Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency

Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the a...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 71; pp. 1 - 12
Main Authors Reagan, Alaina M., Gu, Xiaowu, Paudel, Sijalu, Ashpole, Nicole M., Zalles, Michelle, Sonntag, William E., Ungvari, Zoltan, Csiszar, Anna, Otalora, Laura, Freeman, Willard M., Stout, Michael B., Elliott, Michael H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN0197-4580
1558-1497
1558-1497
DOI10.1016/j.neurobiolaging.2018.06.039

Cover

Loading…
Abstract Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
AbstractList Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Cerebral microcirculation is critical for the preservation of brain health and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain and the retina provides the advantage that the entire vascular bed is visible, en face . In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1 (Cav-1). Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1 (IGF-1). The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Author Ungvari, Zoltan
Freeman, Willard M.
Stout, Michael B.
Otalora, Laura
Paudel, Sijalu
Ashpole, Nicole M.
Sonntag, William E.
Csiszar, Anna
Reagan, Alaina M.
Zalles, Michelle
Gu, Xiaowu
Elliott, Michael H.
AuthorAffiliation a Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
c Department of Cell Biology, Cameron University, Lawton, OK, USA
d Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA
h Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
f Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
g Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
b Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
e Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
AuthorAffiliation_xml – name: g Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– name: f Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– name: a Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– name: b Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– name: d Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA
– name: c Department of Cell Biology, Cameron University, Lawton, OK, USA
– name: e Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– name: h Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
Author_xml – sequence: 1
  givenname: Alaina M.
  surname: Reagan
  fullname: Reagan, Alaina M.
  organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 2
  givenname: Xiaowu
  orcidid: 0000-0003-2266-5516
  surname: Gu
  fullname: Gu, Xiaowu
  organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 3
  givenname: Sijalu
  surname: Paudel
  fullname: Paudel, Sijalu
  organization: Department of Cell Biology, Cameron University, Lawton, OK, USA
– sequence: 4
  givenname: Nicole M.
  surname: Ashpole
  fullname: Ashpole, Nicole M.
  organization: Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA
– sequence: 5
  givenname: Michelle
  surname: Zalles
  fullname: Zalles, Michelle
  organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 6
  givenname: William E.
  surname: Sonntag
  fullname: Sonntag, William E.
  organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 7
  givenname: Zoltan
  surname: Ungvari
  fullname: Ungvari, Zoltan
  organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 8
  givenname: Anna
  surname: Csiszar
  fullname: Csiszar, Anna
  organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 9
  givenname: Laura
  surname: Otalora
  fullname: Otalora, Laura
  organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 10
  givenname: Willard M.
  surname: Freeman
  fullname: Freeman, Willard M.
  organization: Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
– sequence: 11
  givenname: Michael B.
  surname: Stout
  fullname: Stout, Michael B.
  organization: Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
– sequence: 12
  givenname: Michael H.
  surname: Elliott
  fullname: Elliott, Michael H.
  email: michael-elliott@ouhsc.edu
  organization: Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30059797$$D View this record in MEDLINE/PubMed
BookMark eNqNksFvFCEUxompsdvqv2A4ePAyI8wMA5MYk1rbatLEi54JMG-2rCxUYDbZm3-67G5rbE97Inl87_d438cZOvHBA0LvKKkpof2HVe1hjkHb4NTS-mXdECpq0tekHV6gBWVMVLQb-AlaEDrwqmOCnKKzlFaEEN7x_hU6bQlhAx_4Av25WEIVwakMI56CUQ67kBIOEzbB56hMtg7wRiUzOxVxWoeQ7_B6TqaUDTiXsPU4Qra-9KqYIZaXQakmrEwRQNyz9RYbtYHgrK8oHmGyxoI329fo5aRcgjcP5zn6eX314_Jrdfv95tvlxW1lGOtzxQnr265jDW2E4mJQmrTNWNbRuuEDERqI0UKPoh1p2w0MGt1OWhnRttxMI2vP0acD937WaxgN7JZz8j7atYpbGZSVT2-8vZPLsJE97RsqaAG8fwDE8HuGlOXapp0BykOYk2yIIIKRnvEiffv_rH9DHm0vgs8HgYnF7AiTNDarbPeOWycpkbus5Uo-zVruspaklyXrAvn4DPI458j260M7FNc3FqJM-0RgtBFMlmOwx4K-PAOZErItX-kXbI_H_AW0F-sY
CitedBy_id crossref_primary_10_1167_iovs_18_26441
crossref_primary_10_15252_emmm_202215809
crossref_primary_10_1167_iovs_18_26126
crossref_primary_10_3390_ijms20153608
crossref_primary_10_1152_ajpheart_00288_2023
crossref_primary_10_1007_s11357_023_01024_9
crossref_primary_10_1364_BOE_413149
crossref_primary_10_3389_fnins_2023_1289894
crossref_primary_10_1007_s11357_025_01621_w
crossref_primary_10_1369_00221554251323655
crossref_primary_10_1146_annurev_vision_091517_034416
crossref_primary_10_1016_j_preteyeres_2022_101094
crossref_primary_10_1172_JCI172841
crossref_primary_10_1152_ajpheart_00220_2020
crossref_primary_10_3390_biomedicines12040868
crossref_primary_10_1186_s10020_023_00749_9
Cites_doi 10.1186/s12872-017-0732-x
10.1038/jcbfm.2014.156
10.1007/s11357-016-9931-0
10.1093/gerona/glr228
10.1016/j.preteyeres.2016.09.005
10.1111/acel.12372
10.1016/j.tcm.2005.11.007
10.1007/s11357-016-9943-9
10.3389/fnagi.2013.00027
10.1371/journal.pone.0015697
10.1093/gerona/glq113
10.1161/CIRCRESAHA.110.218271
10.1371/journal.pone.0092428
10.1080/10739680601073451
10.1016/j.ajpath.2013.10.022
10.1136/bjophthalmol-2012-302779
10.1016/j.neurobiolaging.2005.10.021
10.1111/aos.12786
10.1016/0014-4800(70)90004-3
10.1016/j.atherosclerosis.2006.01.018
10.1038/jcbfm.2014.256
10.1152/ajpheart.00581.2016
10.1159/000113755
10.1016/S0197-4580(99)00032-9
10.1016/j.ajo.2003.10.020
10.1016/j.neo.2015.06.001
10.1038/jcbfm.2013.143
10.1371/journal.pone.0049422
10.3233/JAD-2010-100531
10.1016/j.pbiomolbio.2007.07.006
10.1016/j.exer.2015.03.019
10.1161/ATVBAHA.114.304849
10.1007/s00424-017-1957-3
10.1111/acel.12315
10.1152/ajpheart.00584.2006
10.1002/jbmr.2689
10.1111/acel.12583
10.1111/acer.12875
10.1167/iovs.07-0711
10.1161/01.ATV.0000081743.35125.05
10.3389/neuro.24.004.2009
10.1007/s11357-017-9971-0
10.1016/j.cmet.2008.06.011
10.2353/ajpath.2007.060708
10.1167/iovs.09-3649
10.1152/physrev.1995.75.3.487
10.1155/2016/6021394
10.1073/pnas.78.1.298
10.1016/j.cardiores.2005.11.024
10.1167/iovs.13-12711
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.neurobiolaging.2018.06.039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage 12
ExternalDocumentID PMC6162181
30059797
10_1016_j_neurobiolaging_2018_06_039
S0197458018302525
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: P30 EY021725
– fundername: NIA NIH HHS
  grantid: R01 AG038747
– fundername: NINDS NIH HHS
  grantid: R01 NS056218
– fundername: NIA NIH HHS
  grantid: R01 AG055395
– fundername: NINDS NIH HHS
  grantid: R01 NS100782
– fundername: NEI NIH HHS
  grantid: R01 EY021716
– fundername: NEI NIH HHS
  grantid: R01 EY019494
– fundername: NEI NIH HHS
  grantid: R21 EY024520
– fundername: NEI NIH HHS
  grantid: T32 EY023202
– fundername: NIA NIH HHS
  grantid: K99 AG051661
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c556t-705634452128a789ab032d747bb27908be0cb8bd83d13495e2b3fbac8337cfd53
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Thu Aug 21 17:47:32 EDT 2025
Thu Jul 10 23:02:00 EDT 2025
Thu Apr 03 07:07:18 EDT 2025
Tue Jul 01 01:28:22 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 23 02:45:03 EST 2024
Tue Aug 26 16:35:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Caveolin-1
Aging
Insulin-like growth factor-1
Alpha smooth muscle actin
Retina
Vasculature
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-705634452128a789ab032d747bb27908be0cb8bd83d13495e2b3fbac8337cfd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX
ORCID 0000-0003-2266-5516
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0197458018302525
PMID 30059797
PQID 2080850657
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6162181
proquest_miscellaneous_2080850657
pubmed_primary_30059797
crossref_citationtrail_10_1016_j_neurobiolaging_2018_06_039
crossref_primary_10_1016_j_neurobiolaging_2018_06_039
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2018_06_039
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2018_06_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ashpole, Logan, Yabluchanskiy, Mitschelen, Yan, Farley, Hodges, Ungvari, Csiszar, Chen, Georgescu, Hubbard, Ikeno, Sonntag (bib3) 2017; 39
Pearson, Baur, Lewis, Peshkin, Price, Labinskyy, Swindell, Kamara, Minor, Perez, Jamieson, Zhang, Dunn, Sharma, Pleshko, Woollett, Csiszar, Ikeno, Le Couteur, Elliott, Becker, Navas, Ingram, Wolf, Ungvari, Sinclair, de Cabo (bib37) 2008; 8
Hughes, Gardiner, Hu, Baxter, Rosinova, Chan-Ling (bib21) 2006; 27
Lynch, Cooney, Bennett, Thornton, Khan, Ingram, Sonntag (bib31) 1999; 20
Bosch, Harazny, Kistner, Friedrich, Wojtkiewicz, Schmieder (bib4) 2017; 17
Head, Peart, Panneerselvam, Yokoyama, Pearn, Niesman, Bonds, Schilling, Miyanohara, Headrick, Ali, Roth, Patel, Patel (bib18) 2010; 5
Toth, Tucsek, Sosnowska, Gautam, Mitschelen, Tarantini, Deak, Koller, Sonntag, Csiszar, Ungvari (bib47) 2013; 33
Toth, Tarantini, Springo, Tucsek, Gautam, Giles, Wren, Koller, Sonntag, Csiszar, Ungvari (bib50) 2015; 14
Feng, Pfister, Schreiter, Wang, Stock, Vom Hagen, Wolburg, Hoffmann, Deutsch, Hammes (bib10) 2008; 21
Tarantini, Tucsek, Valcarcel-Ares, Toth, Gautam, Giles, Ballabh, Wei, Wren, Ashpole, Sonntag, Ungvari, Csiszar (bib45) 2016; 38
Sonntag, Deak, Ashpole, Toth, Csiszar, Freeman, Ungvari (bib41) 2013; 5
Tarantini, Valcarcel-Ares, Yabluchanskiy, Springo, Fulop, Ashpole, Gautam, Giles, Wren, Sonntag, Csiszar, Ungvari (bib46) 2017; 16
Kador, Zhang, Makita, Zhang, Guo, Randazzo, Kawada, Haider, Blessing (bib22) 2012; 7
Tarantini, Giles, Wren, Ashpole, Valcarcel-Ares, Wei, Sonntag, Ungvari, Csiszar (bib44) 2016; 38
Gabbiani, Schmid, Winter, Chaponnier, de Ckhastonay, Vandekerckhove, Weber, Franke (bib11) 1981; 78
Ashpole, Herron, Mitschelen, Farley, Logan, Yan, Ungvari, Hodges, Csiszar, Ikeno, Humphrey, Sonntag (bib2) 2016; 31
Gu, Fliesler, Zhao, Stallcup, Cohen, Elliott (bib13) 2014; 184
Peterson, Guicciardi, Gulati, Kleppe, Mueske, Mookadam, Sowa, Gores, Sessa, Simari (bib38) 2003; 23
Orlandi, Bochaton-Piallat, Gabbiani, Spagnoli (bib33) 2006; 188
Parton, del Pozo (bib36) 2013; 14
Gu, Reagan, McClellan, Elliott (bib14) 2017; 56
Catita, Lopez-Luppo, Ramos, Nacher, Navarro, Carretero, Sanchez-Chardi, Mendes-Jorge, Rodriguez-Baeza, Ruberte (bib5) 2015; 135
Chan-Ling, Hughes, Baxter, Rosinova, McGregor, Morcos, van Nieuwenhuyzen, Hu (bib6) 2007; 14
Grossniklaus, Nickerson, Edelhauser, Bergman, Berglin (bib12) 2013; 54
Springo, Toth, Tarantini, Ashpole, Tucsek, Sonntag, Csiszar, Koller, Ungvari (bib42) 2015; 35
Adebiyi, Zhao, Cheranov, Ahmed, Jaggar (bib1) 2007; 292
Sward, Albinsson, Rippe (bib43) 2014; 9
Csiszar, Labinskyy, Smith, Rivera, Orosz, Ungvari (bib8) 2007; 170
Kocher, Skalli, Bloom, Gabbiani (bib26) 1984; 50
Cliff (bib7) 1970; 13
Sedding, Braun-Dullaeus (bib39) 2006; 16
Kneser, Kohlmann, Pokorny, Tost (bib25) 2009; 15
Toth, Tarantini, Csiszar, Ungvari (bib51) 2017; 312
Toth, Tarantini, Ashpole, Tucsek, Milne, Valcarcel-Ares, Menyhart, Farkas, Sonntag, Csiszar, Ungvari (bib49) 2015; 14
Wang, Baron, Trump (bib53) 2008; 96
Gugleta, Turksever, Polunina, Orgul (bib15) 2013; 97
Park, Shin, Park, Yoou, Park, Kang, Sung, Kim, Park, Kim, Cho, Bae (bib35) 2017; 469
Klein, Klein, Tomany, Wong (bib24) 2004; 137
Hsu, Kulp, Huang, Tu, Salunke, Sullivan, Sun, Wicha, Shapiro, Chen (bib20) 2015; 17
Liu, Zhang, Kennard, Caldwell, Lilly (bib30) 2010; 107
Hardin, Vallejo (bib16) 2006; 69
Henshall, Keller, He, Johansson, Wallgard, Raschperger, Mae, Jin, Betsholtz, Lendahl (bib19) 2015; 35
Kotliar, Nagel, Vilser, Seidova, Lanzl (bib28) 2010; 51
Hatch, Morrow, Liu, Cahill, Redmond (bib17) 2015; 39
Lin, Zhan, Wang, Tan, Chen, Deng, Liu (bib29) 2016; 2016
Kapoor, Hsu, Wang, Wu, Lin, Lee, Yen, Liang, Liao (bib23) 2010; 22
Owens (bib34) 1995; 75
Csiszar, Sosnowska, Wang, Lakatta, Sonntag, Ungvari (bib9) 2012; 67
Kotliar, Mucke, Vilser, Schilling, Lanzl (bib27) 2008; 49
Oomen, Farkas, Roman, van der Beek, Luiten, Meerlo (bib32) 2009; 1
Ungvari, Kaley, de Cabo, Sonntag, Csiszar (bib52) 2010; 65
Toth, Tucsek, Tarantini, Sosnowska, Gautam, Mitschelen, Koller, Sonntag, Csiszar, Ungvari (bib48) 2014; 34
Seshadri, Ekart, Gherghel (bib40) 2016; 94
Kador (10.1016/j.neurobiolaging.2018.06.039_bib22) 2012; 7
Sedding (10.1016/j.neurobiolaging.2018.06.039_bib39) 2006; 16
Hatch (10.1016/j.neurobiolaging.2018.06.039_bib17) 2015; 39
Csiszar (10.1016/j.neurobiolaging.2018.06.039_bib9) 2012; 67
Orlandi (10.1016/j.neurobiolaging.2018.06.039_bib33) 2006; 188
Toth (10.1016/j.neurobiolaging.2018.06.039_bib47) 2013; 33
Sonntag (10.1016/j.neurobiolaging.2018.06.039_bib41) 2013; 5
Gu (10.1016/j.neurobiolaging.2018.06.039_bib13) 2014; 184
Lin (10.1016/j.neurobiolaging.2018.06.039_bib29) 2016; 2016
Pearson (10.1016/j.neurobiolaging.2018.06.039_bib37) 2008; 8
Kapoor (10.1016/j.neurobiolaging.2018.06.039_bib23) 2010; 22
Peterson (10.1016/j.neurobiolaging.2018.06.039_bib38) 2003; 23
Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib46) 2017; 16
Toth (10.1016/j.neurobiolaging.2018.06.039_bib49) 2015; 14
Head (10.1016/j.neurobiolaging.2018.06.039_bib18) 2010; 5
Cliff (10.1016/j.neurobiolaging.2018.06.039_bib7) 1970; 13
Ungvari (10.1016/j.neurobiolaging.2018.06.039_bib52) 2010; 65
Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib45) 2016; 38
Hsu (10.1016/j.neurobiolaging.2018.06.039_bib20) 2015; 17
Wang (10.1016/j.neurobiolaging.2018.06.039_bib53) 2008; 96
Feng (10.1016/j.neurobiolaging.2018.06.039_bib10) 2008; 21
Gu (10.1016/j.neurobiolaging.2018.06.039_bib14) 2017; 56
Lynch (10.1016/j.neurobiolaging.2018.06.039_bib31) 1999; 20
Kocher (10.1016/j.neurobiolaging.2018.06.039_bib26) 1984; 50
Henshall (10.1016/j.neurobiolaging.2018.06.039_bib19) 2015; 35
Klein (10.1016/j.neurobiolaging.2018.06.039_bib24) 2004; 137
Toth (10.1016/j.neurobiolaging.2018.06.039_bib51) 2017; 312
Ashpole (10.1016/j.neurobiolaging.2018.06.039_bib2) 2016; 31
Kneser (10.1016/j.neurobiolaging.2018.06.039_bib25) 2009; 15
Tarantini (10.1016/j.neurobiolaging.2018.06.039_bib44) 2016; 38
Bosch (10.1016/j.neurobiolaging.2018.06.039_bib4) 2017; 17
Kotliar (10.1016/j.neurobiolaging.2018.06.039_bib28) 2010; 51
Springo (10.1016/j.neurobiolaging.2018.06.039_bib42) 2015; 35
Liu (10.1016/j.neurobiolaging.2018.06.039_bib30) 2010; 107
Catita (10.1016/j.neurobiolaging.2018.06.039_bib5) 2015; 135
Toth (10.1016/j.neurobiolaging.2018.06.039_bib50) 2015; 14
Chan-Ling (10.1016/j.neurobiolaging.2018.06.039_bib6) 2007; 14
Toth (10.1016/j.neurobiolaging.2018.06.039_bib48) 2014; 34
Hughes (10.1016/j.neurobiolaging.2018.06.039_bib21) 2006; 27
Seshadri (10.1016/j.neurobiolaging.2018.06.039_bib40) 2016; 94
Owens (10.1016/j.neurobiolaging.2018.06.039_bib34) 1995; 75
Adebiyi (10.1016/j.neurobiolaging.2018.06.039_bib1) 2007; 292
Gabbiani (10.1016/j.neurobiolaging.2018.06.039_bib11) 1981; 78
Park (10.1016/j.neurobiolaging.2018.06.039_bib35) 2017; 469
Sward (10.1016/j.neurobiolaging.2018.06.039_bib43) 2014; 9
Hardin (10.1016/j.neurobiolaging.2018.06.039_bib16) 2006; 69
Oomen (10.1016/j.neurobiolaging.2018.06.039_bib32) 2009; 1
Kotliar (10.1016/j.neurobiolaging.2018.06.039_bib27) 2008; 49
Grossniklaus (10.1016/j.neurobiolaging.2018.06.039_bib12) 2013; 54
Parton (10.1016/j.neurobiolaging.2018.06.039_bib36) 2013; 14
Csiszar (10.1016/j.neurobiolaging.2018.06.039_bib8) 2007; 170
Ashpole (10.1016/j.neurobiolaging.2018.06.039_bib3) 2017; 39
Gugleta (10.1016/j.neurobiolaging.2018.06.039_bib15) 2013; 97
References_xml – volume: 96
  start-page: 499
  year: 2008
  end-page: 509
  ident: bib53
  article-title: An overview of Notch3 function in vascular smooth muscle cells
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 1
  start-page: 4
  year: 2009
  ident: bib32
  article-title: Resveratrol preserves cerebrovascular density and cognitive function in aging mice
  publication-title: Front. Aging Neurosci.
– volume: 33
  start-page: 1732
  year: 2013
  end-page: 1742
  ident: bib47
  article-title: Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 14
  start-page: 98
  year: 2013
  end-page: 112
  ident: bib36
  article-title: Caveolae as plasma membrane sensors, protectors and organizers. Nature reviews
  publication-title: Mol. Cel. Biol.
– volume: 54
  start-page: ORSF23
  year: 2013
  end-page: ORSF27
  ident: bib12
  article-title: Anatomic alterations in aging and age-related diseases of the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 49
  start-page: 2094
  year: 2008
  end-page: 2102
  ident: bib27
  article-title: Effect of aging on retinal artery blood column diameter measured along the vessel axis
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 51
  start-page: 2165
  year: 2010
  end-page: 2172
  ident: bib28
  article-title: Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 292
  start-page: H1584
  year: 2007
  end-page: H1592
  ident: bib1
  article-title: Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 170
  start-page: 388
  year: 2007
  end-page: 698
  ident: bib8
  article-title: Vasculoprotective effects of anti-TNFalfa treatment in aging
  publication-title: Am. J. Pathol.
– volume: 97
  start-page: 848
  year: 2013
  end-page: 851
  ident: bib15
  article-title: Effect of ageing on the retinal vascular responsiveness to flicker light in glaucoma patients and in ocular hypertension
  publication-title: Br. J. Ophthalmol.
– volume: 17
  start-page: 497
  year: 2015
  end-page: 508
  ident: bib20
  article-title: Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae
  publication-title: Neoplasia
– volume: 14
  start-page: 400
  year: 2015
  end-page: 408
  ident: bib50
  article-title: Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection
  publication-title: Aging Cell
– volume: 9
  start-page: e92428
  year: 2014
  ident: bib43
  article-title: Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice
  publication-title: PLoS One
– volume: 39
  start-page: 2115
  year: 2015
  end-page: 2122
  ident: bib17
  article-title: Ethanol inhibits gamma-secretase proteolytic activity in vascular smooth muscle cells
  publication-title: Alcohol. Clin. Exp. Res.
– volume: 22
  start-page: 423
  year: 2010
  end-page: 442
  ident: bib23
  article-title: Caveolin-1 regulates gamma-secretase-mediated AbetaPP processing by modulating spatial distribution of gamma-secretase in membrane
  publication-title: J. Alzheimers Dis.
– volume: 312
  start-page: H1
  year: 2017
  end-page: H20
  ident: bib51
  article-title: Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 67
  start-page: 811
  year: 2012
  end-page: 820
  ident: bib9
  article-title: Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment
  publication-title: J. Gerontol. A. Biol. Sci. Med. Sci.
– volume: 65
  start-page: 1028
  year: 2010
  end-page: 1041
  ident: bib52
  article-title: Mechanisms of vascular aging: new perspectives
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 188
  start-page: 221
  year: 2006
  end-page: 230
  ident: bib33
  article-title: Aging, smooth muscle cells and vascular pathobiology: implications for atherosclerosis
  publication-title: Atherosclerosis
– volume: 17
  start-page: 300
  year: 2017
  ident: bib4
  article-title: Retinal capillary rarefaction in patients with untreated mild-moderate hypertension
  publication-title: BMC Cardiovasc. Disord.
– volume: 15
  start-page: CR436
  year: 2009
  end-page: CR441
  ident: bib25
  article-title: Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis
  publication-title: Med. Sci. Monit.
– volume: 5
  start-page: e15697
  year: 2010
  ident: bib18
  article-title: Loss of caveolin-1 accelerates neurodegeneration and aging
  publication-title: PLoS One
– volume: 27
  start-page: 1838
  year: 2006
  end-page: 1847
  ident: bib21
  article-title: Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability
  publication-title: Neurobiol. Aging
– volume: 107
  start-page: 860
  year: 2010
  end-page: 870
  ident: bib30
  article-title: Notch3 is critical for proper angiogenesis and mural cell investment
  publication-title: Circ. Res.
– volume: 35
  start-page: 409
  year: 2015
  end-page: 420
  ident: bib19
  article-title: Notch3 is necessary for blood vessel integrity in the central nervous system
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 38
  start-page: 239
  year: 2016
  end-page: 258
  ident: bib44
  article-title: IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis
  publication-title: Age (Dordr)
– volume: 35
  start-page: 527
  year: 2015
  end-page: 530
  ident: bib42
  article-title: Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 34
  start-page: 1887
  year: 2014
  end-page: 1897
  ident: bib48
  article-title: IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 31
  start-page: 443
  year: 2016
  end-page: 454
  ident: bib2
  article-title: IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms
  publication-title: J. Bone Miner Res.
– volume: 78
  start-page: 298
  year: 1981
  end-page: 302
  ident: bib11
  article-title: Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 184
  start-page: 541
  year: 2014
  end-page: 555
  ident: bib13
  article-title: Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration
  publication-title: Am. J. Pathol.
– volume: 135
  start-page: 14
  year: 2015
  end-page: 25
  ident: bib5
  article-title: Imaging of cellular aging in human retinal blood vessels
  publication-title: Exp. Eye Res.
– volume: 38
  start-page: 273
  year: 2016
  end-page: 289
  ident: bib45
  article-title: Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging
  publication-title: Age (Dordr)
– volume: 14
  start-page: 1034
  year: 2015
  end-page: 1044
  ident: bib49
  article-title: IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging
  publication-title: Aging Cell
– volume: 21
  start-page: 129
  year: 2008
  end-page: 136
  ident: bib10
  article-title: Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina
  publication-title: Cell Physiol. Biochem.
– volume: 23
  start-page: 1521
  year: 2003
  end-page: 1527
  ident: bib38
  article-title: Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 69
  start-page: 808
  year: 2006
  end-page: 815
  ident: bib16
  article-title: Caveolins in vascular smooth muscle: form organizing function
  publication-title: Cardiovasc. Res.
– volume: 75
  start-page: 487
  year: 1995
  end-page: 517
  ident: bib34
  article-title: Regulation of differentiation of vascular smooth muscle cells
  publication-title: Physiol. Rev.
– volume: 39
  start-page: 129
  year: 2017
  end-page: 145
  ident: bib3
  article-title: IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan
  publication-title: Geroscience
– volume: 5
  start-page: 27
  year: 2013
  ident: bib41
  article-title: Insulin-like growth factor-1 in CNS and cerebrovascular aging
  publication-title: Front. Aging Neurosci.
– volume: 7
  start-page: e49422
  year: 2012
  ident: bib22
  article-title: Novel diabetic mouse models as tools for investigating diabetic retinopathy
  publication-title: PLoS One
– volume: 137
  start-page: 435
  year: 2004
  end-page: 444
  ident: bib24
  article-title: The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study
  publication-title: Am. J. Ophthalmol.
– volume: 2016
  start-page: 6021394
  year: 2016
  ident: bib29
  article-title: Function, role, and clinical application of MicroRNAs in vascular aging
  publication-title: Biomed. Res. Int.
– volume: 8
  start-page: 157
  year: 2008
  end-page: 168
  ident: bib37
  article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
  publication-title: Cell Metab.
– volume: 20
  start-page: 191
  year: 1999
  end-page: 200
  ident: bib31
  article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats
  publication-title: Neurobiol. Aging
– volume: 14
  start-page: 63
  year: 2007
  end-page: 76
  ident: bib6
  article-title: Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging
  publication-title: Microcirculation
– volume: 94
  start-page: e35
  year: 2016
  end-page: e42
  ident: bib40
  article-title: Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals
  publication-title: Acta Ophthalmol.
– volume: 56
  start-page: 84
  year: 2017
  end-page: 106
  ident: bib14
  article-title: Caveolins and caveolae in ocular physiology and pathophysiology
  publication-title: Prog. Retin. Eye Res.
– volume: 16
  start-page: 50
  year: 2006
  end-page: 55
  ident: bib39
  article-title: Caveolin-1: dual role for proliferation of vascular smooth muscle cells
  publication-title: Trends Cardiovasc. Med.
– volume: 16
  start-page: 469
  year: 2017
  end-page: 479
  ident: bib46
  article-title: Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype
  publication-title: Aging Cell
– volume: 13
  start-page: 172
  year: 1970
  end-page: 189
  ident: bib7
  article-title: The aortic tunica media in aging rats
  publication-title: Exp. Mol. Pathol.
– volume: 469
  start-page: 829
  year: 2017
  end-page: 842
  ident: bib35
  article-title: Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca(2+) channel activation in vascular myocytes
  publication-title: Pflugers Arch.
– volume: 50
  start-page: 645
  year: 1984
  end-page: 652
  ident: bib26
  article-title: Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening
  publication-title: Lab Invest.
– volume: 17
  start-page: 300
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib4
  article-title: Retinal capillary rarefaction in patients with untreated mild-moderate hypertension
  publication-title: BMC Cardiovasc. Disord.
  doi: 10.1186/s12872-017-0732-x
– volume: 34
  start-page: 1887
  year: 2014
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib48
  article-title: IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.156
– volume: 38
  start-page: 273
  year: 2016
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib45
  article-title: Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging
  publication-title: Age (Dordr)
  doi: 10.1007/s11357-016-9931-0
– volume: 67
  start-page: 811
  year: 2012
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib9
  article-title: Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment
  publication-title: J. Gerontol. A. Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glr228
– volume: 56
  start-page: 84
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib14
  article-title: Caveolins and caveolae in ocular physiology and pathophysiology
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2016.09.005
– volume: 14
  start-page: 1034
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib49
  article-title: IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging
  publication-title: Aging Cell
  doi: 10.1111/acel.12372
– volume: 16
  start-page: 50
  year: 2006
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib39
  article-title: Caveolin-1: dual role for proliferation of vascular smooth muscle cells
  publication-title: Trends Cardiovasc. Med.
  doi: 10.1016/j.tcm.2005.11.007
– volume: 38
  start-page: 239
  year: 2016
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib44
  article-title: IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis
  publication-title: Age (Dordr)
  doi: 10.1007/s11357-016-9943-9
– volume: 5
  start-page: 27
  year: 2013
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib41
  article-title: Insulin-like growth factor-1 in CNS and cerebrovascular aging
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00027
– volume: 5
  start-page: e15697
  year: 2010
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib18
  article-title: Loss of caveolin-1 accelerates neurodegeneration and aging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015697
– volume: 65
  start-page: 1028
  year: 2010
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib52
  article-title: Mechanisms of vascular aging: new perspectives
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glq113
– volume: 107
  start-page: 860
  year: 2010
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib30
  article-title: Notch3 is critical for proper angiogenesis and mural cell investment
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.218271
– volume: 15
  start-page: CR436
  year: 2009
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib25
  article-title: Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis
  publication-title: Med. Sci. Monit.
– volume: 9
  start-page: e92428
  year: 2014
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib43
  article-title: Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092428
– volume: 14
  start-page: 63
  year: 2007
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib6
  article-title: Inflammation and breakdown of the blood-retinal barrier during "physiological aging" in the rat retina: a model for CNS aging
  publication-title: Microcirculation
  doi: 10.1080/10739680601073451
– volume: 184
  start-page: 541
  year: 2014
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib13
  article-title: Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.10.022
– volume: 97
  start-page: 848
  year: 2013
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib15
  article-title: Effect of ageing on the retinal vascular responsiveness to flicker light in glaucoma patients and in ocular hypertension
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2012-302779
– volume: 27
  start-page: 1838
  year: 2006
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib21
  article-title: Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2005.10.021
– volume: 94
  start-page: e35
  year: 2016
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib40
  article-title: Ageing effect on flicker-induced diameter changes in retinal microvessels of healthy individuals
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.12786
– volume: 13
  start-page: 172
  year: 1970
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib7
  article-title: The aortic tunica media in aging rats
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/0014-4800(70)90004-3
– volume: 188
  start-page: 221
  year: 2006
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib33
  article-title: Aging, smooth muscle cells and vascular pathobiology: implications for atherosclerosis
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2006.01.018
– volume: 35
  start-page: 527
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib42
  article-title: Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.256
– volume: 312
  start-page: H1
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib51
  article-title: Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00581.2016
– volume: 21
  start-page: 129
  year: 2008
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib10
  article-title: Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000113755
– volume: 20
  start-page: 191
  year: 1999
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib31
  article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(99)00032-9
– volume: 137
  start-page: 435
  year: 2004
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib24
  article-title: The relation of retinal microvascular characteristics to age-related eye disease: the Beaver Dam eye study
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2003.10.020
– volume: 17
  start-page: 497
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib20
  article-title: Function of integrin-linked kinase in modulating the stemness of IL-6-abundant breast cancer cells by regulating gamma-secretase-mediated Notch1 activation in caveolae
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2015.06.001
– volume: 33
  start-page: 1732
  year: 2013
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib47
  article-title: Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2013.143
– volume: 7
  start-page: e49422
  year: 2012
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib22
  article-title: Novel diabetic mouse models as tools for investigating diabetic retinopathy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049422
– volume: 22
  start-page: 423
  year: 2010
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib23
  article-title: Caveolin-1 regulates gamma-secretase-mediated AbetaPP processing by modulating spatial distribution of gamma-secretase in membrane
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-100531
– volume: 14
  start-page: 98
  year: 2013
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib36
  article-title: Caveolae as plasma membrane sensors, protectors and organizers. Nature reviews
  publication-title: Mol. Cel. Biol.
– volume: 96
  start-page: 499
  year: 2008
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib53
  article-title: An overview of Notch3 function in vascular smooth muscle cells
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2007.07.006
– volume: 135
  start-page: 14
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib5
  article-title: Imaging of cellular aging in human retinal blood vessels
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2015.03.019
– volume: 35
  start-page: 409
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib19
  article-title: Notch3 is necessary for blood vessel integrity in the central nervous system
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.304849
– volume: 469
  start-page: 829
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib35
  article-title: Caveolar remodeling is a critical mechanotransduction mechanism of the stretch-induced L-type Ca(2+) channel activation in vascular myocytes
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-017-1957-3
– volume: 14
  start-page: 400
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib50
  article-title: Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection
  publication-title: Aging Cell
  doi: 10.1111/acel.12315
– volume: 292
  start-page: H1584
  year: 2007
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib1
  article-title: Caveolin-1 abolishment attenuates the myogenic response in murine cerebral arteries
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00584.2006
– volume: 31
  start-page: 443
  year: 2016
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib2
  article-title: IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms
  publication-title: J. Bone Miner Res.
  doi: 10.1002/jbmr.2689
– volume: 16
  start-page: 469
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib46
  article-title: Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype
  publication-title: Aging Cell
  doi: 10.1111/acel.12583
– volume: 39
  start-page: 2115
  year: 2015
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib17
  article-title: Ethanol inhibits gamma-secretase proteolytic activity in vascular smooth muscle cells
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/acer.12875
– volume: 49
  start-page: 2094
  year: 2008
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib27
  article-title: Effect of aging on retinal artery blood column diameter measured along the vessel axis
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.07-0711
– volume: 23
  start-page: 1521
  year: 2003
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib38
  article-title: Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000081743.35125.05
– volume: 1
  start-page: 4
  year: 2009
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib32
  article-title: Resveratrol preserves cerebrovascular density and cognitive function in aging mice
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/neuro.24.004.2009
– volume: 39
  start-page: 129
  year: 2017
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib3
  article-title: IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan
  publication-title: Geroscience
  doi: 10.1007/s11357-017-9971-0
– volume: 50
  start-page: 645
  year: 1984
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib26
  article-title: Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening
  publication-title: Lab Invest.
– volume: 8
  start-page: 157
  year: 2008
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib37
  article-title: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.06.011
– volume: 170
  start-page: 388
  year: 2007
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib8
  article-title: Vasculoprotective effects of anti-TNFalfa treatment in aging
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2007.060708
– volume: 51
  start-page: 2165
  year: 2010
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib28
  article-title: Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.09-3649
– volume: 75
  start-page: 487
  year: 1995
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib34
  article-title: Regulation of differentiation of vascular smooth muscle cells
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1995.75.3.487
– volume: 2016
  start-page: 6021394
  year: 2016
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib29
  article-title: Function, role, and clinical application of MicroRNAs in vascular aging
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/6021394
– volume: 78
  start-page: 298
  year: 1981
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib11
  article-title: Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.78.1.298
– volume: 69
  start-page: 808
  year: 2006
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib16
  article-title: Caveolins in vascular smooth muscle: form organizing function
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2005.11.024
– volume: 54
  start-page: ORSF23
  year: 2013
  ident: 10.1016/j.neurobiolaging.2018.06.039_bib12
  article-title: Anatomic alterations in aging and age-related diseases of the eye
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-12711
SSID ssj0007476
Score 2.362244
Snippet Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases....
Cerebral microcirculation is critical for the preservation of brain health and vascular impairment is associated with age-related neurodegenerative diseases....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Aging
Alpha smooth muscle actin
Animals
Apoptosis
Arterioles - physiology
Caveolin 1 - genetics
Caveolin 1 - physiology
Caveolin-1
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - physiology
Insulin-like growth factor-1
Male
Mice, Inbred C57BL
Mice, Knockout
Muscle Contraction
Muscle, Smooth, Vascular - physiology
Retina
Retinal Artery - physiology
Vasculature
Title Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458018302525
https://dx.doi.org/10.1016/j.neurobiolaging.2018.06.039
https://www.ncbi.nlm.nih.gov/pubmed/30059797
https://www.proquest.com/docview/2080850657
https://pubmed.ncbi.nlm.nih.gov/PMC6162181
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELWqVkJcEKV8BEo1SIjbks3aXttCCEUVVQDRC1TqbWV7vRCUbCo2QeoF8dM74_2AAIcilFN2bcfxzI4nzntvGHs6CZTkpzwRoZSJ8E4khpQwZYbOnNq8EoHOO96f5rMz8fZcnu-w454LQ7DKLva3MT1G6-7KuFvN8cV8Pv6AyYkSEiMsSVjJjIjmQijSz3_-_SfMA9PlvKVMk763Tm_g_AaMV9SMJLWjWBGIgF6tmieVDv_7NvVnGvo7mvKX7enkNrvV5ZUwbae-z3ZCfYcdTGv8Tb28hGcQkZ7xCP2A_Zh-CkkksYQSKtrMYIGTgFUFEblOXIdFgB6kCs1yhfaE5abBoYGO-huY10D8R_rMiAql__fxagPWYwNSasax3SV4-y1QXaBkAmUgtQqiet5lZyevPx7Pkq4SQ-KlzNeJwjSJC0E8X22VNtalPCtxaZ3LlEm1C6l32pWalyR3KEPmeOWs15wrX5WS32O79aoODxgYiy8fcqMDKdfn1lc21cKWnDvjUzFiL_qFL3wnU07VMhZFj0f7UmybrSCzFQTP42bE5ND7opXruGa_l72Ni56SikG0wH3lmv1fDf233PcfRnjSu1aBTzjZ0tZhtWmwkY66glKN2P3W1YbvRsUGjDJ4R2054dCA1MO379Tzz1FFPJ_klN49_O-ZP2I36V1L0Dxku-uvm_AYM7W1O4qP4hHbm755Nzu9AkYwRPc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYSNtepjE21jGYJ017i5rGdmILIVShoTKgLwOJN8t2nK2oTdHSTuJtf_runA_RjQcmlDd_xfFdzhfnd78j5NPAo5Mfs4j7XETcWR4pZMIUCShzbNKCezzvOB-no0v-9UpcrZGjNhYGYZWN7a9terDWTUm_Wc3-zWTS_wbOScYFWFiksBKJeEI2kJ0KlH1jeHI6GncGGTzmtI6aRopvGT-FKXYwr0AbiYRHISkQYr1qQk_MHn7_TvWvJ_o3oPLODnX8krxoXEs6rGe_SdZ8-YpsDUv4rJ7d0s80gD3DKfoW-T387qMQx-JzWuB-RqcwCTovaACvY7jD1NMWp0qr2RxESmfLCoameNpf0UlJMQQS7xmAofiLH0orahw0QLJmGNveUmd-eUwNFA1o7pGwAqM9X5PL4y8XR6OoScYQOSHSRZSBp8Q4x1BfaTKpjI1ZksPSWptkKpbWx85Km0uWI-Oh8IllhTVOMpa5IhfsDVkv56V_S6gycDmfKumRvD41rjCx5CZnzCoX8x7Zbxdeu4apHBNmTHULSbvWq2LTKDaNCD2mekR0vW9qxo4H9jtoZazbqFSwoxq2lgf2P-z6r2jwf4zwsVUtDS85ytKUfr6soJEM1IIi65HtWtW6Z8N8AypTUJOtKGHXAAnEV2vKyY9AJJ4OUvTw3j165h_Is9HF-Zk-Oxmf7pDnWFPHa74n64ufS78LjtvC7jUv5h8v_0eo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+focal+loss+of+contractile+vascular+smooth+muscle+cells+in+retinal+arterioles+is+accelerated+by+caveolin-1+deficiency&rft.jtitle=Neurobiology+of+aging&rft.au=Reagan%2C+Alaina+M.&rft.au=Gu%2C+Xiaowu&rft.au=Paudel%2C+Sijalu&rft.au=Ashpole%2C+Nicole+M.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.volume=71&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2018.06.039&rft.externalDocID=S0197458018302525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-4580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-4580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-4580&client=summon