Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia
Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in...
Saved in:
Published in | Circulation Journal Vol. 79; no. 5; pp. 1125 - 1132 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-9843 1347-4820 1347-4820 |
DOI | 10.1253/circj.CJ-14-1267 |
Cover
Loading…
Abstract | Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. (Circ J 2015; 79: 1125–1132) |
---|---|
AbstractList | Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.
Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.
Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Methods and Results:Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Conclusions:Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. (Circ J 2015; 79: 1125–1132) Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.BACKGROUNDUric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and its loss of function causes hypouricemia. The purpose of this study was to examine whether there is any endothelial dysfunction in patients with hypouricemia.Twenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.METHODS AND RESULTSTwenty-six patients with hypouricemia (<2.5 mg/dl) and 13 healthy control subjects were enrolled. Endothelial function was evaluated using flow-mediated dilation (FMD). mRNA of UA transporters expressed in cultured human umbilical endothelial cells (HUVEC) was detected on RT-PCR. There was a positive correlation between FMD and serum UA in the hypouricemia group. URAT1 loss-of-function mutations were found in the genome of 21 of 26 patients with hypouricemia, and not in the other 5. In the hypouricemia groups, serum UA in homozygous and compound heterozygous patients was significantly lower than in other groups, suggesting that severity of URAT1 dysfunction may influence the severity of hypouricemia. Thirteen of 16 hypouricemia subjects with homozygous and compound heterozygote mutations had SUA <0.8 mg/dl and their FMD was lower than in other groups. HUVEC do not express mRNA of URAT1, suggesting the null role of URAT1 in endothelial function.Depletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients.CONCLUSIONSDepletion of UA due to SLC22A12/URAT1 loss-of-function mutations causes endothelial dysfunction in hypouricemia patients. |
Author | Ichida, Kimiyoshi Yamamoto, Kazuhiro Niwa, Koichiro Hisatome, Ichiro Maharani, Nani Ninomiya, Haruaki Ogino, Kazuhide Hamada, Toshihiro Sugihara, Shinobu Kato, Masahiko Higashi, Yukihito Kuwabara, Masanari |
Author_xml | – sequence: 1 fullname: Ichida, Kimiyoshi organization: Department of Pathophysiology, Tokyo University of Pharmacy and Life science – sequence: 1 fullname: Hisatome, Ichiro organization: Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science – sequence: 1 fullname: Hamada, Toshihiro organization: Department of Regional Medicine, Tottori University Faculty of Medicine – sequence: 1 fullname: Ninomiya, Haruaki organization: Department of Biological Regulation, Tottori University Faculty of Medicine – sequence: 1 fullname: Kuwabara, Masanari organization: Department of Cardiology, St. Luke’s International Hospital – sequence: 1 fullname: Niwa, Koichiro organization: Department of Cardiology, St. Luke’s International Hospital – sequence: 1 fullname: Kato, Masahiko organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University – sequence: 1 fullname: Ogino, Kazuhide organization: Department of Clinical Laboratory, Tottori University Hospital – sequence: 1 fullname: Yamamoto, Kazuhiro organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University – sequence: 1 fullname: Higashi, Yukihito organization: Department of Regeneration and Medicine, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine Hiroshima University – sequence: 1 fullname: Maharani, Nani organization: Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science – sequence: 1 fullname: Sugihara, Shinobu organization: Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics Faculty of Medicine, Tottori University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25739858$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtv2zAURokgRd57p4JjOijlW-JoyHHTwEWBNp4Jir5qaMiiS1II_O8rP5IAHbqQdziHF_y-S3Tahx4Q-kjJHWWSf3E-utVd_VhQUVCmyhN0QbkoC1ExcrqfVaErwc_RZUorQpgmUp-hcyZLritZXaCXKWw6yD70OLR4Eb3DE-eXeDoAzgH_mteMTSjDt4ufkyf6Gc9DSkVoi9nQu731fch2P9R2SJDwfb8M-Rk6bzs83ab2lfM9fthuwjBugLW31-hDa7sEN8f7Ci1m90_1QzH_8fVbPZkXTkqVC9ko4iyVrGGNgIZzuaxazhmXlLdgrVOqIYxx7gSvxh9xqYmQtBRSaK1bwa_Q7eHdTQx_BkjZrH1y0HW2hzAkQ1WpuCBMqRH9dESHZg1Ls4l-bePWvIY1AuQAuDimEKF9Qygxuz7Mvg9TPxoqzK6PUVH_KM4f8srR-u5_4uwgrlK2v-Ftk43Zuw6OQqmN3B3v4jvwbKOBnv8FhzanjA |
CitedBy_id | crossref_primary_10_1016_j_ijcard_2018_06_017 crossref_primary_10_1007_s00424_021_02606_2 crossref_primary_10_1152_ajpendo_00092_2023 crossref_primary_10_1161_HYPERTENSIONAHA_117_10370 crossref_primary_10_1016_j_molmet_2021_101411 crossref_primary_10_1016_j_jare_2017_03_003 crossref_primary_10_1038_s41440_024_02031_9 crossref_primary_10_3390_jcm9040942 crossref_primary_10_3390_biomedicines9111607 crossref_primary_10_2478_am_2024_0007 crossref_primary_10_1007_s11255_020_02531_w crossref_primary_10_1038_s41440_022_01148_z crossref_primary_10_1097_HJH_0000000000001109 crossref_primary_10_1038_s41598_019_50798_6 crossref_primary_10_1016_j_atherosclerosis_2021_06_908 crossref_primary_10_3390_biomedicines9121847 crossref_primary_10_30548_vascfail_2_1_11 crossref_primary_10_1007_s00380_016_0796_z crossref_primary_10_1111_dom_13665 crossref_primary_10_1371_journal_pone_0287721 crossref_primary_10_1161_JAHA_121_023301 crossref_primary_10_3390_biomedicines11051258 crossref_primary_10_1007_s00467_018_3934_2 crossref_primary_10_3390_biomedicines11051255 crossref_primary_10_1002_jbm_a_37669 crossref_primary_10_1186_s12987_016_0046_x crossref_primary_10_1371_journal_pone_0260844 crossref_primary_10_2169_internalmedicine_7897_21 crossref_primary_10_1161_JAHA_119_013130 crossref_primary_10_1253_circj_CJ_18_0508 crossref_primary_10_3346_jkms_2017_32_8_1275 crossref_primary_10_4162_nrp_2024_18_5_721 crossref_primary_10_1016_j_dsx_2021_102198 crossref_primary_10_1186_s12882_020_01940_4 crossref_primary_10_1002_hsr2_1467 crossref_primary_10_1139_cjpp_2019_0024 crossref_primary_10_1159_000443769 crossref_primary_10_1002_ehf2_12765 crossref_primary_10_1016_j_jad_2023_01_105 crossref_primary_10_2147_JIR_S494487 crossref_primary_10_1371_journal_pone_0305906 crossref_primary_10_1080_13543776_2016_1213243 crossref_primary_10_1253_circj_CJ_16_0605 crossref_primary_10_2169_internalmedicine_0457_22 crossref_primary_10_1253_circj_CJ_15_0232 crossref_primary_10_1007_s00380_024_02469_4 crossref_primary_10_1016_j_atherosclerosis_2018_03_031 crossref_primary_10_1253_circrep_CR_20_0016 crossref_primary_10_62347_DRPN1199 crossref_primary_10_3390_medicina55030061 crossref_primary_10_1186_s40001_022_00684_1 crossref_primary_10_1016_j_celrep_2024_114628 crossref_primary_10_1253_circj_CJ_16_0766 crossref_primary_10_2169_internalmedicine_0678_22 crossref_primary_10_1155_2017_3759153 crossref_primary_10_1152_ajprenal_00645_2016 crossref_primary_10_1002_joa3_13092 crossref_primary_10_1038_s41598_020_74747_w crossref_primary_10_3390_nu9040395 crossref_primary_10_1136_bmjopen_2017_020681 crossref_primary_10_3390_biom10040576 crossref_primary_10_1016_j_atherosclerosis_2018_10_007 crossref_primary_10_1016_j_jjcc_2021_08_005 crossref_primary_10_1371_journal_pone_0176055 crossref_primary_10_1016_j_bbrep_2015_07_012 crossref_primary_10_1007_s40292_025_00706_z crossref_primary_10_1007_s10067_022_06071_9 crossref_primary_10_1016_j_nefroe_2018_08_007 crossref_primary_10_3389_fcvm_2022_882821 crossref_primary_10_1016_j_amjmed_2018_12_010 crossref_primary_10_1007_s10157_023_02318_0 crossref_primary_10_1186_s12882_019_1618_1 crossref_primary_10_3390_diseases4010012 crossref_primary_10_3389_fnut_2021_769555 crossref_primary_10_1536_ihj_20_114 crossref_primary_10_1002_ddr_21699 crossref_primary_10_1136_rmdopen_2019_001015 crossref_primary_10_1253_circj_CJ_20_0406 crossref_primary_10_1016_j_ccl_2021_04_009 crossref_primary_10_1152_ajprenal_00272_2019 crossref_primary_10_3390_biomedicines10123067 crossref_primary_10_1016_j_nefro_2018_08_010 crossref_primary_10_1111_apha_12646 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107206 crossref_primary_10_1007_s40291_023_00683_w crossref_primary_10_1097_RHU_0000000000001901 crossref_primary_10_1055_a_1947_7716 crossref_primary_10_47360_1995_4484_2021_599_607 |
Cites_doi | 10.1073/pnas.78.11.6858 10.2147/VHRM.S4265 10.1016/0006-291X(87)91112-0 10.1161/01.ATV.0000150649.39934.13 10.1152/ajpheart.00471.2010 10.1007/s10554-010-9616-1 10.1161/01.HYP.36.6.1072 10.1111/j.1399-0004.2008.01021.x 10.2337/db06-0283 10.1007/s00467-005-1863-3 10.1159/000355020 10.1016/j.jjcc.2012.09.004 10.1097/01.ASN.0000027871.86296.92 10.1159/000185233 10.1161/CIRCULATIONAHA.106.651117 10.1093/ndt/gfq722 10.1002/dmrr.814 10.1038/nature742 10.5551/jat.14340 10.1093/ajcn/54.6.1129s 10.1681/ASN.2009040406 10.1074/jbc.C800156200 10.5551/jat.13.101 10.1097/01.ASN.0000105320.04395.D0 10.1253/circj.CJ-13-0549 10.1681/ASN.2006030264 10.1016/j.ymgme.2006.03.015 10.1016/j.amjcard.2005.07.068 10.1161/01.CIR.0000022140.61460.1D 10.1113/jphysiol.2003.055913 10.1161/01.RES.70.3.465 10.1152/ajpcell.00600.2006 10.1371/journal.pgen.0030194 10.1038/ng.531 10.1007/s00467-004-1424-1 10.1001/jama.283.18.2404 10.1159/000184876 10.7326/0003-4819-78-6-977 |
ContentType | Journal Article |
Copyright | 2015 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2015 THE JAPANESE CIRCULATION SOCIETY |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1253/circj.CJ-14-1267 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 1132 |
ExternalDocumentID | 25739858 10_1253_circj_CJ_14_1267 article_circj_79_5_79_CJ_14_1267_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29B 2WC 53G 5GY 5RE 6J9 ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 OVT P2P RJT RNS RZJ TR2 W2D X7M XSB ZXP .GJ 3O- AAYXX CITATION TKC CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c556t-5b60ca152b2b4eb335d8f3323513feaac66b02233c43898535904517454999f43 |
ISSN | 1346-9843 1347-4820 |
IngestDate | Fri Jul 11 11:06:48 EDT 2025 Mon Jul 21 05:58:40 EDT 2025 Tue Jul 01 02:01:14 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Wed Sep 03 06:15:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c556t-5b60ca152b2b4eb335d8f3323513feaac66b02233c43898535904517454999f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/79/5/79_CJ-14-1267/_article/-char/en |
PMID | 25739858 |
PQID | 1676340266 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1676340266 pubmed_primary_25739858 crossref_primary_10_1253_circj_CJ_14_1267 crossref_citationtrail_10_1253_circj_CJ_14_1267 jstage_primary_article_circj_79_5_79_CJ_14_1267_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2015 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 4. Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation: Restoration of endothelium-dependent responses by L-arginine. Circ Res 1992; 70: 465–476. 12. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300: H2–H12. 29. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516. 9. Lee SH, Heo SH, Kim JH, Lee D, Lee JS, Kim YS, et al. Effects of uric acid levels on outcome in severe ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator. Eur Neurol 2013; 71: 132–139. 20. Niizeki T, Takeishi Y, Arimoto T, Okuyama H, Nozaki N, Hirono O, et al. Hyperuricemia associated with high cardiac event rates in the elderly with chronic heart failure. J Cardiol 2006; 47: 219–228. 11. Pitocco D, Di Stasio E, Romitelli F, Zaccardi F, Tavazzi B, Manto A, et al. Hypouricemia linked to an overproduction of nitric oxide is an early marker of oxidative stress in female subjects with type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 318–323. 28. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606. 15. Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–173. 38. Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet 2008; 74: 243–251. 25. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007; 3: e194, doi:10.1371/journal.pgen.0030194. 27. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010; 42: 210–215. 37. Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 2004; 19: 728–733. 40. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant 2011; 26: 2175–2181. 10. Sperling O. Hereditary renal hypouricemia. Mol Genet Metab 2006; 89: 14–18. 30. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221–226. 24. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–452. 21. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, et al. Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: A prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol 2013; 61: 122–127. 32. Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, et al. Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol 2006; 17: 1791–1795. 8. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000; 148: 131–139. 2. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension 2000; 36: 1072–1078. 16. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008; 283: 26834–26838. 18. Shirai K, Utino S, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101–107. 5. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol 2002; 21: 109–116. 17. Kato M, Hisatome I, Tomikura Y, Kotani K, Kinugawa T, Ogino K, et al. Status of endothelial dependent vasodilation in patients with hyperuricemia. Am J Cardiol 2005; 96: 1576–1578. 13. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int J Cardiovasc Imaging 2010; 26: 631–640. 7. Sevanian A, Davies KJ, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–1134S. 14. Poredos P, Jezovnik MK. Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2013; 20: 1–8. 3. De Leeuw PW, Thijs L, Birkenhäger WH, Voyaki SM, Efstratopoulos AD, Fagard RH, et al; Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: Results from the Syst-Eur trial. J Am Soc Nephrol 2002; 13: 2213–2222. 1. Waring WS, McKnight JA, Webb DJ, Maxwell SR. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 2006; 55: 3127–3132. 22. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29–38. 19. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality, The NHANES 1 epidemiology follow-up study, 1971–1992. JAMA 2000; 283: 2404–2410. 26. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 2010; 21: 64–72. 33. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596. 41. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J 2013; 77: 2807–2815. 36. Yanase M, Nakahama H, Mikami H, Fukuhara Y, Orita Y, Yoshikawa H. Prevalence of hypouricemia in apparently normal population. Nephron 1988; 48: 80. 23. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5: 265–272. 6. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–6862. 34. Van Peenen HJ. Causes of hypouricemia. Ann Intern Med 1973; 78: 977–978. 31. Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314–319. 35. Hisatome I, Ogino K, Kotake H, Ishiko R, Saito M, Hasegawa J, et al. Cause of persistent hypouricemia in outpatients. Nephron 1989; 51: 13–16. 39. Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol 2005; 20: 886–890. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 21 25787674 - Circ J. 2015;79(5):978-80 |
References_xml | – reference: 4. Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation: Restoration of endothelium-dependent responses by L-arginine. Circ Res 1992; 70: 465–476. – reference: 6. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci USA 1981; 78: 6858–6862. – reference: 40. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, et al. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant 2011; 26: 2175–2181. – reference: 41. Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, et al. Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J 2013; 77: 2807–2815. – reference: 22. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29–38. – reference: 26. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol 2010; 21: 64–72. – reference: 38. Ichida K, Hosoyamada M, Kamatani N, Kamitsuji S, Hisatome I, Shibasaki T, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet 2008; 74: 243–251. – reference: 39. Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol 2005; 20: 886–890. – reference: 18. Shirai K, Utino S, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101–107. – reference: 19. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality, The NHANES 1 epidemiology follow-up study, 1971–1992. JAMA 2000; 283: 2404–2410. – reference: 28. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589–606. – reference: 31. Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS. Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314–319. – reference: 3. De Leeuw PW, Thijs L, Birkenhäger WH, Voyaki SM, Efstratopoulos AD, Fagard RH, et al; Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Prognostic significance of renal function in elderly patients with isolated systolic hypertension: Results from the Syst-Eur trial. J Am Soc Nephrol 2002; 13: 2213–2222. – reference: 7. Sevanian A, Davies KJ, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr 1991; 54: 1129S–1134S. – reference: 24. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002; 417: 447–452. – reference: 30. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002; 106: 221–226. – reference: 37. Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol 2004; 19: 728–733. – reference: 32. Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, et al. Human vascular smooth muscle cells express a urate transporter. J Am Soc Nephrol 2006; 17: 1791–1795. – reference: 1. Waring WS, McKnight JA, Webb DJ, Maxwell SR. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 2006; 55: 3127–3132. – reference: 35. Hisatome I, Ogino K, Kotake H, Ishiko R, Saito M, Hasegawa J, et al. Cause of persistent hypouricemia in outpatients. Nephron 1989; 51: 13–16. – reference: 17. Kato M, Hisatome I, Tomikura Y, Kotani K, Kinugawa T, Ogino K, et al. Status of endothelial dependent vasodilation in patients with hyperuricemia. Am J Cardiol 2005; 96: 1576–1578. – reference: 20. Niizeki T, Takeishi Y, Arimoto T, Okuyama H, Nozaki N, Hirono O, et al. Hyperuricemia associated with high cardiac event rates in the elderly with chronic heart failure. J Cardiol 2006; 47: 219–228. – reference: 25. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007; 3: e194, doi:10.1371/journal.pgen.0030194. – reference: 27. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010; 42: 210–215. – reference: 8. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis 2000; 148: 131–139. – reference: 9. Lee SH, Heo SH, Kim JH, Lee D, Lee JS, Kim YS, et al. Effects of uric acid levels on outcome in severe ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator. Eur Neurol 2013; 71: 132–139. – reference: 16. Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008; 283: 26834–26838. – reference: 29. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 2006; 114: 2508–2516. – reference: 15. Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–173. – reference: 34. Van Peenen HJ. Causes of hypouricemia. Ann Intern Med 1973; 78: 977–978. – reference: 36. Yanase M, Nakahama H, Mikami H, Fukuhara Y, Orita Y, Yoshikawa H. Prevalence of hypouricemia in apparently normal population. Nephron 1988; 48: 80. – reference: 11. Pitocco D, Di Stasio E, Romitelli F, Zaccardi F, Tavazzi B, Manto A, et al. Hypouricemia linked to an overproduction of nitric oxide is an early marker of oxidative stress in female subjects with type 1 diabetes. Diabetes Metab Res Rev 2008; 24: 318–323. – reference: 21. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, et al. Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: A prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol 2013; 61: 122–127. – reference: 12. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, et al. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300: H2–H12. – reference: 5. Poredos P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int Angiol 2002; 21: 109–116. – reference: 13. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int J Cardiovasc Imaging 2010; 26: 631–640. – reference: 33. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293: C584–C596. – reference: 10. Sperling O. Hereditary renal hypouricemia. Mol Genet Metab 2006; 89: 14–18. – reference: 14. Poredos P, Jezovnik MK. Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2013; 20: 1–8. – reference: 23. George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 2009; 5: 265–272. – reference: 2. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension 2000; 36: 1072–1078. – ident: 6 doi: 10.1073/pnas.78.11.6858 – ident: 23 doi: 10.2147/VHRM.S4265 – ident: 31 doi: 10.1016/0006-291X(87)91112-0 – ident: 22 doi: 10.1161/01.ATV.0000150649.39934.13 – ident: 12 doi: 10.1152/ajpheart.00471.2010 – ident: 13 doi: 10.1007/s10554-010-9616-1 – ident: 2 doi: 10.1161/01.HYP.36.6.1072 – ident: 38 doi: 10.1111/j.1399-0004.2008.01021.x – ident: 1 doi: 10.2337/db06-0283 – ident: 39 doi: 10.1007/s00467-005-1863-3 – ident: 9 doi: 10.1159/000355020 – ident: 21 doi: 10.1016/j.jjcc.2012.09.004 – ident: 3 doi: 10.1097/01.ASN.0000027871.86296.92 – ident: 35 doi: 10.1159/000185233 – ident: 29 doi: 10.1161/CIRCULATIONAHA.106.651117 – ident: 40 doi: 10.1093/ndt/gfq722 – ident: 11 doi: 10.1002/dmrr.814 – ident: 24 doi: 10.1038/nature742 – ident: 20 – ident: 14 doi: 10.5551/jat.14340 – ident: 7 doi: 10.1093/ajcn/54.6.1129s – ident: 26 doi: 10.1681/ASN.2009040406 – ident: 5 – ident: 16 doi: 10.1074/jbc.C800156200 – ident: 18 doi: 10.5551/jat.13.101 – ident: 15 doi: 10.1097/01.ASN.0000105320.04395.D0 – ident: 41 doi: 10.1253/circj.CJ-13-0549 – ident: 32 doi: 10.1681/ASN.2006030264 – ident: 10 doi: 10.1016/j.ymgme.2006.03.015 – ident: 17 doi: 10.1016/j.amjcard.2005.07.068 – ident: 30 doi: 10.1161/01.CIR.0000022140.61460.1D – ident: 28 doi: 10.1113/jphysiol.2003.055913 – ident: 4 doi: 10.1161/01.RES.70.3.465 – ident: 33 doi: 10.1152/ajpcell.00600.2006 – ident: 25 doi: 10.1371/journal.pgen.0030194 – ident: 27 doi: 10.1038/ng.531 – ident: 8 – ident: 37 doi: 10.1007/s00467-004-1424-1 – ident: 19 doi: 10.1001/jama.283.18.2404 – ident: 36 doi: 10.1159/000184876 – ident: 34 doi: 10.7326/0003-4819-78-6-977 – reference: 25787674 - Circ J. 2015;79(5):978-80 |
SSID | ssj0029059 |
Score | 2.4200585 |
Snippet | Background:Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and... Uric acid (UA) serves as an antioxidant in vascular endothelial cells. UA transporter 1 (URAT1) encoded by SLC22A12 is expressed in the kidney and vessels and... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1125 |
SubjectTerms | Adult Endothelium, Vascular - metabolism Endothelium, Vascular - pathology Endothelium, Vascular - physiopathology Female Heterozygote Human Umbilical Vein Endothelial Cells - metabolism Human Umbilical Vein Endothelial Cells - pathology Humans Hypouricemia Male Middle Aged Mutation Organic Anion Transporters - genetics Organic Anion Transporters - metabolism Organic Cation Transport Proteins - genetics Organic Cation Transport Proteins - metabolism Renal Tubular Transport, Inborn Errors - blood Renal Tubular Transport, Inborn Errors - genetics Renal Tubular Transport, Inborn Errors - physiopathology Uric acid Uric Acid - blood Uric acid transporter 1 Urinary Calculi - blood Urinary Calculi - genetics Urinary Calculi - physiopathology Vascular function Vasodilation |
Title | Depletion of Uric Acid Due to SLC22A12 (URAT1) Loss-of-Function Mutation Causes Endothelial Dysfunction in Hypouricemia |
URI | https://www.jstage.jst.go.jp/article/circj/79/5/79_CJ-14-1267/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/25739858 https://www.proquest.com/docview/1676340266 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2015/04/24, Vol.79(5), pp.1125-1132 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoXzISD0xVtiS28_GEqnRjVCsP0Ep9ixIn2TKNpGoSVeP_5f_gHDsfKxQxXqLKsq-J7-e78_l8h9B7mlAWUSLCqiKuUQ4wdixOtCSglhkwnet1yP_si3W6oNMlWw4GP3tRS1UZHvIff7xX8j9chTbgq7glewvOtkShAX4Df-EJHIbnP_F4Eq9E7mxp8i1ETPyYp9FoUtX1ML6deaY5Nszarfp1PDeEB-AMlKKWJ9oJ6LN65KxS8YZeUBVxMTrOInEp60p40ifXRdL0Ezmxrld5nYToexr0jVovXXNVBazNRLErPYWwc6egoEXhy1F_oAof7Q6pzlORS7r2zl6kWR5WnZe8CEpV3f0zv0jXeXcetRERCoG8hFQEWbBOu4OXjbz9lqfdGOXukFc9lWwm1NJcR2Z1OoybNlujjqn3BbqsTqOAy3rSGWxL1tP0hiFdq79pEbMuBcJhDi4PvalmiMyOsmjIzYTdW4q0DW8UGyug4dcUfG8K-ytfULiD7pq2bQjh-2nZRiKZrl7X9Gu_T52mA4Wj7Xe4YT3du4QNxHm8e29U20jzR-ih2tzgsUTqYzSIsyfo_kyFbzxFmxawOE-wACwWgMUAWFzmuAEs_lDD9QBvgxU3YMUSrLgHVtwDK04z3AfrM7Q4OZ57p5qq_KFxxqxSY6Gl8wBMy9AMaRwSwiInIcQkzCBJHATcskIwPgnhFAxusDiZK_Ik2VR4O9yEkudoL8uz-AXCNg2ZTWIaws6DRm7guC4FujoB8hTQM0RHzYwCv-RHiOosV_4uLg7RQTtiJVPC_KXvR8mktqcSFqqn7fpMPLoRXQdYZCDkhuhdw10fJL84zoMlmleFb1hgG1AdLOwh2pdsb_8FFDGBeXFe3uJdX6EHYsFJ_-JrtFeuq_gNWNxl-LbG6y-TwNZq |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depletion+of+Uric+Acid+Due+to+SLC22A12+%28URAT1%29+Loss-of-Function+Mutation+Causes+Endothelial+Dysfunction+in+Hypouricemia&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Sugihara%2C+Shinobu&rft.au=Hisatome%2C+Ichiro&rft.au=Kuwabara%2C+Masanari&rft.au=Niwa%2C+Koichiro&rft.date=2015&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=79&rft.issue=5&rft.spage=1125&rft.epage=1132&rft_id=info:doi/10.1253%2Fcircj.CJ-14-1267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_14_1267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |