Educational data mining: prediction of students' academic performance using machine learning algorithms

Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking...

Full description

Saved in:
Bibliographic Details
Published inSmart learning environments Vol. 9; no. 1; pp. 1 - 19
Main Author Yagci, Mustafa
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 03.03.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods.
AbstractList Abstract Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods.
Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods.
ArticleNumber 11
Audience Higher Education
Postsecondary Education
Author Yağcı, Mustafa
Author_xml – sequence: 1
  fullname: Yagci, Mustafa
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1328000$$DView record in ERIC
BookMark eNp9kUtv1TAQhSNUJErbP4CEZIkFqxQ_8nDYoeoCRZW6gbU1tsepr5L41nYW9Nc3uYEWsejKls98Z6xz3hYnU5iwKN4xesmYbD6litYNKynnJaWs4-XDq-KUs64pW9qxk3_ub4qLlPZ0nWKNqLvTot_Z2UD2YYKBWMhARj_5qf9MDhGtN6tCgiMpzxannD4SMGBx9IYcMLoQR5gMkjktDBnB3PkJyYAQVxMCQx-iz3djOi9eOxgSXvw5z4pfX3c_r76XN7ffrq--3JSmrptcCuuMEEab1khmHZPQIMVW885pJ5207ChSBp3myJ2sKm4MIDihK4lSnBXXm68NsFeH6EeIv1UAr44PIfYKYvZmQFXbSkvWOtpoVgkLWhvdSNfVNXDZObd4fdi8DjHcz5iy2oc5LkElxZf0hGgpXze-36YwevO0cfeDCS6XpBddbrqJIaWIThmfj4nnCH5QjKq1RbW1qJYW1bFF9bCg_D_0r_2LkNigtAxPPcbnX79APQLhT7OL
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3350169
crossref_primary_10_56294_dm2024_419
crossref_primary_10_1109_ACCESS_2024_3434644
crossref_primary_10_3390_math11051098
crossref_primary_10_1109_ACCESS_2025_3532099
crossref_primary_10_1186_s12909_023_04918_6
crossref_primary_10_59896_aqlu_v3i1_121
crossref_primary_10_3390_asi7010006
crossref_primary_10_1016_j_caeai_2024_100303
crossref_primary_10_7717_peerj_cs_1708
crossref_primary_10_32517_0234_0453_2023_38_2_16_25
crossref_primary_10_3233_JIFS_234976
crossref_primary_10_1007_s42979_024_03118_3
crossref_primary_10_1177_02666669231213023
crossref_primary_10_24857_rgsa_v19n2_067
crossref_primary_10_52589_BJCNIT_YLJQOCVP
crossref_primary_10_60084_jeml_v2i1_191
crossref_primary_10_1016_j_procs_2024_04_256
crossref_primary_10_3390_s24175487
crossref_primary_10_3390_su15076229
crossref_primary_10_3390_su162310442
crossref_primary_10_1371_journal_pone_0293061
crossref_primary_10_59294_HIUJS_25_2023_518
crossref_primary_10_1007_s10734_025_01424_0
crossref_primary_10_1371_journal_pone_0309838
crossref_primary_10_1007_s11277_023_10838_x
crossref_primary_10_1371_journal_pone_0303613
crossref_primary_10_1515_edu_2022_0220
crossref_primary_10_1007_s11277_024_11612_3
crossref_primary_10_1057_s41270_024_00290_6
crossref_primary_10_11600_v15i2_397
crossref_primary_10_1109_ACCESS_2023_3236504
crossref_primary_10_1109_ACCESS_2025_3533915
crossref_primary_10_1007_s10639_025_13357_3
crossref_primary_10_1177_14727978251318801
crossref_primary_10_1108_QEA_01_2024_0006
crossref_primary_10_1109_ACCESS_2024_3471681
crossref_primary_10_29121_shodhkosh_v5_i6_2024_4552
crossref_primary_10_1109_ACCESS_2024_3361479
crossref_primary_10_1007_s11042_024_20421_6
crossref_primary_10_1007_s12528_024_09426_0
crossref_primary_10_30935_cedtech_14333
crossref_primary_10_3389_feduc_2023_1106679
crossref_primary_10_3390_math11061318
crossref_primary_10_1007_s11276_024_03772_8
crossref_primary_10_1371_journal_pone_0299018
crossref_primary_10_1007_s10639_024_13224_7
crossref_primary_10_1109_ACCESS_2024_3407885
crossref_primary_10_56294_sctconf2023582
crossref_primary_10_1007_s10639_025_13385_z
crossref_primary_10_1016_j_jer_2023_09_006
crossref_primary_10_1155_2024_4795606
crossref_primary_10_48084_etasr_6190
crossref_primary_10_1016_j_chb_2024_108504
crossref_primary_10_1109_ACCESS_2023_3295580
crossref_primary_10_22399_ijcesen_799
crossref_primary_10_46932_sfjdv6n1_011
crossref_primary_10_1109_ACCESS_2024_3496318
crossref_primary_10_32604_iasc_2024_043020
crossref_primary_10_3390_app13084702
crossref_primary_10_3389_fnbot_2024_1453061
crossref_primary_10_1016_j_caeai_2024_100331
crossref_primary_10_1007_s00521_022_07997_6
crossref_primary_10_3390_app15031231
crossref_primary_10_1038_s41598_024_68963_x
crossref_primary_10_3390_data9060074
crossref_primary_10_1016_j_asoc_2024_111460
crossref_primary_10_17759_pse_2025300112
crossref_primary_10_3390_electronics12030694
crossref_primary_10_48175_IJARSCT_4755
crossref_primary_10_56294_sctconf2023473
crossref_primary_10_1007_s44196_025_00775_x
crossref_primary_10_1155_2022_8924028
crossref_primary_10_3233_JIFS_235350
crossref_primary_10_3233_JIFS_234021
crossref_primary_10_1007_s11042_024_18135_w
crossref_primary_10_4108_eetsis_3489
crossref_primary_10_46300_9109_2024_18_13
crossref_primary_10_21015_vtcs_v11i2_1706
crossref_primary_10_1016_j_dajour_2023_100204
crossref_primary_10_1109_ACCESS_2023_3335985
crossref_primary_10_4018_IJCINI_356391
crossref_primary_10_1007_s11042_024_18262_4
crossref_primary_10_1007_s00521_025_11018_7
crossref_primary_10_21015_vtcs_v12i2_1944
crossref_primary_10_1016_j_heliyon_2023_e20597
crossref_primary_10_21015_vtse_v11i4_1647
crossref_primary_10_32628_IJSRST24112166
crossref_primary_10_57173_ritc_v1n17a2
crossref_primary_10_5902_2318133889778
crossref_primary_10_1016_j_procs_2023_10_043
crossref_primary_10_1109_ACCESS_2023_3336676
crossref_primary_10_23887_jp2_v6i2_62611
crossref_primary_10_3390_su15108235
crossref_primary_10_1016_j_heliyon_2024_e36393
crossref_primary_10_22144_ctujoisd_2023_038
crossref_primary_10_22144_ctujoisd_2023_039
crossref_primary_10_21015_vtcs_v10i2_1278
crossref_primary_10_1145_3687268
crossref_primary_10_1109_ACCESS_2023_3348091
crossref_primary_10_3390_mti9010003
crossref_primary_10_1007_s43069_024_00298_9
crossref_primary_10_15549_jeecar_v11i4_1573
crossref_primary_10_1108_JSTPM_12_2023_0242
crossref_primary_10_1080_10095020_2024_2377212
crossref_primary_10_2478_amns_2024_2431
crossref_primary_10_4018_IJVPLE_328772
crossref_primary_10_1109_RITA_2024_3465035
crossref_primary_10_1016_j_mex_2025_103262
crossref_primary_10_1177_21582440241242180
crossref_primary_10_23917_jramathedu_v9i4_4643
crossref_primary_10_60084_jeml_v2i2_233
crossref_primary_10_1016_j_procs_2024_04_043
crossref_primary_10_3390_data10030027
crossref_primary_10_1007_s10639_024_12610_5
crossref_primary_10_33225_pec_23_81_431
crossref_primary_10_1016_j_caeai_2024_100244
crossref_primary_10_3390_math10203758
crossref_primary_10_3390_bdcc8120187
crossref_primary_10_23962_ajic_i30_14839
crossref_primary_10_1021_acsami_3c14995
crossref_primary_10_1108_K_12_2023_2742
crossref_primary_10_3390_educsci13030293
crossref_primary_10_1108_AEDS_08_2024_0166
crossref_primary_10_3390_educsci14030252
crossref_primary_10_1016_j_rineng_2024_103782
crossref_primary_10_7717_peerj_cs_1699
crossref_primary_10_4018_IJSI_334715
crossref_primary_10_3846_ntcs_2024_21318
crossref_primary_10_3390_bs13040289
crossref_primary_10_18178_ijiet_2022_12_11_1734
crossref_primary_10_1007_s41870_023_01334_3
crossref_primary_10_1007_s11042_024_18669_z
crossref_primary_10_37394_23209_2025_22_16
crossref_primary_10_1155_2024_4918351
crossref_primary_10_29333_ejmste_13863
crossref_primary_10_1007_s10639_023_12165_x
crossref_primary_10_1038_s41598_024_75242_2
crossref_primary_10_1109_ACCESS_2023_3250702
crossref_primary_10_1016_j_procs_2024_05_102
crossref_primary_10_3390_educsci13030313
crossref_primary_10_3390_math11153396
crossref_primary_10_21015_vtse_v11i4_1633
crossref_primary_10_3390_info15110738
crossref_primary_10_1177_00472395241231815
crossref_primary_10_20965_jaciii_2023_p1159
crossref_primary_10_47495_okufbed_1349897
crossref_primary_10_3390_su151612531
crossref_primary_10_1007_s13278_024_01234_9
crossref_primary_10_3390_su14095256
crossref_primary_10_1016_j_procs_2024_09_682
crossref_primary_10_32604_csse_2024_053358
crossref_primary_10_1007_s11042_024_18426_2
crossref_primary_10_22144_ctujoisd_2024_321
crossref_primary_10_1007_s42979_023_02070_y
crossref_primary_10_1142_S0218348X25400110
crossref_primary_10_1007_s10758_023_09675_5
crossref_primary_10_3390_info15120777
crossref_primary_10_3390_jintelligence11070128
crossref_primary_10_57166_micaela_v5_n2_2024_153
Cites_doi 10.1007/978-1-4614-3305-7_4
10.1016/j.heliyon.2020.e04081
10.1016/j.chb.2014.09.034
10.1016/j.dss.2010.06.003
10.1016/j.jbusres.2018.02.012
10.1080/0142159X.2017.1309376
10.1016/j.chb.2019.04.015
10.1016/j.compedu.2020.103999
10.1504/IJTEL.2013.059088
10.1016/j.compedu.2012.08.015
10.1016/j.chb.2018.07.002
10.1103/PhysRevPhysEducRes.15.020120
10.17535/crorr.2017.0028
10.1016/j.seps.2019.06.009
10.1016/j.chb.2018.03.034
10.2190/CS.13.1.b
10.1016/j.iheduc.2009.10.008
10.1080/09645290701409939
10.1080/10494820.2013.817441
10.1016/j.chb.2014.11.050
10.1002/sres.2130
10.1016/j.dss.2017.05.003
10.1016/j.procs.2015.07.372
10.1007/s10639-020-10316-y
10.1007/s10734-020-00520-7
10.1016/j.compedu.2019.04.001
10.1016/j.chb.2018.07.027
10.1007/s10758-017-9334-z
10.1016/j.compedu.2009.09.008
10.1016/j.eswa.2011.05.048
10.1016/j.compedu.2013.10.009
10.1109/access.2020.3036572
10.1093/cesifo/ifn012
10.1016/j.compedu.2017.05.007
10.1007/s11162-013-9290-y
10.25115/psye.v11i3.2056
10.1016/j.chb.2019.106189
10.1016/j.compeleceng.2017.03.005
10.1109/ICETECH.2016.7569290
10.1145/3293881.3295783
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
0-V
3V.
7XB
88B
8FE
8FG
8FK
ABUWG
AFKRA
AHOVV
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
DWQXO
GNUQQ
HCIFZ
M0P
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s40561-022-00192-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Education Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Education Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ERIC
Publicly Available Content Database
ProQuest One Education
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
Education Collection
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
ERIC

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Mathematics
EISSN 2196-7091
ERIC EJ1328000
EndPage 19
ExternalDocumentID oai_doaj_org_article_5d4b817f06b143dabbcb68f955a289ff
EJ1328000
10_1186_s40561_022_00192_z
GeographicLocations Turkey
GeographicLocations_xml – name: Turkey
GroupedDBID 0R~
5VS
8FE
8FG
AAFWJ
AAHSB
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CJNVE
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IER
ITC
M0P
M~E
OK1
P62
PIMPY
PQEDU
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
7SW
AHSBF
BJH
BNH
BNI
BNJ
BNO
EJD
ERI
PET
PQGLB
REK
WWN
0-V
3V.
7XB
8FK
AHOVV
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c556t-3dfc33cbc7c81df18a6e0e7b29fbf8f8d13cbc701a9b2e2f8442ccaeaf3b48e83
IEDL.DBID BENPR
ISSN 2196-7091
IngestDate Wed Aug 27 01:24:30 EDT 2025
Sat Aug 23 13:36:52 EDT 2025
Fri Aug 01 12:22:28 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 04:08:41 EDT 2025
Fri Feb 21 02:47:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Predicting achievement
Educational data mining
Learning analytics
Early warning systems
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-3dfc33cbc7c81df18a6e0e7b29fbf8f8d13cbc701a9b2e2f8442ccaeaf3b48e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2911-3909
OpenAccessLink https://www.proquest.com/docview/2635337028?pq-origsite=%requestingapplication%
PQID 2635337028
PQPubID 2046137
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5d4b817f06b143dabbcb68f955a289ff
proquest_journals_2635337028
eric_primary_EJ1328000
crossref_citationtrail_10_1186_s40561_022_00192_z
crossref_primary_10_1186_s40561_022_00192_z
springer_journals_10_1186_s40561_022_00192_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Smart learning environments
PublicationTitleAbbrev Smart Learn. Environ
PublicationYear 2022
Publisher Springer Singapore
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Musso, Hernández, Cascallar (CR33) 2020; 80
CR13
Costa-Mendes, Oliveira, Castelli, Cruz-Jesus (CR14) 2020; 26
Waheed, Hassan, Aljohani, Hardman, Alelyani, Nawaz (CR44) 2020; 104
Arias Ortiz, Dehon (CR3) 2013; 54
Ornelas, Ordonez (CR35) 2017; 22
Baker, Yacef (CR8) 2009; 1
García-González, Skrita (CR20) 2019; 11
Long, Siemens (CR31) 2011; 46
Rebai, Ben Yahia, Essid (CR37) 2020; 70
Nandeshwar, Menzies, Nelson (CR34) 2011; 38
Hardman, Paucar-Caceres, Fielding (CR22) 2013; 30
Huang, Fang (CR25) 2013; 61
Alshanqiti, Namoun (CR2) 2020; 8
Fernandes, Holanda, Victorino, Borges, Carvalho, Van Erven (CR18) 2019; 94
Xing, Guo, Petakovic, Goggins (CR46) 2015; 47
Kaur, Singh, Josan (CR27) 2015; 57
Vandamme, Meskens, Superby (CR42) 2007; 15
Witten, Frank, Hall (CR45) 2011
Ortiz, Dehon (CR36) 2008; 54
Asif, Merceron, Ali, Haider (CR4) 2017; 113
Saqr, Fors, Tedre (CR40) 2017; 39
Viberg, Hatakka, Bälter, Mavroudi (CR43) 2018; 89
Casquero, Ovelar, Romo, Benito, Alberdi (CR12) 2016; 24
Baker, Inventado (CR7) 2014
CR5
Kotsiantis, Tselios, Filippidi, Komis (CR29) 2013; 5
Xu, Wang, Peng, Wu (CR47) 2019; 98
Babić (CR6) 2017; 8
CR28
Capuano, Toti (CR11) 2019; 92
Rizvi, Rienties, Ahmed (CR38) 2019; 137
Delen (CR16) 2010; 49
Ahmad, Shahzadi (CR1) 2018; 40
Bernacki, Chavez, Uesbeck (CR9) 2020; 158
CR23
Kardaş, Güvenir (CR26) 2020; 10
Shorfuzzaman, Hossain, Nazir, Muhammad, Alamri (CR41) 2019; 92
Gök (CR21) 2017; 5
Zabriskie, Yang, DeVore, Stewart (CR48) 2019; 15
Delen (CR17) 2011; 13
Macfadyen, Dawson (CR32) 2010; 54
Cruz-Jesus, Castelli, Oliveira, Mendes, Nunes, Sa-Velho, Rosa-Louro (CR15) 2020
Lara, Lizcano, Martínez, Pazos, Riera (CR30) 2014; 72
Burgos, Campanario, De, Lara, Lizcano, Martínez (CR10) 2018; 66
Fidalgo-Blanco, Sein-Echaluce, García-Peñalvo, Conde (CR19) 2015; 47
Rubin, Fernandes, Avgerinou, Moore (CR39) 2010; 13
Hoffait, Schyns (CR24) 2017; 101
D Delen (192_CR16) 2010; 49
J-P Vandamme (192_CR42) 2007; 15
IH Witten (192_CR45) 2011
C Burgos (192_CR10) 2018; 66
192_CR28
A Hoffait (192_CR24) 2017; 101
B Rubin (192_CR39) 2010; 13
Z Ahmad (192_CR1) 2018; 40
192_CR23
JA Lara (192_CR30) 2014; 72
K Kardaş (192_CR26) 2020; 10
Á Fidalgo-Blanco (192_CR19) 2015; 47
F Cruz-Jesus (192_CR15) 2020
M Gök (192_CR21) 2017; 5
F Ornelas (192_CR35) 2017; 22
JD García-González (192_CR20) 2019; 11
ML Bernacki (192_CR9) 2020; 158
E Arias Ortiz (192_CR3) 2013; 54
ID Babić (192_CR6) 2017; 8
S Huang (192_CR25) 2013; 61
LP Macfadyen (192_CR32) 2010; 54
MF Musso (192_CR33) 2020; 80
D Delen (192_CR17) 2011; 13
J Hardman (192_CR22) 2013; 30
N Capuano (192_CR11) 2019; 92
S Kotsiantis (192_CR29) 2013; 5
RS Baker (192_CR8) 2009; 1
A Nandeshwar (192_CR34) 2011; 38
RS Baker (192_CR7) 2014
H Waheed (192_CR44) 2020; 104
S Rebai (192_CR37) 2020; 70
P Long (192_CR31) 2011; 46
O Casquero (192_CR12) 2016; 24
E Fernandes (192_CR18) 2019; 94
O Viberg (192_CR43) 2018; 89
192_CR13
R Costa-Mendes (192_CR14) 2020; 26
P Kaur (192_CR27) 2015; 57
EA Ortiz (192_CR36) 2008; 54
R Asif (192_CR4) 2017; 113
192_CR5
S Rizvi (192_CR38) 2019; 137
A Alshanqiti (192_CR2) 2020; 8
X Xu (192_CR47) 2019; 98
W Xing (192_CR46) 2015; 47
M Saqr (192_CR40) 2017; 39
M Shorfuzzaman (192_CR41) 2019; 92
C Zabriskie (192_CR48) 2019; 15
References_xml – start-page: 61
  year: 2014
  end-page: 75
  ident: CR7
  article-title: Educational data mining and learning analytics
  publication-title: Learning analytics
  doi: 10.1007/978-1-4614-3305-7_4
– year: 2020
  ident: CR15
  article-title: Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04081
– volume: 5
  start-page: 139
  issue: 3
  year: 2017
  end-page: 148
  ident: CR21
  article-title: Predicting academic achievement with machine learning methods
  publication-title: Gazi University Journal of Science Part c: Design and Technology
– volume: 47
  start-page: 168
  year: 2015
  end-page: 181
  ident: CR46
  article-title: Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.09.034
– volume: 49
  start-page: 498
  issue: 4
  year: 2010
  end-page: 506
  ident: CR16
  article-title: A comparative analysis of machine learning techniques for student retention management
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.06.003
– volume: 94
  start-page: 335
  issue: February 2018
  year: 2019
  end-page: 343
  ident: CR18
  article-title: Educational data mining : Predictive analysis of academic performance of public school students in the capital of Brazil
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2018.02.012
– volume: 46
  start-page: 31
  issue: 5
  year: 2011
  end-page: 40
  ident: CR31
  article-title: Penetrating the fog: Analytics in learning and education
  publication-title: Educause Review
– volume: 39
  start-page: 757
  issue: 7
  year: 2017
  end-page: 767
  ident: CR40
  article-title: How learning analytics can early predict under-achieving students in a blended medical education course
  publication-title: Medical Teacher
  doi: 10.1080/0142159X.2017.1309376
– volume: 98
  start-page: 166
  issue: January
  year: 2019
  end-page: 173
  ident: CR47
  article-title: Prediction of academic performance associated with internet usage behaviors using machine learning algorithms
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.04.015
– volume: 158
  start-page: 103999
  issue: August
  year: 2020
  ident: CR9
  article-title: Predicting achievement and providing support before STEM majors begin to fail
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2020.103999
– volume: 5
  start-page: 133
  issue: 2
  year: 2013
  end-page: 150
  ident: CR29
  article-title: Using learning analytics to identify successful learners in a blended learning course
  publication-title: International Journal of Technology Enhanced Learning
  doi: 10.1504/IJTEL.2013.059088
– volume: 40
  start-page: 157
  issue: 3
  year: 2018
  end-page: 164
  ident: CR1
  article-title: Prediction of students’ academic performance using artificial neural network
  publication-title: Bulletin of Education and Research
– volume: 61
  start-page: 133
  issue: 1
  year: 2013
  end-page: 145
  ident: CR25
  article-title: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2012.08.015
– volume: 92
  start-page: 578
  issue: February 2017
  year: 2019
  end-page: 588
  ident: CR41
  article-title: Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.002
– volume: 15
  start-page: 020120
  issue: 2
  year: 2019
  ident: CR48
  article-title: Using machine learning to predict physics course outcomes
  publication-title: Physical Review Physics Education Research
  doi: 10.1103/PhysRevPhysEducRes.15.020120
– volume: 8
  start-page: 443
  issue: 2
  year: 2017
  end-page: 461
  ident: CR6
  article-title: Machine learning methods in predicting the student academic motivation
  publication-title: Croatian Operational Research Review
  doi: 10.17535/crorr.2017.0028
– volume: 70
  start-page: 100724
  issue: August 2018
  year: 2020
  ident: CR37
  article-title: A graphically based machine learning approach to predict secondary schools performance in Tunisia
  publication-title: Socio-Economic Planning Sciences
  doi: 10.1016/j.seps.2019.06.009
– volume: 92
  start-page: 459
  year: 2019
  end-page: 467
  ident: CR11
  article-title: Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.03.034
– volume: 13
  start-page: 17
  issue: 1
  year: 2011
  end-page: 35
  ident: CR17
  article-title: Predicting student attrition with data mining methods
  publication-title: Journal of College Student Retention: Research, Theory and Practice
  doi: 10.2190/CS.13.1.b
– volume: 13
  start-page: 82
  issue: 1–2
  year: 2010
  end-page: 83
  ident: CR39
  article-title: The effect of learning management systems on student and faculty outcomes
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2009.10.008
– volume: 15
  start-page: 405
  issue: 4
  year: 2007
  end-page: 419
  ident: CR42
  article-title: Predicting academic performance by data mining methods
  publication-title: Education Economics
  doi: 10.1080/09645290701409939
– volume: 24
  start-page: 49
  issue: 1
  year: 2016
  end-page: 67
  ident: CR12
  article-title: Students’ personal networks in virtual and personal learning environments: A case study in higher education using learning analytics approach
  publication-title: Interactive Learning Environments
  doi: 10.1080/10494820.2013.817441
– volume: 47
  start-page: 149
  year: 2015
  end-page: 156
  ident: CR19
  article-title: Using Learning Analytics to improve teamwork assessment
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.11.050
– volume: 30
  start-page: 194
  issue: 2
  year: 2013
  end-page: 203
  ident: CR22
  article-title: Predicting students’ progression in higher education by using the random forest algorithm
  publication-title: Systems Research and Behavioral Science
  doi: 10.1002/sres.2130
– volume: 101
  start-page: 1
  issue: 2017
  year: 2017
  end-page: 11
  ident: CR24
  article-title: Early detection of university students with potential difficulties
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.05.003
– year: 2011
  ident: CR45
  publication-title: Data mining practical machine learning tools and techniques
– ident: CR23
– volume: 57
  start-page: 500
  year: 2015
  end-page: 508
  ident: CR27
  article-title: Classification and prediction based data mining algorithms to predict slow learners in education sector
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.07.372
– volume: 1
  start-page: 3
  issue: 1
  year: 2009
  end-page: 17
  ident: CR8
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: Journal of Educational Data Mining
– volume: 26
  start-page: 1527
  year: 2020
  end-page: 1547
  ident: CR14
  article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-020-10316-y
– volume: 80
  start-page: 875
  issue: 5
  year: 2020
  end-page: 894
  ident: CR33
  article-title: Predicting key educational outcomes in academic trajectories: A machine-learning approach
  publication-title: Higher Education
  doi: 10.1007/s10734-020-00520-7
– volume: 137
  start-page: 32
  issue: August 2018
  year: 2019
  end-page: 47
  ident: CR38
  article-title: The role of demographics in online learning; A decision tree based approach
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.04.001
– volume: 89
  start-page: 98
  issue: July
  year: 2018
  end-page: 110
  ident: CR43
  article-title: The current landscape of learning analytics in higher education
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.027
– volume: 22
  start-page: 299
  issue: 3
  year: 2017
  end-page: 315
  ident: CR35
  article-title: Predicting student success: A naïve bayesian application to community college data
  publication-title: Technology, Knowledge and Learning
  doi: 10.1007/s10758-017-9334-z
– ident: CR13
– volume: 54
  start-page: 588
  issue: 2
  year: 2010
  end-page: 599
  ident: CR32
  article-title: Mining LMS data to develop an "early warning system" for educators: A proof of concept
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2009.09.008
– volume: 38
  start-page: 14984
  issue: 12
  year: 2011
  end-page: 14996
  ident: CR34
  article-title: Learning patterns of university student retention
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.048
– volume: 72
  start-page: 23
  year: 2014
  end-page: 36
  ident: CR30
  article-title: A system for knowledge discovery in e-learning environments within the European Higher Education Area—Application to student data from Open University of Madrid, UDIMA
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2013.10.009
– ident: CR5
– volume: 8
  start-page: 203827
  year: 2020
  end-page: 203844
  ident: CR2
  article-title: Predicting student performance and its influential factors using hybrid regression and multi-label classification
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3036572
– volume: 54
  start-page: 121
  issue: 2
  year: 2008
  end-page: 148
  ident: CR36
  article-title: What are the factors of success at University? A case study in Belgium
  publication-title: Cesifo Economic Studies
  doi: 10.1093/cesifo/ifn012
– volume: 113
  start-page: 177
  year: 2017
  end-page: 194
  ident: CR4
  article-title: Analyzing undergraduate students’ performance using educational data mining
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2017.05.007
– ident: CR28
– volume: 54
  start-page: 693
  issue: 6
  year: 2013
  end-page: 723
  ident: CR3
  article-title: Roads to success in the Belgian French Community’s higher education system: predictors of dropout and degree completion at the Université Libre de Bruxelles
  publication-title: Research in Higher Education
  doi: 10.1007/s11162-013-9290-y
– volume: 11
  start-page: 299
  issue: 3
  year: 2019
  end-page: 311
  ident: CR20
  article-title: Predicting academic performance based on students’ family environment: Evidence for Colombia using classification trees
  publication-title: Psychology, Society and Education
  doi: 10.25115/psye.v11i3.2056
– volume: 104
  start-page: 106189
  issue: October 2019
  year: 2020
  ident: CR44
  article-title: Predicting academic performance of students from VLE big data using deep learning models
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.106189
– volume: 66
  start-page: 541
  issue: 2018
  year: 2018
  end-page: 556
  ident: CR10
  article-title: Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.03.005
– volume: 10
  start-page: 22
  issue: 1
  year: 2020
  end-page: 29
  ident: CR26
  article-title: Analysis of the effects of Quizzes, homeworks and projects on final exam with different machine learning techniques
  publication-title: EMO Journal of Scientific
– volume: 94
  start-page: 335
  issue: February 2018
  year: 2019
  ident: 192_CR18
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2018.02.012
– volume: 61
  start-page: 133
  issue: 1
  year: 2013
  ident: 192_CR25
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2012.08.015
– ident: 192_CR28
– volume: 8
  start-page: 203827
  year: 2020
  ident: 192_CR2
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3036572
– volume: 5
  start-page: 139
  issue: 3
  year: 2017
  ident: 192_CR21
  publication-title: Gazi University Journal of Science Part c: Design and Technology
– volume: 137
  start-page: 32
  issue: August 2018
  year: 2019
  ident: 192_CR38
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.04.001
– volume: 5
  start-page: 133
  issue: 2
  year: 2013
  ident: 192_CR29
  publication-title: International Journal of Technology Enhanced Learning
  doi: 10.1504/IJTEL.2013.059088
– volume: 39
  start-page: 757
  issue: 7
  year: 2017
  ident: 192_CR40
  publication-title: Medical Teacher
  doi: 10.1080/0142159X.2017.1309376
– volume: 47
  start-page: 149
  year: 2015
  ident: 192_CR19
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.11.050
– volume: 57
  start-page: 500
  year: 2015
  ident: 192_CR27
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.07.372
– volume: 80
  start-page: 875
  issue: 5
  year: 2020
  ident: 192_CR33
  publication-title: Higher Education
  doi: 10.1007/s10734-020-00520-7
– volume: 26
  start-page: 1527
  year: 2020
  ident: 192_CR14
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-020-10316-y
– volume: 113
  start-page: 177
  year: 2017
  ident: 192_CR4
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2017.05.007
– volume: 13
  start-page: 17
  issue: 1
  year: 2011
  ident: 192_CR17
  publication-title: Journal of College Student Retention: Research, Theory and Practice
  doi: 10.2190/CS.13.1.b
– volume: 13
  start-page: 82
  issue: 1–2
  year: 2010
  ident: 192_CR39
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2009.10.008
– volume: 92
  start-page: 459
  year: 2019
  ident: 192_CR11
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.03.034
– volume: 104
  start-page: 106189
  issue: October 2019
  year: 2020
  ident: 192_CR44
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.106189
– volume: 30
  start-page: 194
  issue: 2
  year: 2013
  ident: 192_CR22
  publication-title: Systems Research and Behavioral Science
  doi: 10.1002/sres.2130
– volume: 46
  start-page: 31
  issue: 5
  year: 2011
  ident: 192_CR31
  publication-title: Educause Review
– volume: 54
  start-page: 588
  issue: 2
  year: 2010
  ident: 192_CR32
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2009.09.008
– volume: 89
  start-page: 98
  issue: July
  year: 2018
  ident: 192_CR43
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.027
– volume: 66
  start-page: 541
  issue: 2018
  year: 2018
  ident: 192_CR10
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.03.005
– volume: 101
  start-page: 1
  issue: 2017
  year: 2017
  ident: 192_CR24
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.05.003
– volume: 22
  start-page: 299
  issue: 3
  year: 2017
  ident: 192_CR35
  publication-title: Technology, Knowledge and Learning
  doi: 10.1007/s10758-017-9334-z
– volume: 47
  start-page: 168
  year: 2015
  ident: 192_CR46
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.09.034
– volume: 24
  start-page: 49
  issue: 1
  year: 2016
  ident: 192_CR12
  publication-title: Interactive Learning Environments
  doi: 10.1080/10494820.2013.817441
– ident: 192_CR5
– volume: 158
  start-page: 103999
  issue: August
  year: 2020
  ident: 192_CR9
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2020.103999
– volume: 54
  start-page: 693
  issue: 6
  year: 2013
  ident: 192_CR3
  publication-title: Research in Higher Education
  doi: 10.1007/s11162-013-9290-y
– ident: 192_CR13
  doi: 10.1109/ICETECH.2016.7569290
– volume: 10
  start-page: 22
  issue: 1
  year: 2020
  ident: 192_CR26
  publication-title: EMO Journal of Scientific
– ident: 192_CR23
  doi: 10.1145/3293881.3295783
– volume: 15
  start-page: 405
  issue: 4
  year: 2007
  ident: 192_CR42
  publication-title: Education Economics
  doi: 10.1080/09645290701409939
– volume: 72
  start-page: 23
  year: 2014
  ident: 192_CR30
  publication-title: Computers and Education
  doi: 10.1016/j.compedu.2013.10.009
– year: 2020
  ident: 192_CR15
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04081
– volume: 1
  start-page: 3
  issue: 1
  year: 2009
  ident: 192_CR8
  publication-title: Journal of Educational Data Mining
– volume: 40
  start-page: 157
  issue: 3
  year: 2018
  ident: 192_CR1
  publication-title: Bulletin of Education and Research
– volume-title: Data mining practical machine learning tools and techniques
  year: 2011
  ident: 192_CR45
– volume: 54
  start-page: 121
  issue: 2
  year: 2008
  ident: 192_CR36
  publication-title: Cesifo Economic Studies
  doi: 10.1093/cesifo/ifn012
– volume: 38
  start-page: 14984
  issue: 12
  year: 2011
  ident: 192_CR34
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.048
– volume: 98
  start-page: 166
  issue: January
  year: 2019
  ident: 192_CR47
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.04.015
– volume: 49
  start-page: 498
  issue: 4
  year: 2010
  ident: 192_CR16
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2010.06.003
– volume: 70
  start-page: 100724
  issue: August 2018
  year: 2020
  ident: 192_CR37
  publication-title: Socio-Economic Planning Sciences
  doi: 10.1016/j.seps.2019.06.009
– volume: 92
  start-page: 578
  issue: February 2017
  year: 2019
  ident: 192_CR41
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.002
– volume: 15
  start-page: 020120
  issue: 2
  year: 2019
  ident: 192_CR48
  publication-title: Physical Review Physics Education Research
  doi: 10.1103/PhysRevPhysEducRes.15.020120
– volume: 11
  start-page: 299
  issue: 3
  year: 2019
  ident: 192_CR20
  publication-title: Psychology, Society and Education
  doi: 10.25115/psye.v11i3.2056
– volume: 8
  start-page: 443
  issue: 2
  year: 2017
  ident: 192_CR6
  publication-title: Croatian Operational Research Review
  doi: 10.17535/crorr.2017.0028
– start-page: 61
  volume-title: Learning analytics
  year: 2014
  ident: 192_CR7
  doi: 10.1007/978-1-4614-3305-7_4
SSID ssj0001916359
Score 2.6379592
Snippet Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements....
Abstract Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic...
SourceID doaj
proquest
eric
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Academic Achievement
Accuracy
Algorithms
Artificial Intelligence
Classification
Colleges & universities
Computers and Education
Data Analysis
Data mining
Decision analysis
Decision making
Decision trees
Early warning systems
Education
Educational data mining
Foreign Countries
Grades (Scholastic)
Learning analytics
Machine learning
Mathematics
Predicting achievement
Prediction
Students
Support vector machines
Tests
Towards enhancing learning using open educational resources
Undergraduate Students
Undergraduate study
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy_iE6ur5CB40GDbpEnWm4qLCHpS8BaSNFkF98G2XvbXm0m7DwX1IvQQmrSEmWnnm2TyDUInVIMb1wUR2jLChNdEa14SURomrLMs17A08PDI757Z_UvxslLqC3LCGnrgRnAXRcmMzIRPuQmuvdTGWMOl7xWFDrGC9_D3DT5vJZiKqysB9dCiNz8lI_lFxQArE0hej7CGzL54okjY_z3nGcDmt_3R6Hb6m2ijxYv4qpnnFlpzo20otdymZeygwaIdhkG-Jx7Gmg-XeDKFTRjowWOPq4bEsjrFuk2Jx5PloQEM-e8DPIyplQ63tSQGWL8PxtO3-nVY7aLn_u3TzR1pqycQWxS8JrT0llJrrLABk_pMau5SJ0ze88ZLL8ssdqaZ7pnc5V4ylgd1Ou2pYdJJuoc6o_HI7SOcmTQIPDcpgEWqgTOMlgIaWc7DDzJB2VySyrbU4lDh4l3FEENy1UhfBemrKH01S9DZ4plJQ6zx6-hrUNBiJJBixxvBVFRrKuovU0nQHqh38ZLb-xCKB8CcJqg7V7hqP-FKAUsPpSLgrwSdz41g2f3zXA_-Y66HaD2PtkrD1UWdevrhjgL8qc1xtPRPMH8Bsg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxwhFJcmvfQS-pHQSdLgodBDIh2_nd7aJSEE2lMDuYk6ui1kP9jZXPLXx-e6u01IC4U5yPgc5L3n-FOfv4fQR-5gGneSaBcEETo54pzqie690CEGwRxsDXz_oS6vxdWNvKk0OXAX5s_ze2rU50EAxCUQc17QCLnfQS8l5RrSNIzUaLufknEOl936XsyzTR_NPYWi_2mUM8DLJyeiZaK5eI32KkLEX1cmfYNexOlbSK5cAzHeofGmnMUgwhNPSpaHL3i-gGMXqMGzhIcVbeXwCbsaBI_n22sCGCLex3hSgikjrtkjxtjdjmeL38tfk2EfXV-c_xxdkpovgQQp1ZLwPgXOgw86ZBSaqHEqtlF71iWfTDI9LZUtdZ1nkSUjBMsGjC5xL0w0_ADtTmfT-B5h6tvUSeZbgIfcAUsY7zUUKFP5l9ggutakDZVMHHJa3NqyqDDKrrRvs_Zt0b69b9Dpps18RaXxT-lvYKCNJNBglxfZO2wdVVb2whuqU6t8xn298z54ZXLPZe5pl1KDDsC8m4-cX-XFd4bIbYOO1wa3ddAOFnh5ePYsZhp0tnaCbfXf-3r4f-JH6BUrXsnzc4x2l4u7-CFDm6U_KT79AJXU8Yw
  priority: 102
  providerName: Springer Nature
Title Educational data mining: prediction of students' academic performance using machine learning algorithms
URI https://link.springer.com/article/10.1186/s40561-022-00192-z
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1328000
https://www.proquest.com/docview/2635337028
https://doaj.org/article/5d4b817f06b143dabbcb68f955a289ff
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9wgEJfe7ktfSr-Opr0GHwp9aOUSNcb0pewtuz0WepS2B_cmajR9uP3oZvtyf30d1-zSgx6EENSIzIzjz3GcQegd07CM64rU2nLCa6-J1qIldWt4bZ3lVINp4OuVuLzmi5vqJhnc-uRWOejEqKjbtQUb-TkETWGsDsvh581vAlmj4HQ1pdA4QeOggqUcofHF7Orb96OVJaAfVjXDbRkpznsOmJmAE3uEN-TunxUpBu6_7_sMoPPeOWlcfuZP0ZOEG_Fkz-hn6JFbPYeUy8k94wXqDt-hGfh94mXM_fAJb7ZwGAM1eO1xvw9m2b_HOrnG483x8gAGP_gOL6OLpcMpp0SH9W0XiLH7texfouv57Of0kqQsCsRWldgR1nrLmDW2tgGb-lJq4QpXG9p446WXbRkri1I3hjrqJec0sNVpzwyXTrJTNFqtV-4VwqUpfFNRUwBoZBpih7G2ho-SiqAoM1QOlFQ2hRiHTBe3Km41pFB76qtAfRWpr-4y9OHwz2YfYOPB1hfAoENLCI4dC9bbTqW5pqqWG1nWvhAmoMFWG2ONkGHkVRhp432GToG9h05mi7AlD8C5yNDZwHCVpnKvjoKXoY-DEByr_z_W1w_39gY9plEKWXjO0Gi3_ePeBoCzMzk6kfMvORpPJosfizzJdCidUg5vMc2j6SCPm_2_Igb_qg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4lURKOADiANYTWwncZAQ4tFl-zy1Um_Gduz00H2wWYToj-I34nGSXVGJ3irlYMWO5cyMPZ_teQC84hrVuM5pqa2govSaal3UtKyNKK2zgmk8Gjg6LsanYv8sP9uAP4MvDJpVDmtiXKjrmcUz8h0MmsJ5GdThx_kPilmj8HZ1SKHRicWB-_0rbNnaD3tfA39fMzbaPfkypn1WAWrzvFhSXnvLuTW2tAGr-UzqwqWuNKzyxksv6yxWppmuDHPMSyFY-E2nPTdCOslDv7fgtuBBk6Nn-ujb-kwnYC2eV4Nvjix2WoEInaLJfART9PIf_RfTBFy1tEaIe-VWNiq70X2416NU8qkTqwew4aYPMcFzbwzyCJpVOTRDK1MyiZkm3pP5Aq9-sIbMPGm70JntG6J7Q3wyX7sqELS6b8gkGnQ60mewaIi-aALpl-eT9jGc3gh1t2BzOpu6J0Ayk_oqZyZFiMo1RirjdYmFjBVhWU4gGyipbB_QHPNqXKi4sZGF6qivAvVVpL66TODt6pt5F87j2tafkUGrlhiKO76YLRrVz2yV18LIrPRpYQL2rLUx1hQyjDwPI628T2AL2bvqZHc_4yzA9DSB7YHhql84WrUW8wTeDUKwrv7_WJ9e39tLuDM-OTpUh3vHB8_gLosSycOzDZvLxU_3PECrpXkR5ZnA95ueQH8BcOg4VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuqDwqAgV8AHGAqIntOA4SB9h21QdUHKjUm7Ede0HqPrQJquiv4ificZJdUQESh0o5WPHEcsZj-7P9eQbgOdM4jesiLbXlKS-9TrUWdVrWhpfWWU41bg18PBEHp_zorDjbgJ_DXZjIdh-OJLs7DeiladbuLmrfdXEpdhuOwDdFJnrEKOllT6s8dj8uwqKteXu4F1r4BaXj_c-jg7SPK5DaohBtympvGbPGljagNZ9LLVzmSkMrb7z0ss5jZpbrylBHveSchh912jPDpZMslHsDboaVUY7LvZEYrXd1AtpiRTXczvljVX-bAWOggKtcawS5V85l43Q33oI7PU4l7zrDugsbbnYPQzz3dJD7MFmlgxjyTMk0xpp4QxZLPPzBHDL3pOmcZzYvie6p-GSxvqxAkHc_IdNI6XSkj2ExIfp8Ml9-a79Omwdwei3a3YbN2XzmHgLJTeargpoMQSrT6KuM1SUmcirCwJxAPmhS2d6lOUbWOFdxaSOF6rSvgvZV1L66TODV6ptF59Djn9LvsYFWkuiMO76YLyeq79uqqLmReekzYQL6rLUx1ggZal6EmlbeJ7CNzbsqZP8oZzQA9SyBnaHBVT90NAq9AzFWBtyXwOvBCNbZf6_ro_8Tfwa3Pu2N1YfDk-PHcJtGA2Xh2YHNdvndPQlYqzVPo3kT-HLd_ekXgQM6FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Data+Mining%3A+Prediction+of+Students%27+Academic+Performance+Using+Machine+Learning+Algorithms&rft.jtitle=Smart+learning+environments&rft.au=Yagci%2C+Mustafa&rft.date=2022-03-03&rft.pub=Springer&rft.issn=2196-7091&rft.eissn=2196-7091&rft.volume=9&rft_id=info:doi/10.1186%2Fs40561-022-00192-z&rft.externalDocID=EJ1328000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7091&client=summon