Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption

Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance los...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 16; no. 1; pp. 66 - 18
Main Authors Zhang, Kaili, Liu, Yuhao, Liu, Yanan, Yan, Yuefeng, Ma, Guansheng, Zhong, Bo, Che, Renchao, Huang, Xiaoxiao
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization. Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene. Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
AbstractList Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization. Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene. Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL ) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization. Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene.
HighlightsA carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene.The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization.Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene.Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
ArticleNumber 66
Author Huang, Xiaoxiao
Che, Renchao
Yan, Yuefeng
Ma, Guansheng
Zhong, Bo
Liu, Yuhao
Zhang, Kaili
Liu, Yanan
Author_xml – sequence: 1
  givenname: Kaili
  surname: Zhang
  fullname: Zhang, Kaili
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
– sequence: 2
  givenname: Yuhao
  surname: Liu
  fullname: Liu, Yuhao
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
– sequence: 3
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
– sequence: 4
  givenname: Yuefeng
  surname: Yan
  fullname: Yan, Yuefeng
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
– sequence: 5
  givenname: Guansheng
  surname: Ma
  fullname: Ma, Guansheng
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
– sequence: 6
  givenname: Bo
  surname: Zhong
  fullname: Zhong, Bo
  organization: School of Materials Science and Engineering, Harbin Institute of Technology at Weihai
– sequence: 7
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University
– sequence: 8
  givenname: Xiaoxiao
  surname: Huang
  fullname: Huang, Xiaoxiao
  email: swliza@hit.edu.cn
  organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38175333$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYNUbK39Ai5kwI2b0fyZJJNlKW0tVARpcRnuJHemU-clz2RG6Lc3702r0EUXISH8zuHce96SgxADEvKe0c-MUv0lN7TltKZc1JTxltbqFTniTNJaSskOylswVitN1SE5yXnsqOSN5lo2b8ihaJmWQogjcnuTwP0aw1D9wGGZYI7pofqG7g7CmDdV7KsdgNUFVjFUlwm2dxiwOp_QzSluYAg4j676CX-wOu1yTNt5jOEded3DlPHk8T4mtxfnN2df6-vvl1dnp9e1k1LNdeN549vOcImmKYe2XSOAUfS9QaahJDbKc92DMSWu8R03XCO2TguttRfH5Gr19RHu7TaNG0gPNsJo9x8xDRZSyTehFR0yRUGCUL7RqDretsIDUyCNc6YrXp9Wr22KvxfMs92M2eE0QcC4ZMsNo8xIZUxBPz5D7-OSQpl0T9GmLFoV6sMjtXQb9P_iPS2_AO0KuBRzTthbN86w29-cYJwso3ZXtV2rtqVqu6_a7rz5M-mT-4sisYpygcOA6X_sF1R_AbfuuIM
CitedBy_id crossref_primary_10_1007_s40820_024_01435_z
crossref_primary_10_1016_j_cej_2025_161193
crossref_primary_10_1016_j_carbon_2024_119644
crossref_primary_10_1016_j_mseb_2024_117584
crossref_primary_10_1002_adfm_202418257
crossref_primary_10_1016_j_est_2024_112636
crossref_primary_10_1007_s40820_024_01518_x
crossref_primary_10_1016_j_seppur_2024_128591
crossref_primary_10_1002_smll_202406602
crossref_primary_10_1016_j_carbon_2024_119925
crossref_primary_10_1016_j_cej_2024_152041
crossref_primary_10_1002_ange_202421090
crossref_primary_10_1016_j_carbon_2024_119093
crossref_primary_10_1016_j_jmst_2024_09_026
crossref_primary_10_1016_j_ceramint_2024_05_417
crossref_primary_10_1021_acsami_4c03690
crossref_primary_10_1016_j_compositesb_2025_112378
crossref_primary_10_26599_JAC_2024_9220990
crossref_primary_10_1007_s40820_024_01513_2
crossref_primary_10_1016_j_jallcom_2025_179665
crossref_primary_10_1002_adfm_202408252
crossref_primary_10_1016_j_jmst_2024_11_038
crossref_primary_10_1016_j_carbon_2024_119096
crossref_primary_10_1016_j_inoche_2024_112857
crossref_primary_10_1016_j_mtphys_2024_101408
crossref_primary_10_1016_j_mtcomm_2024_111344
crossref_primary_10_1016_j_carbon_2024_119534
crossref_primary_10_1016_j_jmmm_2024_172256
crossref_primary_10_1007_s12613_024_2956_y
crossref_primary_10_1021_acsanm_4c06662
crossref_primary_10_1002_smll_202407176
crossref_primary_10_1002_crat_202400136
crossref_primary_10_1016_j_carbon_2024_119859
crossref_primary_10_1016_j_apsusc_2024_161633
crossref_primary_10_1016_j_xcrp_2024_102206
crossref_primary_10_1016_j_jallcom_2024_176300
crossref_primary_10_1016_j_inoche_2024_112984
crossref_primary_10_1016_j_matchemphys_2025_130695
crossref_primary_10_1002_adem_202401937
crossref_primary_10_1016_j_ceramint_2024_07_355
crossref_primary_10_1016_j_ceramint_2025_03_270
crossref_primary_10_1021_acsnano_4c16834
crossref_primary_10_1016_j_synthmet_2024_117687
crossref_primary_10_1016_j_apsusc_2024_160959
crossref_primary_10_1016_j_mtphys_2024_101434
crossref_primary_10_1002_adfm_202410194
crossref_primary_10_1016_j_jmst_2024_10_047
crossref_primary_10_1016_j_optmat_2024_115770
crossref_primary_10_1016_j_optmat_2024_116023
crossref_primary_10_1016_j_ceramint_2024_09_176
crossref_primary_10_1002_adfm_202418304
crossref_primary_10_1039_D4QI02776K
crossref_primary_10_1016_j_ceramint_2024_09_339
crossref_primary_10_1016_j_inoche_2024_112796
crossref_primary_10_1016_j_matchemphys_2024_129682
crossref_primary_10_1016_j_mtnano_2024_100528
crossref_primary_10_1039_D4RA03417A
crossref_primary_10_1007_s10948_024_06851_1
crossref_primary_10_1016_j_materresbull_2024_112903
crossref_primary_10_1007_s40820_024_01449_7
crossref_primary_10_1016_j_carbon_2024_119795
crossref_primary_10_1016_j_jmmm_2024_172396
crossref_primary_10_1016_j_materresbull_2024_112906
crossref_primary_10_1016_j_carbon_2024_119633
crossref_primary_10_1016_j_inoche_2024_113376
crossref_primary_10_1016_j_mseb_2024_117730
crossref_primary_10_1016_j_coco_2024_102014
crossref_primary_10_1016_j_jmst_2024_10_019
crossref_primary_10_1021_acs_inorgchem_4c01583
crossref_primary_10_1016_j_cej_2024_156695
crossref_primary_10_1016_j_cej_2024_156254
crossref_primary_10_1016_j_cej_2024_156973
crossref_primary_10_1016_j_jmst_2024_04_011
crossref_primary_10_26599_JAC_2025_9221039
crossref_primary_10_1021_acsomega_4c07063
crossref_primary_10_1002_anie_202421090
crossref_primary_10_1063_5_0239404
crossref_primary_10_1007_s10971_024_06501_x
crossref_primary_10_1016_j_cej_2024_152976
crossref_primary_10_1016_j_heliyon_2024_e34155
Cites_doi 10.1007/s40820-022-00841-5
10.1007/s40145-021-0476-z
10.1016/j.carbon.2019.01.082
10.1039/c9tc06526a
10.1016/j.jcis.2022.08.020
10.1088/1361-6528/ab8b8d
10.1063/1.3471396
10.1016/j.jssc.2008.06.036
10.1088/1361-6528/ab35fa
10.1007/s40820-022-00986-3
10.1002/adfm.202201129
10.1038/nmat1849
10.1126/science.1158877
10.1016/j.apsusc.2018.10.123
10.1016/B978-0-12-817103-5.00009-8
10.1002/adma.201403196
10.1016/j.carbon.2022.08.090
10.1002/smll.202003905
10.1038/srep38978
10.1103/PhysRevB.80.075406
10.1002/adfm.201900163
10.1016/j.carbon.2011.06.008
10.1016/j.apsusc.2021.151939
10.1002/adfm.201707205
10.1002/adfm.202204370
10.1016/j.cemconcomp.2010.03.009
10.1038/srep04537
10.1002/adfm.202102812
10.1063/1.3147183
10.1021/acsami.6b03159
10.1021/nn201207c
10.1016/j.carbon.2020.09.050
10.1021/am508438s
10.1016/j.jmat.2021.09.003
10.1126/science.1157996
10.1021/nn3010137
10.1016/j.jmst.2020.09.012
10.1007/s40145-021-0520-z
10.1038/srep05619
10.26599/jac.2023.9220686
10.1002/smll.202300119
10.1007/s40820-022-00823-7
10.1016/j.carbon.2013.07.110
10.1016/j.cej.2015.10.068
10.1038/srep03421
10.1002/adma.201400108
10.1016/j.carbon.2009.10.028
10.1021/acsami.6b12622
10.1007/s40820-021-00776-3
10.1016/S0039-6028(96)01591-9
10.1016/j.carbon.2020.10.093
10.1016/j.jallcom.2018.09.075
10.1002/adfm.202200123
10.1016/j.apsusc.2020.147052
10.1002/adma.200306460
10.1021/am404117v
10.1016/j.compositesb.2019.03.081
10.1021/acsami.7b04053
10.1016/j.saa.2006.09.024
10.1007/s40820-022-00798-5
10.1016/j.carbon.2019.02.005
10.1016/j.carbon.2020.11.044
10.1007/s40820-022-00906-5
10.1016/j.jmst.2021.08.005
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.1007/s40820-023-01280-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 18
ExternalDocumentID oai_doaj_org_article_3be160a5a36d47e6b2883da16a59cc9b
38175333
10_1007_s40820_023_01280_6
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c556t-4d24d8b925e945e908b43a10edf9e17a52496d27fa995339db2927ee8c73777d3
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:31:16 EDT 2025
Fri Jul 11 04:24:45 EDT 2025
Wed Aug 13 07:36:08 EDT 2025
Thu Apr 03 07:07:57 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Tue Jul 01 00:55:50 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fe nanosheets
Dielectric loss
Electromagnetic wave absorption
Reduced graphene oxide
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-4d24d8b925e945e908b43a10edf9e17a52496d27fa995339db2927ee8c73777d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/3be160a5a36d47e6b2883da16a59cc9b
PMID 38175333
PQID 2910044726
PQPubID 2044332
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_3be160a5a36d47e6b2883da16a59cc9b
proquest_miscellaneous_2910195699
proquest_journals_2910044726
pubmed_primary_38175333
crossref_citationtrail_10_1007_s40820_023_01280_6
crossref_primary_10_1007_s40820_023_01280_6
springer_journals_10_1007_s40820_023_01280_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Cao, Song, Hou, Wen, Yuan (CR25) 2010; 48
Cheng, Li, Xiong, Zhang, Raza (CR53) 2022; 14
Bellis, Tamburrano, Dinescu, Santarelli, Sarto (CR9) 2011; 49
Lee, Wei, Kysar, Hone (CR14) 2008; 321
Kim, Kim, Lee, Kim, Cho (CR29) 2017; 9
Ni, Zheng, Bae, Tan, Kahya (CR27) 2012; 6
Zhang, Lv, Chen, Ge, Chu (CR41) 2019; 169
Xue, He, Zhu, Yuan (CR48) 2007; 67
Kim, Kim, Jang, Lee, Lee (CR28) 2014; 26
Li, Qi, Guo, Du, Song (CR36) 2019; 772
Song, Ma, Qiu, Ru, Gu (CR3) 2022; 14
Liu, Huang, Ding, Zhao, Liu (CR18) 2021; 72
Lv, Liang, Cheng, Zhang, Tang (CR39) 2015; 7
Yang, Duan, Li, Pang, Huang (CR1) 2021; 14
Li, Tan, Wu, Wang, You (CR31) 2023; 201
Arief, Biswas, Bose (CR22) 2017; 9
Wang, Wang, Han, Liu, Wang (CR38) 2019; 145
Dai, Sun, Liu, Li (CR11) 2010; 32
Wang, Liu, Jia, Zhao, Wu (CR44) 2022; 15
Magonov, Elings, Whangbo (CR63) 1997; 375
Zhao, Zhang, Wang, Xi, Cao (CR26) 2013; 3
Huang, Cheng, Zhang, Xiong, Zhou (CR7) 2022; 107
Xu, Yang, Chen, Yu, Xiong (CR20) 2019; 146
Qin, Huang, Yan, He, Liu (CR45) 2021; 11
Che, Peng, Duan, Chen, Liang (CR35) 2004; 16
Wen, Cao, Hou, Song, Zhang (CR24) 2013; 65
Lei, Yao, Zhou, Zheng, We (CR50) 2021; 173
Xiang, Xiong, Deng, Cui, Yu (CR32) 2020; 8
Xu, Zhang, Wang, Ning, Ouyang (CR52) 2022; 14
Wen, Cao, Lu, Cao, Sh (CR23) 2014; 26
Yan, Xu, Yang, Yue, Huang (CR47) 2019; 467–468
Xu, Li, Zhao, Chen, Sun (CR60) 2023; 19
Li, Zhao, Li, Wang, Li (CR17) 2020; 16
Zhang, Liu, Zhang, Zhang, Yang (CR6) 2020; 31
Zhang, Liu, Huang, Cheng, Wang (CR8) 2022; 8
Murali, Yang, Brenner, Beck, Meindl (CR16) 2009; 94
Du, Cai, Wang, Qian, He, Shui (CR51) 2021; 10
Pi, McCreary, Bao, Han, Chiang (CR40) 2009; 80
Liu, Huang, Yan, Xia, Zhang (CR2) 2023; 12
Peng, Zeng, Yang, Hu, Qiu (CR64) 2016; 6
Yan, Huang, Chen, Liu, Xia (CR61) 2021; 174
Geim, Novoselov (CR13) 2007; 6
Lv, Yang, Ong, Wei, Liao (CR57) 2019; 29
Hou, Cheng, Zhang, Lu, Yang (CR5) 2022; 577
Suk, Kitt, Magnuson, Hao, Ahmed (CR43) 2011; 5
Wang, Yu, Huang, You, Zeng (CR34) 2021; 172
Geim (CR15) 2009; 324
Ren, Chen, Cai, Zhu, Zhu (CR30) 2010
Ge, Wang, Wu, Hu, Shao (CR19) 2022; 628
Wang, Chen, Han, Wang, Tang (CR42) 2014; 4
Wu, Zhao, Zhou, Tan, Peymanfar (CR59) 2022; 14
Zhang, Wang, Cheng, Han, Yang (CR55) 2020; 528
Cheng, Zhang, Wang, Huang, Raza (CR4) 2022; 32
Qiu, Lyu, Liu, Liu, Wu (CR37) 2016; 8
Galsin, Galsin (CR56) 2019
Zhao, Hou, Zhang, Zhu, She (CR12) 2014; 4
Cheng, Zhang, Ning, Raza, Zhang (CR58) 2022; 32
Zhang, Liu, Cheng, Chai, Yang (CR54) 2019; 30
Pan, Zhu, Ma, Sun, Yang (CR21) 2013; 5
Liu, Gao, Zhang, Huang, You (CR33) 2021; 31
Gao, Zhao, Li, Zhu, Hu (CR46) 2022; 32
Quan, Cheng, Xiao, Lei (CR49) 2016; 286
Qiu, Qi, Yang, Wang (CR62) 2008; 181
Ye, Song, Zhang, Li, Zhang (CR10) 2018; 28
R Che (1280_CR35) 2004; 16
Y Ge (1280_CR19) 2022; 628
M Cao (1280_CR25) 2010; 48
M Kim (1280_CR29) 2017; 9
X Liu (1280_CR18) 2021; 72
G Ni (1280_CR27) 2012; 6
Q Li (1280_CR17) 2020; 16
Z Yan (1280_CR47) 2019; 467–468
D Zhang (1280_CR6) 2020; 31
Z Huang (1280_CR7) 2022; 107
AK Geim (1280_CR15) 2009; 324
S Peng (1280_CR64) 2016; 6
I Arief (1280_CR22) 2017; 9
Q Li (1280_CR31) 2023; 201
AK Geim (1280_CR13) 2007; 6
W Xue (1280_CR48) 2007; 67
H Lv (1280_CR39) 2015; 7
P Song (1280_CR3) 2022; 14
Y Liu (1280_CR2) 2023; 12
F Ye (1280_CR10) 2018; 28
G Pan (1280_CR21) 2013; 5
K Pi (1280_CR40) 2009; 80
Y Wu (1280_CR59) 2022; 14
X Yan (1280_CR61) 2021; 174
H Xu (1280_CR52) 2022; 14
H Zhang (1280_CR8) 2022; 8
C Hou (1280_CR5) 2022; 577
Y Dai (1280_CR11) 2010; 32
L Wang (1280_CR34) 2021; 172
Z Xiang (1280_CR32) 2020; 8
H Kim (1280_CR28) 2014; 26
D Zhang (1280_CR54) 2019; 30
D Zhang (1280_CR55) 2020; 528
T Gao (1280_CR46) 2022; 32
B Wen (1280_CR23) 2014; 26
X Qiu (1280_CR62) 2008; 181
C Wang (1280_CR44) 2022; 15
B Wen (1280_CR24) 2013; 65
S Qiu (1280_CR37) 2016; 8
J Cheng (1280_CR58) 2022; 32
JS Galsin (1280_CR56) 2019
X Zhao (1280_CR26) 2013; 3
X Yang (1280_CR1) 2021; 14
P Liu (1280_CR33) 2021; 31
C Wang (1280_CR42) 2014; 4
G Qin (1280_CR45) 2021; 11
D Xu (1280_CR20) 2019; 146
T Zhao (1280_CR12) 2014; 4
J Cheng (1280_CR53) 2022; 14
H Lv (1280_CR57) 2019; 29
CG Lee (1280_CR14) 2008; 321
SN Magonov (1280_CR63) 1997; 375
J Cheng (1280_CR4) 2022; 32
W Li (1280_CR36) 2019; 772
Y Ren (1280_CR30) 2010
JW Suk (1280_CR43) 2011; 5
R Murali (1280_CR16) 2009; 94
G Bellis (1280_CR9) 2011; 49
H Quan (1280_CR49) 2016; 286
L Lei (1280_CR50) 2021; 173
F Wang (1280_CR38) 2019; 145
B Du (1280_CR51) 2021; 10
T Xu (1280_CR60) 2023; 19
K Zhang (1280_CR41) 2019; 169
References_xml – volume: 14
  start-page: 102
  issue: 1
  year: 2022
  ident: CR52
  article-title: Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00841-5
– volume: 10
  start-page: 832
  issue: 4
  year: 2021
  end-page: 842
  ident: CR51
  article-title: Enhanced electromagnetic wave absorption property of binary ZnO/NiCo O composites
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-021-0476-z
– volume: 145
  start-page: 701
  year: 2019
  end-page: 711
  ident: CR38
  article-title: Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.082
– volume: 8
  start-page: 2123
  issue: 6
  year: 2020
  end-page: 2134
  ident: CR32
  article-title: Rational design of 2D hierarchically laminated Fe O @nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc06526a
– volume: 628
  start-page: 1019
  year: 2022
  end-page: 1030
  ident: CR19
  article-title: Accordion-like reduced graphene oxide embedded with Fe nanoparticles between layers for tunable and broadband electromagnetic wave absorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.020
– volume: 31
  start-page: 325703
  issue: 32
  year: 2020
  ident: CR6
  article-title: Confinedly growing and tailoring of Co O clusters-WS nanosheets for highly efficient microwave absorption
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab8b8d
– year: 2010
  ident: CR30
  article-title: Controlling the electrical transport properties of graphene by in situ metal deposition
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.3471396
– volume: 181
  start-page: 1670
  issue: 7
  year: 2008
  end-page: 1677
  ident: CR62
  article-title: Electrostatic characteristics of nanostructures investigated using electric force microscopy
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2008.06.036
– volume: 30
  issue: 44
  year: 2019
  ident: CR54
  article-title: Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab35fa
– volume: 15
  start-page: 13
  issue: 1
  year: 2022
  ident: CR44
  article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00986-3
– volume: 32
  start-page: 2201129
  issue: 24
  year: 2022
  ident: CR4
  article-title: Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201129
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  end-page: 191
  ident: CR13
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 324
  start-page: 1530
  issue: 5934
  year: 2009
  end-page: 1534
  ident: CR15
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 467–468
  start-page: 277
  year: 2019
  end-page: 285
  ident: CR47
  article-title: Graphene oxide/Fe O nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.123
– start-page: 177
  year: 2019
  end-page: 198
  ident: CR56
  article-title: Free-electron theory of metals
  publication-title: Solid State Physics
  doi: 10.1016/B978-0-12-817103-5.00009-8
– volume: 26
  start-page: 8141
  year: 2014
  end-page: 8146
  ident: CR28
  article-title: Doping graphene with an atomically thin two dimensional molecular layer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403196
– volume: 201
  start-page: 150
  year: 2023
  end-page: 160
  ident: CR31
  article-title: Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.08.090
– volume: 16
  start-page: e2003905
  issue: 42
  year: 2020
  ident: CR17
  article-title: MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance
  publication-title: Small
  doi: 10.1002/smll.202003905
– volume: 6
  start-page: 38978
  year: 2016
  ident: CR64
  article-title: Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep38978
– volume: 80
  start-page: 075406
  year: 2009
  ident: CR40
  article-title: Electronic doping and scattering by transition metals on graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.075406
– volume: 29
  start-page: 1900163
  year: 2019
  ident: CR57
  article-title: A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900163
– volume: 49
  start-page: 4291
  issue: 13
  year: 2011
  end-page: 4300
  ident: CR9
  article-title: Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.06.008
– volume: 577
  start-page: 151939
  year: 2022
  ident: CR5
  article-title: Biomass-derived carbon-coated WS core-shell nanostructures with excellent electromagnetic absorption in C-band
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151939
– volume: 28
  start-page: 1707205
  year: 2018
  ident: CR10
  article-title: Direct growth of edge-rich graphene with tunable dielectric properties in porous Si N ceramic for broadband high-performance microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707205
– volume: 32
  start-page: 22043
  year: 2022
  ident: CR46
  article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 32
  start-page: 508
  issue: 7
  year: 2010
  end-page: 513
  ident: CR11
  article-title: Electromagnetic wave absorbing characteristics of carbon black cement-based composites
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2010.03.009
– volume: 4
  start-page: 4537
  year: 2014
  ident: CR42
  article-title: Growth of millimeter-size single crystal graphene on cu foils by circumfluence chemical vapor deposition
  publication-title: Sci. Rep.
  doi: 10.1038/srep04537
– volume: 31
  start-page: 2102812
  year: 2021
  ident: CR33
  article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 94
  start-page: 243114
  year: 2009
  ident: CR16
  article-title: Breakdown current density of graphene nanoribbons
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3147183
– volume: 8
  start-page: 20258
  issue: 31
  year: 2016
  end-page: 20266
  ident: CR37
  article-title: Facile synthesis of porous Nickel/Carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03159
– volume: 5
  start-page: 6916
  issue: 9
  year: 2011
  end-page: 6924
  ident: CR43
  article-title: Transfer of CVD-grown monolayer graphene onto arbitrary substrates
  publication-title: ACS Nano
  doi: 10.1021/nn201207c
– volume: 172
  start-page: 516
  year: 2021
  end-page: 528
  ident: CR34
  article-title: Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.09.050
– volume: 7
  start-page: 4744
  issue: 8
  year: 2015
  end-page: 4750
  ident: CR39
  article-title: Coin-like α-Fe O @CoFe O core–shell composites with excellent electromagnetic absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508438s
– volume: 8
  start-page: 327
  issue: 2
  year: 2022
  end-page: 334
  ident: CR8
  article-title: Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS nanosheets on carbon fibers
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2021.09.003
– volume: 321
  start-page: 385
  issue: 5887
  year: 2008
  end-page: 388
  ident: CR14
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 6
  start-page: 3935
  issue: 5
  year: 2012
  end-page: 3942
  ident: CR27
  article-title: Graphene-ferroelectric hybrid structure for flexible transparent electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn3010137
– volume: 72
  start-page: 93
  year: 2021
  end-page: 103
  ident: CR18
  article-title: Synthesis of covalently bonded reduced graphene oxide-Fe O nanocomposites for efficient electromagnetic wave absorption
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.012
– volume: 11
  start-page: 105
  issue: 1
  year: 2021
  end-page: 119
  ident: CR45
  article-title: Carbonized wood with ordered channels decorated by NiCo O for lightweight and high-performance microwave absorber
  publication-title: J. Adv. Ceram
  doi: 10.1007/s40145-021-0520-z
– volume: 4
  start-page: 5619
  year: 2014
  ident: CR12
  article-title: Electromagnetic wave absorbing properties of amorphous carbon nanotubes
  publication-title: Sci. Rep.
  doi: 10.1038/srep05619
– volume: 12
  start-page: 329
  issue: 2
  year: 2023
  end-page: 340
  ident: CR2
  article-title: Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm
  publication-title: J. Adv. Ceram.
  doi: 10.26599/jac.2023.9220686
– volume: 19
  start-page: e2300119
  year: 2023
  ident: CR60
  article-title: Structural engineering enabled bimetallic (Ti Nb ) AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz
  publication-title: Small
  doi: 10.1002/smll.202300119
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  end-page: 31
  ident: CR53
  article-title: Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00823-7
– volume: 65
  start-page: 124
  year: 2013
  end-page: 139
  ident: CR24
  article-title: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.110
– volume: 286
  start-page: 165
  year: 2016
  end-page: 173
  ident: CR49
  article-title: One-pot synthesis of α-Fe O nanoplates-reduced graphene oxide composites for supercapacitor application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.10.068
– volume: 3
  start-page: 3421
  year: 2013
  ident: CR26
  article-title: Excellent microwave absorption property of graphene-coated Fe nanocomposites
  publication-title: Sci. Rep.
  doi: 10.1038/srep03421
– volume: 26
  start-page: 3484
  year: 2014
  end-page: 3489
  ident: CR23
  article-title: Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 48
  start-page: 788
  issue: 3
  year: 2010
  end-page: 796
  ident: CR25
  article-title: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.10.028
– volume: 9
  start-page: 701
  issue: 1
  year: 2017
  end-page: 709
  ident: CR29
  article-title: Highly stable and effective doping of graphene by selective atomic layer deposition of ruthenium
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12622
– volume: 14
  start-page: 28
  issue: 1
  year: 2021
  ident: CR1
  article-title: Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00776-3
– volume: 375
  start-page: L385
  year: 1997
  end-page: L391
  ident: CR63
  article-title: Phase imaging and stiffness in tapping-mode atomic force microscopy
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(96)01591-9
– volume: 173
  start-page: 69
  year: 2021
  end-page: 79
  ident: CR50
  article-title: Hydrangea-like Ni/Nio/C composites derived from metal–organic frameworks with superior microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.10.093
– volume: 772
  start-page: 760
  year: 2019
  end-page: 769
  ident: CR36
  article-title: Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.075
– volume: 32
  start-page: 2200123
  issue: 23
  year: 2022
  ident: CR58
  article-title: Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy?
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200123
– volume: 528
  start-page: 147052
  year: 2020
  ident: CR55
  article-title: Conductive WS -NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147052
– volume: 16
  start-page: 401
  issue: 5
  year: 2004
  end-page: 405
  ident: CR35
  article-title: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
– volume: 5
  start-page: 12716
  issue: 23
  year: 2013
  end-page: 12724
  ident: CR21
  article-title: Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and Cubic Co nanocrystals grown on graphene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404117v
– volume: 169
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR41
  article-title: Synthesis of RGO/AC/Fe O composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption
  publication-title: Compos. Part B-Eng.
  doi: 10.1016/j.compositesb.2019.03.081
– volume: 9
  start-page: 19202
  issue: 22
  year: 2017
  end-page: 19214
  ident: CR22
  article-title: FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04053
– volume: 67
  start-page: 1030
  year: 2007
  end-page: 1036
  ident: CR48
  article-title: FTIR investigation of CTAB-Al-montmorillonite complexes
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2006.09.024
– volume: 14
  start-page: 51
  issue: 1
  year: 2022
  ident: CR3
  article-title: High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00798-5
– volume: 146
  start-page: 301
  year: 2019
  end-page: 312
  ident: CR20
  article-title: Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.005
– volume: 174
  start-page: 662
  year: 2021
  end-page: 672
  ident: CR61
  article-title: A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.044
– volume: 14
  start-page: 171
  issue: 1
  year: 2022
  ident: CR59
  article-title: Ultrabroad microwave absorption ability and infrared stealth property of nano-micro Cus@rGO lightweight aerogels
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00906-5
– volume: 107
  start-page: 155
  year: 2022
  end-page: 164
  ident: CR7
  article-title: High-performance microwave absorption enabled by Co O modified VB-group laminated VS with frequency modulation from S-band to Ku-band
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.08.005
– volume: 29
  start-page: 1900163
  year: 2019
  ident: 1280_CR57
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900163
– volume: 5
  start-page: 12716
  issue: 23
  year: 2013
  ident: 1280_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404117v
– volume: 32
  start-page: 2201129
  issue: 24
  year: 2022
  ident: 1280_CR4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201129
– volume: 8
  start-page: 2123
  issue: 6
  year: 2020
  ident: 1280_CR32
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc06526a
– volume: 31
  start-page: 2102812
  year: 2021
  ident: 1280_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 324
  start-page: 1530
  issue: 5934
  year: 2009
  ident: 1280_CR15
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 4
  start-page: 4537
  year: 2014
  ident: 1280_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/srep04537
– volume: 30
  issue: 44
  year: 2019
  ident: 1280_CR54
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab35fa
– volume: 48
  start-page: 788
  issue: 3
  year: 2010
  ident: 1280_CR25
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.10.028
– volume: 169
  start-page: 1
  year: 2019
  ident: 1280_CR41
  publication-title: Compos. Part B-Eng.
  doi: 10.1016/j.compositesb.2019.03.081
– volume: 11
  start-page: 105
  issue: 1
  year: 2021
  ident: 1280_CR45
  publication-title: J. Adv. Ceram
  doi: 10.1007/s40145-021-0520-z
– volume: 14
  start-page: 28
  issue: 1
  year: 2021
  ident: 1280_CR1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00776-3
– volume: 28
  start-page: 1707205
  year: 2018
  ident: 1280_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707205
– volume: 7
  start-page: 4744
  issue: 8
  year: 2015
  ident: 1280_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508438s
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  ident: 1280_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 628
  start-page: 1019
  year: 2022
  ident: 1280_CR19
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.020
– volume: 172
  start-page: 516
  year: 2021
  ident: 1280_CR34
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.09.050
– volume: 286
  start-page: 165
  year: 2016
  ident: 1280_CR49
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.10.068
– volume: 4
  start-page: 5619
  year: 2014
  ident: 1280_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep05619
– volume: 6
  start-page: 3935
  issue: 5
  year: 2012
  ident: 1280_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn3010137
– volume: 201
  start-page: 150
  year: 2023
  ident: 1280_CR31
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.08.090
– volume: 5
  start-page: 6916
  issue: 9
  year: 2011
  ident: 1280_CR43
  publication-title: ACS Nano
  doi: 10.1021/nn201207c
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 1280_CR53
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00823-7
– volume: 173
  start-page: 69
  year: 2021
  ident: 1280_CR50
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.10.093
– volume: 107
  start-page: 155
  year: 2022
  ident: 1280_CR7
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.08.005
– volume: 467–468
  start-page: 277
  year: 2019
  ident: 1280_CR47
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.123
– volume: 12
  start-page: 329
  issue: 2
  year: 2023
  ident: 1280_CR2
  publication-title: J. Adv. Ceram.
  doi: 10.26599/jac.2023.9220686
– volume: 32
  start-page: 508
  issue: 7
  year: 2010
  ident: 1280_CR11
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2010.03.009
– volume: 26
  start-page: 8141
  year: 2014
  ident: 1280_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403196
– volume: 9
  start-page: 701
  issue: 1
  year: 2017
  ident: 1280_CR29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12622
– volume: 145
  start-page: 701
  year: 2019
  ident: 1280_CR38
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.01.082
– volume: 321
  start-page: 385
  issue: 5887
  year: 2008
  ident: 1280_CR14
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 8
  start-page: 20258
  issue: 31
  year: 2016
  ident: 1280_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03159
– volume: 10
  start-page: 832
  issue: 4
  year: 2021
  ident: 1280_CR51
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-021-0476-z
– volume: 67
  start-page: 1030
  year: 2007
  ident: 1280_CR48
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2006.09.024
– volume: 31
  start-page: 325703
  issue: 32
  year: 2020
  ident: 1280_CR6
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab8b8d
– volume: 528
  start-page: 147052
  year: 2020
  ident: 1280_CR55
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147052
– volume: 14
  start-page: 102
  issue: 1
  year: 2022
  ident: 1280_CR52
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00841-5
– volume: 375
  start-page: L385
  year: 1997
  ident: 1280_CR63
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(96)01591-9
– volume: 80
  start-page: 075406
  year: 2009
  ident: 1280_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.075406
– volume: 15
  start-page: 13
  issue: 1
  year: 2022
  ident: 1280_CR44
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00986-3
– volume: 16
  start-page: e2003905
  issue: 42
  year: 2020
  ident: 1280_CR17
  publication-title: Small
  doi: 10.1002/smll.202003905
– volume: 181
  start-page: 1670
  issue: 7
  year: 2008
  ident: 1280_CR62
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2008.06.036
– volume: 94
  start-page: 243114
  year: 2009
  ident: 1280_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3147183
– volume: 577
  start-page: 151939
  year: 2022
  ident: 1280_CR5
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151939
– volume: 14
  start-page: 171
  issue: 1
  year: 2022
  ident: 1280_CR59
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00906-5
– volume: 32
  start-page: 2200123
  issue: 23
  year: 2022
  ident: 1280_CR58
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200123
– volume: 19
  start-page: e2300119
  year: 2023
  ident: 1280_CR60
  publication-title: Small
  doi: 10.1002/smll.202300119
– volume: 6
  start-page: 38978
  year: 2016
  ident: 1280_CR64
  publication-title: Sci. Rep.
  doi: 10.1038/srep38978
– volume: 49
  start-page: 4291
  issue: 13
  year: 2011
  ident: 1280_CR9
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.06.008
– start-page: 177
  volume-title: Solid State Physics
  year: 2019
  ident: 1280_CR56
  doi: 10.1016/B978-0-12-817103-5.00009-8
– volume: 9
  start-page: 19202
  issue: 22
  year: 2017
  ident: 1280_CR22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04053
– volume: 65
  start-page: 124
  year: 2013
  ident: 1280_CR24
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.110
– volume: 772
  start-page: 760
  year: 2019
  ident: 1280_CR36
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.09.075
– volume: 26
  start-page: 3484
  year: 2014
  ident: 1280_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 32
  start-page: 22043
  year: 2022
  ident: 1280_CR46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204370
– volume: 8
  start-page: 327
  issue: 2
  year: 2022
  ident: 1280_CR8
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2021.09.003
– year: 2010
  ident: 1280_CR30
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.3471396
– volume: 146
  start-page: 301
  year: 2019
  ident: 1280_CR20
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.005
– volume: 72
  start-page: 93
  year: 2021
  ident: 1280_CR18
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.09.012
– volume: 174
  start-page: 662
  year: 2021
  ident: 1280_CR61
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.044
– volume: 3
  start-page: 3421
  year: 2013
  ident: 1280_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/srep03421
– volume: 14
  start-page: 51
  issue: 1
  year: 2022
  ident: 1280_CR3
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00798-5
– volume: 16
  start-page: 401
  issue: 5
  year: 2004
  ident: 1280_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.61061
Snippet Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full...
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in...
HighlightsA carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play...
Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms Absorbers
Absorption
Broadband
Carrier injection
Carrier transport
Dielectric loss
Dielectric properties
Dipoles
Electromagnetic radiation
Electromagnetic wave absorption
Engineering
Fe nanosheets
Graphene
Impedance matching
Iron
Microwave absorption and EMI shielding
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Polarization
Reduced graphene oxide
Regulatory mechanisms (biology)
Trace metals
Transport properties
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KQUbiBhaJn_EJtWiXCqkVqljRW-TXVpVoUna3lfj3eBwnKQJ62EvWSbzjea3H830IvaWVVDTwiqjSloQ7a6PNrRwJ3hiqjaAqQL_z0bE8XPIvp-I0b7ht8rHKwScmR-07B3vkH6hO2GaKyo-XPwmwRkF1NVNo3EU70QXX9QztHMyPv54MGkUVMDNNdUKgV-Y30Go4YLuwCdBMAICZmnAyBY0vVDng9gm1glJWYqyrKiJVKXMnTurHA_bmksQwSMDvx_9lf0S7RArwr0z2rypsCm6Lh-hBzkrxfq9Gj9Cd0D5G929gFT5ByxjVHOyr45Oevr5b_8JHARqHzzcXuFthGBDwIuCuxZ8BBzu6UTzvaXYuzFkL7ZL4u7kOeN9uunXyVU_RcjH_9umQZE4G4oSQW8I95b62moqgefyUteXMVGXwKx0qFReXa-mpWhkNB1e1t1TH9Q61U0wp5dkzNGu7NrxAWCpmGF8F7bjgrjZWBeaY0YYF5StlC1QNsmtcBiwH3owfzQi1nOTdRHk3Sd6NLNC78Z7LHq7j1tEHsCTjSIDaThe69VmTLbdhNlSyNMIw6bkK0gI_szeVNEI7p-M094YFbbL9b5pJWwv0Zvw6Wi6UY0wbuqt-DHRral2g570ijDMB3MQoPlag94NmTA___w_avX0uL9E9GnOy_jTOHppt11fhVcyptvZ1NpzfgCoRRA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeLOlICNxg0jxe30sqEuFVA6IFb1ZfkwqJJpUu1sk_n09zquIgsQhl2SSOGOPZ5zxfB8hbzjThoNklalDXckYQra5JlaQvOfWK24A651PPuvjtfx0qk6HorDtuNt9TEmWmXoqdkNq5LrKPqbCSTUvem6TOwrX7piinTHHuUE2pjk3iJTK8hpCjUQ8FzGDmCkELTMzNqbiMvv0wcn2QbTB9FVhqWOs0qbWQ_XNzc36zcMVIoCbotc_Mq_Foa0ekPtDJEoP-6HzkNyC9hG5dw2f8DFZZ08W8V86_dJT1nebX_QEsFj4-_acdg1FAaAroF1LPyL2dZ466VFPrXPuz1oskaTf_E-gh2Hbbcr89ISsV0dfPxxXAw9DFZXSu0omLtMyWK7AynzUyyCFZzWkxgIzuUOl1YmbxlvcrGpT4Db3MSyjEcaYJJ6SvbZr4Tmh2ggvZAM2SiXj0gcDIgpvvQCTmAkLwkbduTiAlCNXxg83wSsXfbusb1f07fSCvJ3uueghOv4p_R67ZJJEeO1yotucucFanQjAdO2VFzpJAzogJ3PyTHtlY7S5mQdjh7rB5reO24K-Z3h-x-vpcrZWTMH4FrrLXgYrNK1dkGf9QJhagliJWX1iQd6NI2N--N8_aP__xF-Qu9lmZL8j54Ds7TaX8DLHVbvwqpjRFerCDIY
  priority: 102
  providerName: Springer Nature
Title Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption
URI https://link.springer.com/article/10.1007/s40820-023-01280-6
https://www.ncbi.nlm.nih.gov/pubmed/38175333
https://www.proquest.com/docview/2910044726
https://www.proquest.com/docview/2910195699
https://doaj.org/article/3be160a5a36d47e6b2883da16a59cc9b
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ8SZQVkbiBhGJn_Fxd9m0QmqFKlb0FvmVCokmaHdbiX-Px85mF_G6cEgiOc5rPJ4Zx57vQ-g1KYUknpW5LEyRM2tM6HOtzb3TmijNifSQ73x6Jk6W7MMFv9ij-oI1YQkeOAnuHTW-FIXmmgrHpBcG6HGdLoXmylplwPoGn7c3mAqaRCQwMu3mB4FWme2h1DDAdKE7IDMOwGVyh4_JCQt-fXC0KZCWMIUVmerKMheyEEMGTszDA9bmIg_uLwd7H8ZjP3m5SAbwuwj2l9nX6NTq--hwiEbxNEnhAbrlu4fo3h5G4SO0DN7Mwv90fJ5o6_vVd3zqIWH4y_oK9y2GCh7XHvcdPgb862A-8SLR61zpyw7SJPFnfePx1Kz7VbRRj9GyXnyan-QDF0NuORebnDnCXGUU4V6xsBWVYVSXhXet8qUMjcqUcES2WsGCVeUMUaGdfWUllVI6-gQddH3nnyEsJNWUtV5ZxpmttJGeWqqVpl66UpoMlVvZNXYAKge-jK_NCLEc5d0EeTdR3o3I0Jvxmm8JpuOvtWfQJGNNgNiOBUHxmkHxmn8pXoaOtg3aDP1-3RAVEfgkCc94NZ4OPRamYXTn--tUB7I0lcrQ06QI45sAXmIQH83Q261m7G7-5w96_j8-6AW6S0LEltbqHKGDzeravwwR18ZM0O2qPp6gO9PZ-1kdjrPF2cfzUDonDPZiPond7wcX9B51
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJuFAkaCE6zYtb12fECoQNOUNj2gRvS29WMSIdHdkqSg_il-Ix7vI0VAbz3kknU2s-PxzHjH832EvGC5VAxEnqrMZqlw1oY1N3UpeGOYNgVTgP3O4305mohPh8XhGvnV9cLgscrOJ0ZH7WuH78jfMB2xzRST706-p8gahdXVjkKjMYtdOPsZtmyLtzsfw_y-ZGy4dfBhlLasAqkrCrlMhWfCD6xmBWgRPtnACm7yDPxUQ66CeEJLz9TUaDx6qb1lOkgMA6e4UsrzcN8r5KoIl3CzNxhud_bLFPJAraqSSOYszmHjCESS4Sv4tALh0tQKlTP8c8gm2vDepO8KC2eRHy_PU6ky2fb9xO4_5IrO0hB0U4wyYRf4R2yNFAT_ypv_qvnGUDq8RW62OTDdbIz2NlmD6g65cQ4Z8S6ZhBjq8C0-_QwzZBir52d0DNim_HVxTOspxQFAh0Drim4j6nZw2nSrIfU5NrMKmzPpF_MD6KZd1PPoGe-RyaXM1X2yXtUVPCRUKm64mIJ2ohBuYKwC7rjRhoPyubIJyTvdla6FR0eWjm9lD-wc9V0GfZdR36VMyKv-NycNOMiFo9_jlPQjEdg7flHPZ2XrJ0puIZeZKQyXXiiQFtmgvcmlKbRzOoi50U1o2XqbRblaGwl53l8OfgKLP6aC-rQZg72hWifkQWMIvSSI0hjUxxPyurOM1c3__0CPLpblGbk2OhjvlXs7-7uPyXUWssHmHNAGWV_OT-FJyOaW9mlcQpQcXfaa_Q3FA0vI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BKiE4IJ4lUGCRuIFV79t7DNBQAq0QENGbtY9xhUTtKkmR-Pfs2I4TREHikIszttczOztjz873EfKcM204SJaZ3OeZDN4nn6tCBtE5bp3iBrDf-ehYH87l7ESdbHXxt7vd1yXJrqcBUZrq1f55rPaHxjekSc6zFG8yXGDTC9BVslPo5DEjsjOZzD7P1nOKG-Rm2lQKkWBZbuHVSER3ERtIM4UQZmaDlKm4TBG-D7ldSm2wmNVy1jGWaZPrvhfn8oH9Fu9aWoDLctk_6rBteJveIjf7vJROuol0m1yB-g65sYVWeJfMU1wL-GWdfuoI7JvFT3oE2Dr8bXlGm4qiANAp0KambxEJOy2k9KAj2jlzpzU2TNKv7gfQiV82i3a1ukfm04Mvrw-znpUhC0rpVSYjl7HwliuwMv3ywkvhWA6xssBMMq-0OnJTOYtbV2303CaLQxGMMMZEcZ-M6qaGB4RqI5yQFdgglQyF8wZEEM46ASYy48eErXVXhh6yHJkzvpcD2HKr7zLpu2z1XeoxeTGcc94BdvxT-hWaZJBEsO32QLM4LXvfLYUHpnOnnNBRGtAeGZqjY9opG4JNw9xbG7TsV4BlyW2LxWd4usez4e_ku1iQcTU0F50M9mtaOya73UQYRoLIiUl9YkxermfG5uJ_f6CH_yf-lFz7-GZafnh3_P4Ruc5TwtZt1dkjo9XiAh6nhGvln_Q-9Qv2fBVF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+Regulatory+Mechanism+of+Trace+Fe+on+Graphene+Electromagnetic+Wave+Absorption&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Kaili&rft.au=Liu%2C+Yuhao&rft.au=Liu%2C+Yanan&rft.au=Yan%2C+Yuefeng&rft.date=2024-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1007%2Fs40820-023-01280-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon