Educational data mining: prediction of students' academic performance using machine learning algorithms
Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking...
Saved in:
Published in | Smart learning environments Vol. 9; no. 1; pp. 1 - 19 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
03.03.2022
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods. |
---|---|
AbstractList | Abstract Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods. Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements. This study proposes a new model based on machine learning algorithms to predict the final exam grades of undergraduate students, taking their midterm exam grades as the source data. The performances of the random forests, nearest neighbour, support vector machines, logistic regression, Naïve Bayes, and k-nearest neighbour algorithms, which are among the machine learning algorithms, were calculated and compared to predict the final exam grades of the students. The dataset consisted of the academic achievement grades of 1854 students who took the Turkish Language-I course in a state University in Turkey during the fall semester of 2019–2020. The results show that the proposed model achieved a classification accuracy of 70–75%. The predictions were made using only three types of parameters; midterm exam grades, Department data and Faculty data. Such data-driven studies are very important in terms of establishing a learning analysis framework in higher education and contributing to the decision-making processes. Finally, this study presents a contribution to the early prediction of students at high risk of failure and determines the most effective machine learning methods. |
ArticleNumber | 11 |
Audience | Higher Education Postsecondary Education |
Author | Yağcı, Mustafa |
Author_xml | – sequence: 1 fullname: Yagci, Mustafa |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1328000$$DView record in ERIC |
BookMark | eNp9kUtv1TAQhSNUJErbP4CEZIkFqxQ_8nDYoeoCRZW6gbU1tsepr5L41nYW9Nc3uYEWsejKls98Z6xz3hYnU5iwKN4xesmYbD6litYNKynnJaWs4-XDq-KUs64pW9qxk3_ub4qLlPZ0nWKNqLvTot_Z2UD2YYKBWMhARj_5qf9MDhGtN6tCgiMpzxannD4SMGBx9IYcMLoQR5gMkjktDBnB3PkJyYAQVxMCQx-iz3djOi9eOxgSXvw5z4pfX3c_r76XN7ffrq--3JSmrptcCuuMEEab1khmHZPQIMVW885pJ5207ChSBp3myJ2sKm4MIDihK4lSnBXXm68NsFeH6EeIv1UAr44PIfYKYvZmQFXbSkvWOtpoVgkLWhvdSNfVNXDZObd4fdi8DjHcz5iy2oc5LkElxZf0hGgpXze-36YwevO0cfeDCS6XpBddbrqJIaWIThmfj4nnCH5QjKq1RbW1qJYW1bFF9bCg_D_0r_2LkNigtAxPPcbnX79APQLhT7OL |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3350169 crossref_primary_10_56294_dm2024_419 crossref_primary_10_1109_ACCESS_2024_3434644 crossref_primary_10_3390_math11051098 crossref_primary_10_1109_ACCESS_2025_3532099 crossref_primary_10_1186_s12909_023_04918_6 crossref_primary_10_59896_aqlu_v3i1_121 crossref_primary_10_3390_asi7010006 crossref_primary_10_1016_j_caeai_2024_100303 crossref_primary_10_7717_peerj_cs_1708 crossref_primary_10_32517_0234_0453_2023_38_2_16_25 crossref_primary_10_3233_JIFS_234976 crossref_primary_10_1007_s42979_024_03118_3 crossref_primary_10_1177_02666669231213023 crossref_primary_10_24857_rgsa_v19n2_067 crossref_primary_10_52589_BJCNIT_YLJQOCVP crossref_primary_10_60084_jeml_v2i1_191 crossref_primary_10_1016_j_procs_2024_04_256 crossref_primary_10_3390_s24175487 crossref_primary_10_3390_su15076229 crossref_primary_10_3390_su162310442 crossref_primary_10_1371_journal_pone_0293061 crossref_primary_10_59294_HIUJS_25_2023_518 crossref_primary_10_1007_s10734_025_01424_0 crossref_primary_10_1371_journal_pone_0309838 crossref_primary_10_1007_s11277_023_10838_x crossref_primary_10_1371_journal_pone_0303613 crossref_primary_10_1515_edu_2022_0220 crossref_primary_10_1007_s11277_024_11612_3 crossref_primary_10_1057_s41270_024_00290_6 crossref_primary_10_11600_v15i2_397 crossref_primary_10_1109_ACCESS_2023_3236504 crossref_primary_10_1109_ACCESS_2025_3533915 crossref_primary_10_1007_s10639_025_13357_3 crossref_primary_10_1177_14727978251318801 crossref_primary_10_1108_QEA_01_2024_0006 crossref_primary_10_1109_ACCESS_2024_3471681 crossref_primary_10_29121_shodhkosh_v5_i6_2024_4552 crossref_primary_10_1109_ACCESS_2024_3361479 crossref_primary_10_1007_s11042_024_20421_6 crossref_primary_10_1007_s12528_024_09426_0 crossref_primary_10_30935_cedtech_14333 crossref_primary_10_3389_feduc_2023_1106679 crossref_primary_10_3390_math11061318 crossref_primary_10_1007_s11276_024_03772_8 crossref_primary_10_1371_journal_pone_0299018 crossref_primary_10_1007_s10639_024_13224_7 crossref_primary_10_1109_ACCESS_2024_3407885 crossref_primary_10_56294_sctconf2023582 crossref_primary_10_1007_s10639_025_13385_z crossref_primary_10_1016_j_jer_2023_09_006 crossref_primary_10_1155_2024_4795606 crossref_primary_10_48084_etasr_6190 crossref_primary_10_1016_j_chb_2024_108504 crossref_primary_10_1109_ACCESS_2023_3295580 crossref_primary_10_22399_ijcesen_799 crossref_primary_10_46932_sfjdv6n1_011 crossref_primary_10_1109_ACCESS_2024_3496318 crossref_primary_10_32604_iasc_2024_043020 crossref_primary_10_3390_app13084702 crossref_primary_10_3389_fnbot_2024_1453061 crossref_primary_10_1016_j_caeai_2024_100331 crossref_primary_10_1007_s00521_022_07997_6 crossref_primary_10_3390_app15031231 crossref_primary_10_1038_s41598_024_68963_x crossref_primary_10_3390_data9060074 crossref_primary_10_1016_j_asoc_2024_111460 crossref_primary_10_17759_pse_2025300112 crossref_primary_10_3390_electronics12030694 crossref_primary_10_48175_IJARSCT_4755 crossref_primary_10_56294_sctconf2023473 crossref_primary_10_1007_s44196_025_00775_x crossref_primary_10_1155_2022_8924028 crossref_primary_10_3233_JIFS_235350 crossref_primary_10_3233_JIFS_234021 crossref_primary_10_1007_s11042_024_18135_w crossref_primary_10_4108_eetsis_3489 crossref_primary_10_46300_9109_2024_18_13 crossref_primary_10_21015_vtcs_v11i2_1706 crossref_primary_10_1016_j_dajour_2023_100204 crossref_primary_10_1109_ACCESS_2023_3335985 crossref_primary_10_4018_IJCINI_356391 crossref_primary_10_1007_s11042_024_18262_4 crossref_primary_10_1007_s00521_025_11018_7 crossref_primary_10_21015_vtcs_v12i2_1944 crossref_primary_10_1016_j_heliyon_2023_e20597 crossref_primary_10_21015_vtse_v11i4_1647 crossref_primary_10_32628_IJSRST24112166 crossref_primary_10_57173_ritc_v1n17a2 crossref_primary_10_5902_2318133889778 crossref_primary_10_1016_j_procs_2023_10_043 crossref_primary_10_1109_ACCESS_2023_3336676 crossref_primary_10_23887_jp2_v6i2_62611 crossref_primary_10_3390_su15108235 crossref_primary_10_1016_j_heliyon_2024_e36393 crossref_primary_10_22144_ctujoisd_2023_038 crossref_primary_10_22144_ctujoisd_2023_039 crossref_primary_10_21015_vtcs_v10i2_1278 crossref_primary_10_1145_3687268 crossref_primary_10_1109_ACCESS_2023_3348091 crossref_primary_10_3390_mti9010003 crossref_primary_10_1007_s43069_024_00298_9 crossref_primary_10_15549_jeecar_v11i4_1573 crossref_primary_10_1108_JSTPM_12_2023_0242 crossref_primary_10_1080_10095020_2024_2377212 crossref_primary_10_2478_amns_2024_2431 crossref_primary_10_4018_IJVPLE_328772 crossref_primary_10_1109_RITA_2024_3465035 crossref_primary_10_1016_j_mex_2025_103262 crossref_primary_10_1177_21582440241242180 crossref_primary_10_23917_jramathedu_v9i4_4643 crossref_primary_10_60084_jeml_v2i2_233 crossref_primary_10_1016_j_procs_2024_04_043 crossref_primary_10_3390_data10030027 crossref_primary_10_1007_s10639_024_12610_5 crossref_primary_10_33225_pec_23_81_431 crossref_primary_10_1016_j_caeai_2024_100244 crossref_primary_10_3390_math10203758 crossref_primary_10_3390_bdcc8120187 crossref_primary_10_23962_ajic_i30_14839 crossref_primary_10_1021_acsami_3c14995 crossref_primary_10_1108_K_12_2023_2742 crossref_primary_10_3390_educsci13030293 crossref_primary_10_1108_AEDS_08_2024_0166 crossref_primary_10_3390_educsci14030252 crossref_primary_10_1016_j_rineng_2024_103782 crossref_primary_10_7717_peerj_cs_1699 crossref_primary_10_4018_IJSI_334715 crossref_primary_10_3846_ntcs_2024_21318 crossref_primary_10_3390_bs13040289 crossref_primary_10_18178_ijiet_2022_12_11_1734 crossref_primary_10_1007_s41870_023_01334_3 crossref_primary_10_1007_s11042_024_18669_z crossref_primary_10_37394_23209_2025_22_16 crossref_primary_10_1155_2024_4918351 crossref_primary_10_29333_ejmste_13863 crossref_primary_10_1007_s10639_023_12165_x crossref_primary_10_1038_s41598_024_75242_2 crossref_primary_10_1109_ACCESS_2023_3250702 crossref_primary_10_1016_j_procs_2024_05_102 crossref_primary_10_3390_educsci13030313 crossref_primary_10_3390_math11153396 crossref_primary_10_21015_vtse_v11i4_1633 crossref_primary_10_3390_info15110738 crossref_primary_10_1177_00472395241231815 crossref_primary_10_20965_jaciii_2023_p1159 crossref_primary_10_47495_okufbed_1349897 crossref_primary_10_3390_su151612531 crossref_primary_10_1007_s13278_024_01234_9 crossref_primary_10_3390_su14095256 crossref_primary_10_1016_j_procs_2024_09_682 crossref_primary_10_32604_csse_2024_053358 crossref_primary_10_1007_s11042_024_18426_2 crossref_primary_10_22144_ctujoisd_2024_321 crossref_primary_10_1007_s42979_023_02070_y crossref_primary_10_1142_S0218348X25400110 crossref_primary_10_1007_s10758_023_09675_5 crossref_primary_10_3390_info15120777 crossref_primary_10_3390_jintelligence11070128 crossref_primary_10_57166_micaela_v5_n2_2024_153 |
Cites_doi | 10.1007/978-1-4614-3305-7_4 10.1016/j.heliyon.2020.e04081 10.1016/j.chb.2014.09.034 10.1016/j.dss.2010.06.003 10.1016/j.jbusres.2018.02.012 10.1080/0142159X.2017.1309376 10.1016/j.chb.2019.04.015 10.1016/j.compedu.2020.103999 10.1504/IJTEL.2013.059088 10.1016/j.compedu.2012.08.015 10.1016/j.chb.2018.07.002 10.1103/PhysRevPhysEducRes.15.020120 10.17535/crorr.2017.0028 10.1016/j.seps.2019.06.009 10.1016/j.chb.2018.03.034 10.2190/CS.13.1.b 10.1016/j.iheduc.2009.10.008 10.1080/09645290701409939 10.1080/10494820.2013.817441 10.1016/j.chb.2014.11.050 10.1002/sres.2130 10.1016/j.dss.2017.05.003 10.1016/j.procs.2015.07.372 10.1007/s10639-020-10316-y 10.1007/s10734-020-00520-7 10.1016/j.compedu.2019.04.001 10.1016/j.chb.2018.07.027 10.1007/s10758-017-9334-z 10.1016/j.compedu.2009.09.008 10.1016/j.eswa.2011.05.048 10.1016/j.compedu.2013.10.009 10.1109/access.2020.3036572 10.1093/cesifo/ifn012 10.1016/j.compedu.2017.05.007 10.1007/s11162-013-9290-y 10.25115/psye.v11i3.2056 10.1016/j.chb.2019.106189 10.1016/j.compeleceng.2017.03.005 10.1109/ICETECH.2016.7569290 10.1145/3293881.3295783 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 0-V 3V. 7XB 88B 8FE 8FG 8FK ABUWG AFKRA AHOVV ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CJNVE DWQXO GNUQQ HCIFZ M0P P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s40561-022-00192-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Education Research Index Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Education Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Education Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ERIC Publicly Available Content Database ProQuest One Education ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection Social Science Premium Collection Education Collection ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef ERIC Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Mathematics |
EISSN | 2196-7091 |
ERIC | EJ1328000 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_5d4b817f06b143dabbcb68f955a289ff EJ1328000 10_1186_s40561_022_00192_z |
GeographicLocations | Turkey |
GeographicLocations_xml | – name: Turkey |
GroupedDBID | 0R~ 5VS 8FE 8FG AAFWJ AAHSB AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARAPS ASPBG AZQEC BCNDV BENPR BGLVJ C24 C6C CCPQU CJNVE DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ IAO IER ITC M0P M~E OK1 P62 PIMPY PQEDU PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT 7SW AHSBF BJH BNH BNI BNJ BNO EJD ERI PET PQGLB REK WWN 0-V 3V. 7XB 8FK AHOVV PKEHL PQEST PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c556t-3dfc33cbc7c81df18a6e0e7b29fbf8f8d13cbc701a9b2e2f8442ccaeaf3b48e83 |
IEDL.DBID | BENPR |
ISSN | 2196-7091 |
IngestDate | Wed Aug 27 01:24:30 EDT 2025 Sat Aug 23 13:36:52 EDT 2025 Fri Aug 01 12:22:28 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 04:08:41 EDT 2025 Fri Feb 21 02:47:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Predicting achievement Educational data mining Learning analytics Early warning systems Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-3dfc33cbc7c81df18a6e0e7b29fbf8f8d13cbc701a9b2e2f8442ccaeaf3b48e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2911-3909 |
OpenAccessLink | https://www.proquest.com/docview/2635337028?pq-origsite=%requestingapplication% |
PQID | 2635337028 |
PQPubID | 2046137 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d4b817f06b143dabbcb68f955a289ff proquest_journals_2635337028 eric_primary_EJ1328000 crossref_citationtrail_10_1186_s40561_022_00192_z crossref_primary_10_1186_s40561_022_00192_z springer_journals_10_1186_s40561_022_00192_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-03 |
PublicationDateYYYYMMDD | 2022-03-03 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Smart learning environments |
PublicationTitleAbbrev | Smart Learn. Environ |
PublicationYear | 2022 |
Publisher | Springer Singapore Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Musso, Hernández, Cascallar (CR33) 2020; 80 CR13 Costa-Mendes, Oliveira, Castelli, Cruz-Jesus (CR14) 2020; 26 Waheed, Hassan, Aljohani, Hardman, Alelyani, Nawaz (CR44) 2020; 104 Arias Ortiz, Dehon (CR3) 2013; 54 Ornelas, Ordonez (CR35) 2017; 22 Baker, Yacef (CR8) 2009; 1 García-González, Skrita (CR20) 2019; 11 Long, Siemens (CR31) 2011; 46 Rebai, Ben Yahia, Essid (CR37) 2020; 70 Nandeshwar, Menzies, Nelson (CR34) 2011; 38 Hardman, Paucar-Caceres, Fielding (CR22) 2013; 30 Huang, Fang (CR25) 2013; 61 Alshanqiti, Namoun (CR2) 2020; 8 Fernandes, Holanda, Victorino, Borges, Carvalho, Van Erven (CR18) 2019; 94 Xing, Guo, Petakovic, Goggins (CR46) 2015; 47 Kaur, Singh, Josan (CR27) 2015; 57 Vandamme, Meskens, Superby (CR42) 2007; 15 Witten, Frank, Hall (CR45) 2011 Ortiz, Dehon (CR36) 2008; 54 Asif, Merceron, Ali, Haider (CR4) 2017; 113 Saqr, Fors, Tedre (CR40) 2017; 39 Viberg, Hatakka, Bälter, Mavroudi (CR43) 2018; 89 Casquero, Ovelar, Romo, Benito, Alberdi (CR12) 2016; 24 Baker, Inventado (CR7) 2014 CR5 Kotsiantis, Tselios, Filippidi, Komis (CR29) 2013; 5 Xu, Wang, Peng, Wu (CR47) 2019; 98 Babić (CR6) 2017; 8 CR28 Capuano, Toti (CR11) 2019; 92 Rizvi, Rienties, Ahmed (CR38) 2019; 137 Delen (CR16) 2010; 49 Ahmad, Shahzadi (CR1) 2018; 40 Bernacki, Chavez, Uesbeck (CR9) 2020; 158 CR23 Kardaş, Güvenir (CR26) 2020; 10 Shorfuzzaman, Hossain, Nazir, Muhammad, Alamri (CR41) 2019; 92 Gök (CR21) 2017; 5 Zabriskie, Yang, DeVore, Stewart (CR48) 2019; 15 Delen (CR17) 2011; 13 Macfadyen, Dawson (CR32) 2010; 54 Cruz-Jesus, Castelli, Oliveira, Mendes, Nunes, Sa-Velho, Rosa-Louro (CR15) 2020 Lara, Lizcano, Martínez, Pazos, Riera (CR30) 2014; 72 Burgos, Campanario, De, Lara, Lizcano, Martínez (CR10) 2018; 66 Fidalgo-Blanco, Sein-Echaluce, García-Peñalvo, Conde (CR19) 2015; 47 Rubin, Fernandes, Avgerinou, Moore (CR39) 2010; 13 Hoffait, Schyns (CR24) 2017; 101 D Delen (192_CR16) 2010; 49 J-P Vandamme (192_CR42) 2007; 15 IH Witten (192_CR45) 2011 C Burgos (192_CR10) 2018; 66 192_CR28 A Hoffait (192_CR24) 2017; 101 B Rubin (192_CR39) 2010; 13 Z Ahmad (192_CR1) 2018; 40 192_CR23 JA Lara (192_CR30) 2014; 72 K Kardaş (192_CR26) 2020; 10 Á Fidalgo-Blanco (192_CR19) 2015; 47 F Cruz-Jesus (192_CR15) 2020 M Gök (192_CR21) 2017; 5 F Ornelas (192_CR35) 2017; 22 JD García-González (192_CR20) 2019; 11 ML Bernacki (192_CR9) 2020; 158 E Arias Ortiz (192_CR3) 2013; 54 ID Babić (192_CR6) 2017; 8 S Huang (192_CR25) 2013; 61 LP Macfadyen (192_CR32) 2010; 54 MF Musso (192_CR33) 2020; 80 D Delen (192_CR17) 2011; 13 J Hardman (192_CR22) 2013; 30 N Capuano (192_CR11) 2019; 92 S Kotsiantis (192_CR29) 2013; 5 RS Baker (192_CR8) 2009; 1 A Nandeshwar (192_CR34) 2011; 38 RS Baker (192_CR7) 2014 H Waheed (192_CR44) 2020; 104 S Rebai (192_CR37) 2020; 70 P Long (192_CR31) 2011; 46 O Casquero (192_CR12) 2016; 24 E Fernandes (192_CR18) 2019; 94 O Viberg (192_CR43) 2018; 89 192_CR13 R Costa-Mendes (192_CR14) 2020; 26 P Kaur (192_CR27) 2015; 57 EA Ortiz (192_CR36) 2008; 54 R Asif (192_CR4) 2017; 113 192_CR5 S Rizvi (192_CR38) 2019; 137 A Alshanqiti (192_CR2) 2020; 8 X Xu (192_CR47) 2019; 98 W Xing (192_CR46) 2015; 47 M Saqr (192_CR40) 2017; 39 M Shorfuzzaman (192_CR41) 2019; 92 C Zabriskie (192_CR48) 2019; 15 |
References_xml | – start-page: 61 year: 2014 end-page: 75 ident: CR7 article-title: Educational data mining and learning analytics publication-title: Learning analytics doi: 10.1007/978-1-4614-3305-7_4 – year: 2020 ident: CR15 article-title: Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04081 – volume: 5 start-page: 139 issue: 3 year: 2017 end-page: 148 ident: CR21 article-title: Predicting academic achievement with machine learning methods publication-title: Gazi University Journal of Science Part c: Design and Technology – volume: 47 start-page: 168 year: 2015 end-page: 181 ident: CR46 article-title: Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.09.034 – volume: 49 start-page: 498 issue: 4 year: 2010 end-page: 506 ident: CR16 article-title: A comparative analysis of machine learning techniques for student retention management publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.06.003 – volume: 94 start-page: 335 issue: February 2018 year: 2019 end-page: 343 ident: CR18 article-title: Educational data mining : Predictive analysis of academic performance of public school students in the capital of Brazil publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2018.02.012 – volume: 46 start-page: 31 issue: 5 year: 2011 end-page: 40 ident: CR31 article-title: Penetrating the fog: Analytics in learning and education publication-title: Educause Review – volume: 39 start-page: 757 issue: 7 year: 2017 end-page: 767 ident: CR40 article-title: How learning analytics can early predict under-achieving students in a blended medical education course publication-title: Medical Teacher doi: 10.1080/0142159X.2017.1309376 – volume: 98 start-page: 166 issue: January year: 2019 end-page: 173 ident: CR47 article-title: Prediction of academic performance associated with internet usage behaviors using machine learning algorithms publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2019.04.015 – volume: 158 start-page: 103999 issue: August year: 2020 ident: CR9 article-title: Predicting achievement and providing support before STEM majors begin to fail publication-title: Computers & Education doi: 10.1016/j.compedu.2020.103999 – volume: 5 start-page: 133 issue: 2 year: 2013 end-page: 150 ident: CR29 article-title: Using learning analytics to identify successful learners in a blended learning course publication-title: International Journal of Technology Enhanced Learning doi: 10.1504/IJTEL.2013.059088 – volume: 40 start-page: 157 issue: 3 year: 2018 end-page: 164 ident: CR1 article-title: Prediction of students’ academic performance using artificial neural network publication-title: Bulletin of Education and Research – volume: 61 start-page: 133 issue: 1 year: 2013 end-page: 145 ident: CR25 article-title: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models publication-title: Computers and Education doi: 10.1016/j.compedu.2012.08.015 – volume: 92 start-page: 578 issue: February 2017 year: 2019 end-page: 588 ident: CR41 article-title: Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.07.002 – volume: 15 start-page: 020120 issue: 2 year: 2019 ident: CR48 article-title: Using machine learning to predict physics course outcomes publication-title: Physical Review Physics Education Research doi: 10.1103/PhysRevPhysEducRes.15.020120 – volume: 8 start-page: 443 issue: 2 year: 2017 end-page: 461 ident: CR6 article-title: Machine learning methods in predicting the student academic motivation publication-title: Croatian Operational Research Review doi: 10.17535/crorr.2017.0028 – volume: 70 start-page: 100724 issue: August 2018 year: 2020 ident: CR37 article-title: A graphically based machine learning approach to predict secondary schools performance in Tunisia publication-title: Socio-Economic Planning Sciences doi: 10.1016/j.seps.2019.06.009 – volume: 92 start-page: 459 year: 2019 end-page: 467 ident: CR11 article-title: Experimentation of a smart learning system for law based on knowledge discovery and cognitive computing publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.03.034 – volume: 13 start-page: 17 issue: 1 year: 2011 end-page: 35 ident: CR17 article-title: Predicting student attrition with data mining methods publication-title: Journal of College Student Retention: Research, Theory and Practice doi: 10.2190/CS.13.1.b – volume: 13 start-page: 82 issue: 1–2 year: 2010 end-page: 83 ident: CR39 article-title: The effect of learning management systems on student and faculty outcomes publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2009.10.008 – volume: 15 start-page: 405 issue: 4 year: 2007 end-page: 419 ident: CR42 article-title: Predicting academic performance by data mining methods publication-title: Education Economics doi: 10.1080/09645290701409939 – volume: 24 start-page: 49 issue: 1 year: 2016 end-page: 67 ident: CR12 article-title: Students’ personal networks in virtual and personal learning environments: A case study in higher education using learning analytics approach publication-title: Interactive Learning Environments doi: 10.1080/10494820.2013.817441 – volume: 47 start-page: 149 year: 2015 end-page: 156 ident: CR19 article-title: Using Learning Analytics to improve teamwork assessment publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.11.050 – volume: 30 start-page: 194 issue: 2 year: 2013 end-page: 203 ident: CR22 article-title: Predicting students’ progression in higher education by using the random forest algorithm publication-title: Systems Research and Behavioral Science doi: 10.1002/sres.2130 – volume: 101 start-page: 1 issue: 2017 year: 2017 end-page: 11 ident: CR24 article-title: Early detection of university students with potential difficulties publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.05.003 – year: 2011 ident: CR45 publication-title: Data mining practical machine learning tools and techniques – ident: CR23 – volume: 57 start-page: 500 year: 2015 end-page: 508 ident: CR27 article-title: Classification and prediction based data mining algorithms to predict slow learners in education sector publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.07.372 – volume: 1 start-page: 3 issue: 1 year: 2009 end-page: 17 ident: CR8 article-title: The state of educational data mining in 2009: A review and future visions publication-title: Journal of Educational Data Mining – volume: 26 start-page: 1527 year: 2020 end-page: 1547 ident: CR14 article-title: A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach publication-title: Education and Information Technologies doi: 10.1007/s10639-020-10316-y – volume: 80 start-page: 875 issue: 5 year: 2020 end-page: 894 ident: CR33 article-title: Predicting key educational outcomes in academic trajectories: A machine-learning approach publication-title: Higher Education doi: 10.1007/s10734-020-00520-7 – volume: 137 start-page: 32 issue: August 2018 year: 2019 end-page: 47 ident: CR38 article-title: The role of demographics in online learning; A decision tree based approach publication-title: Computers & Education doi: 10.1016/j.compedu.2019.04.001 – volume: 89 start-page: 98 issue: July year: 2018 end-page: 110 ident: CR43 article-title: The current landscape of learning analytics in higher education publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.07.027 – volume: 22 start-page: 299 issue: 3 year: 2017 end-page: 315 ident: CR35 article-title: Predicting student success: A naïve bayesian application to community college data publication-title: Technology, Knowledge and Learning doi: 10.1007/s10758-017-9334-z – ident: CR13 – volume: 54 start-page: 588 issue: 2 year: 2010 end-page: 599 ident: CR32 article-title: Mining LMS data to develop an "early warning system" for educators: A proof of concept publication-title: Computers & Education doi: 10.1016/j.compedu.2009.09.008 – volume: 38 start-page: 14984 issue: 12 year: 2011 end-page: 14996 ident: CR34 article-title: Learning patterns of university student retention publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.05.048 – volume: 72 start-page: 23 year: 2014 end-page: 36 ident: CR30 article-title: A system for knowledge discovery in e-learning environments within the European Higher Education Area—Application to student data from Open University of Madrid, UDIMA publication-title: Computers and Education doi: 10.1016/j.compedu.2013.10.009 – ident: CR5 – volume: 8 start-page: 203827 year: 2020 end-page: 203844 ident: CR2 article-title: Predicting student performance and its influential factors using hybrid regression and multi-label classification publication-title: IEEE Access doi: 10.1109/access.2020.3036572 – volume: 54 start-page: 121 issue: 2 year: 2008 end-page: 148 ident: CR36 article-title: What are the factors of success at University? A case study in Belgium publication-title: Cesifo Economic Studies doi: 10.1093/cesifo/ifn012 – volume: 113 start-page: 177 year: 2017 end-page: 194 ident: CR4 article-title: Analyzing undergraduate students’ performance using educational data mining publication-title: Computers and Education doi: 10.1016/j.compedu.2017.05.007 – ident: CR28 – volume: 54 start-page: 693 issue: 6 year: 2013 end-page: 723 ident: CR3 article-title: Roads to success in the Belgian French Community’s higher education system: predictors of dropout and degree completion at the Université Libre de Bruxelles publication-title: Research in Higher Education doi: 10.1007/s11162-013-9290-y – volume: 11 start-page: 299 issue: 3 year: 2019 end-page: 311 ident: CR20 article-title: Predicting academic performance based on students’ family environment: Evidence for Colombia using classification trees publication-title: Psychology, Society and Education doi: 10.25115/psye.v11i3.2056 – volume: 104 start-page: 106189 issue: October 2019 year: 2020 ident: CR44 article-title: Predicting academic performance of students from VLE big data using deep learning models publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2019.106189 – volume: 66 start-page: 541 issue: 2018 year: 2018 end-page: 556 ident: CR10 article-title: Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2017.03.005 – volume: 10 start-page: 22 issue: 1 year: 2020 end-page: 29 ident: CR26 article-title: Analysis of the effects of Quizzes, homeworks and projects on final exam with different machine learning techniques publication-title: EMO Journal of Scientific – volume: 94 start-page: 335 issue: February 2018 year: 2019 ident: 192_CR18 publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2018.02.012 – volume: 61 start-page: 133 issue: 1 year: 2013 ident: 192_CR25 publication-title: Computers and Education doi: 10.1016/j.compedu.2012.08.015 – ident: 192_CR28 – volume: 8 start-page: 203827 year: 2020 ident: 192_CR2 publication-title: IEEE Access doi: 10.1109/access.2020.3036572 – volume: 5 start-page: 139 issue: 3 year: 2017 ident: 192_CR21 publication-title: Gazi University Journal of Science Part c: Design and Technology – volume: 137 start-page: 32 issue: August 2018 year: 2019 ident: 192_CR38 publication-title: Computers & Education doi: 10.1016/j.compedu.2019.04.001 – volume: 5 start-page: 133 issue: 2 year: 2013 ident: 192_CR29 publication-title: International Journal of Technology Enhanced Learning doi: 10.1504/IJTEL.2013.059088 – volume: 39 start-page: 757 issue: 7 year: 2017 ident: 192_CR40 publication-title: Medical Teacher doi: 10.1080/0142159X.2017.1309376 – volume: 47 start-page: 149 year: 2015 ident: 192_CR19 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.11.050 – volume: 57 start-page: 500 year: 2015 ident: 192_CR27 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.07.372 – volume: 80 start-page: 875 issue: 5 year: 2020 ident: 192_CR33 publication-title: Higher Education doi: 10.1007/s10734-020-00520-7 – volume: 26 start-page: 1527 year: 2020 ident: 192_CR14 publication-title: Education and Information Technologies doi: 10.1007/s10639-020-10316-y – volume: 113 start-page: 177 year: 2017 ident: 192_CR4 publication-title: Computers and Education doi: 10.1016/j.compedu.2017.05.007 – volume: 13 start-page: 17 issue: 1 year: 2011 ident: 192_CR17 publication-title: Journal of College Student Retention: Research, Theory and Practice doi: 10.2190/CS.13.1.b – volume: 13 start-page: 82 issue: 1–2 year: 2010 ident: 192_CR39 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2009.10.008 – volume: 92 start-page: 459 year: 2019 ident: 192_CR11 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.03.034 – volume: 104 start-page: 106189 issue: October 2019 year: 2020 ident: 192_CR44 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2019.106189 – volume: 30 start-page: 194 issue: 2 year: 2013 ident: 192_CR22 publication-title: Systems Research and Behavioral Science doi: 10.1002/sres.2130 – volume: 46 start-page: 31 issue: 5 year: 2011 ident: 192_CR31 publication-title: Educause Review – volume: 54 start-page: 588 issue: 2 year: 2010 ident: 192_CR32 publication-title: Computers & Education doi: 10.1016/j.compedu.2009.09.008 – volume: 89 start-page: 98 issue: July year: 2018 ident: 192_CR43 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.07.027 – volume: 66 start-page: 541 issue: 2018 year: 2018 ident: 192_CR10 publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2017.03.005 – volume: 101 start-page: 1 issue: 2017 year: 2017 ident: 192_CR24 publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.05.003 – volume: 22 start-page: 299 issue: 3 year: 2017 ident: 192_CR35 publication-title: Technology, Knowledge and Learning doi: 10.1007/s10758-017-9334-z – volume: 47 start-page: 168 year: 2015 ident: 192_CR46 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.09.034 – volume: 24 start-page: 49 issue: 1 year: 2016 ident: 192_CR12 publication-title: Interactive Learning Environments doi: 10.1080/10494820.2013.817441 – ident: 192_CR5 – volume: 158 start-page: 103999 issue: August year: 2020 ident: 192_CR9 publication-title: Computers & Education doi: 10.1016/j.compedu.2020.103999 – volume: 54 start-page: 693 issue: 6 year: 2013 ident: 192_CR3 publication-title: Research in Higher Education doi: 10.1007/s11162-013-9290-y – ident: 192_CR13 doi: 10.1109/ICETECH.2016.7569290 – volume: 10 start-page: 22 issue: 1 year: 2020 ident: 192_CR26 publication-title: EMO Journal of Scientific – ident: 192_CR23 doi: 10.1145/3293881.3295783 – volume: 15 start-page: 405 issue: 4 year: 2007 ident: 192_CR42 publication-title: Education Economics doi: 10.1080/09645290701409939 – volume: 72 start-page: 23 year: 2014 ident: 192_CR30 publication-title: Computers and Education doi: 10.1016/j.compedu.2013.10.009 – year: 2020 ident: 192_CR15 publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04081 – volume: 1 start-page: 3 issue: 1 year: 2009 ident: 192_CR8 publication-title: Journal of Educational Data Mining – volume: 40 start-page: 157 issue: 3 year: 2018 ident: 192_CR1 publication-title: Bulletin of Education and Research – volume-title: Data mining practical machine learning tools and techniques year: 2011 ident: 192_CR45 – volume: 54 start-page: 121 issue: 2 year: 2008 ident: 192_CR36 publication-title: Cesifo Economic Studies doi: 10.1093/cesifo/ifn012 – volume: 38 start-page: 14984 issue: 12 year: 2011 ident: 192_CR34 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.05.048 – volume: 98 start-page: 166 issue: January year: 2019 ident: 192_CR47 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2019.04.015 – volume: 49 start-page: 498 issue: 4 year: 2010 ident: 192_CR16 publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.06.003 – volume: 70 start-page: 100724 issue: August 2018 year: 2020 ident: 192_CR37 publication-title: Socio-Economic Planning Sciences doi: 10.1016/j.seps.2019.06.009 – volume: 92 start-page: 578 issue: February 2017 year: 2019 ident: 192_CR41 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.07.002 – volume: 15 start-page: 020120 issue: 2 year: 2019 ident: 192_CR48 publication-title: Physical Review Physics Education Research doi: 10.1103/PhysRevPhysEducRes.15.020120 – volume: 11 start-page: 299 issue: 3 year: 2019 ident: 192_CR20 publication-title: Psychology, Society and Education doi: 10.25115/psye.v11i3.2056 – volume: 8 start-page: 443 issue: 2 year: 2017 ident: 192_CR6 publication-title: Croatian Operational Research Review doi: 10.17535/crorr.2017.0028 – start-page: 61 volume-title: Learning analytics year: 2014 ident: 192_CR7 doi: 10.1007/978-1-4614-3305-7_4 |
SSID | ssj0001916359 |
Score | 2.6379592 |
Snippet | Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic achievements.... Abstract Educational data mining has become an effective tool for exploring the hidden relationships in educational data and predicting students' academic... |
SourceID | doaj proquest eric crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Academic Achievement Accuracy Algorithms Artificial Intelligence Classification Colleges & universities Computers and Education Data Analysis Data mining Decision analysis Decision making Decision trees Early warning systems Education Educational data mining Foreign Countries Grades (Scholastic) Learning analytics Machine learning Mathematics Predicting achievement Prediction Students Support vector machines Tests Towards enhancing learning using open educational resources Undergraduate Students Undergraduate study |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy_iE6ur5CB40GDbpEnWm4qLCHpS8BaSNFkF98G2XvbXm0m7DwX1IvQQmrSEmWnnm2TyDUInVIMb1wUR2jLChNdEa14SURomrLMs17A08PDI757Z_UvxslLqC3LCGnrgRnAXRcmMzIRPuQmuvdTGWMOl7xWFDrGC9_D3DT5vJZiKqysB9dCiNz8lI_lFxQArE0hej7CGzL54okjY_z3nGcDmt_3R6Hb6m2ijxYv4qpnnFlpzo20otdymZeygwaIdhkG-Jx7Gmg-XeDKFTRjowWOPq4bEsjrFuk2Jx5PloQEM-e8DPIyplQ63tSQGWL8PxtO3-nVY7aLn_u3TzR1pqycQWxS8JrT0llJrrLABk_pMau5SJ0ze88ZLL8ssdqaZ7pnc5V4ylgd1Ou2pYdJJuoc6o_HI7SOcmTQIPDcpgEWqgTOMlgIaWc7DDzJB2VySyrbU4lDh4l3FEENy1UhfBemrKH01S9DZ4plJQ6zx6-hrUNBiJJBixxvBVFRrKuovU0nQHqh38ZLb-xCKB8CcJqg7V7hqP-FKAUsPpSLgrwSdz41g2f3zXA_-Y66HaD2PtkrD1UWdevrhjgL8qc1xtPRPMH8Bsg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxwhFJcmvfQS-pHQSdLgodBDIh2_nd7aJSEE2lMDuYk6ui1kP9jZXPLXx-e6u01IC4U5yPgc5L3n-FOfv4fQR-5gGneSaBcEETo54pzqie690CEGwRxsDXz_oS6vxdWNvKk0OXAX5s_ze2rU50EAxCUQc17QCLnfQS8l5RrSNIzUaLufknEOl936XsyzTR_NPYWi_2mUM8DLJyeiZaK5eI32KkLEX1cmfYNexOlbSK5cAzHeofGmnMUgwhNPSpaHL3i-gGMXqMGzhIcVbeXwCbsaBI_n22sCGCLex3hSgikjrtkjxtjdjmeL38tfk2EfXV-c_xxdkpovgQQp1ZLwPgXOgw86ZBSaqHEqtlF71iWfTDI9LZUtdZ1nkSUjBMsGjC5xL0w0_ADtTmfT-B5h6tvUSeZbgIfcAUsY7zUUKFP5l9ggutakDZVMHHJa3NqyqDDKrrRvs_Zt0b69b9Dpps18RaXxT-lvYKCNJNBglxfZO2wdVVb2whuqU6t8xn298z54ZXLPZe5pl1KDDsC8m4-cX-XFd4bIbYOO1wa3ddAOFnh5ePYsZhp0tnaCbfXf-3r4f-JH6BUrXsnzc4x2l4u7-CFDm6U_KT79AJXU8Yw priority: 102 providerName: Springer Nature |
Title | Educational data mining: prediction of students' academic performance using machine learning algorithms |
URI | https://link.springer.com/article/10.1186/s40561-022-00192-z http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1328000 https://www.proquest.com/docview/2635337028 https://doaj.org/article/5d4b817f06b143dabbcb68f955a289ff |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9wgEJfe7ktfSr-Opr0GHwp9aOUSNcb0pewtuz0WepS2B_cmajR9uP3oZvtyf30d1-zSgx6EENSIzIzjz3GcQegd07CM64rU2nLCa6-J1qIldWt4bZ3lVINp4OuVuLzmi5vqJhnc-uRWOejEqKjbtQUb-TkETWGsDsvh581vAlmj4HQ1pdA4QeOggqUcofHF7Orb96OVJaAfVjXDbRkpznsOmJmAE3uEN-TunxUpBu6_7_sMoPPeOWlcfuZP0ZOEG_Fkz-hn6JFbPYeUy8k94wXqDt-hGfh94mXM_fAJb7ZwGAM1eO1xvw9m2b_HOrnG483x8gAGP_gOL6OLpcMpp0SH9W0XiLH7texfouv57Of0kqQsCsRWldgR1nrLmDW2tgGb-lJq4QpXG9p446WXbRkri1I3hjrqJec0sNVpzwyXTrJTNFqtV-4VwqUpfFNRUwBoZBpih7G2ho-SiqAoM1QOlFQ2hRiHTBe3Km41pFB76qtAfRWpr-4y9OHwz2YfYOPB1hfAoENLCI4dC9bbTqW5pqqWG1nWvhAmoMFWG2ONkGHkVRhp432GToG9h05mi7AlD8C5yNDZwHCVpnKvjoKXoY-DEByr_z_W1w_39gY9plEKWXjO0Gi3_ePeBoCzMzk6kfMvORpPJosfizzJdCidUg5vMc2j6SCPm_2_Igb_qg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAL4lURKOADiANYTWwncZAQ4tFl-zy1Um_Gduz00H2wWYToj-I34nGSXVGJ3irlYMWO5cyMPZ_teQC84hrVuM5pqa2govSaal3UtKyNKK2zgmk8Gjg6LsanYv8sP9uAP4MvDJpVDmtiXKjrmcUz8h0MmsJ5GdThx_kPilmj8HZ1SKHRicWB-_0rbNnaD3tfA39fMzbaPfkypn1WAWrzvFhSXnvLuTW2tAGr-UzqwqWuNKzyxksv6yxWppmuDHPMSyFY-E2nPTdCOslDv7fgtuBBk6Nn-ujb-kwnYC2eV4Nvjix2WoEInaLJfART9PIf_RfTBFy1tEaIe-VWNiq70X2416NU8qkTqwew4aYPMcFzbwzyCJpVOTRDK1MyiZkm3pP5Aq9-sIbMPGm70JntG6J7Q3wyX7sqELS6b8gkGnQ60mewaIi-aALpl-eT9jGc3gh1t2BzOpu6J0Ayk_oqZyZFiMo1RirjdYmFjBVhWU4gGyipbB_QHPNqXKi4sZGF6qivAvVVpL66TODt6pt5F87j2tafkUGrlhiKO76YLRrVz2yV18LIrPRpYQL2rLUx1hQyjDwPI628T2AL2bvqZHc_4yzA9DSB7YHhql84WrUW8wTeDUKwrv7_WJ9e39tLuDM-OTpUh3vHB8_gLosSycOzDZvLxU_3PECrpXkR5ZnA95ueQH8BcOg4VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuqDwqAgV8AHGAqIntOA4SB9h21QdUHKjUm7Ede0HqPrQJquiv4ificZJdUQESh0o5WPHEcsZj-7P9eQbgOdM4jesiLbXlKS-9TrUWdVrWhpfWWU41bg18PBEHp_zorDjbgJ_DXZjIdh-OJLs7DeiladbuLmrfdXEpdhuOwDdFJnrEKOllT6s8dj8uwqKteXu4F1r4BaXj_c-jg7SPK5DaohBtympvGbPGljagNZ9LLVzmSkMrb7z0ss5jZpbrylBHveSchh912jPDpZMslHsDboaVUY7LvZEYrXd1AtpiRTXczvljVX-bAWOggKtcawS5V85l43Q33oI7PU4l7zrDugsbbnYPQzz3dJD7MFmlgxjyTMk0xpp4QxZLPPzBHDL3pOmcZzYvie6p-GSxvqxAkHc_IdNI6XSkj2ExIfp8Ml9-a79Omwdwei3a3YbN2XzmHgLJTeargpoMQSrT6KuM1SUmcirCwJxAPmhS2d6lOUbWOFdxaSOF6rSvgvZV1L66TODV6ptF59Djn9LvsYFWkuiMO76YLyeq79uqqLmReekzYQL6rLUx1ggZal6EmlbeJ7CNzbsqZP8oZzQA9SyBnaHBVT90NAq9AzFWBtyXwOvBCNbZf6_ro_8Tfwa3Pu2N1YfDk-PHcJtGA2Xh2YHNdvndPQlYqzVPo3kT-HLd_ekXgQM6FA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Data+Mining%3A+Prediction+of+Students%27+Academic+Performance+Using+Machine+Learning+Algorithms&rft.jtitle=Smart+learning+environments&rft.au=Yagci%2C+Mustafa&rft.date=2022-03-03&rft.pub=Springer&rft.issn=2196-7091&rft.eissn=2196-7091&rft.volume=9&rft_id=info:doi/10.1186%2Fs40561-022-00192-z&rft.externalDocID=EJ1328000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7091&client=summon |