Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency
Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the a...
Saved in:
Published in | Neurobiology of aging Vol. 71; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0197-4580 1558-1497 1558-1497 |
DOI | 10.1016/j.neurobiolaging.2018.06.039 |
Cover
Loading…
Abstract | Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications. |
---|---|
AbstractList | Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications. Cerebral microcirculation is critical for the preservation of brain health and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain and the retina provides the advantage that the entire vascular bed is visible, en face . In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1 (Cav-1). Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1 (IGF-1). The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications. Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications. |
Author | Ungvari, Zoltan Freeman, Willard M. Stout, Michael B. Otalora, Laura Paudel, Sijalu Ashpole, Nicole M. Sonntag, William E. Csiszar, Anna Reagan, Alaina M. Zalles, Michelle Gu, Xiaowu Elliott, Michael H. |
AuthorAffiliation | a Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA c Department of Cell Biology, Cameron University, Lawton, OK, USA d Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA h Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA f Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA g Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA b Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA e Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA |
AuthorAffiliation_xml | – name: g Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – name: f Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – name: a Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – name: b Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – name: d Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA – name: c Department of Cell Biology, Cameron University, Lawton, OK, USA – name: e Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – name: h Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA |
Author_xml | – sequence: 1 givenname: Alaina M. surname: Reagan fullname: Reagan, Alaina M. organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 2 givenname: Xiaowu orcidid: 0000-0003-2266-5516 surname: Gu fullname: Gu, Xiaowu organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 3 givenname: Sijalu surname: Paudel fullname: Paudel, Sijalu organization: Department of Cell Biology, Cameron University, Lawton, OK, USA – sequence: 4 givenname: Nicole M. surname: Ashpole fullname: Ashpole, Nicole M. organization: Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA – sequence: 5 givenname: Michelle surname: Zalles fullname: Zalles, Michelle organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 6 givenname: William E. surname: Sonntag fullname: Sonntag, William E. organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 7 givenname: Zoltan surname: Ungvari fullname: Ungvari, Zoltan organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 8 givenname: Anna surname: Csiszar fullname: Csiszar, Anna organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 9 givenname: Laura surname: Otalora fullname: Otalora, Laura organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 10 givenname: Willard M. surname: Freeman fullname: Freeman, Willard M. organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA – sequence: 11 givenname: Michael B. surname: Stout fullname: Stout, Michael B. organization: Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA – sequence: 12 givenname: Michael H. surname: Elliott fullname: Elliott, Michael H. email: michael-elliott@ouhsc.edu organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30059797$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFvFCEUxompsdvqv2A4ePAyI8wMA5MYk1rbatLEi54JMG-2rCxUYDbZm3-67G5rbE97Inl87_d438cZOvHBA0LvKKkpof2HVe1hjkHb4NTS-mXdECpq0tekHV6gBWVMVLQb-AlaEDrwqmOCnKKzlFaEEN7x_hU6bQlhAx_4Av25WEIVwakMI56CUQ67kBIOEzbB56hMtg7wRiUzOxVxWoeQ7_B6TqaUDTiXsPU4Qra-9KqYIZaXQakmrEwRQNyz9RYbtYHgrK8oHmGyxoI329fo5aRcgjcP5zn6eX314_Jrdfv95tvlxW1lGOtzxQnr265jDW2E4mJQmrTNWNbRuuEDERqI0UKPoh1p2w0MGt1OWhnRttxMI2vP0acD937WaxgN7JZz8j7atYpbGZSVT2-8vZPLsJE97RsqaAG8fwDE8HuGlOXapp0BykOYk2yIIIKRnvEiffv_rH9DHm0vgs8HgYnF7AiTNDarbPeOWycpkbus5Uo-zVruspaklyXrAvn4DPI458j260M7FNc3FqJM-0RgtBFMlmOwx4K-PAOZErItX-kXbI_H_AW0F-sY |
CitedBy_id | crossref_primary_10_1167_iovs_18_26441 crossref_primary_10_15252_emmm_202215809 crossref_primary_10_1167_iovs_18_26126 crossref_primary_10_3390_ijms20153608 crossref_primary_10_1152_ajpheart_00288_2023 crossref_primary_10_1007_s11357_023_01024_9 crossref_primary_10_1364_BOE_413149 crossref_primary_10_3389_fnins_2023_1289894 crossref_primary_10_1007_s11357_025_01621_w crossref_primary_10_1369_00221554251323655 crossref_primary_10_1146_annurev_vision_091517_034416 crossref_primary_10_1016_j_preteyeres_2022_101094 crossref_primary_10_1172_JCI172841 crossref_primary_10_1152_ajpheart_00220_2020 crossref_primary_10_3390_biomedicines12040868 crossref_primary_10_1186_s10020_023_00749_9 |
Cites_doi | 10.1186/s12872-017-0732-x 10.1038/jcbfm.2014.156 10.1007/s11357-016-9931-0 10.1093/gerona/glr228 10.1016/j.preteyeres.2016.09.005 10.1111/acel.12372 10.1016/j.tcm.2005.11.007 10.1007/s11357-016-9943-9 10.3389/fnagi.2013.00027 10.1371/journal.pone.0015697 10.1093/gerona/glq113 10.1161/CIRCRESAHA.110.218271 10.1371/journal.pone.0092428 10.1080/10739680601073451 10.1016/j.ajpath.2013.10.022 10.1136/bjophthalmol-2012-302779 10.1016/j.neurobiolaging.2005.10.021 10.1111/aos.12786 10.1016/0014-4800(70)90004-3 10.1016/j.atherosclerosis.2006.01.018 10.1038/jcbfm.2014.256 10.1152/ajpheart.00581.2016 10.1159/000113755 10.1016/S0197-4580(99)00032-9 10.1016/j.ajo.2003.10.020 10.1016/j.neo.2015.06.001 10.1038/jcbfm.2013.143 10.1371/journal.pone.0049422 10.3233/JAD-2010-100531 10.1016/j.pbiomolbio.2007.07.006 10.1016/j.exer.2015.03.019 10.1161/ATVBAHA.114.304849 10.1007/s00424-017-1957-3 10.1111/acel.12315 10.1152/ajpheart.00584.2006 10.1002/jbmr.2689 10.1111/acel.12583 10.1111/acer.12875 10.1167/iovs.07-0711 10.1161/01.ATV.0000081743.35125.05 10.3389/neuro.24.004.2009 10.1007/s11357-017-9971-0 10.1016/j.cmet.2008.06.011 10.2353/ajpath.2007.060708 10.1167/iovs.09-3649 10.1152/physrev.1995.75.3.487 10.1155/2016/6021394 10.1073/pnas.78.1.298 10.1016/j.cardiores.2005.11.024 10.1167/iovs.13-12711 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.neurobiolaging.2018.06.039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 12 |
ExternalDocumentID | PMC6162181 30059797 10_1016_j_neurobiolaging_2018_06_039 S0197458018302525 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: P30 EY021725 – fundername: NIA NIH HHS grantid: R01 AG038747 – fundername: NINDS NIH HHS grantid: R01 NS056218 – fundername: NIA NIH HHS grantid: R01 AG055395 – fundername: NINDS NIH HHS grantid: R01 NS100782 – fundername: NEI NIH HHS grantid: R01 EY021716 – fundername: NEI NIH HHS grantid: R01 EY019494 – fundername: NEI NIH HHS grantid: R21 EY024520 – fundername: NEI NIH HHS grantid: T32 EY023202 – fundername: NIA NIH HHS grantid: K99 AG051661 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AFYLN AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c556t-705634452128a789ab032d747bb27908be0cb8bd83d13495e2b3fbac8337cfd53 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Thu Aug 21 17:47:32 EDT 2025 Thu Jul 10 23:02:00 EDT 2025 Thu Apr 03 07:07:18 EDT 2025 Tue Jul 01 01:28:22 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Fri Feb 23 02:45:03 EST 2024 Tue Aug 26 16:35:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Caveolin-1 Aging Insulin-like growth factor-1 Alpha smooth muscle actin Retina Vasculature |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-705634452128a789ab032d747bb27908be0cb8bd83d13495e2b3fbac8337cfd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX |
ORCID | 0000-0003-2266-5516 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0197458018302525 |
PMID | 30059797 |
PQID | 2080850657 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6162181 proquest_miscellaneous_2080850657 pubmed_primary_30059797 crossref_citationtrail_10_1016_j_neurobiolaging_2018_06_039 crossref_primary_10_1016_j_neurobiolaging_2018_06_039 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2018_06_039 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2018_06_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ashpole, Logan, Yabluchanskiy, Mitschelen, Yan, Farley, Hodges, Ungvari, Csiszar, Chen, Georgescu, Hubbard, Ikeno, Sonntag (bib3) 2017; 39 Pearson, Baur, Lewis, Peshkin, Price, Labinskyy, Swindell, Kamara, Minor, Perez, Jamieson, Zhang, Dunn, Sharma, Pleshko, Woollett, Csiszar, Ikeno, Le Couteur, Elliott, Becker, Navas, Ingram, Wolf, Ungvari, Sinclair, de Cabo (bib37) 2008; 8 Hughes, Gardiner, Hu, Baxter, Rosinova, Chan-Ling (bib21) 2006; 27 Lynch, Cooney, Bennett, Thornton, Khan, Ingram, Sonntag (bib31) 1999; 20 Bosch, Harazny, Kistner, Friedrich, Wojtkiewicz, Schmieder (bib4) 2017; 17 Head, Peart, Panneerselvam, Yokoyama, Pearn, Niesman, Bonds, Schilling, Miyanohara, Headrick, Ali, Roth, Patel, Patel (bib18) 2010; 5 Toth, Tucsek, Sosnowska, Gautam, Mitschelen, Tarantini, Deak, Koller, Sonntag, Csiszar, Ungvari (bib47) 2013; 33 Toth, Tarantini, Springo, Tucsek, Gautam, Giles, Wren, Koller, Sonntag, Csiszar, Ungvari (bib50) 2015; 14 Feng, Pfister, Schreiter, Wang, Stock, Vom Hagen, Wolburg, Hoffmann, Deutsch, Hammes (bib10) 2008; 21 Tarantini, Tucsek, Valcarcel-Ares, Toth, Gautam, Giles, Ballabh, Wei, Wren, Ashpole, Sonntag, Ungvari, Csiszar (bib45) 2016; 38 Sonntag, Deak, Ashpole, Toth, Csiszar, Freeman, Ungvari (bib41) 2013; 5 Tarantini, Valcarcel-Ares, Yabluchanskiy, Springo, Fulop, Ashpole, Gautam, Giles, Wren, Sonntag, Csiszar, Ungvari (bib46) 2017; 16 Kador, Zhang, Makita, Zhang, Guo, Randazzo, Kawada, Haider, Blessing (bib22) 2012; 7 Tarantini, Giles, Wren, Ashpole, Valcarcel-Ares, Wei, Sonntag, Ungvari, Csiszar (bib44) 2016; 38 Gabbiani, Schmid, Winter, Chaponnier, de Ckhastonay, Vandekerckhove, Weber, Franke (bib11) 1981; 78 Ashpole, Herron, Mitschelen, Farley, Logan, Yan, Ungvari, Hodges, Csiszar, Ikeno, Humphrey, Sonntag (bib2) 2016; 31 Gu, Fliesler, Zhao, Stallcup, Cohen, Elliott (bib13) 2014; 184 Peterson, Guicciardi, Gulati, Kleppe, Mueske, Mookadam, Sowa, Gores, Sessa, Simari (bib38) 2003; 23 Orlandi, Bochaton-Piallat, Gabbiani, Spagnoli (bib33) 2006; 188 Parton, del Pozo (bib36) 2013; 14 Gu, Reagan, McClellan, Elliott (bib14) 2017; 56 Catita, Lopez-Luppo, Ramos, Nacher, Navarro, Carretero, Sanchez-Chardi, Mendes-Jorge, Rodriguez-Baeza, Ruberte (bib5) 2015; 135 Chan-Ling, Hughes, Baxter, Rosinova, McGregor, Morcos, van Nieuwenhuyzen, Hu (bib6) 2007; 14 Grossniklaus, Nickerson, Edelhauser, Bergman, Berglin (bib12) 2013; 54 Springo, Toth, Tarantini, Ashpole, Tucsek, Sonntag, Csiszar, Koller, Ungvari (bib42) 2015; 35 Adebiyi, Zhao, Cheranov, Ahmed, Jaggar (bib1) 2007; 292 Sward, Albinsson, Rippe (bib43) 2014; 9 Csiszar, Labinskyy, Smith, Rivera, Orosz, Ungvari (bib8) 2007; 170 Kocher, Skalli, Bloom, Gabbiani (bib26) 1984; 50 Cliff (bib7) 1970; 13 Sedding, Braun-Dullaeus (bib39) 2006; 16 Kneser, Kohlmann, Pokorny, Tost (bib25) 2009; 15 Toth, Tarantini, Csiszar, Ungvari (bib51) 2017; 312 Toth, Tarantini, Ashpole, Tucsek, Milne, Valcarcel-Ares, Menyhart, Farkas, Sonntag, Csiszar, Ungvari (bib49) 2015; 14 Wang, Baron, Trump (bib53) 2008; 96 Gugleta, Turksever, Polunina, Orgul (bib15) 2013; 97 Park, Shin, Park, Yoou, Park, Kang, Sung, Kim, Park, Kim, Cho, Bae (bib35) 2017; 469 Klein, Klein, Tomany, Wong (bib24) 2004; 137 Hsu, Kulp, Huang, Tu, Salunke, Sullivan, Sun, Wicha, Shapiro, Chen (bib20) 2015; 17 Liu, Zhang, Kennard, Caldwell, Lilly (bib30) 2010; 107 Hardin, Vallejo (bib16) 2006; 69 Henshall, Keller, He, Johansson, Wallgard, Raschperger, Mae, Jin, Betsholtz, Lendahl (bib19) 2015; 35 Kotliar, Nagel, Vilser, Seidova, Lanzl (bib28) 2010; 51 Hatch, Morrow, Liu, Cahill, Redmond (bib17) 2015; 39 Lin, Zhan, Wang, Tan, Chen, Deng, Liu (bib29) 2016; 2016 Kapoor, Hsu, Wang, Wu, Lin, Lee, Yen, Liang, Liao (bib23) 2010; 22 Owens (bib34) 1995; 75 Csiszar, Sosnowska, Wang, Lakatta, Sonntag, Ungvari (bib9) 2012; 67 Kotliar, Mucke, Vilser, Schilling, Lanzl (bib27) 2008; 49 Oomen, Farkas, Roman, van der Beek, Luiten, Meerlo (bib32) 2009; 1 Ungvari, Kaley, de Cabo, Sonntag, Csiszar (bib52) 2010; 65 Toth, Tucsek, Tarantini, Sosnowska, Gautam, Mitschelen, Koller, Sonntag, Csiszar, Ungvari (bib48) 2014; 34 Seshadri, Ekart, Gherghel (bib40) 2016; 94 Kador (10.1016/j.neurobiolaging.2018.06.039_bib22) 2012; 7 Sedding (10.1016/j.neurobiolaging.2018.06.039_bib39) 2006; 16 Hatch (10.1016/j.neurobiolaging.2018.06.039_bib17) 2015; 39 Csiszar (10.1016/j.neurobiolaging.2018.06.039_bib9) 2012; 67 Orlandi (10.1016/j.neurobiolaging.2018.06.039_bib33) 2006; 188 Toth (10.1016/j.neurobiolaging.2018.06.039_bib47) 2013; 33 Sonntag (10.1016/j.neurobiolaging.2018.06.039_bib41) 2013; 5 Gu (10.1016/j.neurobiolaging.2018.06.039_bib13) 2014; 184 Lin (10.1016/j.neurobiolaging.2018.06.039_bib29) 2016; 2016 Pearson (10.1016/j.neurobiolaging.2018.06.039_bib37) 2008; 8 Kapoor (10.1016/j.neurobiolaging.2018.06.039_bib23) 2010; 22 Peterson (10.1016/j.neurobiolaging.2018.06.039_bib38) 2003; 23 Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib46) 2017; 16 Toth (10.1016/j.neurobiolaging.2018.06.039_bib49) 2015; 14 Head (10.1016/j.neurobiolaging.2018.06.039_bib18) 2010; 5 Cliff (10.1016/j.neurobiolaging.2018.06.039_bib7) 1970; 13 Ungvari (10.1016/j.neurobiolaging.2018.06.039_bib52) 2010; 65 Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib45) 2016; 38 Hsu (10.1016/j.neurobiolaging.2018.06.039_bib20) 2015; 17 Wang (10.1016/j.neurobiolaging.2018.06.039_bib53) 2008; 96 Feng (10.1016/j.neurobiolaging.2018.06.039_bib10) 2008; 21 Gu (10.1016/j.neurobiolaging.2018.06.039_bib14) 2017; 56 Lynch (10.1016/j.neurobiolaging.2018.06.039_bib31) 1999; 20 Kocher (10.1016/j.neurobiolaging.2018.06.039_bib26) 1984; 50 Henshall (10.1016/j.neurobiolaging.2018.06.039_bib19) 2015; 35 Klein (10.1016/j.neurobiolaging.2018.06.039_bib24) 2004; 137 Toth (10.1016/j.neurobiolaging.2018.06.039_bib51) 2017; 312 Ashpole (10.1016/j.neurobiolaging.2018.06.039_bib2) 2016; 31 Kneser (10.1016/j.neurobiolaging.2018.06.039_bib25) 2009; 15 Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib44) 2016; 38 Bosch (10.1016/j.neurobiolaging.2018.06.039_bib4) 2017; 17 Kotliar (10.1016/j.neurobiolaging.2018.06.039_bib28) 2010; 51 Springo (10.1016/j.neurobiolaging.2018.06.039_bib42) 2015; 35 Liu (10.1016/j.neurobiolaging.2018.06.039_bib30) 2010; 107 Catita (10.1016/j.neurobiolaging.2018.06.039_bib5) 2015; 135 Toth (10.1016/j.neurobiolaging.2018.06.039_bib50) 2015; 14 Chan-Ling (10.1016/j.neurobiolaging.2018.06.039_bib6) 2007; 14 Toth (10.1016/j.neurobiolaging.2018.06.039_bib48) 2014; 34 Hughes (10.1016/j.neurobiolaging.2018.06.039_bib21) 2006; 27 Seshadri (10.1016/j.neurobiolaging.2018.06.039_bib40) 2016; 94 Owens (10.1016/j.neurobiolaging.2018.06.039_bib34) 1995; 75 Adebiyi (10.1016/j.neurobiolaging.2018.06.039_bib1) 2007; 292 Gabbiani (10.1016/j.neurobiolaging.2018.06.039_bib11) 1981; 78 Park (10.1016/j.neurobiolaging.2018.06.039_bib35) 2017; 469 Sward (10.1016/j.neurobiolaging.2018.06.039_bib43) 2014; 9 Hardin (10.1016/j.neurobiolaging.2018.06.039_bib16) 2006; 69 Oomen (10.1016/j.neurobiolaging.2018.06.039_bib32) 2009; 1 Kotliar (10.1016/j.neurobiolaging.2018.06.039_bib27) 2008; 49 Grossniklaus (10.1016/j.neurobiolaging.2018.06.039_bib12) 2013; 54 Parton (10.1016/j.neurobiolaging.2018.06.039_bib36) 2013; 14 Csiszar (10.1016/j.neurobiolaging.2018.06.039_bib8) 2007; 170 Ashpole (10.1016/j.neurobiolaging.2018.06.039_bib3) 2017; 39 Gugleta (10.1016/j.neurobiolaging.2018.06.039_bib15) 2013; 97 |
References_xml | – volume: 96 start-page: 499 year: 2008 end-page: 509 ident: bib53 article-title: An overview of Notch3 function in vascular smooth muscle cells publication-title: Prog. Biophys. Mol. Biol. – volume: 1 start-page: 4 year: 2009 ident: bib32 article-title: Resveratrol preserves cerebrovascular density and cognitive function in aging mice publication-title: Front. Aging Neurosci. – volume: 33 start-page: 1732 year: 2013 end-page: 1742 ident: bib47 article-title: Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension publication-title: J. Cereb. Blood Flow Metab. – volume: 14 start-page: 98 year: 2013 end-page: 112 ident: bib36 article-title: Caveolae as plasma membrane sensors, protectors and organizers. Nature reviews publication-title: Mol. Cel. Biol. – volume: 54 start-page: ORSF23 year: 2013 end-page: ORSF27 ident: bib12 article-title: Anatomic alterations in aging and age-related diseases of the eye publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 49 start-page: 2094 year: 2008 end-page: 2102 ident: bib27 article-title: Effect of aging on retinal artery blood column diameter measured along the vessel axis publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 51 start-page: 2165 year: 2010 end-page: 2172 ident: bib28 article-title: Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 292 start-page: H1584 year: 2007 end-page: H1592 ident: bib1 article-title: Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 170 start-page: 388 year: 2007 end-page: 698 ident: bib8 article-title: Vasculoprotective effects of anti-TNFalfa treatment in aging publication-title: Am. J. Pathol. – volume: 97 start-page: 848 year: 2013 end-page: 851 ident: bib15 article-title: Effect of ageing on the retinal vascular responsiveness to flicker light in glaucoma patients and in ocular hypertension publication-title: Br. J. Ophthalmol. – volume: 17 start-page: 497 year: 2015 end-page: 508 ident: bib20 article-title: Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae publication-title: Neoplasia – volume: 14 start-page: 400 year: 2015 end-page: 408 ident: bib50 article-title: Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection publication-title: Aging Cell – volume: 9 start-page: e92428 year: 2014 ident: bib43 article-title: Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice publication-title: PLoS One – volume: 39 start-page: 2115 year: 2015 end-page: 2122 ident: bib17 article-title: Ethanol inhibits gamma-secretase proteolytic activity in vascular smooth muscle cells publication-title: Alcohol. Clin. Exp. Res. – volume: 22 start-page: 423 year: 2010 end-page: 442 ident: bib23 article-title: Caveolin-1 regulates gamma-secretase-mediated AbetaPP processing by modulating spatial distribution of gamma-secretase in membrane publication-title: J. Alzheimers Dis. – volume: 312 start-page: H1 year: 2017 end-page: H20 ident: bib51 article-title: Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 67 start-page: 811 year: 2012 end-page: 820 ident: bib9 article-title: Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment publication-title: J. Gerontol. A. Biol. Sci. Med. Sci. – volume: 65 start-page: 1028 year: 2010 end-page: 1041 ident: bib52 article-title: Mechanisms of vascular aging: new perspectives publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 188 start-page: 221 year: 2006 end-page: 230 ident: bib33 article-title: Aging, smooth muscle cells and vascular pathobiology: implications for atherosclerosis publication-title: Atherosclerosis – volume: 17 start-page: 300 year: 2017 ident: bib4 article-title: Retinal capillary rarefaction in patients with untreated mild-moderate hypertension publication-title: BMC Cardiovasc. Disord. – volume: 15 start-page: CR436 year: 2009 end-page: CR441 ident: bib25 article-title: Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis publication-title: Med. Sci. Monit. – volume: 5 start-page: e15697 year: 2010 ident: bib18 article-title: Loss of caveolin-1 accelerates neurodegeneration and aging publication-title: PLoS One – volume: 27 start-page: 1838 year: 2006 end-page: 1847 ident: bib21 article-title: Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability publication-title: Neurobiol. Aging – volume: 107 start-page: 860 year: 2010 end-page: 870 ident: bib30 article-title: Notch3 is critical for proper angiogenesis and mural cell investment publication-title: Circ. Res. – volume: 35 start-page: 409 year: 2015 end-page: 420 ident: bib19 article-title: Notch3 is necessary for blood vessel integrity in the central nervous system publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 38 start-page: 239 year: 2016 end-page: 258 ident: bib44 article-title: IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis publication-title: Age (Dordr) – volume: 35 start-page: 527 year: 2015 end-page: 530 ident: bib42 article-title: Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries publication-title: J. Cereb. Blood Flow Metab. – volume: 34 start-page: 1887 year: 2014 end-page: 1897 ident: bib48 article-title: IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice publication-title: J. Cereb. Blood Flow Metab. – volume: 31 start-page: 443 year: 2016 end-page: 454 ident: bib2 article-title: IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms publication-title: J. Bone Miner Res. – volume: 78 start-page: 298 year: 1981 end-page: 302 ident: bib11 article-title: Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 184 start-page: 541 year: 2014 end-page: 555 ident: bib13 article-title: Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration publication-title: Am. J. Pathol. – volume: 135 start-page: 14 year: 2015 end-page: 25 ident: bib5 article-title: Imaging of cellular aging in human retinal blood vessels publication-title: Exp. Eye Res. – volume: 38 start-page: 273 year: 2016 end-page: 289 ident: bib45 article-title: Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging publication-title: Age (Dordr) – volume: 14 start-page: 1034 year: 2015 end-page: 1044 ident: bib49 article-title: IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging publication-title: Aging Cell – volume: 21 start-page: 129 year: 2008 end-page: 136 ident: bib10 article-title: Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina publication-title: Cell Physiol. Biochem. – volume: 23 start-page: 1521 year: 2003 end-page: 1527 ident: bib38 article-title: Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 69 start-page: 808 year: 2006 end-page: 815 ident: bib16 article-title: Caveolins in vascular smooth muscle: form organizing function publication-title: Cardiovasc. Res. – volume: 75 start-page: 487 year: 1995 end-page: 517 ident: bib34 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol. Rev. – volume: 39 start-page: 129 year: 2017 end-page: 145 ident: bib3 article-title: IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan publication-title: Geroscience – volume: 5 start-page: 27 year: 2013 ident: bib41 article-title: Insulin-like growth factor-1 in CNS and cerebrovascular aging publication-title: Front. Aging Neurosci. – volume: 7 start-page: e49422 year: 2012 ident: bib22 article-title: Novel diabetic mouse models as tools for investigating diabetic retinopathy publication-title: PLoS One – volume: 137 start-page: 435 year: 2004 end-page: 444 ident: bib24 article-title: The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study publication-title: Am. J. Ophthalmol. – volume: 2016 start-page: 6021394 year: 2016 ident: bib29 article-title: Function, role, and clinical application of MicroRNAs in vascular aging publication-title: Biomed. Res. Int. – volume: 8 start-page: 157 year: 2008 end-page: 168 ident: bib37 article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span publication-title: Cell Metab. – volume: 20 start-page: 191 year: 1999 end-page: 200 ident: bib31 article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats publication-title: Neurobiol. Aging – volume: 14 start-page: 63 year: 2007 end-page: 76 ident: bib6 article-title: Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging publication-title: Microcirculation – volume: 94 start-page: e35 year: 2016 end-page: e42 ident: bib40 article-title: Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals publication-title: Acta Ophthalmol. – volume: 56 start-page: 84 year: 2017 end-page: 106 ident: bib14 article-title: Caveolins and caveolae in ocular physiology and pathophysiology publication-title: Prog. Retin. Eye Res. – volume: 16 start-page: 50 year: 2006 end-page: 55 ident: bib39 article-title: Caveolin-1: dual role for proliferation of vascular smooth muscle cells publication-title: Trends Cardiovasc. Med. – volume: 16 start-page: 469 year: 2017 end-page: 479 ident: bib46 article-title: Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype publication-title: Aging Cell – volume: 13 start-page: 172 year: 1970 end-page: 189 ident: bib7 article-title: The aortic tunica media in aging rats publication-title: Exp. Mol. Pathol. – volume: 469 start-page: 829 year: 2017 end-page: 842 ident: bib35 article-title: Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca(2+) channel activation in vascular myocytes publication-title: Pflugers Arch. – volume: 50 start-page: 645 year: 1984 end-page: 652 ident: bib26 article-title: Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening publication-title: Lab Invest. – volume: 17 start-page: 300 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib4 article-title: Retinal capillary rarefaction in patients with untreated mild-moderate hypertension publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-017-0732-x – volume: 34 start-page: 1887 year: 2014 ident: 10.1016/j.neurobiolaging.2018.06.039_bib48 article-title: IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.156 – volume: 38 start-page: 273 year: 2016 ident: 10.1016/j.neurobiolaging.2018.06.039_bib45 article-title: Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging publication-title: Age (Dordr) doi: 10.1007/s11357-016-9931-0 – volume: 67 start-page: 811 year: 2012 ident: 10.1016/j.neurobiolaging.2018.06.039_bib9 article-title: Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment publication-title: J. Gerontol. A. Biol. Sci. Med. Sci. doi: 10.1093/gerona/glr228 – volume: 56 start-page: 84 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib14 article-title: Caveolins and caveolae in ocular physiology and pathophysiology publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2016.09.005 – volume: 14 start-page: 1034 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib49 article-title: IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging publication-title: Aging Cell doi: 10.1111/acel.12372 – volume: 16 start-page: 50 year: 2006 ident: 10.1016/j.neurobiolaging.2018.06.039_bib39 article-title: Caveolin-1: dual role for proliferation of vascular smooth muscle cells publication-title: Trends Cardiovasc. Med. doi: 10.1016/j.tcm.2005.11.007 – volume: 38 start-page: 239 year: 2016 ident: 10.1016/j.neurobiolaging.2018.06.039_bib44 article-title: IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis publication-title: Age (Dordr) doi: 10.1007/s11357-016-9943-9 – volume: 5 start-page: 27 year: 2013 ident: 10.1016/j.neurobiolaging.2018.06.039_bib41 article-title: Insulin-like growth factor-1 in CNS and cerebrovascular aging publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00027 – volume: 5 start-page: e15697 year: 2010 ident: 10.1016/j.neurobiolaging.2018.06.039_bib18 article-title: Loss of caveolin-1 accelerates neurodegeneration and aging publication-title: PLoS One doi: 10.1371/journal.pone.0015697 – volume: 65 start-page: 1028 year: 2010 ident: 10.1016/j.neurobiolaging.2018.06.039_bib52 article-title: Mechanisms of vascular aging: new perspectives publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glq113 – volume: 107 start-page: 860 year: 2010 ident: 10.1016/j.neurobiolaging.2018.06.039_bib30 article-title: Notch3 is critical for proper angiogenesis and mural cell investment publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.218271 – volume: 15 start-page: CR436 year: 2009 ident: 10.1016/j.neurobiolaging.2018.06.039_bib25 article-title: Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis publication-title: Med. Sci. Monit. – volume: 9 start-page: e92428 year: 2014 ident: 10.1016/j.neurobiolaging.2018.06.039_bib43 article-title: Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice publication-title: PLoS One doi: 10.1371/journal.pone.0092428 – volume: 14 start-page: 63 year: 2007 ident: 10.1016/j.neurobiolaging.2018.06.039_bib6 article-title: Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging publication-title: Microcirculation doi: 10.1080/10739680601073451 – volume: 184 start-page: 541 year: 2014 ident: 10.1016/j.neurobiolaging.2018.06.039_bib13 article-title: Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.10.022 – volume: 97 start-page: 848 year: 2013 ident: 10.1016/j.neurobiolaging.2018.06.039_bib15 article-title: Effect of ageing on the retinal vascular responsiveness to flicker light in glaucoma patients and in ocular hypertension publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2012-302779 – volume: 27 start-page: 1838 year: 2006 ident: 10.1016/j.neurobiolaging.2018.06.039_bib21 article-title: Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.10.021 – volume: 94 start-page: e35 year: 2016 ident: 10.1016/j.neurobiolaging.2018.06.039_bib40 article-title: Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals publication-title: Acta Ophthalmol. doi: 10.1111/aos.12786 – volume: 13 start-page: 172 year: 1970 ident: 10.1016/j.neurobiolaging.2018.06.039_bib7 article-title: The aortic tunica media in aging rats publication-title: Exp. Mol. Pathol. doi: 10.1016/0014-4800(70)90004-3 – volume: 188 start-page: 221 year: 2006 ident: 10.1016/j.neurobiolaging.2018.06.039_bib33 article-title: Aging, smooth muscle cells and vascular pathobiology: implications for atherosclerosis publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2006.01.018 – volume: 35 start-page: 527 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib42 article-title: Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.256 – volume: 312 start-page: H1 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib51 article-title: Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00581.2016 – volume: 21 start-page: 129 year: 2008 ident: 10.1016/j.neurobiolaging.2018.06.039_bib10 article-title: Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina publication-title: Cell Physiol. Biochem. doi: 10.1159/000113755 – volume: 20 start-page: 191 year: 1999 ident: 10.1016/j.neurobiolaging.2018.06.039_bib31 article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(99)00032-9 – volume: 137 start-page: 435 year: 2004 ident: 10.1016/j.neurobiolaging.2018.06.039_bib24 article-title: The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2003.10.020 – volume: 17 start-page: 497 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib20 article-title: Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae publication-title: Neoplasia doi: 10.1016/j.neo.2015.06.001 – volume: 33 start-page: 1732 year: 2013 ident: 10.1016/j.neurobiolaging.2018.06.039_bib47 article-title: Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.143 – volume: 7 start-page: e49422 year: 2012 ident: 10.1016/j.neurobiolaging.2018.06.039_bib22 article-title: Novel diabetic mouse models as tools for investigating diabetic retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0049422 – volume: 22 start-page: 423 year: 2010 ident: 10.1016/j.neurobiolaging.2018.06.039_bib23 article-title: Caveolin-1 regulates gamma-secretase-mediated AbetaPP processing by modulating spatial distribution of gamma-secretase in membrane publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-100531 – volume: 14 start-page: 98 year: 2013 ident: 10.1016/j.neurobiolaging.2018.06.039_bib36 article-title: Caveolae as plasma membrane sensors, protectors and organizers. Nature reviews publication-title: Mol. Cel. Biol. – volume: 96 start-page: 499 year: 2008 ident: 10.1016/j.neurobiolaging.2018.06.039_bib53 article-title: An overview of Notch3 function in vascular smooth muscle cells publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2007.07.006 – volume: 135 start-page: 14 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib5 article-title: Imaging of cellular aging in human retinal blood vessels publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2015.03.019 – volume: 35 start-page: 409 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib19 article-title: Notch3 is necessary for blood vessel integrity in the central nervous system publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.304849 – volume: 469 start-page: 829 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib35 article-title: Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca(2+) channel activation in vascular myocytes publication-title: Pflugers Arch. doi: 10.1007/s00424-017-1957-3 – volume: 14 start-page: 400 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib50 article-title: Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection publication-title: Aging Cell doi: 10.1111/acel.12315 – volume: 292 start-page: H1584 year: 2007 ident: 10.1016/j.neurobiolaging.2018.06.039_bib1 article-title: Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00584.2006 – volume: 31 start-page: 443 year: 2016 ident: 10.1016/j.neurobiolaging.2018.06.039_bib2 article-title: IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms publication-title: J. Bone Miner Res. doi: 10.1002/jbmr.2689 – volume: 16 start-page: 469 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib46 article-title: Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype publication-title: Aging Cell doi: 10.1111/acel.12583 – volume: 39 start-page: 2115 year: 2015 ident: 10.1016/j.neurobiolaging.2018.06.039_bib17 article-title: Ethanol inhibits gamma-secretase proteolytic activity in vascular smooth muscle cells publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/acer.12875 – volume: 49 start-page: 2094 year: 2008 ident: 10.1016/j.neurobiolaging.2018.06.039_bib27 article-title: Effect of aging on retinal artery blood column diameter measured along the vessel axis publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.07-0711 – volume: 23 start-page: 1521 year: 2003 ident: 10.1016/j.neurobiolaging.2018.06.039_bib38 article-title: Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000081743.35125.05 – volume: 1 start-page: 4 year: 2009 ident: 10.1016/j.neurobiolaging.2018.06.039_bib32 article-title: Resveratrol preserves cerebrovascular density and cognitive function in aging mice publication-title: Front. Aging Neurosci. doi: 10.3389/neuro.24.004.2009 – volume: 39 start-page: 129 year: 2017 ident: 10.1016/j.neurobiolaging.2018.06.039_bib3 article-title: IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan publication-title: Geroscience doi: 10.1007/s11357-017-9971-0 – volume: 50 start-page: 645 year: 1984 ident: 10.1016/j.neurobiolaging.2018.06.039_bib26 article-title: Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening publication-title: Lab Invest. – volume: 8 start-page: 157 year: 2008 ident: 10.1016/j.neurobiolaging.2018.06.039_bib37 article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.06.011 – volume: 170 start-page: 388 year: 2007 ident: 10.1016/j.neurobiolaging.2018.06.039_bib8 article-title: Vasculoprotective effects of anti-TNFalfa treatment in aging publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2007.060708 – volume: 51 start-page: 2165 year: 2010 ident: 10.1016/j.neurobiolaging.2018.06.039_bib28 article-title: Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.09-3649 – volume: 75 start-page: 487 year: 1995 ident: 10.1016/j.neurobiolaging.2018.06.039_bib34 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol. Rev. doi: 10.1152/physrev.1995.75.3.487 – volume: 2016 start-page: 6021394 year: 2016 ident: 10.1016/j.neurobiolaging.2018.06.039_bib29 article-title: Function, role, and clinical application of MicroRNAs in vascular aging publication-title: Biomed. Res. Int. doi: 10.1155/2016/6021394 – volume: 78 start-page: 298 year: 1981 ident: 10.1016/j.neurobiolaging.2018.06.039_bib11 article-title: Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.78.1.298 – volume: 69 start-page: 808 year: 2006 ident: 10.1016/j.neurobiolaging.2018.06.039_bib16 article-title: Caveolins in vascular smooth muscle: form organizing function publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2005.11.024 – volume: 54 start-page: ORSF23 year: 2013 ident: 10.1016/j.neurobiolaging.2018.06.039_bib12 article-title: Anatomic alterations in aging and age-related diseases of the eye publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-12711 |
SSID | ssj0007476 |
Score | 2.362244 |
Snippet | Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases.... Cerebral microcirculation is critical for the preservation of brain health and vascular impairment is associated with age-related neurodegenerative diseases.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Aging Alpha smooth muscle actin Animals Apoptosis Arterioles - physiology Caveolin 1 - genetics Caveolin 1 - physiology Caveolin-1 Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - physiology Insulin-like growth factor-1 Male Mice, Inbred C57BL Mice, Knockout Muscle Contraction Muscle, Smooth, Vascular - physiology Retina Retinal Artery - physiology Vasculature |
Title | Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458018302525 https://dx.doi.org/10.1016/j.neurobiolaging.2018.06.039 https://www.ncbi.nlm.nih.gov/pubmed/30059797 https://www.proquest.com/docview/2080850657 https://pubmed.ncbi.nlm.nih.gov/PMC6162181 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELWqVkJcEKV8BEo1SIjbks3aXttCCEUVVQDRC1TqbWV7vRCUbCo2QeoF8dM74_2AAIcilFN2bcfxzI4nzntvGHs6CZTkpzwRoZSJ8E4khpQwZYbOnNq8EoHOO96f5rMz8fZcnu-w454LQ7DKLva3MT1G6-7KuFvN8cV8Pv6AyYkSEiMsSVjJjIjmQijSz3_-_SfMA9PlvKVMk763Tm_g_AaMV9SMJLWjWBGIgF6tmieVDv_7NvVnGvo7mvKX7enkNrvV5ZUwbae-z3ZCfYcdTGv8Tb28hGcQkZ7xCP2A_Zh-CkkksYQSKtrMYIGTgFUFEblOXIdFgB6kCs1yhfaE5abBoYGO-huY10D8R_rMiAql__fxagPWYwNSasax3SV4-y1QXaBkAmUgtQqiet5lZyevPx7Pkq4SQ-KlzNeJwjSJC0E8X22VNtalPCtxaZ3LlEm1C6l32pWalyR3KEPmeOWs15wrX5WS32O79aoODxgYiy8fcqMDKdfn1lc21cKWnDvjUzFiL_qFL3wnU07VMhZFj0f7UmybrSCzFQTP42bE5ND7opXruGa_l72Ni56SikG0wH3lmv1fDf233PcfRnjSu1aBTzjZ0tZhtWmwkY66glKN2P3W1YbvRsUGjDJ4R2054dCA1MO379Tzz1FFPJ_klN49_O-ZP2I36V1L0Dxku-uvm_AYM7W1O4qP4hHbm755Nzu9AkYwRPc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYSNtepjE21jGYJ017i5rGdmILIVShoTKgLwOJN8t2nK2oTdHSTuJtf_runA_RjQcmlDd_xfFdzhfnd78j5NPAo5Mfs4j7XETcWR4pZMIUCShzbNKCezzvOB-no0v-9UpcrZGjNhYGYZWN7a9terDWTUm_Wc3-zWTS_wbOScYFWFiksBKJeEI2kJ0KlH1jeHI6GncGGTzmtI6aRopvGT-FKXYwr0AbiYRHISkQYr1qQk_MHn7_TvWvJ_o3oPLODnX8krxoXEs6rGe_SdZ8-YpsDUv4rJ7d0s80gD3DKfoW-T387qMQx-JzWuB-RqcwCTovaACvY7jD1NMWp0qr2RxESmfLCoameNpf0UlJMQQS7xmAofiLH0orahw0QLJmGNveUmd-eUwNFA1o7pGwAqM9X5PL4y8XR6OoScYQOSHSRZSBp8Q4x1BfaTKpjI1ZksPSWptkKpbWx85Km0uWI-Oh8IllhTVOMpa5IhfsDVkv56V_S6gycDmfKumRvD41rjCx5CZnzCoX8x7Zbxdeu4apHBNmTHULSbvWq2LTKDaNCD2mekR0vW9qxo4H9jtoZazbqFSwoxq2lgf2P-z6r2jwf4zwsVUtDS85ytKUfr6soJEM1IIi65HtWtW6Z8N8AypTUJOtKGHXAAnEV2vKyY9AJJ4OUvTw3j165h_Is9HF-Zk-Oxmf7pDnWFPHa74n64ufS78LjtvC7jUv5h8v_0eo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+focal+loss+of+contractile+vascular+smooth+muscle+cells+in+retinal+arterioles+is+accelerated+by+caveolin-1+deficiency&rft.jtitle=Neurobiology+of+aging&rft.au=Reagan%2C+Alaina+M.&rft.au=Gu%2C+Xiaowu&rft.au=Paudel%2C+Sijalu&rft.au=Ashpole%2C+Nicole+M.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2018.06.039&rft.externalDocID=S0197458018302525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon |