Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia

Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 79; no. 5; pp. 1125 - 1132
Main Authors Ichida, Kimiyoshi, Hisatome, Ichiro, Hamada, Toshihiro, Ninomiya, Haruaki, Kuwabara, Masanari, Niwa, Koichiro, Kato, Masahiko, Ogino, Kazuhide, Yamamoto, Kazuhiro, Higashi, Yukihito, Maharani, Nani, Sugihara, Shinobu
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2015
Subjects
Online AccessGet full text
ISSN1346-9843
1347-4820
1347-4820
DOI10.1253/circj.CJ-14-1267

Cover

Loading…
Abstract Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. (Circ J 2015; 79: 1125–1132)
AbstractList Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia. Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function. Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients.
Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. (Circ J 2015; 79: 1125–1132)
Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.BACKGROUNDUric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.METHODS AND RESULTSTwenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients.CONCLUSIONSDepletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients.
Author Ichida, Kimiyoshi
Yamamoto, Kazuhiro
Niwa, Koichiro
Hisatome, Ichiro
Maharani, Nani
Ninomiya, Haruaki
Ogino, Kazuhide
Hamada, Toshihiro
Sugihara, Shinobu
Kato, Masahiko
Higashi, Yukihito
Kuwabara, Masanari
Author_xml – sequence: 1
  fullname: Ichida, Kimiyoshi
  organization: Department of Pathophysiology, Tokyo University of Pharmacy and Life science
– sequence: 1
  fullname: Hisatome, Ichiro
  organization: Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science
– sequence: 1
  fullname: Hamada, Toshihiro
  organization: Department of Regional Medicine, Tottori University Faculty of Medicine
– sequence: 1
  fullname: Ninomiya, Haruaki
  organization: Department of Biological Regulation, Tottori University Faculty of Medicine
– sequence: 1
  fullname: Kuwabara, Masanari
  organization: Department of Cardiology, St. Luke’s International Hospital
– sequence: 1
  fullname: Niwa, Koichiro
  organization: Department of Cardiology, St. Luke’s International Hospital
– sequence: 1
  fullname: Kato, Masahiko
  organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University
– sequence: 1
  fullname: Ogino, Kazuhide
  organization: Department of Clinical Laboratory, Tottori University Hospital
– sequence: 1
  fullname: Yamamoto, Kazuhiro
  organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University
– sequence: 1
  fullname: Higashi, Yukihito
  organization: Department of Regeneration and Medicine, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine Hiroshima University
– sequence: 1
  fullname: Maharani, Nani
  organization: Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science
– sequence: 1
  fullname: Sugihara, Shinobu
  organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25739858$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtv2zAURokgRd57p4JjOijlW-JoyHHTwEWBNp4Jir5qaMiiS1II_O8rP5IAHbqQdziHF_y-S3Tahx4Q-kjJHWWSf3E-utVd_VhQUVCmyhN0QbkoC1ExcrqfVaErwc_RZUorQpgmUp-hcyZLritZXaCXKWw6yD70OLR4Eb3DE-eXeDoAzgH_mteMTSjDt4ufkyf6Gc9DSkVoi9nQu731fch2P9R2SJDwfb8M-Rk6bzs83ab2lfM9fthuwjBugLW31-hDa7sEN8f7Ci1m90_1QzH_8fVbPZkXTkqVC9ko4iyVrGGNgIZzuaxazhmXlLdgrVOqIYxx7gSvxh9xqYmQtBRSaK1bwa_Q7eHdTQx_BkjZrH1y0HW2hzAkQ1WpuCBMqRH9dESHZg1Ls4l-bePWvIY1AuQAuDimEKF9Qygxuz7Mvg9TPxoqzK6PUVH_KM4f8srR-u5_4uwgrlK2v-Ftk43Zuw6OQqmN3B3v4jvwbKOBnv8FhzanjA
CitedBy_id crossref_primary_10_1016_j_ijcard_2018_06_017
crossref_primary_10_1007_s00424_021_02606_2
crossref_primary_10_1152_ajpendo_00092_2023
crossref_primary_10_1161_HYPERTENSIONAHA_117_10370
crossref_primary_10_1016_j_molmet_2021_101411
crossref_primary_10_1016_j_jare_2017_03_003
crossref_primary_10_1038_s41440_024_02031_9
crossref_primary_10_3390_jcm9040942
crossref_primary_10_3390_biomedicines9111607
crossref_primary_10_2478_am_2024_0007
crossref_primary_10_1007_s11255_020_02531_w
crossref_primary_10_1038_s41440_022_01148_z
crossref_primary_10_1097_HJH_0000000000001109
crossref_primary_10_1038_s41598_019_50798_6
crossref_primary_10_1016_j_atherosclerosis_2021_06_908
crossref_primary_10_3390_biomedicines9121847
crossref_primary_10_30548_vascfail_2_1_11
crossref_primary_10_1007_s00380_016_0796_z
crossref_primary_10_1111_dom_13665
crossref_primary_10_1371_journal_pone_0287721
crossref_primary_10_1161_JAHA_121_023301
crossref_primary_10_3390_biomedicines11051258
crossref_primary_10_1007_s00467_018_3934_2
crossref_primary_10_3390_biomedicines11051255
crossref_primary_10_1002_jbm_a_37669
crossref_primary_10_1186_s12987_016_0046_x
crossref_primary_10_1371_journal_pone_0260844
crossref_primary_10_2169_internalmedicine_7897_21
crossref_primary_10_1161_JAHA_119_013130
crossref_primary_10_1253_circj_CJ_18_0508
crossref_primary_10_3346_jkms_2017_32_8_1275
crossref_primary_10_4162_nrp_2024_18_5_721
crossref_primary_10_1016_j_dsx_2021_102198
crossref_primary_10_1186_s12882_020_01940_4
crossref_primary_10_1002_hsr2_1467
crossref_primary_10_1139_cjpp_2019_0024
crossref_primary_10_1159_000443769
crossref_primary_10_1002_ehf2_12765
crossref_primary_10_1016_j_jad_2023_01_105
crossref_primary_10_2147_JIR_S494487
crossref_primary_10_1371_journal_pone_0305906
crossref_primary_10_1080_13543776_2016_1213243
crossref_primary_10_1253_circj_CJ_16_0605
crossref_primary_10_2169_internalmedicine_0457_22
crossref_primary_10_1253_circj_CJ_15_0232
crossref_primary_10_1007_s00380_024_02469_4
crossref_primary_10_1016_j_atherosclerosis_2018_03_031
crossref_primary_10_1253_circrep_CR_20_0016
crossref_primary_10_62347_DRPN1199
crossref_primary_10_3390_medicina55030061
crossref_primary_10_1186_s40001_022_00684_1
crossref_primary_10_1016_j_celrep_2024_114628
crossref_primary_10_1253_circj_CJ_16_0766
crossref_primary_10_2169_internalmedicine_0678_22
crossref_primary_10_1155_2017_3759153
crossref_primary_10_1152_ajprenal_00645_2016
crossref_primary_10_1002_joa3_13092
crossref_primary_10_1038_s41598_020_74747_w
crossref_primary_10_3390_nu9040395
crossref_primary_10_1136_bmjopen_2017_020681
crossref_primary_10_3390_biom10040576
crossref_primary_10_1016_j_atherosclerosis_2018_10_007
crossref_primary_10_1016_j_jjcc_2021_08_005
crossref_primary_10_1371_journal_pone_0176055
crossref_primary_10_1016_j_bbrep_2015_07_012
crossref_primary_10_1007_s40292_025_00706_z
crossref_primary_10_1007_s10067_022_06071_9
crossref_primary_10_1016_j_nefroe_2018_08_007
crossref_primary_10_3389_fcvm_2022_882821
crossref_primary_10_1016_j_amjmed_2018_12_010
crossref_primary_10_1007_s10157_023_02318_0
crossref_primary_10_1186_s12882_019_1618_1
crossref_primary_10_3390_diseases4010012
crossref_primary_10_3389_fnut_2021_769555
crossref_primary_10_1536_ihj_20_114
crossref_primary_10_1002_ddr_21699
crossref_primary_10_1136_rmdopen_2019_001015
crossref_primary_10_1253_circj_CJ_20_0406
crossref_primary_10_1016_j_ccl_2021_04_009
crossref_primary_10_1152_ajprenal_00272_2019
crossref_primary_10_3390_biomedicines10123067
crossref_primary_10_1016_j_nefro_2018_08_010
crossref_primary_10_1111_apha_12646
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107206
crossref_primary_10_1007_s40291_023_00683_w
crossref_primary_10_1097_RHU_0000000000001901
crossref_primary_10_1055_a_1947_7716
crossref_primary_10_47360_1995_4484_2021_599_607
Cites_doi 10.1073/pnas.78.11.6858
10.2147/VHRM.S4265
10.1016/0006-291X(87)91112-0
10.1161/01.ATV.0000150649.39934.13
10.1152/ajpheart.00471.2010
10.1007/s10554-010-9616-1
10.1161/01.HYP.36.6.1072
10.1111/j.1399-0004.2008.01021.x
10.2337/db06-0283
10.1007/s00467-005-1863-3
10.1159/000355020
10.1016/j.jjcc.2012.09.004
10.1097/01.ASN.0000027871.86296.92
10.1159/000185233
10.1161/CIRCULATIONAHA.106.651117
10.1093/ndt/gfq722
10.1002/dmrr.814
10.1038/nature742
10.5551/jat.14340
10.1093/ajcn/54.6.1129s
10.1681/ASN.2009040406
10.1074/jbc.C800156200
10.5551/jat.13.101
10.1097/01.ASN.0000105320.04395.D0
10.1253/circj.CJ-13-0549
10.1681/ASN.2006030264
10.1016/j.ymgme.2006.03.015
10.1016/j.amjcard.2005.07.068
10.1161/01.CIR.0000022140.61460.1D
10.1113/jphysiol.2003.055913
10.1161/01.RES.70.3.465
10.1152/ajpcell.00600.2006
10.1371/journal.pgen.0030194
10.1038/ng.531
10.1007/s00467-004-1424-1
10.1001/jama.283.18.2404
10.1159/000184876
10.7326/0003-4819-78-6-977
ContentType Journal Article
Copyright 2015 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2015 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-14-1267
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1132
ExternalDocumentID 25739858
10_1253_circj_CJ_14_1267
article_circj_79_5_79_CJ_14_1267_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
OK1
OVT
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
.GJ
3O-
AAYXX
CITATION
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c556t-5b60ca152b2b4eb335d8f3323513feaac66b02233c43898535904517454999f43
ISSN 1346-9843
1347-4820
IngestDate Fri Jul 11 11:06:48 EDT 2025
Mon Jul 21 05:58:40 EDT 2025
Tue Jul 01 02:01:14 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Wed Sep 03 06:15:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-5b60ca152b2b4eb335d8f3323513feaac66b02233c43898535904517454999f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/79/5/79_CJ-14-1267/_article/-char/en
PMID 25739858
PQID 1676340266
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1676340266
pubmed_primary_25739858
crossref_primary_10_1253_circj_CJ_14_1267
crossref_citationtrail_10_1253_circj_CJ_14_1267
jstage_primary_article_circj_79_5_79_CJ_14_1267_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2015
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 4. Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation: Restoration of endothelium-dependent responses by L-arginine. Circ Res 1992; 70: 465–476.
12. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300: H2–H12.
29. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516.
9. Lee SH, Heo SH, Kim JH, Lee D, Lee JS, Kim YS, et al. Effects of uric acid levels on outcome in severe ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator. Eur Neurol 2013; 71: 132–139.
20. Niizeki T, Takeishi Y, Arimoto T, Okuyama H, Nozaki N, Hirono O, et al. Hyperuricemia associated with high cardiac event rates in the elderly with chronic heart failure. J Cardiol 2006; 47: 219–228.
11. Pitocco D, Di Stasio E, Romitelli F, Zaccardi F, Tavazzi B, Manto A, et al. Hypouricemia linked to an overproduction of nitric oxide is an early marker of oxidative stress in female subjects with type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 318–323.
28. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606.
15. Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–173.
38. Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet 2008; 74: 243–251.
25. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007; 3: e194, doi:10.1371/journal.pgen.0030194.
27. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010; 42: 210–215.
37. Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 2004; 19: 728–733.
40. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant 2011; 26: 2175–2181.
10. Sperling O. Hereditary renal hypouricemia. Mol Genet Metab 2006; 89: 14–18.
30. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221–226.
24. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–452.
21. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, et al. Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: A prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol 2013; 61: 122–127.
32. Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, et al. Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol 2006; 17: 1791–1795.
8. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000; 148: 131–139.
2. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension 2000; 36: 1072–1078.
16. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008; 283: 26834–26838.
18. Shirai K, Utino S, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101–107.
5. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol 2002; 21: 109–116.
17. Kato M, Hisatome I, Tomikura Y, Kotani K, Kinugawa T, Ogino K, et al. Status of endothelial dependent vasodilation in patients with hyperuricemia. Am J Cardiol 2005; 96: 1576–1578.
13. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int J Cardiovasc Imaging 2010; 26: 631–640.
7. Sevanian A, Davies KJ, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–1134S.
14. Poredos P, Jezovnik MK. Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2013; 20: 1–8.
3. De Leeuw PW, Thijs L, Birkenhäger WH, Voyaki SM, Efstratopoulos AD, Fagard RH, et al; Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: Results from the Syst-Eur trial. J Am Soc Nephrol 2002; 13: 2213–2222.
1. Waring WS, McKnight JA, Webb DJ, Maxwell SR. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 2006; 55: 3127–3132.
22. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29–38.
19. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality, The NHANES 1 epidemiology follow-up study, 1971–1992. JAMA 2000; 283: 2404–2410.
26. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 2010; 21: 64–72.
33. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596.
41. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J 2013; 77: 2807–2815.
36. Yanase M, Nakahama H, Mikami H, Fukuhara Y, Orita Y, Yoshikawa H. Prevalence of hypouricemia in apparently normal population. Nephron 1988; 48: 80.
23. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5: 265–272.
6. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–6862.
34. Van Peenen HJ. Causes of hypouricemia. Ann Intern Med 1973; 78: 977–978.
31. Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314–319.
35. Hisatome I, Ogino K, Kotake H, Ishiko R, Saito M, Hasegawa J, et al. Cause of persistent hypouricemia in outpatients. Nephron 1989; 51: 13–16.
39. Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol 2005; 20: 886–890.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
21
25787674 - Circ J. 2015;79(5):978-80
References_xml – reference: 4. Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation: Restoration of endothelium-dependent responses by L-arginine. Circ Res 1992; 70: 465–476.
– reference: 6. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–6862.
– reference: 40. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant 2011; 26: 2175–2181.
– reference: 41. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J 2013; 77: 2807–2815.
– reference: 22. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29–38.
– reference: 26. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 2010; 21: 64–72.
– reference: 38. Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet 2008; 74: 243–251.
– reference: 39. Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol 2005; 20: 886–890.
– reference: 18. Shirai K, Utino S, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101–107.
– reference: 19. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality, The NHANES 1 epidemiology follow-up study, 1971–1992. JAMA 2000; 283: 2404–2410.
– reference: 28. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606.
– reference: 31. Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314–319.
– reference: 3. De Leeuw PW, Thijs L, Birkenhäger WH, Voyaki SM, Efstratopoulos AD, Fagard RH, et al; Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: Results from the Syst-Eur trial. J Am Soc Nephrol 2002; 13: 2213–2222.
– reference: 7. Sevanian A, Davies KJ, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–1134S.
– reference: 24. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–452.
– reference: 30. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221–226.
– reference: 37. Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 2004; 19: 728–733.
– reference: 32. Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, et al. Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol 2006; 17: 1791–1795.
– reference: 1. Waring WS, McKnight JA, Webb DJ, Maxwell SR. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 2006; 55: 3127–3132.
– reference: 35. Hisatome I, Ogino K, Kotake H, Ishiko R, Saito M, Hasegawa J, et al. Cause of persistent hypouricemia in outpatients. Nephron 1989; 51: 13–16.
– reference: 17. Kato M, Hisatome I, Tomikura Y, Kotani K, Kinugawa T, Ogino K, et al. Status of endothelial dependent vasodilation in patients with hyperuricemia. Am J Cardiol 2005; 96: 1576–1578.
– reference: 20. Niizeki T, Takeishi Y, Arimoto T, Okuyama H, Nozaki N, Hirono O, et al. Hyperuricemia associated with high cardiac event rates in the elderly with chronic heart failure. J Cardiol 2006; 47: 219–228.
– reference: 25. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007; 3: e194, doi:10.1371/journal.pgen.0030194.
– reference: 27. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010; 42: 210–215.
– reference: 8. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000; 148: 131–139.
– reference: 9. Lee SH, Heo SH, Kim JH, Lee D, Lee JS, Kim YS, et al. Effects of uric acid levels on outcome in severe ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator. Eur Neurol 2013; 71: 132–139.
– reference: 16. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008; 283: 26834–26838.
– reference: 29. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516.
– reference: 15. Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–173.
– reference: 34. Van Peenen HJ. Causes of hypouricemia. Ann Intern Med 1973; 78: 977–978.
– reference: 36. Yanase M, Nakahama H, Mikami H, Fukuhara Y, Orita Y, Yoshikawa H. Prevalence of hypouricemia in apparently normal population. Nephron 1988; 48: 80.
– reference: 11. Pitocco D, Di Stasio E, Romitelli F, Zaccardi F, Tavazzi B, Manto A, et al. Hypouricemia linked to an overproduction of nitric oxide is an early marker of oxidative stress in female subjects with type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 318–323.
– reference: 21. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, et al. Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: A prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol 2013; 61: 122–127.
– reference: 12. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300: H2–H12.
– reference: 5. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol 2002; 21: 109–116.
– reference: 13. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int J Cardiovasc Imaging 2010; 26: 631–640.
– reference: 33. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596.
– reference: 10. Sperling O. Hereditary renal hypouricemia. Mol Genet Metab 2006; 89: 14–18.
– reference: 14. Poredos P, Jezovnik MK. Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2013; 20: 1–8.
– reference: 23. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5: 265–272.
– reference: 2. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension 2000; 36: 1072–1078.
– ident: 6
  doi: 10.1073/pnas.78.11.6858
– ident: 23
  doi: 10.2147/VHRM.S4265
– ident: 31
  doi: 10.1016/0006-291X(87)91112-0
– ident: 22
  doi: 10.1161/01.ATV.0000150649.39934.13
– ident: 12
  doi: 10.1152/ajpheart.00471.2010
– ident: 13
  doi: 10.1007/s10554-010-9616-1
– ident: 2
  doi: 10.1161/01.HYP.36.6.1072
– ident: 38
  doi: 10.1111/j.1399-0004.2008.01021.x
– ident: 1
  doi: 10.2337/db06-0283
– ident: 39
  doi: 10.1007/s00467-005-1863-3
– ident: 9
  doi: 10.1159/000355020
– ident: 21
  doi: 10.1016/j.jjcc.2012.09.004
– ident: 3
  doi: 10.1097/01.ASN.0000027871.86296.92
– ident: 35
  doi: 10.1159/000185233
– ident: 29
  doi: 10.1161/CIRCULATIONAHA.106.651117
– ident: 40
  doi: 10.1093/ndt/gfq722
– ident: 11
  doi: 10.1002/dmrr.814
– ident: 24
  doi: 10.1038/nature742
– ident: 20
– ident: 14
  doi: 10.5551/jat.14340
– ident: 7
  doi: 10.1093/ajcn/54.6.1129s
– ident: 26
  doi: 10.1681/ASN.2009040406
– ident: 5
– ident: 16
  doi: 10.1074/jbc.C800156200
– ident: 18
  doi: 10.5551/jat.13.101
– ident: 15
  doi: 10.1097/01.ASN.0000105320.04395.D0
– ident: 41
  doi: 10.1253/circj.CJ-13-0549
– ident: 32
  doi: 10.1681/ASN.2006030264
– ident: 10
  doi: 10.1016/j.ymgme.2006.03.015
– ident: 17
  doi: 10.1016/j.amjcard.2005.07.068
– ident: 30
  doi: 10.1161/01.CIR.0000022140.61460.1D
– ident: 28
  doi: 10.1113/jphysiol.2003.055913
– ident: 4
  doi: 10.1161/01.RES.70.3.465
– ident: 33
  doi: 10.1152/ajpcell.00600.2006
– ident: 25
  doi: 10.1371/journal.pgen.0030194
– ident: 27
  doi: 10.1038/ng.531
– ident: 8
– ident: 37
  doi: 10.1007/s00467-004-1424-1
– ident: 19
  doi: 10.1001/jama.283.18.2404
– ident: 36
  doi: 10.1159/000184876
– ident: 34
  doi: 10.7326/0003-4819-78-6-977
– reference: 25787674 - Circ J. 2015;79(5):978-80
SSID ssj0029059
Score 2.4200585
Snippet Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and...
Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1125
SubjectTerms Adult
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Endothelium, Vascular - physiopathology
Female
Heterozygote
Human Umbilical Vein Endothelial Cells - metabolism
Human Umbilical Vein Endothelial Cells - pathology
Humans
Hypouricemia
Male
Middle Aged
Mutation
Organic Anion Transporters - genetics
Organic Anion Transporters - metabolism
Organic Cation Transport Proteins - genetics
Organic Cation Transport Proteins - metabolism
Renal Tubular Transport, Inborn Errors - blood
Renal Tubular Transport, Inborn Errors - genetics
Renal Tubular Transport, Inborn Errors - physiopathology
Uric acid
Uric Acid - blood
Uric acid transporter 1
Urinary Calculi - blood
Urinary Calculi - genetics
Urinary Calculi - physiopathology
Vascular function
Vasodilation
Title Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia
URI https://www.jstage.jst.go.jp/article/circj/79/5/79_CJ-14-1267/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/25739858
https://www.proquest.com/docview/1676340266
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2015/04/24, Vol.79(5), pp.1125-1132
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoXzISD0xVtiS28_GEqnRjVCsP0Ep9ixIn2TKNpGoSVeP_5f_gHDsfKxQxXqLKsq-J7-e78_l8h9B7mlAWUSLCqiKuUQ4wdixOtCSglhkwnet1yP_si3W6oNMlWw4GP3tRS1UZHvIff7xX8j9chTbgq7glewvOtkShAX4Df-EJHIbnP_F4Eq9E7mxp8i1ETPyYp9FoUtX1ML6deaY5Nszarfp1PDeEB-AMlKKWJ9oJ6LN65KxS8YZeUBVxMTrOInEp60p40ifXRdL0Ezmxrld5nYToexr0jVovXXNVBazNRLErPYWwc6egoEXhy1F_oAof7Q6pzlORS7r2zl6kWR5WnZe8CEpV3f0zv0jXeXcetRERCoG8hFQEWbBOu4OXjbz9lqfdGOXukFc9lWwm1NJcR2Z1OoybNlujjqn3BbqsTqOAy3rSGWxL1tP0hiFdq79pEbMuBcJhDi4PvalmiMyOsmjIzYTdW4q0DW8UGyug4dcUfG8K-ytfULiD7pq2bQjh-2nZRiKZrl7X9Gu_T52mA4Wj7Xe4YT3du4QNxHm8e29U20jzR-ih2tzgsUTqYzSIsyfo_kyFbzxFmxawOE-wACwWgMUAWFzmuAEs_lDD9QBvgxU3YMUSrLgHVtwDK04z3AfrM7Q4OZ57p5qq_KFxxqxSY6Gl8wBMy9AMaRwSwiInIcQkzCBJHATcskIwPgnhFAxusDiZK_Ik2VR4O9yEkudoL8uz-AXCNg2ZTWIaws6DRm7guC4FujoB8hTQM0RHzYwCv-RHiOosV_4uLg7RQTtiJVPC_KXvR8mktqcSFqqn7fpMPLoRXQdYZCDkhuhdw10fJL84zoMlmleFb1hgG1AdLOwh2pdsb_8FFDGBeXFe3uJdX6EHYsFJ_-JrtFeuq_gNWNxl-LbG6y-TwNZq
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depletion+of+Uric+Acid+Due+to+SLC22A12+%28URAT1%29+Loss-of-Function+Mutation+Causes+Endothelial+Dysfunction+in+Hypouricemia&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Sugihara%2C+Shinobu&rft.au=Hisatome%2C+Ichiro&rft.au=Kuwabara%2C+Masanari&rft.au=Niwa%2C+Koichiro&rft.date=2015&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=79&rft.issue=5&rft.spage=1125&rft.epage=1132&rft_id=info:doi/10.1253%2Fcircj.CJ-14-1267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_14_1267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon