Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption
Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance los...
Saved in:
Published in | Nano-micro letters Vol. 16; no. 1; pp. 66 - 18 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene.
The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization.
Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene.
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL
min
) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. |
---|---|
AbstractList | Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization. Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene. Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL ) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene. The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization. Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene. HighlightsA carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play to the dielectric dispersion properties of graphene.The electromagnetic wave absorption mechanisms mainly include enhanced conductance loss, dipole polarization and interfacial polarization.Outstanding reflection loss value (− 53.38 dB, 2.45 mm) and broadband wave absorption (7.52 GHz with only 2 wt% filling) of Fe/RGO composite were acquired, which is superior to single-component graphene.Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RL min ) of Fe/RGO-2 composite reaches − 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. |
ArticleNumber | 66 |
Author | Huang, Xiaoxiao Che, Renchao Yan, Yuefeng Ma, Guansheng Zhong, Bo Liu, Yuhao Zhang, Kaili Liu, Yanan |
Author_xml | – sequence: 1 givenname: Kaili surname: Zhang fullname: Zhang, Kaili organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology – sequence: 2 givenname: Yuhao surname: Liu fullname: Liu, Yuhao organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology – sequence: 3 givenname: Yanan surname: Liu fullname: Liu, Yanan organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology – sequence: 4 givenname: Yuefeng surname: Yan fullname: Yan, Yuefeng organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology – sequence: 5 givenname: Guansheng surname: Ma fullname: Ma, Guansheng organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology – sequence: 6 givenname: Bo surname: Zhong fullname: Zhong, Bo organization: School of Materials Science and Engineering, Harbin Institute of Technology at Weihai – sequence: 7 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University – sequence: 8 givenname: Xiaoxiao surname: Huang fullname: Huang, Xiaoxiao email: swliza@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38175333$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFTEUxYNUbK39Ai5kwI2b0fyZJJNlKW0tVARpcRnuJHemU-clz2RG6Lc3702r0EUXISH8zuHce96SgxADEvKe0c-MUv0lN7TltKZc1JTxltbqFTniTNJaSskOylswVitN1SE5yXnsqOSN5lo2b8ihaJmWQogjcnuTwP0aw1D9wGGZYI7pofqG7g7CmDdV7KsdgNUFVjFUlwm2dxiwOp_QzSluYAg4j676CX-wOu1yTNt5jOEded3DlPHk8T4mtxfnN2df6-vvl1dnp9e1k1LNdeN549vOcImmKYe2XSOAUfS9QaahJDbKc92DMSWu8R03XCO2TguttRfH5Gr19RHu7TaNG0gPNsJo9x8xDRZSyTehFR0yRUGCUL7RqDretsIDUyCNc6YrXp9Wr22KvxfMs92M2eE0QcC4ZMsNo8xIZUxBPz5D7-OSQpl0T9GmLFoV6sMjtXQb9P_iPS2_AO0KuBRzTthbN86w29-cYJwso3ZXtV2rtqVqu6_a7rz5M-mT-4sisYpygcOA6X_sF1R_AbfuuIM |
CitedBy_id | crossref_primary_10_1007_s40820_024_01435_z crossref_primary_10_1016_j_cej_2025_161193 crossref_primary_10_1016_j_carbon_2024_119644 crossref_primary_10_1016_j_mseb_2024_117584 crossref_primary_10_1002_adfm_202418257 crossref_primary_10_1016_j_est_2024_112636 crossref_primary_10_1007_s40820_024_01518_x crossref_primary_10_1016_j_seppur_2024_128591 crossref_primary_10_1002_smll_202406602 crossref_primary_10_1016_j_carbon_2024_119925 crossref_primary_10_1016_j_cej_2024_152041 crossref_primary_10_1002_ange_202421090 crossref_primary_10_1016_j_carbon_2024_119093 crossref_primary_10_1016_j_jmst_2024_09_026 crossref_primary_10_1016_j_ceramint_2024_05_417 crossref_primary_10_1021_acsami_4c03690 crossref_primary_10_1016_j_compositesb_2025_112378 crossref_primary_10_26599_JAC_2024_9220990 crossref_primary_10_1007_s40820_024_01513_2 crossref_primary_10_1016_j_jallcom_2025_179665 crossref_primary_10_1002_adfm_202408252 crossref_primary_10_1016_j_jmst_2024_11_038 crossref_primary_10_1016_j_carbon_2024_119096 crossref_primary_10_1016_j_inoche_2024_112857 crossref_primary_10_1016_j_mtphys_2024_101408 crossref_primary_10_1016_j_mtcomm_2024_111344 crossref_primary_10_1016_j_carbon_2024_119534 crossref_primary_10_1016_j_jmmm_2024_172256 crossref_primary_10_1007_s12613_024_2956_y crossref_primary_10_1021_acsanm_4c06662 crossref_primary_10_1002_smll_202407176 crossref_primary_10_1002_crat_202400136 crossref_primary_10_1016_j_carbon_2024_119859 crossref_primary_10_1016_j_apsusc_2024_161633 crossref_primary_10_1016_j_xcrp_2024_102206 crossref_primary_10_1016_j_jallcom_2024_176300 crossref_primary_10_1016_j_inoche_2024_112984 crossref_primary_10_1016_j_matchemphys_2025_130695 crossref_primary_10_1002_adem_202401937 crossref_primary_10_1016_j_ceramint_2024_07_355 crossref_primary_10_1016_j_ceramint_2025_03_270 crossref_primary_10_1021_acsnano_4c16834 crossref_primary_10_1016_j_synthmet_2024_117687 crossref_primary_10_1016_j_apsusc_2024_160959 crossref_primary_10_1016_j_mtphys_2024_101434 crossref_primary_10_1002_adfm_202410194 crossref_primary_10_1016_j_jmst_2024_10_047 crossref_primary_10_1016_j_optmat_2024_115770 crossref_primary_10_1016_j_optmat_2024_116023 crossref_primary_10_1016_j_ceramint_2024_09_176 crossref_primary_10_1002_adfm_202418304 crossref_primary_10_1039_D4QI02776K crossref_primary_10_1016_j_ceramint_2024_09_339 crossref_primary_10_1016_j_inoche_2024_112796 crossref_primary_10_1016_j_matchemphys_2024_129682 crossref_primary_10_1016_j_mtnano_2024_100528 crossref_primary_10_1039_D4RA03417A crossref_primary_10_1007_s10948_024_06851_1 crossref_primary_10_1016_j_materresbull_2024_112903 crossref_primary_10_1007_s40820_024_01449_7 crossref_primary_10_1016_j_carbon_2024_119795 crossref_primary_10_1016_j_jmmm_2024_172396 crossref_primary_10_1016_j_materresbull_2024_112906 crossref_primary_10_1016_j_carbon_2024_119633 crossref_primary_10_1016_j_inoche_2024_113376 crossref_primary_10_1016_j_mseb_2024_117730 crossref_primary_10_1016_j_coco_2024_102014 crossref_primary_10_1016_j_jmst_2024_10_019 crossref_primary_10_1021_acs_inorgchem_4c01583 crossref_primary_10_1016_j_cej_2024_156695 crossref_primary_10_1016_j_cej_2024_156254 crossref_primary_10_1016_j_cej_2024_156973 crossref_primary_10_1016_j_jmst_2024_04_011 crossref_primary_10_26599_JAC_2025_9221039 crossref_primary_10_1021_acsomega_4c07063 crossref_primary_10_1002_anie_202421090 crossref_primary_10_1063_5_0239404 crossref_primary_10_1007_s10971_024_06501_x crossref_primary_10_1016_j_cej_2024_152976 crossref_primary_10_1016_j_heliyon_2024_e34155 |
Cites_doi | 10.1007/s40820-022-00841-5 10.1007/s40145-021-0476-z 10.1016/j.carbon.2019.01.082 10.1039/c9tc06526a 10.1016/j.jcis.2022.08.020 10.1088/1361-6528/ab8b8d 10.1063/1.3471396 10.1016/j.jssc.2008.06.036 10.1088/1361-6528/ab35fa 10.1007/s40820-022-00986-3 10.1002/adfm.202201129 10.1038/nmat1849 10.1126/science.1158877 10.1016/j.apsusc.2018.10.123 10.1016/B978-0-12-817103-5.00009-8 10.1002/adma.201403196 10.1016/j.carbon.2022.08.090 10.1002/smll.202003905 10.1038/srep38978 10.1103/PhysRevB.80.075406 10.1002/adfm.201900163 10.1016/j.carbon.2011.06.008 10.1016/j.apsusc.2021.151939 10.1002/adfm.201707205 10.1002/adfm.202204370 10.1016/j.cemconcomp.2010.03.009 10.1038/srep04537 10.1002/adfm.202102812 10.1063/1.3147183 10.1021/acsami.6b03159 10.1021/nn201207c 10.1016/j.carbon.2020.09.050 10.1021/am508438s 10.1016/j.jmat.2021.09.003 10.1126/science.1157996 10.1021/nn3010137 10.1016/j.jmst.2020.09.012 10.1007/s40145-021-0520-z 10.1038/srep05619 10.26599/jac.2023.9220686 10.1002/smll.202300119 10.1007/s40820-022-00823-7 10.1016/j.carbon.2013.07.110 10.1016/j.cej.2015.10.068 10.1038/srep03421 10.1002/adma.201400108 10.1016/j.carbon.2009.10.028 10.1021/acsami.6b12622 10.1007/s40820-021-00776-3 10.1016/S0039-6028(96)01591-9 10.1016/j.carbon.2020.10.093 10.1016/j.jallcom.2018.09.075 10.1002/adfm.202200123 10.1016/j.apsusc.2020.147052 10.1002/adma.200306460 10.1021/am404117v 10.1016/j.compositesb.2019.03.081 10.1021/acsami.7b04053 10.1016/j.saa.2006.09.024 10.1007/s40820-022-00798-5 10.1016/j.carbon.2019.02.005 10.1016/j.carbon.2020.11.044 10.1007/s40820-022-00906-5 10.1016/j.jmst.2021.08.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.1007/s40820-023-01280-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_3be160a5a36d47e6b2883da16a59cc9b 38175333 10_1007_s40820_023_01280_6 |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c556t-4d24d8b925e945e908b43a10edf9e17a52496d27fa995339db2927ee8c73777d3 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:31:16 EDT 2025 Fri Jul 11 04:24:45 EDT 2025 Wed Aug 13 07:36:08 EDT 2025 Thu Apr 03 07:07:57 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Tue Jul 01 00:55:50 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fe nanosheets Dielectric loss Electromagnetic wave absorption Reduced graphene oxide |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-4d24d8b925e945e908b43a10edf9e17a52496d27fa995339db2927ee8c73777d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/3be160a5a36d47e6b2883da16a59cc9b |
PMID | 38175333 |
PQID | 2910044726 |
PQPubID | 2044332 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3be160a5a36d47e6b2883da16a59cc9b proquest_miscellaneous_2910195699 proquest_journals_2910044726 pubmed_primary_38175333 crossref_citationtrail_10_1007_s40820_023_01280_6 crossref_primary_10_1007_s40820_023_01280_6 springer_journals_10_1007_s40820_023_01280_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Cao, Song, Hou, Wen, Yuan (CR25) 2010; 48 Cheng, Li, Xiong, Zhang, Raza (CR53) 2022; 14 Bellis, Tamburrano, Dinescu, Santarelli, Sarto (CR9) 2011; 49 Lee, Wei, Kysar, Hone (CR14) 2008; 321 Kim, Kim, Lee, Kim, Cho (CR29) 2017; 9 Ni, Zheng, Bae, Tan, Kahya (CR27) 2012; 6 Zhang, Lv, Chen, Ge, Chu (CR41) 2019; 169 Xue, He, Zhu, Yuan (CR48) 2007; 67 Kim, Kim, Jang, Lee, Lee (CR28) 2014; 26 Li, Qi, Guo, Du, Song (CR36) 2019; 772 Song, Ma, Qiu, Ru, Gu (CR3) 2022; 14 Liu, Huang, Ding, Zhao, Liu (CR18) 2021; 72 Lv, Liang, Cheng, Zhang, Tang (CR39) 2015; 7 Yang, Duan, Li, Pang, Huang (CR1) 2021; 14 Li, Tan, Wu, Wang, You (CR31) 2023; 201 Arief, Biswas, Bose (CR22) 2017; 9 Wang, Wang, Han, Liu, Wang (CR38) 2019; 145 Dai, Sun, Liu, Li (CR11) 2010; 32 Wang, Liu, Jia, Zhao, Wu (CR44) 2022; 15 Magonov, Elings, Whangbo (CR63) 1997; 375 Zhao, Zhang, Wang, Xi, Cao (CR26) 2013; 3 Huang, Cheng, Zhang, Xiong, Zhou (CR7) 2022; 107 Xu, Yang, Chen, Yu, Xiong (CR20) 2019; 146 Qin, Huang, Yan, He, Liu (CR45) 2021; 11 Che, Peng, Duan, Chen, Liang (CR35) 2004; 16 Wen, Cao, Hou, Song, Zhang (CR24) 2013; 65 Lei, Yao, Zhou, Zheng, We (CR50) 2021; 173 Xiang, Xiong, Deng, Cui, Yu (CR32) 2020; 8 Xu, Zhang, Wang, Ning, Ouyang (CR52) 2022; 14 Wen, Cao, Lu, Cao, Sh (CR23) 2014; 26 Yan, Xu, Yang, Yue, Huang (CR47) 2019; 467–468 Xu, Li, Zhao, Chen, Sun (CR60) 2023; 19 Li, Zhao, Li, Wang, Li (CR17) 2020; 16 Zhang, Liu, Zhang, Zhang, Yang (CR6) 2020; 31 Zhang, Liu, Huang, Cheng, Wang (CR8) 2022; 8 Murali, Yang, Brenner, Beck, Meindl (CR16) 2009; 94 Du, Cai, Wang, Qian, He, Shui (CR51) 2021; 10 Pi, McCreary, Bao, Han, Chiang (CR40) 2009; 80 Liu, Huang, Yan, Xia, Zhang (CR2) 2023; 12 Peng, Zeng, Yang, Hu, Qiu (CR64) 2016; 6 Yan, Huang, Chen, Liu, Xia (CR61) 2021; 174 Geim, Novoselov (CR13) 2007; 6 Lv, Yang, Ong, Wei, Liao (CR57) 2019; 29 Hou, Cheng, Zhang, Lu, Yang (CR5) 2022; 577 Suk, Kitt, Magnuson, Hao, Ahmed (CR43) 2011; 5 Wang, Yu, Huang, You, Zeng (CR34) 2021; 172 Geim (CR15) 2009; 324 Ren, Chen, Cai, Zhu, Zhu (CR30) 2010 Ge, Wang, Wu, Hu, Shao (CR19) 2022; 628 Wang, Chen, Han, Wang, Tang (CR42) 2014; 4 Wu, Zhao, Zhou, Tan, Peymanfar (CR59) 2022; 14 Zhang, Wang, Cheng, Han, Yang (CR55) 2020; 528 Cheng, Zhang, Wang, Huang, Raza (CR4) 2022; 32 Qiu, Lyu, Liu, Liu, Wu (CR37) 2016; 8 Galsin, Galsin (CR56) 2019 Zhao, Hou, Zhang, Zhu, She (CR12) 2014; 4 Cheng, Zhang, Ning, Raza, Zhang (CR58) 2022; 32 Zhang, Liu, Cheng, Chai, Yang (CR54) 2019; 30 Pan, Zhu, Ma, Sun, Yang (CR21) 2013; 5 Liu, Gao, Zhang, Huang, You (CR33) 2021; 31 Gao, Zhao, Li, Zhu, Hu (CR46) 2022; 32 Quan, Cheng, Xiao, Lei (CR49) 2016; 286 Qiu, Qi, Yang, Wang (CR62) 2008; 181 Ye, Song, Zhang, Li, Zhang (CR10) 2018; 28 R Che (1280_CR35) 2004; 16 Y Ge (1280_CR19) 2022; 628 M Cao (1280_CR25) 2010; 48 M Kim (1280_CR29) 2017; 9 X Liu (1280_CR18) 2021; 72 G Ni (1280_CR27) 2012; 6 Q Li (1280_CR17) 2020; 16 Z Yan (1280_CR47) 2019; 467–468 D Zhang (1280_CR6) 2020; 31 Z Huang (1280_CR7) 2022; 107 AK Geim (1280_CR15) 2009; 324 S Peng (1280_CR64) 2016; 6 I Arief (1280_CR22) 2017; 9 Q Li (1280_CR31) 2023; 201 AK Geim (1280_CR13) 2007; 6 W Xue (1280_CR48) 2007; 67 H Lv (1280_CR39) 2015; 7 P Song (1280_CR3) 2022; 14 Y Liu (1280_CR2) 2023; 12 F Ye (1280_CR10) 2018; 28 G Pan (1280_CR21) 2013; 5 K Pi (1280_CR40) 2009; 80 Y Wu (1280_CR59) 2022; 14 X Yan (1280_CR61) 2021; 174 H Xu (1280_CR52) 2022; 14 H Zhang (1280_CR8) 2022; 8 C Hou (1280_CR5) 2022; 577 Y Dai (1280_CR11) 2010; 32 L Wang (1280_CR34) 2021; 172 Z Xiang (1280_CR32) 2020; 8 H Kim (1280_CR28) 2014; 26 D Zhang (1280_CR54) 2019; 30 D Zhang (1280_CR55) 2020; 528 T Gao (1280_CR46) 2022; 32 B Wen (1280_CR23) 2014; 26 X Qiu (1280_CR62) 2008; 181 C Wang (1280_CR44) 2022; 15 B Wen (1280_CR24) 2013; 65 S Qiu (1280_CR37) 2016; 8 J Cheng (1280_CR58) 2022; 32 JS Galsin (1280_CR56) 2019 X Zhao (1280_CR26) 2013; 3 X Yang (1280_CR1) 2021; 14 P Liu (1280_CR33) 2021; 31 C Wang (1280_CR42) 2014; 4 G Qin (1280_CR45) 2021; 11 D Xu (1280_CR20) 2019; 146 T Zhao (1280_CR12) 2014; 4 J Cheng (1280_CR53) 2022; 14 H Lv (1280_CR57) 2019; 29 CG Lee (1280_CR14) 2008; 321 SN Magonov (1280_CR63) 1997; 375 J Cheng (1280_CR4) 2022; 32 W Li (1280_CR36) 2019; 772 Y Ren (1280_CR30) 2010 JW Suk (1280_CR43) 2011; 5 R Murali (1280_CR16) 2009; 94 G Bellis (1280_CR9) 2011; 49 H Quan (1280_CR49) 2016; 286 L Lei (1280_CR50) 2021; 173 F Wang (1280_CR38) 2019; 145 B Du (1280_CR51) 2021; 10 T Xu (1280_CR60) 2023; 19 K Zhang (1280_CR41) 2019; 169 |
References_xml | – volume: 14 start-page: 102 issue: 1 year: 2022 ident: CR52 article-title: Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00841-5 – volume: 10 start-page: 832 issue: 4 year: 2021 end-page: 842 ident: CR51 article-title: Enhanced electromagnetic wave absorption property of binary ZnO/NiCo O composites publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0476-z – volume: 145 start-page: 701 year: 2019 end-page: 711 ident: CR38 article-title: Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2019.01.082 – volume: 8 start-page: 2123 issue: 6 year: 2020 end-page: 2134 ident: CR32 article-title: Rational design of 2D hierarchically laminated Fe O @nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications publication-title: J. Mater. Chem. C doi: 10.1039/c9tc06526a – volume: 628 start-page: 1019 year: 2022 end-page: 1030 ident: CR19 article-title: Accordion-like reduced graphene oxide embedded with Fe nanoparticles between layers for tunable and broadband electromagnetic wave absorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.020 – volume: 31 start-page: 325703 issue: 32 year: 2020 ident: CR6 article-title: Confinedly growing and tailoring of Co O clusters-WS nanosheets for highly efficient microwave absorption publication-title: Nanotechnology doi: 10.1088/1361-6528/ab8b8d – year: 2010 ident: CR30 article-title: Controlling the electrical transport properties of graphene by in situ metal deposition publication-title: App. Phys. Lett. doi: 10.1063/1.3471396 – volume: 181 start-page: 1670 issue: 7 year: 2008 end-page: 1677 ident: CR62 article-title: Electrostatic characteristics of nanostructures investigated using electric force microscopy publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2008.06.036 – volume: 30 issue: 44 year: 2019 ident: CR54 article-title: Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides publication-title: Nanotechnology doi: 10.1088/1361-6528/ab35fa – volume: 15 start-page: 13 issue: 1 year: 2022 ident: CR44 article-title: Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00986-3 – volume: 32 start-page: 2201129 issue: 24 year: 2022 ident: CR4 article-title: Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201129 – volume: 6 start-page: 183 issue: 3 year: 2007 end-page: 191 ident: CR13 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 324 start-page: 1530 issue: 5934 year: 2009 end-page: 1534 ident: CR15 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 467–468 start-page: 277 year: 2019 end-page: 285 ident: CR47 article-title: Graphene oxide/Fe O nanoplates supported Pt for enhanced room-temperature oxidation of formaldehyde publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.123 – start-page: 177 year: 2019 end-page: 198 ident: CR56 article-title: Free-electron theory of metals publication-title: Solid State Physics doi: 10.1016/B978-0-12-817103-5.00009-8 – volume: 26 start-page: 8141 year: 2014 end-page: 8146 ident: CR28 article-title: Doping graphene with an atomically thin two dimensional molecular layer publication-title: Adv. Mater. doi: 10.1002/adma.201403196 – volume: 201 start-page: 150 year: 2023 end-page: 160 ident: CR31 article-title: Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band publication-title: Carbon doi: 10.1016/j.carbon.2022.08.090 – volume: 16 start-page: e2003905 issue: 42 year: 2020 ident: CR17 article-title: MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance publication-title: Small doi: 10.1002/smll.202003905 – volume: 6 start-page: 38978 year: 2016 ident: CR64 article-title: Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics publication-title: Sci. Rep. doi: 10.1038/srep38978 – volume: 80 start-page: 075406 year: 2009 ident: CR40 article-title: Electronic doping and scattering by transition metals on graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.075406 – volume: 29 start-page: 1900163 year: 2019 ident: CR57 article-title: A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900163 – volume: 49 start-page: 4291 issue: 13 year: 2011 end-page: 4300 ident: CR9 article-title: Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency publication-title: Carbon doi: 10.1016/j.carbon.2011.06.008 – volume: 577 start-page: 151939 year: 2022 ident: CR5 article-title: Biomass-derived carbon-coated WS core-shell nanostructures with excellent electromagnetic absorption in C-band publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151939 – volume: 28 start-page: 1707205 year: 2018 ident: CR10 article-title: Direct growth of edge-rich graphene with tunable dielectric properties in porous Si N ceramic for broadband high-performance microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707205 – volume: 32 start-page: 22043 year: 2022 ident: CR46 article-title: Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 32 start-page: 508 issue: 7 year: 2010 end-page: 513 ident: CR11 article-title: Electromagnetic wave absorbing characteristics of carbon black cement-based composites publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2010.03.009 – volume: 4 start-page: 4537 year: 2014 ident: CR42 article-title: Growth of millimeter-size single crystal graphene on cu foils by circumfluence chemical vapor deposition publication-title: Sci. Rep. doi: 10.1038/srep04537 – volume: 31 start-page: 2102812 year: 2021 ident: CR33 article-title: Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 94 start-page: 243114 year: 2009 ident: CR16 article-title: Breakdown current density of graphene nanoribbons publication-title: Appl. Phys. Lett. doi: 10.1063/1.3147183 – volume: 8 start-page: 20258 issue: 31 year: 2016 end-page: 20266 ident: CR37 article-title: Facile synthesis of porous Nickel/Carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03159 – volume: 5 start-page: 6916 issue: 9 year: 2011 end-page: 6924 ident: CR43 article-title: Transfer of CVD-grown monolayer graphene onto arbitrary substrates publication-title: ACS Nano doi: 10.1021/nn201207c – volume: 172 start-page: 516 year: 2021 end-page: 528 ident: CR34 article-title: Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption publication-title: Carbon doi: 10.1016/j.carbon.2020.09.050 – volume: 7 start-page: 4744 issue: 8 year: 2015 end-page: 4750 ident: CR39 article-title: Coin-like α-Fe O @CoFe O core–shell composites with excellent electromagnetic absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508438s – volume: 8 start-page: 327 issue: 2 year: 2022 end-page: 334 ident: CR8 article-title: Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS nanosheets on carbon fibers publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.09.003 – volume: 321 start-page: 385 issue: 5887 year: 2008 end-page: 388 ident: CR14 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 6 start-page: 3935 issue: 5 year: 2012 end-page: 3942 ident: CR27 article-title: Graphene-ferroelectric hybrid structure for flexible transparent electrodes publication-title: ACS Nano doi: 10.1021/nn3010137 – volume: 72 start-page: 93 year: 2021 end-page: 103 ident: CR18 article-title: Synthesis of covalently bonded reduced graphene oxide-Fe O nanocomposites for efficient electromagnetic wave absorption publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.09.012 – volume: 11 start-page: 105 issue: 1 year: 2021 end-page: 119 ident: CR45 article-title: Carbonized wood with ordered channels decorated by NiCo O for lightweight and high-performance microwave absorber publication-title: J. Adv. Ceram doi: 10.1007/s40145-021-0520-z – volume: 4 start-page: 5619 year: 2014 ident: CR12 article-title: Electromagnetic wave absorbing properties of amorphous carbon nanotubes publication-title: Sci. Rep. doi: 10.1038/srep05619 – volume: 12 start-page: 329 issue: 2 year: 2023 end-page: 340 ident: CR2 article-title: Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm publication-title: J. Adv. Ceram. doi: 10.26599/jac.2023.9220686 – volume: 19 start-page: e2300119 year: 2023 ident: CR60 article-title: Structural engineering enabled bimetallic (Ti Nb ) AlC solid solution structure for efficient electromagnetic wave absorption in gigahertz publication-title: Small doi: 10.1002/smll.202300119 – volume: 14 start-page: 1 issue: 1 year: 2022 end-page: 31 ident: CR53 article-title: Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00823-7 – volume: 65 start-page: 124 year: 2013 end-page: 139 ident: CR24 article-title: Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites publication-title: Carbon doi: 10.1016/j.carbon.2013.07.110 – volume: 286 start-page: 165 year: 2016 end-page: 173 ident: CR49 article-title: One-pot synthesis of α-Fe O nanoplates-reduced graphene oxide composites for supercapacitor application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.10.068 – volume: 3 start-page: 3421 year: 2013 ident: CR26 article-title: Excellent microwave absorption property of graphene-coated Fe nanocomposites publication-title: Sci. Rep. doi: 10.1038/srep03421 – volume: 26 start-page: 3484 year: 2014 end-page: 3489 ident: CR23 article-title: Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 48 start-page: 788 issue: 3 year: 2010 end-page: 796 ident: CR25 article-title: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites publication-title: Carbon doi: 10.1016/j.carbon.2009.10.028 – volume: 9 start-page: 701 issue: 1 year: 2017 end-page: 709 ident: CR29 article-title: Highly stable and effective doping of graphene by selective atomic layer deposition of ruthenium publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12622 – volume: 14 start-page: 28 issue: 1 year: 2021 ident: CR1 article-title: Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00776-3 – volume: 375 start-page: L385 year: 1997 end-page: L391 ident: CR63 article-title: Phase imaging and stiffness in tapping-mode atomic force microscopy publication-title: Surf. Sci. doi: 10.1016/S0039-6028(96)01591-9 – volume: 173 start-page: 69 year: 2021 end-page: 79 ident: CR50 article-title: Hydrangea-like Ni/Nio/C composites derived from metal–organic frameworks with superior microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2020.10.093 – volume: 772 start-page: 760 year: 2019 end-page: 769 ident: CR36 article-title: Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.075 – volume: 32 start-page: 2200123 issue: 23 year: 2022 ident: CR58 article-title: Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200123 – volume: 528 start-page: 147052 year: 2020 ident: CR55 article-title: Conductive WS -NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147052 – volume: 16 start-page: 401 issue: 5 year: 2004 end-page: 405 ident: CR35 article-title: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 5 start-page: 12716 issue: 23 year: 2013 end-page: 12724 ident: CR21 article-title: Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and Cubic Co nanocrystals grown on graphene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404117v – volume: 169 start-page: 1 year: 2019 end-page: 8 ident: CR41 article-title: Synthesis of RGO/AC/Fe O composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.03.081 – volume: 9 start-page: 19202 issue: 22 year: 2017 end-page: 19214 ident: CR22 article-title: FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04053 – volume: 67 start-page: 1030 year: 2007 end-page: 1036 ident: CR48 article-title: FTIR investigation of CTAB-Al-montmorillonite complexes publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2006.09.024 – volume: 14 start-page: 51 issue: 1 year: 2022 ident: CR3 article-title: High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00798-5 – volume: 146 start-page: 301 year: 2019 end-page: 312 ident: CR20 article-title: Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis publication-title: Carbon doi: 10.1016/j.carbon.2019.02.005 – volume: 174 start-page: 662 year: 2021 end-page: 672 ident: CR61 article-title: A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance publication-title: Carbon doi: 10.1016/j.carbon.2020.11.044 – volume: 14 start-page: 171 issue: 1 year: 2022 ident: CR59 article-title: Ultrabroad microwave absorption ability and infrared stealth property of nano-micro Cus@rGO lightweight aerogels publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00906-5 – volume: 107 start-page: 155 year: 2022 end-page: 164 ident: CR7 article-title: High-performance microwave absorption enabled by Co O modified VB-group laminated VS with frequency modulation from S-band to Ku-band publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.08.005 – volume: 29 start-page: 1900163 year: 2019 ident: 1280_CR57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900163 – volume: 5 start-page: 12716 issue: 23 year: 2013 ident: 1280_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404117v – volume: 32 start-page: 2201129 issue: 24 year: 2022 ident: 1280_CR4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201129 – volume: 8 start-page: 2123 issue: 6 year: 2020 ident: 1280_CR32 publication-title: J. Mater. Chem. C doi: 10.1039/c9tc06526a – volume: 31 start-page: 2102812 year: 2021 ident: 1280_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 324 start-page: 1530 issue: 5934 year: 2009 ident: 1280_CR15 publication-title: Science doi: 10.1126/science.1158877 – volume: 4 start-page: 4537 year: 2014 ident: 1280_CR42 publication-title: Sci. Rep. doi: 10.1038/srep04537 – volume: 30 issue: 44 year: 2019 ident: 1280_CR54 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab35fa – volume: 48 start-page: 788 issue: 3 year: 2010 ident: 1280_CR25 publication-title: Carbon doi: 10.1016/j.carbon.2009.10.028 – volume: 169 start-page: 1 year: 2019 ident: 1280_CR41 publication-title: Compos. Part B-Eng. doi: 10.1016/j.compositesb.2019.03.081 – volume: 11 start-page: 105 issue: 1 year: 2021 ident: 1280_CR45 publication-title: J. Adv. Ceram doi: 10.1007/s40145-021-0520-z – volume: 14 start-page: 28 issue: 1 year: 2021 ident: 1280_CR1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00776-3 – volume: 28 start-page: 1707205 year: 2018 ident: 1280_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707205 – volume: 7 start-page: 4744 issue: 8 year: 2015 ident: 1280_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508438s – volume: 6 start-page: 183 issue: 3 year: 2007 ident: 1280_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 628 start-page: 1019 year: 2022 ident: 1280_CR19 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.020 – volume: 172 start-page: 516 year: 2021 ident: 1280_CR34 publication-title: Carbon doi: 10.1016/j.carbon.2020.09.050 – volume: 286 start-page: 165 year: 2016 ident: 1280_CR49 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.10.068 – volume: 4 start-page: 5619 year: 2014 ident: 1280_CR12 publication-title: Sci. Rep. doi: 10.1038/srep05619 – volume: 6 start-page: 3935 issue: 5 year: 2012 ident: 1280_CR27 publication-title: ACS Nano doi: 10.1021/nn3010137 – volume: 201 start-page: 150 year: 2023 ident: 1280_CR31 publication-title: Carbon doi: 10.1016/j.carbon.2022.08.090 – volume: 5 start-page: 6916 issue: 9 year: 2011 ident: 1280_CR43 publication-title: ACS Nano doi: 10.1021/nn201207c – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 1280_CR53 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00823-7 – volume: 173 start-page: 69 year: 2021 ident: 1280_CR50 publication-title: Carbon doi: 10.1016/j.carbon.2020.10.093 – volume: 107 start-page: 155 year: 2022 ident: 1280_CR7 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.08.005 – volume: 467–468 start-page: 277 year: 2019 ident: 1280_CR47 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.123 – volume: 12 start-page: 329 issue: 2 year: 2023 ident: 1280_CR2 publication-title: J. Adv. Ceram. doi: 10.26599/jac.2023.9220686 – volume: 32 start-page: 508 issue: 7 year: 2010 ident: 1280_CR11 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2010.03.009 – volume: 26 start-page: 8141 year: 2014 ident: 1280_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201403196 – volume: 9 start-page: 701 issue: 1 year: 2017 ident: 1280_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12622 – volume: 145 start-page: 701 year: 2019 ident: 1280_CR38 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.082 – volume: 321 start-page: 385 issue: 5887 year: 2008 ident: 1280_CR14 publication-title: Science doi: 10.1126/science.1157996 – volume: 8 start-page: 20258 issue: 31 year: 2016 ident: 1280_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03159 – volume: 10 start-page: 832 issue: 4 year: 2021 ident: 1280_CR51 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0476-z – volume: 67 start-page: 1030 year: 2007 ident: 1280_CR48 publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2006.09.024 – volume: 31 start-page: 325703 issue: 32 year: 2020 ident: 1280_CR6 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab8b8d – volume: 528 start-page: 147052 year: 2020 ident: 1280_CR55 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147052 – volume: 14 start-page: 102 issue: 1 year: 2022 ident: 1280_CR52 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00841-5 – volume: 375 start-page: L385 year: 1997 ident: 1280_CR63 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(96)01591-9 – volume: 80 start-page: 075406 year: 2009 ident: 1280_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.075406 – volume: 15 start-page: 13 issue: 1 year: 2022 ident: 1280_CR44 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00986-3 – volume: 16 start-page: e2003905 issue: 42 year: 2020 ident: 1280_CR17 publication-title: Small doi: 10.1002/smll.202003905 – volume: 181 start-page: 1670 issue: 7 year: 2008 ident: 1280_CR62 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2008.06.036 – volume: 94 start-page: 243114 year: 2009 ident: 1280_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3147183 – volume: 577 start-page: 151939 year: 2022 ident: 1280_CR5 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151939 – volume: 14 start-page: 171 issue: 1 year: 2022 ident: 1280_CR59 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00906-5 – volume: 32 start-page: 2200123 issue: 23 year: 2022 ident: 1280_CR58 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200123 – volume: 19 start-page: e2300119 year: 2023 ident: 1280_CR60 publication-title: Small doi: 10.1002/smll.202300119 – volume: 6 start-page: 38978 year: 2016 ident: 1280_CR64 publication-title: Sci. Rep. doi: 10.1038/srep38978 – volume: 49 start-page: 4291 issue: 13 year: 2011 ident: 1280_CR9 publication-title: Carbon doi: 10.1016/j.carbon.2011.06.008 – start-page: 177 volume-title: Solid State Physics year: 2019 ident: 1280_CR56 doi: 10.1016/B978-0-12-817103-5.00009-8 – volume: 9 start-page: 19202 issue: 22 year: 2017 ident: 1280_CR22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04053 – volume: 65 start-page: 124 year: 2013 ident: 1280_CR24 publication-title: Carbon doi: 10.1016/j.carbon.2013.07.110 – volume: 772 start-page: 760 year: 2019 ident: 1280_CR36 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.075 – volume: 26 start-page: 3484 year: 2014 ident: 1280_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 32 start-page: 22043 year: 2022 ident: 1280_CR46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204370 – volume: 8 start-page: 327 issue: 2 year: 2022 ident: 1280_CR8 publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.09.003 – year: 2010 ident: 1280_CR30 publication-title: App. Phys. Lett. doi: 10.1063/1.3471396 – volume: 146 start-page: 301 year: 2019 ident: 1280_CR20 publication-title: Carbon doi: 10.1016/j.carbon.2019.02.005 – volume: 72 start-page: 93 year: 2021 ident: 1280_CR18 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.09.012 – volume: 174 start-page: 662 year: 2021 ident: 1280_CR61 publication-title: Carbon doi: 10.1016/j.carbon.2020.11.044 – volume: 3 start-page: 3421 year: 2013 ident: 1280_CR26 publication-title: Sci. Rep. doi: 10.1038/srep03421 – volume: 14 start-page: 51 issue: 1 year: 2022 ident: 1280_CR3 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00798-5 – volume: 16 start-page: 401 issue: 5 year: 2004 ident: 1280_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.200306460 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.61061 |
Snippet | Highlights
A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in... HighlightsA carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full play... Highlights A carrier injection strategy is firstly proposed by designing Fe/reduced graphene oxide (RGO) heterogeneous interfacial material for giving full... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 66 |
SubjectTerms | Absorbers Absorption Broadband Carrier injection Carrier transport Dielectric loss Dielectric properties Dipoles Electromagnetic radiation Electromagnetic wave absorption Engineering Fe nanosheets Graphene Impedance matching Iron Microwave absorption and EMI shielding Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Polarization Reduced graphene oxide Regulatory mechanisms (biology) Trace metals Transport properties |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k1KQUbiBhaJn_EJtWiXCqkVqljRW-TXVpVoUna3lfj3eBwnKQJ62EvWSbzjea3H830IvaWVVDTwiqjSloQ7a6PNrRwJ3hiqjaAqQL_z0bE8XPIvp-I0b7ht8rHKwScmR-07B3vkH6hO2GaKyo-XPwmwRkF1NVNo3EU70QXX9QztHMyPv54MGkUVMDNNdUKgV-Y30Go4YLuwCdBMAICZmnAyBY0vVDng9gm1glJWYqyrKiJVKXMnTurHA_bmksQwSMDvx_9lf0S7RArwr0z2rypsCm6Lh-hBzkrxfq9Gj9Cd0D5G929gFT5ByxjVHOyr45Oevr5b_8JHARqHzzcXuFthGBDwIuCuxZ8BBzu6UTzvaXYuzFkL7ZL4u7kOeN9uunXyVU_RcjH_9umQZE4G4oSQW8I95b62moqgefyUteXMVGXwKx0qFReXa-mpWhkNB1e1t1TH9Q61U0wp5dkzNGu7NrxAWCpmGF8F7bjgrjZWBeaY0YYF5StlC1QNsmtcBiwH3owfzQi1nOTdRHk3Sd6NLNC78Z7LHq7j1tEHsCTjSIDaThe69VmTLbdhNlSyNMIw6bkK0gI_szeVNEI7p-M094YFbbL9b5pJWwv0Zvw6Wi6UY0wbuqt-DHRral2g570ijDMB3MQoPlag94NmTA___w_avX0uL9E9GnOy_jTOHppt11fhVcyptvZ1NpzfgCoRRA priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeLOlICNxg0jxe30sqEuFVA6IFb1ZfkwqJJpUu1sk_n09zquIgsQhl2SSOGOPZ5zxfB8hbzjThoNklalDXckYQra5JlaQvOfWK24A651PPuvjtfx0qk6HorDtuNt9TEmWmXoqdkNq5LrKPqbCSTUvem6TOwrX7piinTHHuUE2pjk3iJTK8hpCjUQ8FzGDmCkELTMzNqbiMvv0wcn2QbTB9FVhqWOs0qbWQ_XNzc36zcMVIoCbotc_Mq_Foa0ekPtDJEoP-6HzkNyC9hG5dw2f8DFZZ08W8V86_dJT1nebX_QEsFj4-_acdg1FAaAroF1LPyL2dZ466VFPrXPuz1oskaTf_E-gh2Hbbcr89ISsV0dfPxxXAw9DFZXSu0omLtMyWK7AynzUyyCFZzWkxgIzuUOl1YmbxlvcrGpT4Db3MSyjEcaYJJ6SvbZr4Tmh2ggvZAM2SiXj0gcDIgpvvQCTmAkLwkbduTiAlCNXxg83wSsXfbusb1f07fSCvJ3uueghOv4p_R67ZJJEeO1yotucucFanQjAdO2VFzpJAzogJ3PyTHtlY7S5mQdjh7rB5reO24K-Z3h-x-vpcrZWTMH4FrrLXgYrNK1dkGf9QJhagliJWX1iQd6NI2N--N8_aP__xF-Qu9lmZL8j54Ds7TaX8DLHVbvwqpjRFerCDIY priority: 102 providerName: Springer Nature |
Title | Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption |
URI | https://link.springer.com/article/10.1007/s40820-023-01280-6 https://www.ncbi.nlm.nih.gov/pubmed/38175333 https://www.proquest.com/docview/2910044726 https://www.proquest.com/docview/2910195699 https://doaj.org/article/3be160a5a36d47e6b2883da16a59cc9b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ8SZQVkbiBhGJn_Fxd9m0QmqFKlb0FvmVCokmaHdbiX-Px85mF_G6cEgiOc5rPJ4Zx57vQ-g1KYUknpW5LEyRM2tM6HOtzb3TmijNifSQ73x6Jk6W7MMFv9ij-oI1YQkeOAnuHTW-FIXmmgrHpBcG6HGdLoXmylplwPoGn7c3mAqaRCQwMu3mB4FWme2h1DDAdKE7IDMOwGVyh4_JCQt-fXC0KZCWMIUVmerKMheyEEMGTszDA9bmIg_uLwd7H8ZjP3m5SAbwuwj2l9nX6NTq--hwiEbxNEnhAbrlu4fo3h5G4SO0DN7Mwv90fJ5o6_vVd3zqIWH4y_oK9y2GCh7XHvcdPgb862A-8SLR61zpyw7SJPFnfePx1Kz7VbRRj9GyXnyan-QDF0NuORebnDnCXGUU4V6xsBWVYVSXhXet8qUMjcqUcES2WsGCVeUMUaGdfWUllVI6-gQddH3nnyEsJNWUtV5ZxpmttJGeWqqVpl66UpoMlVvZNXYAKge-jK_NCLEc5d0EeTdR3o3I0Jvxmm8JpuOvtWfQJGNNgNiOBUHxmkHxmn8pXoaOtg3aDP1-3RAVEfgkCc94NZ4OPRamYXTn--tUB7I0lcrQ06QI45sAXmIQH83Q261m7G7-5w96_j8-6AW6S0LEltbqHKGDzeravwwR18ZM0O2qPp6gO9PZ-1kdjrPF2cfzUDonDPZiPond7wcX9B51 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJuFAkaCE6zYtb12fECoQNOUNj2gRvS29WMSIdHdkqSg_il-Ix7vI0VAbz3kknU2s-PxzHjH832EvGC5VAxEnqrMZqlw1oY1N3UpeGOYNgVTgP3O4305mohPh8XhGvnV9cLgscrOJ0ZH7WuH78jfMB2xzRST706-p8gahdXVjkKjMYtdOPsZtmyLtzsfw_y-ZGy4dfBhlLasAqkrCrlMhWfCD6xmBWgRPtnACm7yDPxUQ66CeEJLz9TUaDx6qb1lOkgMA6e4UsrzcN8r5KoIl3CzNxhud_bLFPJAraqSSOYszmHjCESS4Sv4tALh0tQKlTP8c8gm2vDepO8KC2eRHy_PU6ky2fb9xO4_5IrO0hB0U4wyYRf4R2yNFAT_ypv_qvnGUDq8RW62OTDdbIz2NlmD6g65cQ4Z8S6ZhBjq8C0-_QwzZBir52d0DNim_HVxTOspxQFAh0Drim4j6nZw2nSrIfU5NrMKmzPpF_MD6KZd1PPoGe-RyaXM1X2yXtUVPCRUKm64mIJ2ohBuYKwC7rjRhoPyubIJyTvdla6FR0eWjm9lD-wc9V0GfZdR36VMyKv-NycNOMiFo9_jlPQjEdg7flHPZ2XrJ0puIZeZKQyXXiiQFtmgvcmlKbRzOoi50U1o2XqbRblaGwl53l8OfgKLP6aC-rQZg72hWifkQWMIvSSI0hjUxxPyurOM1c3__0CPLpblGbk2OhjvlXs7-7uPyXUWssHmHNAGWV_OT-FJyOaW9mlcQpQcXfaa_Q3FA0vI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BKiE4IJ4lUGCRuIFV79t7DNBQAq0QENGbtY9xhUTtKkmR-Pfs2I4TREHikIszttczOztjz873EfKcM204SJaZ3OeZDN4nn6tCBtE5bp3iBrDf-ehYH87l7ESdbHXxt7vd1yXJrqcBUZrq1f55rPaHxjekSc6zFG8yXGDTC9BVslPo5DEjsjOZzD7P1nOKG-Rm2lQKkWBZbuHVSER3ERtIM4UQZmaDlKm4TBG-D7ldSm2wmNVy1jGWaZPrvhfn8oH9Fu9aWoDLctk_6rBteJveIjf7vJROuol0m1yB-g65sYVWeJfMU1wL-GWdfuoI7JvFT3oE2Dr8bXlGm4qiANAp0KambxEJOy2k9KAj2jlzpzU2TNKv7gfQiV82i3a1ukfm04Mvrw-znpUhC0rpVSYjl7HwliuwMv3ywkvhWA6xssBMMq-0OnJTOYtbV2303CaLQxGMMMZEcZ-M6qaGB4RqI5yQFdgglQyF8wZEEM46ASYy48eErXVXhh6yHJkzvpcD2HKr7zLpu2z1XeoxeTGcc94BdvxT-hWaZJBEsO32QLM4LXvfLYUHpnOnnNBRGtAeGZqjY9opG4JNw9xbG7TsV4BlyW2LxWd4usez4e_ku1iQcTU0F50M9mtaOya73UQYRoLIiUl9YkxermfG5uJ_f6CH_yf-lFz7-GZafnh3_P4Ruc5TwtZt1dkjo9XiAh6nhGvln_Q-9Qv2fBVF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+Regulatory+Mechanism+of+Trace+Fe+on+Graphene+Electromagnetic+Wave+Absorption&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Kaili&rft.au=Liu%2C+Yuhao&rft.au=Liu%2C+Yanan&rft.au=Yan%2C+Yuefeng&rft.date=2024-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1007%2Fs40820-023-01280-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |