4968 |
SubjectTerms | adults Aging Aging - genetics Alternative splicing Animals Antisense Apis Apis mellifera Bees Bees - genetics Biological Sciences Brain Caste determination Citric Acid Cycle Citric Acid Cycle - genetics Data processing Deoxyribonucleic acid Development Diet Dietary intake DNA DNA methylation DNA Methylation - genetics DNA methyltransferase DNA-directed RNA polymerase Exons Feeding Gene Expression Profiling genes Genes, Insect Genes, Insect - genetics Genetics Genotype & phenotype Head Hierarchy, Social Honey Honey bees Hormones Insect castes Insect genetics Insect larvae Insect Proteins Insect Proteins - genetics Insect Proteins - metabolism Insulin Juvenile hormones Larva Larva - genetics Larvae Larval development Lymphoma metabolic flux Metabolic Networks and Pathways Metabolic Networks and Pathways - genetics Metabolism Methylation methyltransferases Models, Genetic Molecular Sequence Annotation Nodes nutrition Organ Specificity Organ Specificity - genetics Phenotype Proteasome Endopeptidase Complex Proteasome Endopeptidase Complex - metabolism Protein-tyrosine kinase Queen honey bees Queens RNA Splicing RNA Splicing - genetics RNA-protein interactions Royal jelly Signal Transduction Signal Transduction - genetics Spliceosomes Spliceosomes - metabolism Transcription Ubiquitin Ubiquitin - metabolism Workers |
Title | DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees |
URI | https://www.jstor.org/stable/41588405 http://www.pnas.org/content/109/13/4968.abstract https://www.ncbi.nlm.nih.gov/pubmed/22416128 https://www.proquest.com/docview/954688766 https://www.proquest.com/docview/1011205634 https://www.proquest.com/docview/1539451934 https://www.proquest.com/docview/959128981 https://pubmed.ncbi.nlm.nih.gov/PMC3324026 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAsDJCReBhqU5I4TuLHig9NSFST2KS9RU7iqJWqdKLJxPhH_EvutZ2PjhYBL1GV3CaW78n1tXN8LiFvwqJkikWJmwV-6Iaxx11ASenGjCcZTCBCqXULvsyjs8vw8xW_Go1-DlhLTZ1N8x8795X8j1fhHPgVd8n-g2e7m8IJ-A3-hSN4GI5_5eMP85kuAX1rCG3jwpSX166B8-BflLAuV813EwzgRmq8wS_WtpKJVmpd2TXBGzVGwtcaV2U1S3axriBiZMrSDG0Ke94NeZuWYDBvVxRn_f4UGzQ2Y3d8Pu-rHWMpUB33v96ubuSy5wA0uP_LFtE2dO8-auPaBn5pMpuL6lqt-wzWLnc3i0YOVzCQCsJcIwgwFADf2cZh6A5gOA3NhusudHtiiFE2iMShMOV67KgeClMx5bcRA0Icljmu5GbqYyl5EbQ33ZbhhkQngckwv0fuBzAj0RzSs6G-c2J2O9lWtipSMXt3595bCZDhwKKwLhjtmuTc5eoOkp-LR-ShnbXQmYHgIRmp6jE5bLuPnlrx8rdPSA6YpANM0haTE9ohkhpETijikbZ4nFBAIx2gkfZopMuKajRSRONTcvnp48X7M9cW8nBzzqPajQvfK0oPCQdSorxTxnOZc-mpQPhhGQcFV17mw6UCM-bML1ng5aWAua5URVSyI3JQwUOOCS0TKbNMZJESkItKkcg8Y16hPBUqvywSh0zb3k1zq3KPxVZWqWZbxCzFnk57dzjktPvDtRF42W96pN3V2bWYcMixNu3_L1KfpQhBh5y0Pk1t5NikgocRDO5R5JDX3VUI6_itTlZq3WyQeQkP5hEL_2DDmUB1KLShe2wEF5CBisR3yDMDpK6VmLzD_AaaGG9BrDNA5fntK9VyoRXoGcp4BtHzfR1yQh70L_oLclB_a9RLSN7r7JV-bX4BQE3xzg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+methylation+dynamics%2C+metabolic+fluxes%2C+gene+splicing%2C+and+alternative+phenotypes+in+honey+bees&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Foret%2C+Sylvain&rft.au=Kucharski%2C+Robert&rft.au=Pellegrini%2C+Matteo&rft.au=Feng%2C+Suhua&rft.date=2012-03-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=109&rft.issue=13&rft.spage=4968&rft.epage=4973&rft_id=info:doi/10.1073%2Fpnas.1202392109&rft.externalDocID=41588405 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F13.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F13.cover.gif |