High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network

High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using function...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 14; p. 89
Main Authors Yang, Kai, Tong, Li, Shu, Jun, Zhuang, Ning, Yan, Bin, Zeng, Ying
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 24.03.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.
AbstractList High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50–80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time–frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.
High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.
High frequency electroencephalography (EEG) signals have been playing an important role in researches of human emotions. However, there is not enough clarity about the different network patterns under different emotional states in the high gamma band (50–80 Hz). In this paper, we investigate the different emotional states by using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results proved that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, especially the high gamma band. Also, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than other frequency bands in human affective perception.
Author Zhuang, Ning
Yan, Bin
Shu, Jun
Yang, Kai
Tong, Li
Zeng, Ying
AuthorAffiliation 2 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China , Chengdu , China
1 PLA Strategy Support Force Information Engineering University , Zhengzhou , China
AuthorAffiliation_xml – name: 1 PLA Strategy Support Force Information Engineering University , Zhengzhou , China
– name: 2 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China , Chengdu , China
Author_xml – sequence: 1
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
– sequence: 2
  givenname: Li
  surname: Tong
  fullname: Tong, Li
– sequence: 3
  givenname: Jun
  surname: Shu
  fullname: Shu, Jun
– sequence: 4
  givenname: Ning
  surname: Zhuang
  fullname: Zhuang, Ning
– sequence: 5
  givenname: Bin
  surname: Yan
  fullname: Yan, Bin
– sequence: 6
  givenname: Ying
  surname: Zeng
  fullname: Zeng, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32265674$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhS1URB-wZ4UssWGT1O8Zs0CCKEkrVYAQrC2Px04cPHbxzBT13-NJ2qqtxMpX1-d-uo9zCo5iihaAtxjNKa3luYvbsZsTRNAcIVTLF-AEC0FmHAt89Cg-Bqd9v0NIEMHxK3BMSQlExU7A9wu_2cK17joNv-jYwuVyDRch9Tbcwh826MG2cEhw2aXBp_gRLm98a6OxcJVTB1djNFNeB_jVDn9T_v0avHQ69PbN3XsGfq2WPxcXs6tv68vF56uZ4VwMM2wcr1ldS8xIQxvEaU1bpy2tDBOE40a6RlLaGKcFo7iVjLXN1L2rOBN1Rc_A5YHbJr1T19l3Ot-qpL3aJ1LeKJ0Hb4JVRgjJWiydwLjAiaQVp42wrbM103RifTqwrsems62xccg6PIE-_Yl-qzbpRlUYVQjjAvhwB8jpz2j7QXW-NzYEHW0ae0VoXQmJBKZF-v6ZdJfGXBa4VxFStsNRUb173NFDK_eHKwJ0EJic-j5b9yDBSE3eUHtvqMkbau-NUiKelRg_6Ol6ZSYf_l_4D4-7vEE
CitedBy_id crossref_primary_10_1016_j_clinph_2025_02_274
crossref_primary_10_1080_17470919_2023_2228545
crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_1109_TNSRE_2024_3424543
crossref_primary_10_1109_ACCESS_2022_3185257
crossref_primary_10_1007_s00221_023_06572_2
crossref_primary_10_1038_s41597_024_03887_9
crossref_primary_10_3390_brainsci12060702
crossref_primary_10_1080_08839514_2025_2450568
crossref_primary_10_3390_s21227466
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_1016_j_foar_2023_07_003
crossref_primary_10_1109_TCSS_2023_3298324
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1016_j_jneumeth_2022_109642
crossref_primary_10_1016_j_crneur_2022_100053
crossref_primary_10_1016_j_jneumeth_2023_109922
crossref_primary_10_3390_biomimetics9120761
crossref_primary_10_1007_s00521_020_05439_9
crossref_primary_10_3389_fpsyt_2023_1228276
crossref_primary_10_35234_fumbd_1242223
crossref_primary_10_1142_S0219477524500512
crossref_primary_10_1038_s41598_022_22497_2
crossref_primary_10_1109_JSEN_2022_3168572
crossref_primary_10_1016_j_bspc_2024_107473
crossref_primary_10_1093_cercor_bhad474
crossref_primary_10_1007_s11571_023_09931_5
crossref_primary_10_3389_fnhum_2025_1516776
crossref_primary_10_1016_j_engappai_2023_106971
crossref_primary_10_1016_j_measurement_2023_112454
crossref_primary_10_1093_bib_bbae038
crossref_primary_10_1371_journal_pone_0274203
crossref_primary_10_1016_j_neunet_2021_10_023
crossref_primary_10_3389_fnhum_2022_960784
crossref_primary_10_3389_fpsyt_2021_618573
crossref_primary_10_1016_j_neuroscience_2024_01_016
crossref_primary_10_1109_TAFFC_2024_3392791
crossref_primary_10_3390_brainsci11060696
crossref_primary_10_1049_bme2_12050
crossref_primary_10_3390_app11031338
crossref_primary_10_1016_j_neunet_2024_106148
crossref_primary_10_1038_s41598_024_79202_8
crossref_primary_10_1109_TIM_2024_3480232
crossref_primary_10_1016_j_neuroimage_2025_121148
crossref_primary_10_3390_s22134939
crossref_primary_10_1016_j_cogr_2021_04_001
crossref_primary_10_1007_s40750_025_00257_6
crossref_primary_10_1186_s40708_022_00163_7
crossref_primary_10_1002_jnr_25168
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_1109_TAFFC_2024_3394873
crossref_primary_10_1145_3524499
crossref_primary_10_1007_s11042_022_13939_0
crossref_primary_10_3390_biomimetics10030187
crossref_primary_10_3389_fnhum_2023_1169949
crossref_primary_10_3389_fpsyg_2025_1517449
crossref_primary_10_1016_j_bspc_2021_102991
crossref_primary_10_1088_2057_1976_acf137
crossref_primary_10_1109_JBHI_2024_3422384
crossref_primary_10_3390_brainsci14090927
crossref_primary_10_3390_healthcare12151491
crossref_primary_10_1109_TNSRE_2023_3245069
crossref_primary_10_1007_s00521_022_07843_9
crossref_primary_10_1109_TIM_2022_3147876
crossref_primary_10_14326_abe_13_123
crossref_primary_10_31083_j_jin2302033
crossref_primary_10_1109_JBHI_2024_3418010
crossref_primary_10_1016_j_patcog_2023_109751
crossref_primary_10_3389_fnins_2021_608156
crossref_primary_10_3390_math11040903
crossref_primary_10_1109_TNSRE_2023_3317813
crossref_primary_10_1111_psyp_14438
crossref_primary_10_1111_psyp_14512
crossref_primary_10_1109_JBHI_2024_3404664
crossref_primary_10_1016_j_bbr_2023_114703
crossref_primary_10_3389_fpsyg_2021_666284
crossref_primary_10_3390_s22114064
crossref_primary_10_1016_j_bspc_2023_104835
crossref_primary_10_1088_1742_6596_2071_1_012041
crossref_primary_10_1371_journal_pcbi_1012369
crossref_primary_10_3389_fpsyg_2022_1006695
crossref_primary_10_1177_14707853221112622
crossref_primary_10_3389_fnins_2022_1010951
crossref_primary_10_3389_fpsyg_2021_701761
crossref_primary_10_1016_j_bspc_2024_106957
crossref_primary_10_1007_s11042_024_18218_8
crossref_primary_10_3390_diagnostics12102508
crossref_primary_10_3390_brainsci14111047
crossref_primary_10_3390_s22239156
Cites_doi 10.1016/j.brainres.2010.05.016
10.1109/IEMBS.2009.5334139
10.1016/j.euroneuro.2012.10.010
10.3233/THC-174836
10.1016/j.neulet.2006.06.039
10.1016/j.ijpsycho.2007.03.004
10.1177/1073858406293182
10.3724/SP.J.1041.2014.01682
10.1371/journal.pone.0095415
10.1109/IEMBS.2011.6090492
10.1016/j.sigpro.2005.07.007
10.1007/978-3-642-70486-4_14
10.1146/annurev.ne.18.030195.001205
10.1093/cercor/bhv001
10.1023/A:1018647011077
10.1038/17120
10.3389/neuro.09.061.2009
10.1016/j.tics.2011.03.006
10.1109/TBME.2019.2897651
10.1142/S0219720005001004
10.1007/978-0-387-79061-9_3159
10.1016/S1388-2457(99)00151-0
10.1162/jocn.1996.8.5.387
10.1155/2017/5282670
10.7507/1001-5515.20150042
10.1007/978-3-319-70093-9_90
10.1016/j.ijpsycho.2007.10.002
10.1145/1961189.1961199
10.1038/17126
10.1016/j.neuroimage.2012.01.060
10.1016/j.neuroimage.2016.09.025
10.1016/j.chb.2016.01.005
10.1109/TNSRE.2016.2523678
10.1097/WCO.0b013e32832d93dd
10.1111/j.1469-8986.2006.00461.x
10.3969/j.issn.0258-8021.2012.04.00
10.1002/hbm.22609
10.3390/s18030841
10.1016/j.ijpsycho.2006.07.003
10.1038/srep41941
10.1038/srep15129
ContentType Journal Article
Copyright Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng
Copyright_xml – notice: Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2020.00089
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_c6694d19f611462293753b6edfe84a37
PMC7107011
32265674
10_3389_fnhum_2020_00089
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c556t-1cf584889142b3b05383dfae37c46251b9fb933bcfa6431d944db2651f7546873
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:08:03 EDT 2025
Thu Aug 21 17:47:30 EDT 2025
Fri Jul 11 05:08:18 EDT 2025
Fri Jul 25 11:55:00 EDT 2025
Thu Apr 03 06:55:54 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Tue Jul 01 03:44:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords high gamma band
fusion feature
emotion
functional network
EEG
Language English
License Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-1cf584889142b3b05383dfae37c46251b9fb933bcfa6431d944db2651f7546873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Giulia Cartocci, Sapienza University of Rome, Italy; Ellenor Janice Brown, United States Food and Drug Administration, United States
This article was submitted to Brain Imaging and Stimulation, a section of the journal Frontiers in Human Neuroscience
Edited by: Leonardo Angelone, National Institute on Drug Abuse (NIDA), United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00089
PMID 32265674
PQID 2382255650
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_c6694d19f611462293753b6edfe84a37
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7107011
proquest_miscellaneous_2387690613
proquest_journals_2382255650
pubmed_primary_32265674
crossref_primary_10_3389_fnhum_2020_00089
crossref_citationtrail_10_3389_fnhum_2020_00089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Matsumoto (B33) 2010; 43
Zhang (B45) 2017
Güntekin (B16) 2007; 64
Wang (B43) 2017; 7
Julie (B22) 2009; 3
Miltner (B34) 1999; 397
Bassett (B2) 2006; 12
Flores-Gutiérrez (B14) 2007; 65
Li (B25) 2015; 5
Rodriguez (B39) 1999; 397
Straaten (B41) 2013; 23
Li (B29) 2019; 66
Hyvärinen (B19) 1999; 10
Jin (B21) 2014; 46
Schneider (B40) 2013
Lu (B31) 2005; 19
Li (B28) 2018; 26
Martini (B32) 2012; 60
Costa (B9) 2006; 406
Chang (B7) 2011; 2
Li (B27) 2009; 2009
Zhang (B44) 2015; 32
Tang (B42) 2011; 2011
Balconi (B1) 2008; 67
Lindquist (B30) 2016; 26
Grant (B15) 2011
Ding (B12) 2005; 3
Hossein (B18) 2016; 58
Müsch (B37) 2017; 146
Hamilton (B17) 1986
Li (B26) 2010; 1344
Boucher (B6) 2014; 36
Müller (B36) 1999; 110
Desimone (B11) 1995; 18
Ning (B38) 2012; 29
Dan (B10) 2012; 4
Bhattacharya (B5) 2005; 85
Bassett (B4) 2011; 15
Li (B24) 2016; 24
Lee (B23) 2014; 9
Jiang (B20) 2009; 21
Clark (B8) 1996; 8
Morris (B35) 1995; 35
Bassett (B3) 2015; 22
Ding (B13) 2017; 2017
Zhuang (B46) 2018; 18
References_xml – volume: 1344
  start-page: 173
  year: 2010
  ident: B26
  article-title: Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.05.016
– volume: 2009
  start-page: 1323
  year: 2009
  ident: B27
  article-title: Emotion classification based on gamma-band EEG
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/IEMBS.2009.5334139
– volume: 23
  start-page: 7
  year: 2013
  ident: B41
  article-title: Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2012.10.010
– volume: 26
  start-page: 1
  year: 2018
  ident: B28
  article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174836
– volume: 406
  start-page: 159
  year: 2006
  ident: B9
  article-title: EEG phase synchronization during emotional response to positive and negative film stimuli
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2006.06.039
– volume: 65
  start-page: 69
  year: 2007
  ident: B14
  article-title: Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.03.004
– volume: 12
  start-page: 512
  year: 2006
  ident: B2
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 46
  start-page: 1682
  year: 2014
  ident: B21
  article-title: An ERP study of disgust processing
  publication-title: Acta Psychol. Sing.
  doi: 10.3724/SP.J.1041.2014.01682
– volume: 9
  start-page: e95415
  year: 2014
  ident: B23
  article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095415
– volume: 2011
  start-page: 1717
  year: 2011
  ident: B42
  article-title: Induced gamma activity in EEG represents cognitive control during detecting emotional expressions
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/IEMBS.2011.6090492
– volume: 85
  start-page: 2161
  year: 2005
  ident: B5
  article-title: Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2005.07.007
– volume-title: Hamilton Anxiety Rating Scale
  year: 2013
  ident: B40
– volume-title: The Hamilton Rating Scale for Depression
  year: 1986
  ident: B17
  doi: 10.1007/978-3-642-70486-4_14
– volume: 18
  start-page: 193
  year: 1995
  ident: B11
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.001205
– volume: 19
  start-page: 719
  year: 2005
  ident: B31
  article-title: The development of native chinese affective picture system-a pretest in 46 college students
  publication-title: Chin. Ment. Health J.
– volume: 26
  start-page: 1910
  year: 2016
  ident: B30
  article-title: The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv001
– volume: 10
  start-page: 1
  year: 1999
  ident: B19
  article-title: The fixed-point algorithm and maximum likelihood estimation for independent component analysis
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018647011077
– volume: 29
  start-page: 1021
  year: 2012
  ident: B38
  article-title: Analysis of characteristics of alpha electroencephalogram during the interaction between emotion and cognition based on granger causality
  publication-title: J. Biomed. Eng.
– volume: 397
  start-page: 430
  year: 1999
  ident: B39
  article-title: Perception's shadow: long–distance synchronization of human brain activity
  publication-title: Nature
  doi: 10.1038/17120
– volume: 3
  start-page: 61
  year: 2009
  ident: B22
  article-title: High-frequency broadband modulation of electroencephalographic spectra
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/neuro.09.061.2009
– volume: 15
  start-page: 200
  year: 2011
  ident: B4
  article-title: Understanding complexity in the human brain
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.03.006
– volume: 66
  start-page: 2869
  year: 2019
  ident: B29
  article-title: EEG based emotion recognition by combining functional connectivity network and local activations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2897651
– volume: 3
  start-page: 185
  year: 2005
  ident: B12
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume-title: Beck Anxiety Inventory
  year: 2011
  ident: B15
  doi: 10.1007/978-0-387-79061-9_3159
– volume: 35
  start-page: 63
  year: 1995
  ident: B35
  article-title: Observations SAM: the self-assessment manikin- an efficient cross-cultural measurement of emotional response
  publication-title: J. Advert. Res.
– volume: 110
  start-page: 1913
  year: 1999
  ident: B36
  article-title: Processing of affective pictures modulates right-hemispheric gamma band EEG activity
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00151-0
– volume: 8
  start-page: 387
  year: 1996
  ident: B8
  article-title: Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1996.8.5.387
– volume: 2017
  start-page: 5282670
  year: 2017
  ident: B13
  article-title: Emotion processing by ERP combined with development and plasticity
  publication-title: Neural Plast.
  doi: 10.1155/2017/5282670
– volume: 32
  start-page: 229
  year: 2015
  ident: B44
  article-title: Research progress on emotion recognition based on physiological signals
  publication-title: J. Biomed. Eng.
  doi: 10.7507/1001-5515.20150042
– start-page: 851
  volume-title: International Conference on Neural Information Processing
  year: 2017
  ident: B45
  article-title: “Brain effective connectivity analysis from EEG for positive and negative emotion,”
  doi: 10.1007/978-3-319-70093-9_90
– volume: 67
  start-page: 41
  year: 2008
  ident: B1
  article-title: Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2007.10.002
– volume: 2
  start-page: 1
  year: 2011
  ident: B7
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 397
  start-page: 434
  year: 1999
  ident: B34
  article-title: Coherence of gamma-band EEG activity as a basis for associative learning
  publication-title: Nature
  doi: 10.1038/17126
– volume: 60
  start-page: 922
  year: 2012
  ident: B32
  article-title: The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.060
– volume: 146
  start-page: 1142
  year: 2017
  ident: B37
  article-title: Gamma-band activity reflects attentional guidance by facial expression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.025
– volume: 58
  start-page: 231
  year: 2016
  ident: B18
  article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity
  publication-title: Comput. Human Behav.
  doi: 10.1016/j.chb.2016.01.005
– volume: 24
  start-page: 725
  year: 2016
  ident: B24
  article-title: The time-varying networks in P300: a task-evoked EEG Study
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2523678
– volume: 22
  start-page: 340
  year: 2015
  ident: B3
  article-title: Human brain networks in health and disease
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d93dd
– volume: 43
  start-page: 533
  year: 2010
  ident: B33
  article-title: Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2006.00461.x
– volume: 4
  start-page: 595
  year: 2012
  ident: B10
  article-title: A survey on EEG based emotion recognition
  publication-title: Chin. J.Biomed. Eng.
  doi: 10.3969/j.issn.0258-8021.2012.04.00
– volume: 36
  start-page: 16
  year: 2014
  ident: B6
  article-title: Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma modulations
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22609
– volume: 18
  start-page: 841
  year: 2018
  ident: B46
  article-title: Investigating patterns for self-induced emotion recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s18030841
– volume: 21
  start-page: 181
  year: 2009
  ident: B20
  article-title: Brain networks: from anatomy to dynamics
  publication-title: Chin. Bull. Life Sci.
– volume: 64
  start-page: 91
  year: 2007
  ident: B16
  article-title: Emotional face expressions are differentiated with brain oscillations
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2006.07.003
– volume: 7
  start-page: 41941
  year: 2017
  ident: B43
  article-title: Temporal course of implicit emotion regulation during a priming-identify task: an ERP study
  publication-title: Sci. Rep.
  doi: 10.1038/srep41941
– volume: 5
  start-page: 15129
  year: 2015
  ident: B25
  article-title: Relationships between the resting-state network and the P3: evidence from a scalp EEG study
  publication-title: Sci. Rep.
  doi: 10.1038/srep15129
SSID ssj0062651
Score 2.5849802
Snippet High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under...
High frequency electroencephalography (EEG) signals have been playing an important role in researches of human emotions. However, there is not enough clarity...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 89
SubjectTerms Brain
EEG
Electrodes
Electroencephalography
emotion
Emotions
Experiments
Frequency dependence
functional network
fusion feature
high gamma band
Human Neuroscience
Physiology
Researchers
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr0gWqBNSysjISQO0a4_Yie9AdoFcUAcQOJm2Y4tkHaTCnYP_PvO2NnVblW1l15jR3Kex5438fMMISdcKu9aVpd4ibGUjRewD3Jd2rENLEgrrUsC2Vt1_SBvHqvHjVJfqAnL6YEzcCOvVCNb1kSF92c5eCcg2E6FNoZaWpHukYPPWwVTeQ8Gll6xfCgJIVgzit3TEq-dc9RxjbGk-4YTSrn6_0Qwf9dJbjie6R7ZHRgjPc8j_UDehe4j2T_vIFqev9FTmjSc6ef4PrlD2Qa9svO5pRe2a-lkckUvZ_1rmL3RpHsLLV30dJKL9_ygq6KidPrSz-kUnFz-N0hvszz8gDxMJ_eX1-VQM6H0VaUWJfMRKEVdN0xyJxwssVq00QahPaBXMddE1wjhfLTARVjbSNk6RCvqSqpai0Oy0_Vd-Ewo8w64oebWqwhBCnNj4WKQsfbax7riBRmtQDR-SCiOdS1mBgILhN0k2A3CbhLsBTlbv_EzJ9P4S98LnJd1P0yDnR6AcZjBOMy_jKMgR6tZNcPafDVAUjgmXqvGBTleN8OqwqMS24V-mfpoTOHMREE-ZSNYjwS2QCDBWhZEb5nH1lC3W7rnp5S5G-ichg31y__4tq_kPaKFejguj8jO4mUZvgFBWrjvaS38AlX0DAs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCgPIIFGQkhMQh2nXsxE4vqFtlW3FYVYhKvVm2Y9NKu0nZx6H_vjNOsnQR6jV2JGs8j2_szzOEfMlE4WzNVIqPGFNROg5-MJOpmRjPvDDC2EiQnRfnl-LHVX7VH7ite1rl4BOjo65bh2fkYwgtGZbLyiffb_-k2DUKb1f7FhpPyQG4YKVG5GBazS9-Dr4Y0HrOustJSMXKcWiut_j8PEM-1wRbuz8IRrFm__-A5r98yQcBaPaCPO-RIz3ptvoleeKbV-TwpIGseXlHv9LI5YyH5IfkAukb9Mwsl4ZOTVPTqjqjp4t27Rd3NPLffE03La26Jj7HdGguSmerdklnEOy6M0I672jir8nlrPp1ep72vRNSB0LapMwFgBZKlUxkllswNcXrYDyXTkDKw2wZbMm5dcEAJmF1KURtUVpB5qJQkr8ho6Zt_DtCmbOAEWVmXBEgWWF2wm3wIignXVB5lpDxIETt-sLi2N9ioSHBQLHrKHaNYtdR7An5tvvjtiuq8cjcKe7Lbh6Ww44f2tVv3VuXdkVRipqVocBH1hlAGMjCbOHr4JUwXCbkaNhV3dvoWv_VqIR83g2DdeGViWl8u41zJJZyZjwhbzsl2K0EXCGAYSkSIvfUY2-p-yPNzXWs4A2wToJjff_4sj6QZygHZLxl4oiMNqut_wgQaGM_9Xp-D7P0Bc0
  priority: 102
  providerName: ProQuest
Title High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network
URI https://www.ncbi.nlm.nih.gov/pubmed/32265674
https://www.proquest.com/docview/2382255650
https://www.proquest.com/docview/2387690613
https://pubmed.ncbi.nlm.nih.gov/PMC7107011
https://doaj.org/article/c6694d19f611462293753b6edfe84a37
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Ni9QwFH_o7sWLqOtHdR0iiOCh7qRJk1YQ2Vk6swgOizgwt5Kkya4w0-rsDDj_vS9ppzoyiJce2rQNv-Tl_V7yPgBeJ1wYXdEs9kGMMc8Nw3UwkbEaKkstV1zp4CA7FZcz_mmezn-HR3cA3h407Xw9qdlq8e7nj-1HFPgP3uJEfXvm6puNDypPvJfWMMvvwjHqJenrGXzm_ZkCMvdQjJEKgeYXEp320PLgF_aUVMjlf4iA_u1H-YdiGj-A-x2jJOftFHgId2z9CE7Oa7Sml1vyhgQfz7B5fgJX3q2DTNRyqchI1RUpigm5WDS3drElwS_OVmTdkKIt7vOe7IqOkvGqWZIxKsF275BMW_fxxzAbF18vLuOupkJs0lSsY2ocUo4syylPNNMoghmrnLJMGo6mENW50zlj2jiFXIVWOeeV9sg5mXKRSfYEjuqmts-AUKORO8pEGeHQiKF6yLSz3GVGGpelSQRnOxBL0yUc93UvFiUaHh72MsBeetjLAHsEb_s3vrfJNv7RduTHpW_n02SHG83quuykrjRC5LyiuRM--DpBaoPWmRa2cjbjiskITnejWu6mXokkJvGJ2dJhBK_6xyh1_ihF1bbZhDbSp3imLIKn7SToe4JLJJJkySOQe9Njr6v7T-pvNyGzN9I9iQvu8__47wu458Hw7nAJP4Wj9WpjXyI_WusBHI-K6dWXQdhfwOtkTgdBFH4BV_UPfQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-AgOMBEg8RI0d10mQEFpHu46NakKbtLdgOzZDapPRD6H-U_yNnJ2krAjtba_xObLO5_uwf3cH8JpxoVVB09AlMYY80zHqQZaEMpKGGi65VB4gOxajM_75vHe-Bb_bXBgHq2x1olfURaXdHXkXTQtz5bJ60cfLn6HrGuVeV9sWGrVYHJnVLwzZ5h8OP-H-vmFsODjdH4VNV4FQ4_RFSLVFo5umGeVMxQqFMI0LK02caI7BAFWZVRjlK20lWmtaZJwXioketUmPizSJ8b-3YJvHImId2O4PxidfW90vHF39GIqhX9a15cXSpbszhx-LXCv5K8bP9wj4n2P7Lz7zisEb3oO7jadK9mrRug9bpnwAO3slRunTFXlLPHbUX8rvwImDi5ADOZ1K0pdlQQaDA7I_qeZmsiIeb2cKsqjIoG4a9J60zUzJcFZNyRCNa30nScY1LP0hnN0IVx9Bp6xK8wQI1Qp90oRJLSwGR1RFsbKG21Qn2qY9FkC3ZWKum0Lmrp_GJMeAxrE992zPHdtzz_YA3q1nXNZFPK6h7bt9WdO58tv-QzX7njenOddCZLygmRUuqZuhy4RRnxKmsCblMk4C2G13NW90wjz_K8EBvFoP42l2TzSyNNXS0ySudDSNA3hcC8F6Jah60flOeADJhnhsLHVzpPxx4SuGoxuZoCJ_ev2yXsLt0emX4_z4cHz0DO44nji0HeO70FnMluY5ul8L9aKReQLfbvqY_QFT0UEW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFcQXUevHatUIKviw3CWb2-wKIr32rq2Vo4iFvq1JNrHC3W69D-T-Nf86Z_bj7In0ra-bbAiTycz8kl9mAF4LGVuT8ySkR4yhTG2EdlCoUPe0405qqU1FkB3HR2fy03n_fAt-t29hiFbZ2sTKUOelpTPyLroWQemy-r2ub2gRpwejj5c_Q6ogRTetbTmNWkVO3OoXwrf5h-MDXOs3QoyGX_ePwqbCQGhxqEXIrUcHnCQpl8JEBhUyiXKvXaSsRGDATeoNIn5jvUbPzfNUytyIuM-96ss4URGOewu2FaGiDmwPhuPTL60fiKlffTGKMDDt-uJiSU_fBXHJelRW_oojrOoF_C_I_ZerecX5je7B3SZqZXu1mt2HLVc8gJ29AhH7dMXesopHWh3Q78ApUUfYoZ5ONRvoImfD4SHbn5RzN1mxinvncrYo2bAuIPSetYVN2WhWTtkIHW19PsnGNUX9IZzdiFQfQacoC_cEGLcG41MltI09AiVuepHxTvrEKuuTvgig2woxs01Sc6qtMckQ3JDYs0rsGYk9q8QewLv1H5d1Qo9r-g5oXdb9KBV39aGcfc-anZ3ZOE5lzlMf0wNvgeETIkATu9y7ROpIBbDbrmrW2Id59lebA3i1bsadTdc1unDlsuqjKI00jwJ4XCvBeiZohjEQVzIAtaEeG1PdbCl-XFTZwzGkVGjUn14_rZdwG7dX9vl4fPIM7pBIiHgn5C50FrOle46R2MK8aFSewbeb3mV_AEeoRUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Gamma+Band+EEG+Closely+Related+to+Emotion%3A+Evidence+From+Functional+Network&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Yang%2C+Kai&rft.au=Tong%2C+Li&rft.au=Shu%2C+Jun&rft.au=Zhuang%2C+Ning&rft.date=2020-03-24&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=14&rft.spage=89&rft_id=info:doi/10.3389%2Ffnhum.2020.00089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon