Real-time maps of fluid flow fields in porous biomaterials

Abstract Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, non-invasive measures of...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 34; no. 8; pp. 1980 - 1986
Main Authors Mack, Julia J, Youssef, Khalid, Noel, Onika D.V, Lake, Michael P, Wu, Ashley, Iruela-Arispe, M. Luisa, Bouchard, Louis-S
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, non-invasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
AbstractList Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, non-invasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
Abstract Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, non-invasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
Author Iruela-Arispe, M. Luisa
Mack, Julia J
Wu, Ashley
Youssef, Khalid
Noel, Onika D.V
Lake, Michael P
Bouchard, Louis-S
AuthorAffiliation 3 California NanoSystems Institute, University of California, Los Angeles, CA 90095
4 Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095
1 Department of Chemistry and Biochemistry, University of C alifornia, Los Angeles, CA 90095
5 Molecular Biology Institute, University of California, Los Angeles, CA 90095
2 Department of Bioengineering, University of California, Los Angeles, CA 90095
AuthorAffiliation_xml – name: 4 Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095
– name: 1 Department of Chemistry and Biochemistry, University of C alifornia, Los Angeles, CA 90095
– name: 3 California NanoSystems Institute, University of California, Los Angeles, CA 90095
– name: 5 Molecular Biology Institute, University of California, Los Angeles, CA 90095
– name: 2 Department of Bioengineering, University of California, Los Angeles, CA 90095
Author_xml – sequence: 1
  fullname: Mack, Julia J
– sequence: 2
  fullname: Youssef, Khalid
– sequence: 3
  fullname: Noel, Onika D.V
– sequence: 4
  fullname: Lake, Michael P
– sequence: 5
  fullname: Wu, Ashley
– sequence: 6
  fullname: Iruela-Arispe, M. Luisa
– sequence: 7
  fullname: Bouchard, Louis-S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23245922$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-Aoo4cUnw2LGT9FAJFVqQKiHxcbYcewxeknixk6L-exxtqRZOe_HI8ntv_ObNGTmZwoSEvAJaAQX5Zlv1Pox6xuj1kCpGgVUAFeX0CdlA27Sl6Kg4IRsKNSs7CeyUnKW0pflOa_aMnDLOatExtiEXn1EP5exHLEa9S0VwhRsWb_MZfhfO42BT4adiF2JYUnHY-Dl56nLBFw_1nHy7fv_16kN5--nm49Xb29IIIeeykb2TVHDHsLZoBW86wZyUvNdCG9445Nr1fdNqjpYaWmPT1i3lWlgNfW_5Obnc6-6WfkRrcJqjHtQu-lHHexW0V_--TP6H-h7uFG-yf6BZ4PWDQAy_FkyzGn0yOAx6wmxKgZRdKzht4RhoDV3bySNUWcNFJ6UUGXqxh5oYUoroHj8PVK2Rqq06nKxaI1UAKkeayS8P7T9S_2aYAe_2AMwh3HmMKhmPk0HrI5pZ2eCP63P5n4wZ_OSNHn7iPaZtWOK0ckAlpqj6si7XuluwiuSJ8D_dD9BL
CitedBy_id crossref_primary_10_1142_S0219519415500281
crossref_primary_10_1109_TBME_2016_2537266
crossref_primary_10_1167_iovs_18_25335
crossref_primary_10_1038_s41467_017_01741_8
crossref_primary_10_1016_j_bej_2020_107602
crossref_primary_10_1177_0954411920944039
crossref_primary_10_1007_s10439_016_1772_6
crossref_primary_10_1109_TBME_2018_2857443
crossref_primary_10_1002_bit_25303
Cites_doi 10.1016/j.jbiomech.2006.10.002
10.1007/s003480050235
10.1002/jmri.1880040615
10.1002/adem.201080018
10.1038/nature03952
10.1038/nbt1055
10.1002/bit.22555
10.1117/1.3130345
10.1038/nmat2441
10.1103/PhysRevLett.78.4930
10.1038/nmat1421
10.1038/nrm1858
10.1016/S0142-9612(03)00340-5
10.1038/nrm2596
10.1016/j.biomaterials.2006.09.017
10.1146/annurev.bioeng.9.060906.151850
10.1073/pnas.0503681102
10.1002/bit.24440
10.1002/btpr.124
10.1126/science.1214804
10.1152/japplphysiol.00197.2008
10.1038/nature08073
10.1016/j.jbiomech.2004.12.022
ContentType Journal Article
Copyright Elsevier Ltd
2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Elsevier Ltd
– notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
5PM
DOI 10.1016/j.biomaterials.2012.11.030
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
Materials Research Database


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 1986
ExternalDocumentID 10_1016_j_biomaterials_2012_11_030
23245922
S0142961212012896
1_s2_0_S0142961212012896
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL069766
– fundername: NHLBI NIH HHS
  grantid: T32HL69766
– fundername: NIGMS NIH HHS
  grantid: T32 GM008042
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: T32 HL069766 || HL
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
5PM
ID FETCH-LOGICAL-c556t-76bf6053f2e4ded537952f663ba5ac37fe3afbb78a3ed0c04e784803a5da1bbd3
IEDL.DBID AIKHN
ISSN 0142-9612
IngestDate Tue Sep 17 20:37:02 EDT 2024
Fri Oct 25 06:06:28 EDT 2024
Fri Oct 25 06:39:40 EDT 2024
Fri Oct 25 08:25:53 EDT 2024
Thu Sep 26 18:41:10 EDT 2024
Sat Sep 28 07:51:39 EDT 2024
Fri Feb 23 02:23:08 EST 2024
Tue Oct 15 22:54:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords NMR
Hydrogel
3D scaffold
Fluid permeability
Flow
Language English
License Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-76bf6053f2e4ded537952f663ba5ac37fe3afbb78a3ed0c04e784803a5da1bbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23245922
PQID 1273596665
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714210
proquest_miscellaneous_1669853081
proquest_miscellaneous_1664198960
proquest_miscellaneous_1273596665
crossref_primary_10_1016_j_biomaterials_2012_11_030
pubmed_primary_23245922
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2012_11_030
elsevier_clinicalkeyesjournals_1_s2_0_S0142961212012896
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lesman, Blinder, Levenberg (bib12) 2010; 105
Stolberg, McCloskey (bib7) 2009; 25
Scheidegger (bib20) 1974
Dermenoudis, Missirlis (bib2) 2010; 12
Adamo, Naveiras, Wenzel, McKinney-Freeman, Mack, Gracia-Sancho (bib5) 2009; 459
Obi, Yamamoto, Shimizu, Kumagaya, Masumura, Sokabe (bib8) 2009; 106
Callaghan (bib18) 1991
Swider, Conroy, Pedrono, Ambard, Mantell, Soballe (bib16) 2007; 40
Drury, Mooney (bib22) 2003; 24
Seliktar (bib24) 2012; 336
Helm, Fleury, Zisch, Boschetti, Swartz (bib10) 2005; 102
Griffith, Swartz (bib3) 2006; 7
Lutolf, Hubbell (bib23) 2005; 23
Tzima, Irani-Tehrani, Kiosses, Dejana, Schultz, Engelhardt (bib6) 2005; 437
Place, Evans, Stevens (bib4) 2009; 8
Britton, Callaghan (bib15) 1997; 78
Santiago, Wereley, Melnhart, Beebe, Adrian (bib14) 1998; 25
Brandl, Sommer, Goepferich (bib21) 2007; 28
Hollister (bib1) 2005; 4
Jia, Bagnaninchi, Yang, Haj, Hinds, Kirkpatrick (bib13) 2009; 14
Youssef, Mack, Iruela-Arispe, Bouchard (bib17) 2012; 109
Urchuk, Plewes (bib19) 1994; 4
Swartz, Fleury (bib25) 2007; 9
Hahn, Schwartz (bib9) 2009; 10
Boschetti, Raimondi, Migliavacca, Dubini (bib11) 2006; 39
16249343 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15779-84
22654050 - Science. 2012 Jun 1;336(6085):1124-8
22252902 - Biotechnol Bioeng. 2012 Jul;109(7):1844-54
19566307 - J Biomed Opt. 2009 May-Jun;14(3):034014
16496023 - Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24
17011028 - Biomaterials. 2007 Jan;28(2):134-46
18988767 - J Appl Physiol (1985). 2009 Jan;106(1):203-11
19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62
17113585 - J Biomech. 2007;40(9):2112-8
16389082 - J Biomech. 2006;39(3):418-25
17459001 - Annu Rev Biomed Eng. 2007;9:229-56
19787638 - Biotechnol Bioeng. 2010 Feb 15;105(3):645-54
15637621 - Nat Biotechnol. 2005 Jan;23(1):47-55
19197983 - Biotechnol Prog. 2009 Jan-Feb;25(1):10-9
19440194 - Nature. 2009 Jun 25;459(7250):1131-5
19458646 - Nat Mater. 2009 Jun;8(6):457-70
16003400 - Nat Mater. 2005 Jul;4(7):518-24
12922147 - Biomaterials. 2003 Nov;24(24):4337-51
16163360 - Nature. 2005 Sep 15;437(7057):426-31
7865944 - J Magn Reson Imaging. 1994 Nov-Dec;4(6):829-36
Swider (10.1016/j.biomaterials.2012.11.030_bib16) 2007; 40
Lutolf (10.1016/j.biomaterials.2012.11.030_bib23) 2005; 23
Boschetti (10.1016/j.biomaterials.2012.11.030_bib11) 2006; 39
Helm (10.1016/j.biomaterials.2012.11.030_bib10) 2005; 102
Jia (10.1016/j.biomaterials.2012.11.030_bib13) 2009; 14
Santiago (10.1016/j.biomaterials.2012.11.030_bib14) 1998; 25
Hollister (10.1016/j.biomaterials.2012.11.030_bib1) 2005; 4
Brandl (10.1016/j.biomaterials.2012.11.030_bib21) 2007; 28
Obi (10.1016/j.biomaterials.2012.11.030_bib8) 2009; 106
Lesman (10.1016/j.biomaterials.2012.11.030_bib12) 2010; 105
Callaghan (10.1016/j.biomaterials.2012.11.030_bib18) 1991
Scheidegger (10.1016/j.biomaterials.2012.11.030_bib20) 1974
Seliktar (10.1016/j.biomaterials.2012.11.030_bib24) 2012; 336
Adamo (10.1016/j.biomaterials.2012.11.030_bib5) 2009; 459
Drury (10.1016/j.biomaterials.2012.11.030_bib22) 2003; 24
Stolberg (10.1016/j.biomaterials.2012.11.030_bib7) 2009; 25
Hahn (10.1016/j.biomaterials.2012.11.030_bib9) 2009; 10
Place (10.1016/j.biomaterials.2012.11.030_bib4) 2009; 8
Griffith (10.1016/j.biomaterials.2012.11.030_bib3) 2006; 7
Tzima (10.1016/j.biomaterials.2012.11.030_bib6) 2005; 437
Britton (10.1016/j.biomaterials.2012.11.030_bib15) 1997; 78
Urchuk (10.1016/j.biomaterials.2012.11.030_bib19) 1994; 4
Swartz (10.1016/j.biomaterials.2012.11.030_bib25) 2007; 9
Youssef (10.1016/j.biomaterials.2012.11.030_bib17) 2012; 109
Dermenoudis (10.1016/j.biomaterials.2012.11.030_bib2) 2010; 12
References_xml – volume: 459
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: bib5
  article-title: Biomechanical forces promote embryonic hematopoiesis
  publication-title: Nature
  contributor:
    fullname: Gracia-Sancho
– volume: 12
  start-page: B592
  year: 2010
  end-page: B608
  ident: bib2
  article-title: Bioreactors for tissue engineering
  publication-title: Adv Mat
  contributor:
    fullname: Missirlis
– volume: 336
  start-page: 1124
  year: 2012
  end-page: 1128
  ident: bib24
  article-title: Designing cell-compatible hydrogels for biomedical applications
  publication-title: Science
  contributor:
    fullname: Seliktar
– volume: 105
  start-page: 645
  year: 2010
  end-page: 654
  ident: bib12
  article-title: Modeling of flow-induced shear stress applied on 3D cellular scaffolds: implications for vascular tissue engineering
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Levenberg
– volume: 4
  start-page: 518
  year: 2005
  end-page: 524
  ident: bib1
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat Mater
  contributor:
    fullname: Hollister
– volume: 25
  start-page: 10
  year: 2009
  end-page: 19
  ident: bib7
  article-title: Can shear stress direct stem cell fate?
  publication-title: Biotechnol Prog
  contributor:
    fullname: McCloskey
– volume: 106
  start-page: 203
  year: 2009
  end-page: 211
  ident: bib8
  article-title: Fluid shear stress induces arterial differentiation of endothelial progenitor cells
  publication-title: J Appl Physiol
  contributor:
    fullname: Sokabe
– volume: 24
  start-page: 4337
  year: 2003
  end-page: 4351
  ident: bib22
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  contributor:
    fullname: Mooney
– volume: 10
  start-page: 53
  year: 2009
  end-page: 62
  ident: bib9
  article-title: Mechanotransduction in vascular physiology and atherogenesis
  publication-title: Nat Rev Mol Cell Biol
  contributor:
    fullname: Schwartz
– volume: 102
  start-page: 15779
  year: 2005
  end-page: 15784
  ident: bib10
  article-title: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Swartz
– volume: 78
  start-page: 4930
  year: 1997
  end-page: 4933
  ident: bib15
  article-title: Two-phase shear band structures at uniform stress
  publication-title: Phys Rev Lett
  contributor:
    fullname: Callaghan
– volume: 9
  start-page: 229
  year: 2007
  end-page: 256
  ident: bib25
  article-title: Interstitial flow and its effects in soft tissues
  publication-title: Annu Rev Biomed Eng
  contributor:
    fullname: Fleury
– volume: 8
  start-page: 457
  year: 2009
  end-page: 470
  ident: bib4
  article-title: Complexity in biomaterials for tissue engineering
  publication-title: Nat Mater
  contributor:
    fullname: Stevens
– volume: 14
  start-page: 034014
  year: 2009
  ident: bib13
  article-title: Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds
  publication-title: J Biomed Opt
  contributor:
    fullname: Kirkpatrick
– volume: 39
  start-page: 418
  year: 2006
  end-page: 425
  ident: bib11
  article-title: Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors
  publication-title: J Biomech
  contributor:
    fullname: Dubini
– year: 1974
  ident: bib20
  article-title: The physics of flow through porous media
  contributor:
    fullname: Scheidegger
– volume: 28
  start-page: 134
  year: 2007
  end-page: 146
  ident: bib21
  article-title: Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior
  publication-title: Biomaterials
  contributor:
    fullname: Goepferich
– volume: 4
  start-page: 829
  year: 1994
  end-page: 836
  ident: bib19
  article-title: MR measurements of pulsatile pressure gradients
  publication-title: J Magn Reson Imaging
  contributor:
    fullname: Plewes
– volume: 7
  start-page: 211
  year: 2006
  end-page: 224
  ident: bib3
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat Rev Mol Cell Biol
  contributor:
    fullname: Swartz
– year: 1991
  ident: bib18
  article-title: Principles of nuclear magnetic resonance microscopy
  contributor:
    fullname: Callaghan
– volume: 40
  start-page: 2112
  year: 2007
  end-page: 2118
  ident: bib16
  article-title: Use of high resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity
  publication-title: J Biomech
  contributor:
    fullname: Soballe
– volume: 109
  start-page: 1844
  year: 2012
  end-page: 1854
  ident: bib17
  article-title: Macro-scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor
  publication-title: Biotechnol Bioeng
  contributor:
    fullname: Bouchard
– volume: 23
  start-page: 47
  year: 2005
  end-page: 55
  ident: bib23
  article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
  publication-title: Nat Biotechnol
  contributor:
    fullname: Hubbell
– volume: 25
  start-page: 316
  year: 1998
  end-page: 319
  ident: bib14
  article-title: A particle image velocimetry system for microfluidics
  publication-title: Exp Fluids
  contributor:
    fullname: Adrian
– volume: 437
  start-page: 426
  year: 2005
  end-page: 431
  ident: bib6
  article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
  publication-title: Nature
  contributor:
    fullname: Engelhardt
– year: 1974
  ident: 10.1016/j.biomaterials.2012.11.030_bib20
  contributor:
    fullname: Scheidegger
– volume: 40
  start-page: 2112
  year: 2007
  ident: 10.1016/j.biomaterials.2012.11.030_bib16
  article-title: Use of high resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.10.002
  contributor:
    fullname: Swider
– volume: 25
  start-page: 316
  year: 1998
  ident: 10.1016/j.biomaterials.2012.11.030_bib14
  article-title: A particle image velocimetry system for microfluidics
  publication-title: Exp Fluids
  doi: 10.1007/s003480050235
  contributor:
    fullname: Santiago
– year: 1991
  ident: 10.1016/j.biomaterials.2012.11.030_bib18
  contributor:
    fullname: Callaghan
– volume: 4
  start-page: 829
  year: 1994
  ident: 10.1016/j.biomaterials.2012.11.030_bib19
  article-title: MR measurements of pulsatile pressure gradients
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1880040615
  contributor:
    fullname: Urchuk
– volume: 12
  start-page: B592
  year: 2010
  ident: 10.1016/j.biomaterials.2012.11.030_bib2
  article-title: Bioreactors for tissue engineering
  publication-title: Adv Mat
  doi: 10.1002/adem.201080018
  contributor:
    fullname: Dermenoudis
– volume: 437
  start-page: 426
  year: 2005
  ident: 10.1016/j.biomaterials.2012.11.030_bib6
  article-title: A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
  publication-title: Nature
  doi: 10.1038/nature03952
  contributor:
    fullname: Tzima
– volume: 23
  start-page: 47
  year: 2005
  ident: 10.1016/j.biomaterials.2012.11.030_bib23
  article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1055
  contributor:
    fullname: Lutolf
– volume: 105
  start-page: 645
  year: 2010
  ident: 10.1016/j.biomaterials.2012.11.030_bib12
  article-title: Modeling of flow-induced shear stress applied on 3D cellular scaffolds: implications for vascular tissue engineering
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.22555
  contributor:
    fullname: Lesman
– volume: 14
  start-page: 034014
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib13
  article-title: Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds
  publication-title: J Biomed Opt
  doi: 10.1117/1.3130345
  contributor:
    fullname: Jia
– volume: 8
  start-page: 457
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib4
  article-title: Complexity in biomaterials for tissue engineering
  publication-title: Nat Mater
  doi: 10.1038/nmat2441
  contributor:
    fullname: Place
– volume: 78
  start-page: 4930
  year: 1997
  ident: 10.1016/j.biomaterials.2012.11.030_bib15
  article-title: Two-phase shear band structures at uniform stress
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.78.4930
  contributor:
    fullname: Britton
– volume: 4
  start-page: 518
  year: 2005
  ident: 10.1016/j.biomaterials.2012.11.030_bib1
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat Mater
  doi: 10.1038/nmat1421
  contributor:
    fullname: Hollister
– volume: 7
  start-page: 211
  year: 2006
  ident: 10.1016/j.biomaterials.2012.11.030_bib3
  article-title: Capturing complex 3D tissue physiology in vitro
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1858
  contributor:
    fullname: Griffith
– volume: 24
  start-page: 4337
  year: 2003
  ident: 10.1016/j.biomaterials.2012.11.030_bib22
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
  contributor:
    fullname: Drury
– volume: 10
  start-page: 53
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib9
  article-title: Mechanotransduction in vascular physiology and atherogenesis
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2596
  contributor:
    fullname: Hahn
– volume: 28
  start-page: 134
  year: 2007
  ident: 10.1016/j.biomaterials.2012.11.030_bib21
  article-title: Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.09.017
  contributor:
    fullname: Brandl
– volume: 9
  start-page: 229
  year: 2007
  ident: 10.1016/j.biomaterials.2012.11.030_bib25
  article-title: Interstitial flow and its effects in soft tissues
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.060906.151850
  contributor:
    fullname: Swartz
– volume: 102
  start-page: 15779
  year: 2005
  ident: 10.1016/j.biomaterials.2012.11.030_bib10
  article-title: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0503681102
  contributor:
    fullname: Helm
– volume: 109
  start-page: 1844
  year: 2012
  ident: 10.1016/j.biomaterials.2012.11.030_bib17
  article-title: Macro-scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24440
  contributor:
    fullname: Youssef
– volume: 25
  start-page: 10
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib7
  article-title: Can shear stress direct stem cell fate?
  publication-title: Biotechnol Prog
  doi: 10.1002/btpr.124
  contributor:
    fullname: Stolberg
– volume: 336
  start-page: 1124
  year: 2012
  ident: 10.1016/j.biomaterials.2012.11.030_bib24
  article-title: Designing cell-compatible hydrogels for biomedical applications
  publication-title: Science
  doi: 10.1126/science.1214804
  contributor:
    fullname: Seliktar
– volume: 106
  start-page: 203
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib8
  article-title: Fluid shear stress induces arterial differentiation of endothelial progenitor cells
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00197.2008
  contributor:
    fullname: Obi
– volume: 459
  start-page: 1131
  year: 2009
  ident: 10.1016/j.biomaterials.2012.11.030_bib5
  article-title: Biomechanical forces promote embryonic hematopoiesis
  publication-title: Nature
  doi: 10.1038/nature08073
  contributor:
    fullname: Adamo
– volume: 39
  start-page: 418
  year: 2006
  ident: 10.1016/j.biomaterials.2012.11.030_bib11
  article-title: Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.12.022
  contributor:
    fullname: Boschetti
SSID ssj0014042
Score 2.1982126
Snippet Abstract Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells...
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1980
SubjectTerms 3D scaffold
Advanced Basic Science
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Biopolymers - chemistry
Computer Systems
Dentistry
Extracellular Fluid - physiology
Flow
Fluid dynamics
Fluid flow
Fluid permeability
Fluids
Hydrodynamics
Hydrogel
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Magnetic Resonance Spectroscopy
NMR
Polyesters - chemistry
Porosity
Rheology
Shear
Surgical implants
Three dimensional
Tissue Scaffolds - chemistry
Title Real-time maps of fluid flow fields in porous biomaterials
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0142961212012896
https://dx.doi.org/10.1016/j.biomaterials.2012.11.030
https://www.ncbi.nlm.nih.gov/pubmed/23245922
https://search.proquest.com/docview/1273596665
https://search.proquest.com/docview/1664198960
https://search.proquest.com/docview/1669853081
https://pubmed.ncbi.nlm.nih.gov/PMC3714210
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ygNIcSps-sn0EF3pVVtbLdqGHEBq2LcmhNJCbkGyJOrTepd6lt_72zvix7DYlFHrZg1e25ZE0-ob59A3AG5NG49OiZD6kiqmCS-ZiWbEgYvS89CXvisFcXJrZlfp4ra934Gw8C0O0ysH39z6989bDlelgzemirqdESxIFCWAJcrKF2YV9ShJhBLZ_-uHT7HKdTFC8q6FD7RndMGqPdjQvOuXulv1oE9NLnJCoJ5Gi_75P3cahf9IpN_an84fwYACWyWnf90ewE5pDONiQGzyEexdDIv0xvP2MAJFRYfnku1u0yTwm8duqrvB3_jPpaG1tUjcJovP5qk02u_8Ers7ffzmbsaGMAiu1NkuWGR8xaJFRBFWFSsus0CIi0vBOu1JmMUgXvc9yJ0PFS65ClqucS6crl3pfyaew18ybcARJroL3RRlM8FypMjoEcJRaNIXPpVRhAnI0ml30ahl2pJHd2M2-WjI1hh8WTT2BbLSvHc-DogcL7bCcWpvaVlhubw35BN6t79yaNRY3hH968-txOC0uK8qVuCagXW2KsE5jKGj0HW2MUUQ5M3c9x5gCERECrwk866fJ2jIEZnUhBH7_1gRaNyDp7-1_mvprJwFOOosYrD__z-9_AfdFV96DOHUvYW_5YxVeIcha-mPYPfmVHg9L6Td_oSma
link.rule.ids 230,315,786,790,891,4516,24137,27946,27947,45609,45703
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIvE4ICiv5WkkrukmfiVB4oAqqgW6PaBW6s2yHVsEQXZFdsWN385MHqtdiiokLjkkTmKPx-PP8udvAF7rLGqXlT5xIZOJLFOR2OirJPAYXeqdT7tkMPNTPTuXHy_UxR4cjWdhiFY5xP4-pnfRergzHaw5Xdb1lGhJvCQBLE5BttTX4DqigZRc-_DXhudB8jG85zHyhIqPyqMdyYvOuNtV39fE8-KHJOlJlOi_z1KXUeifZMqt2en4LtwZYCV719f8HuyF5gBub4kNHsCN-bCNfh_efEZ4mFBaefbdLlu2iCx-W9cVXhc_WUdqa1ndMMTmi3XLtqv_AM6P358dzZIhiULildKrJNcu4pJFRB5kFSol8lLxiDjDWWW9yGMQNjqXF1aEKvWpDHkhi1RYVdnMuUo8hP1m0YTHwAoZnCt90MGlUvpoEb7RxqIuXSGEDBMQo9HMstfKMCOJ7KvZrqshU-Piw6CpJ5CP9jXjaVCMX6EdBlNrMtNyk5pLHT6Bt5s3d3zG4HTwT39-NXanwUFFOyW2CWhXkyGoU7gQ1OqKMlpLIpzpq76jdYl4CGHXBB71brKxDEFZVXKO7d9xoE0BEv7efdLUXzoBcFJZxKX6k_9s_0u4OTubn5iTD6efnsIt3iX6IHbdM9hf_ViH5wi3Vu5FN5x-AyphKm0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+maps+of+fluid+flow+fields+in+porous+biomaterials&rft.jtitle=Biomaterials&rft.au=Mack%2C+Julia+J.&rft.au=Youssef%2C+Khalid&rft.au=Noel%2C+Onika+D.V.&rft.au=Lake%2C+Michael+P.&rft.date=2013-03-01&rft.issn=0142-9612&rft.volume=34&rft.issue=8&rft.spage=1980&rft.epage=1986&rft_id=info:doi/10.1016%2Fj.biomaterials.2012.11.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2012_11_030
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961212X00383%2Fcov150h.gif