Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing

Highlights The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low re...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 12; no. 1; p. 184
Main Authors Xu, Weiqing, Kang, Yikun, Jiao, Lei, Wu, Yu, Yan, Hongye, Li, Jinli, Gu, Wenling, Song, Weiyu, Zhu, Chengzhou
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 23.09.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low reaction energy barrier for the HO* formation. Nitro-functionalized MIL-101(Fe)-based biosensor was successfully employed to detect acetylcholinesterase activity and organophosphorus pesticide. Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL −1 with a limit of detection of 0.14 mU mL −1 . Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
AbstractList The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low reaction energy barrier for the HO* formation. Nitro-functionalized MIL-101(Fe)-based biosensor was successfully employed to detect acetylcholinesterase activity and organophosphorus pesticide. Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL −1 with a limit of detection of 0.14 mU mL −1 . Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
HighlightsThe two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites.Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low reaction energy barrier for the HO* formation.Nitro-functionalized MIL-101(Fe)-based biosensor was successfully employed to detect acetylcholinesterase activity and organophosphorus pesticide.Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Highlights The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) shows a superior electronic structure of active sites and low reaction energy barrier for the HO* formation. Nitro-functionalized MIL-101(Fe)-based biosensor was successfully employed to detect acetylcholinesterase activity and organophosphorus pesticide. Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL −1 with a limit of detection of 0.14 mU mL −1 . Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Abstract Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Abstract Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal–organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL −1 with a limit of detection of 0.14 mU mL −1 . Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
ArticleNumber 184
Author Xu, Weiqing
Zhu, Chengzhou
Yan, Hongye
Wu, Yu
Li, Jinli
Kang, Yikun
Jiao, Lei
Gu, Wenling
Song, Weiyu
Author_xml – sequence: 1
  givenname: Weiqing
  surname: Xu
  fullname: Xu, Weiqing
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 2
  givenname: Yikun
  surname: Kang
  fullname: Kang, Yikun
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum
– sequence: 3
  givenname: Lei
  surname: Jiao
  fullname: Jiao, Lei
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 4
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 5
  givenname: Hongye
  surname: Yan
  fullname: Yan, Hongye
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 6
  givenname: Jinli
  surname: Li
  fullname: Li, Jinli
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 7
  givenname: Wenling
  surname: Gu
  fullname: Gu, Wenling
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
– sequence: 8
  givenname: Weiyu
  surname: Song
  fullname: Song, Weiyu
  email: songwy@cup.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum
– sequence: 9
  givenname: Chengzhou
  surname: Zhu
  fullname: Zhu, Chengzhou
  email: czzhu@mail.ccnu.edu.cn
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University
BookMark eNp9Us1u1DAQjlARLaUvwMkSFy4B_8brC9K2sFBpUZFazpbjTILbxF7spLDiwjvwhjwJDqlA5YClsT32N9_M2N_j4sAHD0XxlOAXBGP5MnG8orjEs2GRZ_agOKJE4FIIQQ7ynhFSVhJXh8VJSq7OIC6pFPxRccg4YStK2FHx7WryzndoPYbBWdP3e_TapR3EBA3aALp0IyTkPHoPo-l_fv9xETvjnUWbaAb4EuJNQqchpDGhDxDDV9eYBOXW3QBa29HdunGP2hDRJfjksg_o1IU0O757UjxsTZ_g5G49Lj5u3lydvSu3F2_Pz9bb0gpRjWWlMFMMiGh4DcBbRihtSSNNVbMVq1QrpDJUScNqoKZSqqopVhUnRFJOcqfHxfnC2wRzrXfRDSbudTBO_z4IsdMmjs72oEW7IoawnI3nwbjClgHNebFVzNY4c71auHZTPUBjwY_R9PdI799490l34VZLKXFuJBM8vyOI4fMEadSDSxb63ngIU9JUcMqEJFhk6LN_oNdhij4_lc5fyTKyEjOKLigbQ0oR2j_FEKxnqehFKhrPNktFz1WwJShlsO8g_qX-T9Qv_2fB2A
CitedBy_id crossref_primary_10_3390_s21155201
crossref_primary_10_1016_j_mattod_2023_02_010
crossref_primary_10_1007_s41664_021_00177_w
crossref_primary_10_1016_j_jelechem_2021_115289
crossref_primary_10_1016_j_bios_2022_114662
crossref_primary_10_1021_acs_analchem_1c03987
crossref_primary_10_1002_smll_202203001
crossref_primary_10_1016_j_apsusc_2024_159981
crossref_primary_10_1016_j_checat_2022_09_005
crossref_primary_10_1021_acsami_1c17974
crossref_primary_10_1021_acscatal_2c06255
crossref_primary_10_1007_s12274_021_3581_y
crossref_primary_10_1039_D2EN00027J
crossref_primary_10_1039_D3RA02946H
crossref_primary_10_1007_s12598_022_02129_4
crossref_primary_10_1016_j_aac_2022_07_001
crossref_primary_10_1021_acsami_4c06164
crossref_primary_10_1016_j_snb_2022_131927
crossref_primary_10_1039_D3CS00767G
crossref_primary_10_1016_j_nantod_2021_101261
crossref_primary_10_1002_anie_202304625
crossref_primary_10_1039_D2QI02727E
crossref_primary_10_1007_s40820_023_01059_9
crossref_primary_10_1016_j_snb_2022_131688
crossref_primary_10_1016_j_jsamd_2022_100507
crossref_primary_10_1002_adfm_202312691
crossref_primary_10_1016_j_snb_2023_133543
crossref_primary_10_1039_D1QM00947H
crossref_primary_10_1016_j_bios_2022_114097
crossref_primary_10_1039_D0CS00367K
crossref_primary_10_1007_s00604_021_04817_x
crossref_primary_10_1016_j_microc_2021_106489
crossref_primary_10_1039_D0RA06106A
crossref_primary_10_1007_s40843_023_2506_8
crossref_primary_10_1016_j_bios_2021_113718
crossref_primary_10_1039_D3SD00177F
crossref_primary_10_1021_acs_analchem_4c00016
crossref_primary_10_1002_ange_202304625
crossref_primary_10_1002_cnma_202300644
crossref_primary_10_1007_s40843_022_2280_6
crossref_primary_10_1016_j_cej_2021_133079
crossref_primary_10_3390_foods10112800
crossref_primary_10_1002_smll_202206657
crossref_primary_10_1021_acs_analchem_1c04219
crossref_primary_10_1016_j_fbio_2022_101695
crossref_primary_10_1039_D1AN01953H
crossref_primary_10_3390_bios11100382
crossref_primary_10_1016_j_bej_2023_109106
crossref_primary_10_1016_j_cclet_2022_108018
crossref_primary_10_1021_acs_analchem_0c04084
crossref_primary_10_1021_acs_analchem_3c01005
crossref_primary_10_1007_s41664_022_00224_0
crossref_primary_10_1016_j_cej_2022_136930
crossref_primary_10_1016_j_inoche_2023_111982
crossref_primary_10_1021_acsanm_1c03613
crossref_primary_10_1007_s12598_023_02311_2
crossref_primary_10_1002_smll_202101907
crossref_primary_10_1016_j_mattod_2020_12_005
crossref_primary_10_1002_adma_202005172
crossref_primary_10_1016_j_bios_2022_114051
crossref_primary_10_1016_j_cej_2023_145483
crossref_primary_10_1016_j_mattod_2021_10_032
crossref_primary_10_1016_j_jhazmat_2021_125752
crossref_primary_10_1007_s00604_021_04981_0
crossref_primary_10_1021_acs_analchem_1c02842
crossref_primary_10_1016_j_cej_2023_144027
crossref_primary_10_1016_j_fct_2022_113176
crossref_primary_10_1007_s12274_022_5045_4
crossref_primary_10_1016_j_cej_2022_139411
crossref_primary_10_1039_D3TB01002C
crossref_primary_10_1039_D1CC06177A
crossref_primary_10_1016_j_seppur_2024_126576
crossref_primary_10_1002_advs_202305823
crossref_primary_10_1016_j_snb_2023_133857
crossref_primary_10_1016_j_trac_2022_116833
crossref_primary_10_1002_adfm_202101193
crossref_primary_10_1016_j_talanta_2024_126003
crossref_primary_10_1021_acs_nanolett_2c04235
Cites_doi 10.1021/jacs.7b00601
10.1002/ange.201911600
10.1002/adma.201905361
10.1002/smll.201703149
10.1039/C8CS00829A
10.1021/acs.analchem.9b05437
10.1039/C6CS00047A
10.1038/417463a
10.1002/smll.201901485
10.1103/PhysRevLett.77.3865
10.1038/s41596-018-0001-1
10.1021/acsami.9b03004
10.1016/j.apcatb.2017.07.035
10.1021/acs.chemrev.8b00672
10.1002/chem.201703833
10.1016/j.bios.2019.111495
10.1021/acsami.8b16075
10.1021/jacs.7b01320
10.1002/smll.201801680
10.1002/chem.201903434
10.1038/nature15732
10.1021/acsami.9b21621
10.1021/jacs.8b05223
10.1039/C7TA01066D
10.1021/acscatal.0c01647
10.1039/C7NR00819H
10.1126/sciadv.aav5490
10.1039/C9CC07408B
10.1002/smll.201803256
10.1021/acsnano.7b00905
10.1038/s41467-019-13051-2
10.1002/smll.201903108
10.1038/nnano.2007.260
10.1002/adma.201805368
10.1021/acs.est.6b05392
10.1021/jacs.7b02186
10.1021/acs.analchem.9b02901
10.1021/jacs.7b12621
10.1021/acs.nanolett.9b00725
10.1016/j.bios.2019.111881
10.1021/jp202489s
10.1002/smll.201900632
10.1039/C7CS00058H
10.1016/j.ccr.2015.05.005
10.1016/j.apcatb.2017.01.075
10.1103/PhysRevB.54.11169
10.1002/anie.201905645
10.1038/nature19763
10.1002/adma.201703663
10.1039/C9CC00199A
10.1002/anie.201913748
10.1016/j.trac.2018.06.001
10.1016/0927-0256(96)00008-0
10.1016/j.bios.2019.111473
10.1002/advs.201901918
10.1039/C4CS00003J
10.1021/acscatal.6b02642
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00520-3
DatabaseName Springer Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
Engineering Collection
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 184
ExternalDocumentID oai_doaj_org_article_5f81a133e144443490c3e24be0c93cb0
10_1007_s40820_020_00520_3
GroupedDBID -02
-0B
-SB
-S~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAKKN
AAPBV
AAXDM
AAYZJ
ABDBF
ABJCF
ABPTK
ACACY
ACGFS
ACIWK
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFUIB
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CAJUS
CCEZO
CCPQU
CDRFL
D1I
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IPNFZ
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
0R~
AAYXX
ABEEZ
ACULB
CITATION
EBLON
ITC
PGMZT
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c556t-690393e15d4bee4f3122f1d7a6b38369f579a297a3be2a6996b20964117241413
IEDL.DBID RPM
ISSN 2311-6706
IngestDate Fri Oct 04 12:55:35 EDT 2024
Tue Sep 17 21:26:33 EDT 2024
Fri Aug 16 11:24:33 EDT 2024
Thu Oct 10 17:39:29 EDT 2024
Thu Sep 26 15:36:56 EDT 2024
Sat Dec 16 12:03:43 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Peroxidase-like activity
Nanozymes
Atomically dispersed sites
Biosensors
Metal–organic frameworks
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-690393e15d4bee4f3122f1d7a6b38369f579a297a3be2a6996b20964117241413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770903/
PMID 34138213
PQID 2473254655
PQPubID 2044332
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_5f81a133e144443490c3e24be0c93cb0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770903
proquest_miscellaneous_2542357105
proquest_journals_2473254655
crossref_primary_10_1007_s40820_020_00520_3
springer_journals_10_1007_s40820_020_00520_3
PublicationCentury 2000
PublicationDate 2020-09-23
PublicationDateYYYYMMDD 2020-09-23
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-23
  day: 23
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Jiao, Yan, Wu, Gu, Zhu, Du, Lin (CR16) 2019; 58
Wang, Liu, Yang, Zhong, Nam (CR30) 2020; 32
Zhang, Liang, Han, Li (CR9) 2018; 14
Gao, Zhuang, Nie, Zhang, Zhang (CR5) 2007; 2
Kresse, Furthmüller (CR41) 1996; 6
Zhang, Li, Hu, Yang, Shao (CR25) 2019; 7
Zeng, Lu, Wen, Liu, Zhang (CR14) 2019; 11
Liu, Jin, Zhao, Zhang, Zhang (CR50) 2017; 206
Xue, Liu, Liu, Li, Li (CR32) 2019; 10
Perdew, Burke, Ernzerhof (CR42) 1996; 77
Lu, Wang, Ding, Peng, Zhang (CR20) 2019; 55
Nath, Chakraborty, Verpoort (CR38) 2016; 45
Wu, Jiao, Luo, Xu, Wei (CR54) 2019; 15
Li, Yang, Yang, Tan, He (CR12) 2018; 24
Nguyen, Vu, Le, Doan, Nguyen, Phan (CR34) 2017; 7
Chen, Wei, Jiang, Zheng, Wang (CR29) 2017; 139
Kresse, Furthmüller (CR43) 1996; 54
Chambers, Wang, Ellezam, Ersen, Fontecave (CR33) 2017; 139
Komkova, Karyakina, Karyakin (CR1) 2018; 140
Berglund, Carlsson, Smith, Szöke, Henriksen, Hajdu (CR4) 2002; 417
Cai, Fu, Xiao, Xiong, Wang, Yang (CR13) 2020; 12
Chen, Vázquez-González, Kozell, Cecconello, Willner (CR39) 2018; 14
Wu, Wu, Jiao, Xu, Wang (CR17) 2020; 92
Jorfi, Kakavandi, Motlagh, Ahmadi, Jaafarzadeh (CR51) 2017; 219
Jiao, Wang, Jiang, Xu (CR36) 2018; 30
Lu, Zhang, Ding, Zheng, Zeng (CR11) 2017; 9
Zhao, Xiong, Liu, Qiao, Li (CR21) 2019; 55
Jiao, Wu, Zhong, Zhang, Xu (CR22) 2020; 10
Huang, Ren, Qu (CR2) 2019; 119
Huang, Chen, Gan, Wang, Dong (CR18) 2019; 5
Lu, Wei, Gu, Liu, Park (CR27) 2014; 43
Li, Liu, Chai, Huang (CR37) 2018; 105
Zhao, Yuan, Wang, Li, Guo (CR35) 2016; 539
Pott, Hayashi, Mori, Mittl, Green, Hilvert (CR3) 2018; 140
Wang, Wang, Huang, Zhang, Hu, Perman, Ma (CR46) 2017; 5
Mason, Oktawiec, Taylor, Hudson, Rodriguez (CR24) 2015; 527
Lian, Fang, Joseph, Wang, Li (CR26) 2017; 46
Zhang, Zheng, Jiang (CR53) 2018; 14
Cheng, Li, Liu, Lin, Du (CR19) 2019; 15
Wang, Wan, Shi (CR6) 2019; 31
Zhang, Zhang, Liu, Liu (CR7) 2017; 139
Zhang, Wu, Lu, Wu, Liu (CR8) 2019; 19
Mateo, Santiago-Portillo, Albero, Navalón, Alvaro, García (CR45) 2019; 131
Jin, Kong, Zhao, Li, Yan (CR57) 2019; 141
Zhang, Lua, Zhang, Yan, Li (CR10) 2020; 150
Hu, Cheng, Zhao, Wu, Muhammad (CR44) 2017; 11
Jiao, Xu, Yan, Wu, Liu (CR15) 2019; 91
Li, Chrzanowski, Zhang, Ma (CR28) 2016; 307
Xu, Jiao, Yan, Wu, Chen (CR40) 2019; 11
Jiang, Zou, Zhao, Zhen, Li, Huang (CR31) 2020; 59
Jiang, Duan, Gao, Zhou, Fan (CR48) 2018; 13
Niu, Shi, Zhu, Liu, Tian (CR55) 2019; 142
Wei, Villamena, Weavers (CR49) 2017; 51
Ding, Flaig, Jiang, Yaghi (CR23) 2019; 48
Dery, Kim, Tomaschun, Haddad, Cossaro (CR47) 2019; 25
Deringer, Tchougréeff, Dronskowski (CR52) 2011; 115
Wu, Jiao, Xu, Gu, Zhu, Du, Lin (CR56) 2019; 15
S Jorfi (520_CR51) 2017; 219
Y Wu (520_CR54) 2019; 15
J Zhang (520_CR8) 2019; 19
S Dery (520_CR47) 2019; 25
X Lian (520_CR26) 2017; 46
G Kresse (520_CR43) 1996; 54
M Lu (520_CR20) 2019; 55
GI Berglund (520_CR4) 2002; 417
J Zhang (520_CR53) 2018; 14
Z Wei (520_CR49) 2017; 51
W-H Chen (520_CR39) 2018; 14
N Lu (520_CR11) 2017; 9
MA Komkova (520_CR1) 2018; 140
W Lu (520_CR27) 2014; 43
Z Zhang (520_CR7) 2017; 139
Y Wang (520_CR46) 2017; 5
M Zhao (520_CR35) 2016; 539
G Kresse (520_CR41) 1996; 6
VL Deringer (520_CR52) 2011; 115
Y Wu (520_CR17) 2020; 92
C Zhao (520_CR21) 2019; 55
H Zhang (520_CR9) 2018; 14
Y Liu (520_CR50) 2017; 206
I Nath (520_CR38) 2016; 45
B Jiang (520_CR48) 2018; 13
H Wang (520_CR6) 2019; 31
N Cheng (520_CR19) 2019; 15
L Jiao (520_CR16) 2019; 58
M Pott (520_CR3) 2018; 140
ZW Jiang (520_CR31) 2020; 59
MB Chambers (520_CR33) 2017; 139
X Niu (520_CR55) 2019; 142
L Gao (520_CR5) 2007; 2
F Wang (520_CR30) 2020; 32
W Xu (520_CR40) 2019; 11
HL Nguyen (520_CR34) 2017; 7
L Jiao (520_CR22) 2020; 10
D Mateo (520_CR45) 2019; 131
Y Wu (520_CR56) 2019; 15
Y Huang (520_CR2) 2019; 119
C Zeng (520_CR14) 2019; 11
L Huang (520_CR18) 2019; 5
M Ding (520_CR23) 2019; 48
S Cai (520_CR13) 2020; 12
S Li (520_CR37) 2018; 105
B Li (520_CR28) 2016; 307
JA Mason (520_CR24) 2015; 527
L Jiao (520_CR36) 2018; 30
L Jiao (520_CR15) 2019; 91
JP Perdew (520_CR42) 1996; 77
C-X Chen (520_CR29) 2017; 139
Z Li (520_CR12) 2018; 24
Z Xue (520_CR32) 2019; 10
R Zhang (520_CR10) 2020; 150
L Zhang (520_CR25) 2019; 7
R Jin (520_CR57) 2019; 141
Y Hu (520_CR44) 2017; 11
References_xml – volume: 139
  start-page: 5412
  year: 2017
  end-page: 5419
  ident: CR7
  article-title: Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
  contributor:
    fullname: Liu
– volume: 131
  start-page: 18007
  year: 2019
  end-page: 18012
  ident: CR45
  article-title: Long-term photostability in terephthalate metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201911600
  contributor:
    fullname: García
– volume: 32
  start-page: 1905361
  year: 2020
  ident: CR30
  article-title: Fully conjugated phthalocyanine copper metal–organic frameworks for sodium–iodine batteries with long-time-cycling durability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905361
  contributor:
    fullname: Nam
– volume: 14
  start-page: 1703149
  year: 2018
  ident: CR39
  article-title: Cu -modified metal–organic framework nanoparticles: a peroxidase-mimicking nanoenzyme
  publication-title: Small
  doi: 10.1002/smll.201703149
  contributor:
    fullname: Willner
– volume: 48
  start-page: 2783
  year: 2019
  end-page: 2828
  ident: CR23
  article-title: Carbon capture and conversion using metal–organic frameworks and MOF-based materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00829A
  contributor:
    fullname: Yaghi
– volume: 92
  start-page: 3373
  year: 2020
  end-page: 3379
  ident: CR17
  article-title: Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05437
  contributor:
    fullname: Wang
– volume: 45
  start-page: 4127
  year: 2016
  end-page: 4170
  ident: CR38
  article-title: Metal organic frameworks mimicking natural enzymes: a structural and functional analogy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00047A
  contributor:
    fullname: Verpoort
– volume: 417
  start-page: 463
  year: 2002
  end-page: 468
  ident: CR4
  article-title: The catalytic pathway of horseradish peroxidase at high resolution
  publication-title: Nature
  doi: 10.1038/417463a
  contributor:
    fullname: Hajdu
– volume: 15
  start-page: 1901485
  year: 2019
  ident: CR19
  article-title: Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays
  publication-title: Small
  doi: 10.1002/smll.201901485
  contributor:
    fullname: Du
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR42
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Ernzerhof
– volume: 13
  start-page: 1506
  year: 2018
  end-page: 1520
  ident: CR48
  article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
  contributor:
    fullname: Fan
– volume: 11
  start-page: 22096
  year: 2019
  end-page: 22101
  ident: CR40
  article-title: Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03004
  contributor:
    fullname: Chen
– volume: 219
  start-page: 216
  year: 2017
  end-page: 230
  ident: CR51
  article-title: A novel combination of oxidative degradation for benzotriazole removal using TiO loaded on Fe Fe O @C as an efficient activator of peroxymonosulfate
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.035
  contributor:
    fullname: Jaafarzadeh
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  ident: CR2
  article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
  contributor:
    fullname: Qu
– volume: 24
  start-page: 409
  year: 2018
  end-page: 415
  ident: CR12
  article-title: Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal–support interactions
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201703833
  contributor:
    fullname: He
– volume: 142
  start-page: 111495
  year: 2019
  ident: CR55
  article-title: Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111495
  contributor:
    fullname: Tian
– volume: 11
  start-page: 1790
  year: 2019
  end-page: 1799
  ident: CR14
  article-title: Engineering nanozymes using DNA for catalytic regulation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16075
  contributor:
    fullname: Zhang
– volume: 139
  start-page: 6034
  year: 2017
  end-page: 6037
  ident: CR29
  article-title: Dynamic spacer installation for multirole metal–organic frameworks: a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01320
  contributor:
    fullname: Wang
– volume: 14
  start-page: 1801680
  year: 2018
  ident: CR53
  article-title: Ag -gated surface chemistry of gold nanoparticles and colorimetric detection of acetylcholinesterase
  publication-title: Small
  doi: 10.1002/smll.201801680
  contributor:
    fullname: Jiang
– volume: 25
  start-page: 15067
  year: 2019
  end-page: 15072
  ident: CR47
  article-title: Flexible NO -functionalized N-heterocyclic carbene monolayers on Au (111) surface
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201903434
  contributor:
    fullname: Cossaro
– volume: 527
  start-page: 357
  year: 2015
  end-page: 361
  ident: CR24
  article-title: Methane storage in flexible metal–organic frameworks with intrinsic thermal management
  publication-title: Nature
  doi: 10.1038/nature15732
  contributor:
    fullname: Rodriguez
– volume: 12
  start-page: 11616
  year: 2020
  end-page: 11624
  ident: CR13
  article-title: Zero-dimensional/two-dimensional Au Pd nanocomposites with enhanced nanozyme catalysis for sensitive glucose detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21621
  contributor:
    fullname: Yang
– volume: 140
  start-page: 11302
  year: 2018
  end-page: 11307
  ident: CR1
  article-title: Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05223
  contributor:
    fullname: Karyakin
– volume: 5
  start-page: 8385
  year: 2017
  end-page: 8393
  ident: CR46
  article-title: A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01066D
  contributor:
    fullname: Ma
– volume: 10
  start-page: 6422
  year: 2020
  end-page: 6429
  ident: CR22
  article-title: Densely isolated FeN sites for peroxidase mimicking
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01647
  contributor:
    fullname: Xu
– volume: 9
  start-page: 4508
  year: 2017
  end-page: 4515
  ident: CR11
  article-title: Yolk–shell nanostructured Fe O @C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H O and glucose
  publication-title: Nanoscale
  doi: 10.1039/C7NR00819H
  contributor:
    fullname: Zeng
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: CR18
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
  contributor:
    fullname: Dong
– volume: 55
  start-page: 14534
  year: 2019
  end-page: 14537
  ident: CR20
  article-title: Fe–N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC07408B
  contributor:
    fullname: Zhang
– volume: 14
  start-page: 1803256
  year: 2018
  ident: CR9
  article-title: “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis
  publication-title: Small
  doi: 10.1002/smll.201803256
  contributor:
    fullname: Li
– volume: 11
  start-page: 5558
  year: 2017
  end-page: 556641
  ident: CR44
  article-title: Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00905
  contributor:
    fullname: Muhammad
– volume: 10
  start-page: 5048
  year: 2019
  ident: CR32
  article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13051-2
  contributor:
    fullname: Li
– volume: 15
  start-page: 1903108
  year: 2019
  ident: CR54
  article-title: Oxidase-like Fe–N–C single-atom nanozymes for the detection of acetylcholinesterase activity
  publication-title: Small
  doi: 10.1002/smll.201903108
  contributor:
    fullname: Wei
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: CR5
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
  contributor:
    fullname: Zhang
– volume: 31
  start-page: 1805368
  year: 2019
  ident: CR6
  article-title: Recent advances in nanozyme research
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805368
  contributor:
    fullname: Shi
– volume: 51
  start-page: 3410
  year: 2017
  end-page: 3417
  ident: CR49
  article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05392
  contributor:
    fullname: Weavers
– volume: 139
  start-page: 8222
  year: 2017
  end-page: 8228
  ident: CR33
  article-title: Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02186
  contributor:
    fullname: Fontecave
– volume: 91
  start-page: 11994
  year: 2019
  end-page: 11999
  ident: CR15
  article-title: Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02901
  contributor:
    fullname: Liu
– volume: 140
  start-page: 1535
  year: 2018
  end-page: 1543
  ident: CR3
  article-title: A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12621
  contributor:
    fullname: Hilvert
– volume: 19
  start-page: 3214
  year: 2019
  end-page: 3220
  ident: CR8
  article-title: Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00725
  contributor:
    fullname: Liu
– volume: 150
  start-page: 111881
  year: 2020
  ident: CR10
  article-title: Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111881
  contributor:
    fullname: Li
– volume: 115
  start-page: 5461
  year: 2011
  end-page: 5466
  ident: CR52
  article-title: Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
  contributor:
    fullname: Dronskowski
– volume: 15
  start-page: 1900632
  year: 2019
  ident: CR56
  article-title: Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection
  publication-title: Small
  doi: 10.1002/smll.201900632
  contributor:
    fullname: Lin
– volume: 46
  start-page: 3386
  year: 2017
  end-page: 3401
  ident: CR26
  article-title: Enzyme–MOF (metal–organic framework) composites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00058H
  contributor:
    fullname: Li
– volume: 307
  start-page: 106
  year: 2016
  end-page: 129
  ident: CR28
  article-title: Applications of metal-organic frameworks featuring multi-functional sites
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.05.005
  contributor:
    fullname: Ma
– volume: 206
  start-page: 642
  year: 2017
  end-page: 652
  ident: CR50
  article-title: Enhanced catalytic degradation of methylene blue by α-Fe O /graphene oxide via heterogeneous photo-Fenton reactions
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.075
  contributor:
    fullname: Zhang
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR43
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Furthmüller
– volume: 58
  start-page: 2
  year: 2019
  end-page: 14
  ident: CR16
  article-title: When nanozymes meet single-atom catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905645
  contributor:
    fullname: Lin
– volume: 539
  start-page: 76
  year: 2016
  end-page: 80
  ident: CR35
  article-title: Metal–organic frameworks as selectivity regulators for hydrogenation reactions
  publication-title: Nature
  doi: 10.1038/nature19763
  contributor:
    fullname: Guo
– volume: 30
  start-page: 1703663
  year: 2018
  ident: CR36
  article-title: Metal–organic frameworks as platforms for catalytic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703663
  contributor:
    fullname: Xu
– volume: 55
  start-page: 2285
  year: 2019
  end-page: 2288
  ident: CR21
  article-title: Unraveling the enzyme-like activity of heterogeneous single atom catalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00199A
  contributor:
    fullname: Li
– volume: 59
  start-page: 3300
  year: 2020
  end-page: 3306
  ident: CR31
  article-title: Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal node-dependent photocatalytic performances
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913748
  contributor:
    fullname: Huang
– volume: 105
  start-page: 391
  year: 2018
  end-page: 403
  ident: CR37
  article-title: Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.001
  contributor:
    fullname: Huang
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR41
  article-title: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: Furthmüller
– volume: 141
  start-page: 111473
  year: 2019
  ident: CR57
  article-title: Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111473
  contributor:
    fullname: Yan
– volume: 7
  start-page: 1901918
  year: 2019
  ident: CR25
  article-title: Boosting ethylene/ethane separation within copper(i)-chelated metal–organic frameworks through tailor-made aperture and specific π-complexation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901918
  contributor:
    fullname: Shao
– volume: 43
  start-page: 5561
  year: 2014
  end-page: 5593
  ident: CR27
  article-title: Tuning the structure and function of metal–organic frameworks via linker design
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00003J
  contributor:
    fullname: Park
– volume: 7
  start-page: 338
  year: 2017
  end-page: 342
  ident: CR34
  article-title: A titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02642
  contributor:
    fullname: Phan
– volume: 91
  start-page: 11994
  year: 2019
  ident: 520_CR15
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02901
  contributor:
    fullname: L Jiao
– volume: 43
  start-page: 5561
  year: 2014
  ident: 520_CR27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00003J
  contributor:
    fullname: W Lu
– volume: 32
  start-page: 1905361
  year: 2020
  ident: 520_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905361
  contributor:
    fullname: F Wang
– volume: 77
  start-page: 3865
  year: 1996
  ident: 520_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: JP Perdew
– volume: 139
  start-page: 5412
  year: 2017
  ident: 520_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
  contributor:
    fullname: Z Zhang
– volume: 150
  start-page: 111881
  year: 2020
  ident: 520_CR10
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111881
  contributor:
    fullname: R Zhang
– volume: 140
  start-page: 11302
  year: 2018
  ident: 520_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05223
  contributor:
    fullname: MA Komkova
– volume: 2
  start-page: 577
  year: 2007
  ident: 520_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
  contributor:
    fullname: L Gao
– volume: 307
  start-page: 106
  year: 2016
  ident: 520_CR28
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.05.005
  contributor:
    fullname: B Li
– volume: 11
  start-page: 1790
  year: 2019
  ident: 520_CR14
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16075
  contributor:
    fullname: C Zeng
– volume: 45
  start-page: 4127
  year: 2016
  ident: 520_CR38
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00047A
  contributor:
    fullname: I Nath
– volume: 219
  start-page: 216
  year: 2017
  ident: 520_CR51
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.035
  contributor:
    fullname: S Jorfi
– volume: 139
  start-page: 8222
  year: 2017
  ident: 520_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02186
  contributor:
    fullname: MB Chambers
– volume: 15
  start-page: 1903108
  year: 2019
  ident: 520_CR54
  publication-title: Small
  doi: 10.1002/smll.201903108
  contributor:
    fullname: Y Wu
– volume: 142
  start-page: 111495
  year: 2019
  ident: 520_CR55
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111495
  contributor:
    fullname: X Niu
– volume: 59
  start-page: 3300
  year: 2020
  ident: 520_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913748
  contributor:
    fullname: ZW Jiang
– volume: 15
  start-page: 1901485
  year: 2019
  ident: 520_CR19
  publication-title: Small
  doi: 10.1002/smll.201901485
  contributor:
    fullname: N Cheng
– volume: 206
  start-page: 642
  year: 2017
  ident: 520_CR50
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.075
  contributor:
    fullname: Y Liu
– volume: 6
  start-page: 15
  year: 1996
  ident: 520_CR41
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: G Kresse
– volume: 55
  start-page: 2285
  year: 2019
  ident: 520_CR21
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00199A
  contributor:
    fullname: C Zhao
– volume: 539
  start-page: 76
  year: 2016
  ident: 520_CR35
  publication-title: Nature
  doi: 10.1038/nature19763
  contributor:
    fullname: M Zhao
– volume: 10
  start-page: 5048
  year: 2019
  ident: 520_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13051-2
  contributor:
    fullname: Z Xue
– volume: 5
  start-page: 8385
  year: 2017
  ident: 520_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01066D
  contributor:
    fullname: Y Wang
– volume: 9
  start-page: 4508
  year: 2017
  ident: 520_CR11
  publication-title: Nanoscale
  doi: 10.1039/C7NR00819H
  contributor:
    fullname: N Lu
– volume: 7
  start-page: 1901918
  year: 2019
  ident: 520_CR25
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901918
  contributor:
    fullname: L Zhang
– volume: 139
  start-page: 6034
  year: 2017
  ident: 520_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01320
  contributor:
    fullname: C-X Chen
– volume: 417
  start-page: 463
  year: 2002
  ident: 520_CR4
  publication-title: Nature
  doi: 10.1038/417463a
  contributor:
    fullname: GI Berglund
– volume: 55
  start-page: 14534
  year: 2019
  ident: 520_CR20
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC07408B
  contributor:
    fullname: M Lu
– volume: 7
  start-page: 338
  year: 2017
  ident: 520_CR34
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02642
  contributor:
    fullname: HL Nguyen
– volume: 13
  start-page: 1506
  year: 2018
  ident: 520_CR48
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
  contributor:
    fullname: B Jiang
– volume: 48
  start-page: 2783
  year: 2019
  ident: 520_CR23
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00829A
  contributor:
    fullname: M Ding
– volume: 5
  start-page: eaav5490
  year: 2019
  ident: 520_CR18
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
  contributor:
    fullname: L Huang
– volume: 141
  start-page: 111473
  year: 2019
  ident: 520_CR57
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111473
  contributor:
    fullname: R Jin
– volume: 15
  start-page: 1900632
  year: 2019
  ident: 520_CR56
  publication-title: Small
  doi: 10.1002/smll.201900632
  contributor:
    fullname: Y Wu
– volume: 11
  start-page: 5558
  year: 2017
  ident: 520_CR44
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00905
  contributor:
    fullname: Y Hu
– volume: 92
  start-page: 3373
  year: 2020
  ident: 520_CR17
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05437
  contributor:
    fullname: Y Wu
– volume: 58
  start-page: 2
  year: 2019
  ident: 520_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905645
  contributor:
    fullname: L Jiao
– volume: 46
  start-page: 3386
  year: 2017
  ident: 520_CR26
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00058H
  contributor:
    fullname: X Lian
– volume: 105
  start-page: 391
  year: 2018
  ident: 520_CR37
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.06.001
  contributor:
    fullname: S Li
– volume: 14
  start-page: 1703149
  year: 2018
  ident: 520_CR39
  publication-title: Small
  doi: 10.1002/smll.201703149
  contributor:
    fullname: W-H Chen
– volume: 25
  start-page: 15067
  year: 2019
  ident: 520_CR47
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201903434
  contributor:
    fullname: S Dery
– volume: 24
  start-page: 409
  year: 2018
  ident: 520_CR12
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201703833
  contributor:
    fullname: Z Li
– volume: 30
  start-page: 1703663
  year: 2018
  ident: 520_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703663
  contributor:
    fullname: L Jiao
– volume: 140
  start-page: 1535
  year: 2018
  ident: 520_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12621
  contributor:
    fullname: M Pott
– volume: 527
  start-page: 357
  year: 2015
  ident: 520_CR24
  publication-title: Nature
  doi: 10.1038/nature15732
  contributor:
    fullname: JA Mason
– volume: 51
  start-page: 3410
  year: 2017
  ident: 520_CR49
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05392
  contributor:
    fullname: Z Wei
– volume: 14
  start-page: 1803256
  year: 2018
  ident: 520_CR9
  publication-title: Small
  doi: 10.1002/smll.201803256
  contributor:
    fullname: H Zhang
– volume: 12
  start-page: 11616
  year: 2020
  ident: 520_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21621
  contributor:
    fullname: S Cai
– volume: 14
  start-page: 1801680
  year: 2018
  ident: 520_CR53
  publication-title: Small
  doi: 10.1002/smll.201801680
  contributor:
    fullname: J Zhang
– volume: 31
  start-page: 1805368
  year: 2019
  ident: 520_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805368
  contributor:
    fullname: H Wang
– volume: 11
  start-page: 22096
  year: 2019
  ident: 520_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03004
  contributor:
    fullname: W Xu
– volume: 10
  start-page: 6422
  year: 2020
  ident: 520_CR22
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01647
  contributor:
    fullname: L Jiao
– volume: 54
  start-page: 11169
  year: 1996
  ident: 520_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: G Kresse
– volume: 119
  start-page: 4357
  year: 2019
  ident: 520_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
  contributor:
    fullname: Y Huang
– volume: 19
  start-page: 3214
  year: 2019
  ident: 520_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00725
  contributor:
    fullname: J Zhang
– volume: 131
  start-page: 18007
  year: 2019
  ident: 520_CR45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201911600
  contributor:
    fullname: D Mateo
– volume: 115
  start-page: 5461
  year: 2011
  ident: 520_CR52
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
  contributor:
    fullname: VL Deringer
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.4917653
Snippet Highlights The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from...
Abstract Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical...
HighlightsThe two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites.Benefiting from...
The two functional groups (nitro and amino) were introduced into MIL-101(Fe) for tuning the atomically dispersed metal active sites. Benefiting from both...
Abstract Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 184
SubjectTerms Atomically dispersed sites
Biosensors
Dispersion
Electronic properties
Electronic structure
Engineering
Functional groups
Iron
Metal-organic frameworks
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nanozymes
Peroxidase
Peroxidase-like activity
Pesticides
Tuning
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnuCAeIpAQUbiViwSP_FxF1hViFaV2kq9RY7jQESVoCYrgXrpf-Af9pd0xsk-Uglx4bCH3UTZxPPZ801m_A0hb4ODRc6UWMQgIEApUsGAFSkWYCU0XovKlpjRPTzSB2fyy7k632r1hTVhgzzwMHDvVfUhcxBIBWD-UgppUy8Cl0VIvRW-GKL1TG0FU4AkbrAj0yY_iG2V5ZZKjURNF7ERMlMoXGY2-piKS_Dro6MdiLTBFFbsVJdlTJtUjztw4j487NqcMozEYl0JExMvF5sBTBjs3frLO0nY6NsWD8mDkZTS2TAYj8hOaB6T-1tShU_I1ekS36DQWd9GgYGL3_RTjSrjXSjpItAToK4drRt6GIDO31z_GTZ5erpYVX91dN62Xd_R43DZ_qpLcJ_sa_0j0JkfOlhQ4M_0BAvqcQmm87rt8Evz7Sk5W3w-_XjAxsYNzCulewYRt7BgMVWCnYKsRMZ5lZXG6QICYm0rZawDiDhRBO40hFwFh1BKZsCmZAZu9RnZbdomPCfUiEpabzl3opSpl1Y7Cxc2AS5QArlMyP5qoPOfgz5HvlZijmbJU_ygWXKRkDnaYn0mamvHHwBx-Yi4_F-IS8jeypL5OOG7HAAjsLWAUgl5sz4MUxXzL64J7RLOURLFhYDRJsRMEDC5oemRpv4eRb-NMfhKLSHvVljZ_PnfH_jF_3jgl-Qej9i2jIs9sttfLsMroGJ98TrOuluEXiRT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIpAQUbiBhbxK65PaBcIFaIIqa3UW5Q4ThuBknaTlUBc-A_8Q34JM06y6VaCQw6Jozzs8cw3nvE3hLzwOSg5U2ISgwQHpYglA1SkmQdNaFwiK1tiRPfgc7J_rD6e6JNxwa0b0yonnRgUddk6XCN_LZSRyN2u9ZvzC4ZVozC6OpbQuE5ucGTCw53i6YdJnuCKkXyOEmJxZXWJq0Yhs4uc6cw00peZmSVTwzuFGc3tAKcNBrJCvTrOWWLiZNyHE3bjYe3mmKE_FrJLmNyydaEkwBaOvZqFeSUUGyxceofcHqEpXQyydJdc8809cusSYeF98vNojesodNG3gWbg2w_6rkau8c6XNPX0EDqro3VDDzyA-j-_fg9bPR1Npxywji7btus7-sWv2u91CUaUfaq_erpwQx0LCiiaHmJaPSpiuqzbDk-a0wfkOH1_9HafjeUbmNM66Rn43dJKz3WpCu9VJbkQFS9NnhTgFie20sbmICi5LLzIE3C8CgEOleKAqRQH4_qQ7DRt4x8RamSlrLNC5LJUsVM2yS082Hh4QAkQMyIvp47OzgeWjmzDxxyGJYvxwGHJZESWOBabO5FhO1xoV6fZOGEzXe3xHBx4Dx6nUlLZ2Ekv4E9iZ6Ur4ojsTiOZjdO-y2YhjcjzTTNMWIzC5I1v13CPVkgxBLg2ImZLArY-aLulqc8C9bcxBhfWIvJqkpX55f_-4cf__9Yn5KYIUmuZkLtkp1-t_VOAWn3xLMynv_RWHKY
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagXOBQ8SsCLTISN7CU-CfGx93SVYUoQmor9RY5jlMiUII2WamIC-_AG_ZJOuMkm6aCA4ccEluJHY8933jG3xDyxltY5HSBQQwCDJQ8FgxQkWIeVkLtUlGaAj26x5_TozP58VydT-e4Q7D76JEMC_X2rBtmRo4ZWjshdoOJu-QeggcU64OJcpxrTMY0uQYxo7K8QVAjkc5FTBxmCjnL9ESNqbgElT7o2B5Da_RehSR1ScJSHafD4Zu_N2um4EIegBl4vR16ecv_GtTa6iHZHfAoXfQC9Ijc8fVj8uAGS-ET8ut0g5sndNE1gVvg-0_6oUKC8dYXdOXpCaDWllY1PfaA5K9-_-nPdzq6GgO_WrpsmrZr6Re_bi6rAjQn-1R983Th-uQVFKAzPcFYelx96bJqWrypL56Ss9Xh6cERG3I2MKdU2jEwtoURPlGFzL2XpUg4L5NC2zQHWzg1pdLGgnRYkXtuU7C2cg5WlEwASMkENOozslM3tX9OqBalNM5wbkUhYydNag28WHt4QQG4MiJvxx-d_eipObItCXMYlizGC4clExFZ4lhsayKtdnjQrC-yYZZmqnyfWLDaPZiZUgppYic8h57EzgiXxxHZG0cyG-Z6m4HACMwqoFREXm-LYZai68XWvtlAHSWRVwjAbET0TAJmDZqX1NXXwPettcbdtIi8G2Vl-vi_O_zi_6q_JPd5kGLDuNgjO9164_cBb3X5qzC_rgFGVRi9
  priority: 102
  providerName: Springer Nature
Title Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing
URI https://link.springer.com/article/10.1007/s40820-020-00520-3
https://www.proquest.com/docview/2473254655
https://search.proquest.com/docview/2542357105
https://pubmed.ncbi.nlm.nih.gov/PMC7770903
https://doaj.org/article/5f81a133e144443490c3e24be0c93cb0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELay6aU9RH2qNOnKlXpryYIfeDkum9Co6karJpFyQ2BMgppAtOxKrXrpf-g_7C_pjBd2Q6ReegDEQwbssecbz_gbQt6bFAY5lWMQAwcDJfO4C6hIugZGQqUDXoQ5enRnp8HJhfh8KS93iOzWwtigfZ2Vh9XN7WFVXtvYyrtbPerixEbz2VQphdMLowEZKM77JjpTmIxp6xrEjMriHkGNQDoXvuUwk8hZprbUmJIJUOmtjl1jaIXeK5ukzvfdQHlBu_jGLsHDhM2ei0aYDSlxMTEPaoYx83lP19mUAD0c-zAK84Er1mq4-CnZa6Epnayr4BnZMdVz8uQeYeEL8vN8hfModLKsLc3AzQ96VCLXeGNyGht6BgC2oWVFZwZA_Z9fv9dLPTWNuxiwhkZ13SwbOjeL-nuZgxJ1v5TfDJ3odR4LCiianmFYPQ7ENCrrBk-qq5fkIj4-n564bfoGV0sZLF2wu3nIjS9zkRkjCu4zVvi5SoMMzOIgLKQKUxCUlGeGpQEYXhkDg0r4gKmED1X4iuxWdWVeE6p4IUIdMpbyXHhahEEaQsHKQAE5QEyHfOgqOrlbs3QkGz5m20KJhxu2UMIdEmFbbJ5Ehm17oV5cJa2cJbIY-ykY8AYsTiG4CD3NDYM_8XTIdeY55KBryaTt9k0CssMxwYCUDnm3uQ0dFr0waWXqFTwjBVIMAa51iOpJQO-D-negJ1jq71byHfKxk5Xty__9w2_--0X75DGzsh26jB-Q3eViZd4CCltmQzIYx5-G5NEkOopiOEbHp_OvcHXKBO6D6dDObwxt7_wLS_AsIw
link.rule.ids 230,315,733,786,790,870,891,2115,12792,21416,27955,27956,33406,33407,33777,33778,41152,41153,42221,42222,43633,43838,51609,52266,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BegAOiKdqKLBI3GCFvQ9v94QSaBQgiSqaSr1ZfqyLBbJL7EggLvwH_iG_hJm1HTeV4OCDH_JrZme-2Zn9hpAXNgYjpzMsYhAQoCS-YICKFLNgCXUaitxkmNFdLMPZqfxwps66Cbe6K6vsbaIz1FmV4hz5ay61QO52pd5cfGPYNQqzq10LjetkDyk3D0dkb3K0PP7UaxTX2JlpyBNie2V5ia1GIreLGAjNFBKY6YEnU8FTue4cbguoNaayXMe6IGCh9sNuJY5bj4fdm32GEZmrL2Fix9u5pgA7SPZqHeaVZKzzcdM75HYHTum41aa75Jot75FblygL75Ofqw3OpNBxUzmiga8_6LsC2cZrm9GppSfwu2palHRhAdb_-fW7XeyZ0mlfBVbTSVXVTU2P7br6XmTgRtm8-GLpOG07WVDA0fQEC-vRFNNJUdW4U54_IKfTo9XbGesaOLBUqbBhEHkLI2ygMplYK3MRcJ4HmY7DBKQVmlxpE4OqxCKxPA4h9Eo4hFQyAFQlA3CvD8morEq7T6gWuTSp4TwWmfRTacLYwI21hRtkADI98rL_0dFFy9MRbRmZnVgiHzcUSyQ8MkFZbK9Ejm13oFqfR92QjVR-GMQQwluIOaUU0vipsBy-xE-NSBPfIwe9JKNu4NfRoKYeeb49DUMW8zBxaasNXKMkkgwBsvWI3tGAnRfaPVMWnx35t9Yap9Y88qrXleHh__7gR_9_12fkxmy1mEfz98uPj8lN7jTYMC4OyKhZb-wTAF5N8rQbXX8BZ_Eg_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOiKcIFDASN7Ca-ImPuy1Rgbaq1FbqLcrDaSNQUm2yEogL_4F_yC9hxkl2NxUcOOSQxMprxp5vMjPfEPLGpbDImQKTGAQ4KFkoGKAixRyshCbXorQFRnQPj_T-mfx0rs43qvh9tvsYkuxrGpClqe52ropyZ1X4hm2SQ4auj0_kYOImuSUB3Phwrd4dNYob7My0jhNie2W5wVYjkdtFrAnNFBKYmTVPpuIS7PtgcHtAbTCU5TvWRRHTJtRDJc7fH2ti7XxTgAmSvZ6HeS0Y621cfJ_cG8ApnfXa9IDccPVDcneDsvAR-XG6xD8pdNY1nmjg63e6VyHbeOsKGjt6AhC2pVVNDx3A-t8_f_XFnjmNxyywls6bpu1aeuwWzbeqADPKDqovjs7yvpMFBRxNTzCxHpdiOq-aFnfqi8fkLP5wurvPhgYOLFdKdww8b2GFi1QhM-dkKSLOy6gwqc7AMda2VMamoCqpyBxPNbheGQeXCgRpAFiAeX1Ctuqmdk8JNaKUNrecp6KQYS6tTi1c2Di4QAEgMyBvxw-dXPU8HcmKkdmLJQlxQ7EkIiBzlMVqJHJs-wPN4iIZpmyiyvdRCi68A59TSiFtmAvH4U3C3Io8CwOyPUoyGSZ-m4DCCGwxoFRAXq9Ow5TFOExau2YJY5REkiFAtgExEw2YPND0TF1devJvYwz-WgvIu1FX1jf_9ws_-7_hr8jt4704Ofh49Pk5ucO9QlvGxTbZ6hZL9wJwWJe99FPtDwATIH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Atomically+Dispersed+Fe+Sites+in+Metal%E2%80%93Organic+Frameworks+Boosts+Peroxidase-Like+Activity+for+Sensitive+Biosensing&rft.jtitle=Nano-micro+letters&rft.au=Weiqing+Xu&rft.au=Yikun+Kang&rft.au=Lei+Jiao&rft.au=Yu+Wu&rft.date=2020-09-23&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs40820-020-00520-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5f81a133e144443490c3e24be0c93cb0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon