High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network
High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using function...
Saved in:
Published in | Frontiers in human neuroscience Vol. 14; p. 89 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
24.03.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception. |
---|---|
AbstractList | High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50–80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time–frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception. High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception. High frequency electroencephalography (EEG) signals have been playing an important role in researches of human emotions. However, there is not enough clarity about the different network patterns under different emotional states in the high gamma band (50–80 Hz). In this paper, we investigate the different emotional states by using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results proved that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, especially the high gamma band. Also, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than other frequency bands in human affective perception. |
Author | Zhuang, Ning Yan, Bin Shu, Jun Yang, Kai Tong, Li Zeng, Ying |
AuthorAffiliation | 2 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China , Chengdu , China 1 PLA Strategy Support Force Information Engineering University , Zhengzhou , China |
AuthorAffiliation_xml | – name: 1 PLA Strategy Support Force Information Engineering University , Zhengzhou , China – name: 2 MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China , Chengdu , China |
Author_xml | – sequence: 1 givenname: Kai surname: Yang fullname: Yang, Kai – sequence: 2 givenname: Li surname: Tong fullname: Tong, Li – sequence: 3 givenname: Jun surname: Shu fullname: Shu, Jun – sequence: 4 givenname: Ning surname: Zhuang fullname: Zhuang, Ning – sequence: 5 givenname: Bin surname: Yan fullname: Yan, Bin – sequence: 6 givenname: Ying surname: Zeng fullname: Zeng, Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32265674$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhS1URB-wZ4UssWGT1O8Zs0CCKEkrVYAQrC2Px04cPHbxzBT13-NJ2qqtxMpX1-d-uo9zCo5iihaAtxjNKa3luYvbsZsTRNAcIVTLF-AEC0FmHAt89Cg-Bqd9v0NIEMHxK3BMSQlExU7A9wu_2cK17joNv-jYwuVyDRch9Tbcwh826MG2cEhw2aXBp_gRLm98a6OxcJVTB1djNFNeB_jVDn9T_v0avHQ69PbN3XsGfq2WPxcXs6tv68vF56uZ4VwMM2wcr1ldS8xIQxvEaU1bpy2tDBOE40a6RlLaGKcFo7iVjLXN1L2rOBN1Rc_A5YHbJr1T19l3Ot-qpL3aJ1LeKJ0Hb4JVRgjJWiydwLjAiaQVp42wrbM103RifTqwrsems62xccg6PIE-_Yl-qzbpRlUYVQjjAvhwB8jpz2j7QXW-NzYEHW0ae0VoXQmJBKZF-v6ZdJfGXBa4VxFStsNRUb173NFDK_eHKwJ0EJic-j5b9yDBSE3eUHtvqMkbau-NUiKelRg_6Ol6ZSYf_l_4D4-7vEE |
CitedBy_id | crossref_primary_10_1016_j_clinph_2025_02_274 crossref_primary_10_1080_17470919_2023_2228545 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_TNSRE_2024_3424543 crossref_primary_10_1109_ACCESS_2022_3185257 crossref_primary_10_1007_s00221_023_06572_2 crossref_primary_10_1038_s41597_024_03887_9 crossref_primary_10_3390_brainsci12060702 crossref_primary_10_1080_08839514_2025_2450568 crossref_primary_10_3390_s21227466 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_1016_j_foar_2023_07_003 crossref_primary_10_1109_TCSS_2023_3298324 crossref_primary_10_1016_j_compbiomed_2021_104696 crossref_primary_10_1016_j_jneumeth_2022_109642 crossref_primary_10_1016_j_crneur_2022_100053 crossref_primary_10_1016_j_jneumeth_2023_109922 crossref_primary_10_3390_biomimetics9120761 crossref_primary_10_1007_s00521_020_05439_9 crossref_primary_10_3389_fpsyt_2023_1228276 crossref_primary_10_35234_fumbd_1242223 crossref_primary_10_1142_S0219477524500512 crossref_primary_10_1038_s41598_022_22497_2 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1016_j_bspc_2024_107473 crossref_primary_10_1093_cercor_bhad474 crossref_primary_10_1007_s11571_023_09931_5 crossref_primary_10_3389_fnhum_2025_1516776 crossref_primary_10_1016_j_engappai_2023_106971 crossref_primary_10_1016_j_measurement_2023_112454 crossref_primary_10_1093_bib_bbae038 crossref_primary_10_1371_journal_pone_0274203 crossref_primary_10_1016_j_neunet_2021_10_023 crossref_primary_10_3389_fnhum_2022_960784 crossref_primary_10_3389_fpsyt_2021_618573 crossref_primary_10_1016_j_neuroscience_2024_01_016 crossref_primary_10_1109_TAFFC_2024_3392791 crossref_primary_10_3390_brainsci11060696 crossref_primary_10_1049_bme2_12050 crossref_primary_10_3390_app11031338 crossref_primary_10_1016_j_neunet_2024_106148 crossref_primary_10_1038_s41598_024_79202_8 crossref_primary_10_1109_TIM_2024_3480232 crossref_primary_10_1016_j_neuroimage_2025_121148 crossref_primary_10_3390_s22134939 crossref_primary_10_1016_j_cogr_2021_04_001 crossref_primary_10_1007_s40750_025_00257_6 crossref_primary_10_1186_s40708_022_00163_7 crossref_primary_10_1002_jnr_25168 crossref_primary_10_3389_fnins_2022_985709 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1145_3524499 crossref_primary_10_1007_s11042_022_13939_0 crossref_primary_10_3390_biomimetics10030187 crossref_primary_10_3389_fnhum_2023_1169949 crossref_primary_10_3389_fpsyg_2025_1517449 crossref_primary_10_1016_j_bspc_2021_102991 crossref_primary_10_1088_2057_1976_acf137 crossref_primary_10_1109_JBHI_2024_3422384 crossref_primary_10_3390_brainsci14090927 crossref_primary_10_3390_healthcare12151491 crossref_primary_10_1109_TNSRE_2023_3245069 crossref_primary_10_1007_s00521_022_07843_9 crossref_primary_10_1109_TIM_2022_3147876 crossref_primary_10_14326_abe_13_123 crossref_primary_10_31083_j_jin2302033 crossref_primary_10_1109_JBHI_2024_3418010 crossref_primary_10_1016_j_patcog_2023_109751 crossref_primary_10_3389_fnins_2021_608156 crossref_primary_10_3390_math11040903 crossref_primary_10_1109_TNSRE_2023_3317813 crossref_primary_10_1111_psyp_14438 crossref_primary_10_1111_psyp_14512 crossref_primary_10_1109_JBHI_2024_3404664 crossref_primary_10_1016_j_bbr_2023_114703 crossref_primary_10_3389_fpsyg_2021_666284 crossref_primary_10_3390_s22114064 crossref_primary_10_1016_j_bspc_2023_104835 crossref_primary_10_1088_1742_6596_2071_1_012041 crossref_primary_10_1371_journal_pcbi_1012369 crossref_primary_10_3389_fpsyg_2022_1006695 crossref_primary_10_1177_14707853221112622 crossref_primary_10_3389_fnins_2022_1010951 crossref_primary_10_3389_fpsyg_2021_701761 crossref_primary_10_1016_j_bspc_2024_106957 crossref_primary_10_1007_s11042_024_18218_8 crossref_primary_10_3390_diagnostics12102508 crossref_primary_10_3390_brainsci14111047 crossref_primary_10_3390_s22239156 |
Cites_doi | 10.1016/j.brainres.2010.05.016 10.1109/IEMBS.2009.5334139 10.1016/j.euroneuro.2012.10.010 10.3233/THC-174836 10.1016/j.neulet.2006.06.039 10.1016/j.ijpsycho.2007.03.004 10.1177/1073858406293182 10.3724/SP.J.1041.2014.01682 10.1371/journal.pone.0095415 10.1109/IEMBS.2011.6090492 10.1016/j.sigpro.2005.07.007 10.1007/978-3-642-70486-4_14 10.1146/annurev.ne.18.030195.001205 10.1093/cercor/bhv001 10.1023/A:1018647011077 10.1038/17120 10.3389/neuro.09.061.2009 10.1016/j.tics.2011.03.006 10.1109/TBME.2019.2897651 10.1142/S0219720005001004 10.1007/978-0-387-79061-9_3159 10.1016/S1388-2457(99)00151-0 10.1162/jocn.1996.8.5.387 10.1155/2017/5282670 10.7507/1001-5515.20150042 10.1007/978-3-319-70093-9_90 10.1016/j.ijpsycho.2007.10.002 10.1145/1961189.1961199 10.1038/17126 10.1016/j.neuroimage.2012.01.060 10.1016/j.neuroimage.2016.09.025 10.1016/j.chb.2016.01.005 10.1109/TNSRE.2016.2523678 10.1097/WCO.0b013e32832d93dd 10.1111/j.1469-8986.2006.00461.x 10.3969/j.issn.0258-8021.2012.04.00 10.1002/hbm.22609 10.3390/s18030841 10.1016/j.ijpsycho.2006.07.003 10.1038/srep41941 10.1038/srep15129 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng |
Copyright_xml | – notice: Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2020.00089 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_c6694d19f611462293753b6edfe84a37 PMC7107011 32265674 10_3389_fnhum_2020_00089 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c556t-1cf584889142b3b05383dfae37c46251b9fb933bcfa6431d944db2651f7546873 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:08:03 EDT 2025 Thu Aug 21 17:47:30 EDT 2025 Fri Jul 11 05:08:18 EDT 2025 Fri Jul 25 11:55:00 EDT 2025 Thu Apr 03 06:55:54 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Tue Jul 01 03:44:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | high gamma band fusion feature emotion functional network EEG |
Language | English |
License | Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-1cf584889142b3b05383dfae37c46251b9fb933bcfa6431d944db2651f7546873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Giulia Cartocci, Sapienza University of Rome, Italy; Ellenor Janice Brown, United States Food and Drug Administration, United States This article was submitted to Brain Imaging and Stimulation, a section of the journal Frontiers in Human Neuroscience Edited by: Leonardo Angelone, National Institute on Drug Abuse (NIDA), United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2020.00089 |
PMID | 32265674 |
PQID | 2382255650 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c6694d19f611462293753b6edfe84a37 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7107011 proquest_miscellaneous_2387690613 proquest_journals_2382255650 pubmed_primary_32265674 crossref_primary_10_3389_fnhum_2020_00089 crossref_citationtrail_10_3389_fnhum_2020_00089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Matsumoto (B33) 2010; 43 Zhang (B45) 2017 Güntekin (B16) 2007; 64 Wang (B43) 2017; 7 Julie (B22) 2009; 3 Miltner (B34) 1999; 397 Bassett (B2) 2006; 12 Flores-Gutiérrez (B14) 2007; 65 Li (B25) 2015; 5 Rodriguez (B39) 1999; 397 Straaten (B41) 2013; 23 Li (B29) 2019; 66 Hyvärinen (B19) 1999; 10 Jin (B21) 2014; 46 Schneider (B40) 2013 Lu (B31) 2005; 19 Li (B28) 2018; 26 Martini (B32) 2012; 60 Costa (B9) 2006; 406 Chang (B7) 2011; 2 Li (B27) 2009; 2009 Zhang (B44) 2015; 32 Tang (B42) 2011; 2011 Balconi (B1) 2008; 67 Lindquist (B30) 2016; 26 Grant (B15) 2011 Ding (B12) 2005; 3 Hossein (B18) 2016; 58 Müsch (B37) 2017; 146 Hamilton (B17) 1986 Li (B26) 2010; 1344 Boucher (B6) 2014; 36 Müller (B36) 1999; 110 Desimone (B11) 1995; 18 Ning (B38) 2012; 29 Dan (B10) 2012; 4 Bhattacharya (B5) 2005; 85 Bassett (B4) 2011; 15 Li (B24) 2016; 24 Lee (B23) 2014; 9 Jiang (B20) 2009; 21 Clark (B8) 1996; 8 Morris (B35) 1995; 35 Bassett (B3) 2015; 22 Ding (B13) 2017; 2017 Zhuang (B46) 2018; 18 |
References_xml | – volume: 1344 start-page: 173 year: 2010 ident: B26 article-title: Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans publication-title: Brain Res. doi: 10.1016/j.brainres.2010.05.016 – volume: 2009 start-page: 1323 year: 2009 ident: B27 article-title: Emotion classification based on gamma-band EEG publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. doi: 10.1109/IEMBS.2009.5334139 – volume: 23 start-page: 7 year: 2013 ident: B41 article-title: Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2012.10.010 – volume: 26 start-page: 1 year: 2018 ident: B28 article-title: Emotion recognition from multichannel EEG signals using K-nearest neighbor classification publication-title: Technol. Health Care doi: 10.3233/THC-174836 – volume: 406 start-page: 159 year: 2006 ident: B9 article-title: EEG phase synchronization during emotional response to positive and negative film stimuli publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2006.06.039 – volume: 65 start-page: 69 year: 2007 ident: B14 article-title: Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2007.03.004 – volume: 12 start-page: 512 year: 2006 ident: B2 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 46 start-page: 1682 year: 2014 ident: B21 article-title: An ERP study of disgust processing publication-title: Acta Psychol. Sing. doi: 10.3724/SP.J.1041.2014.01682 – volume: 9 start-page: e95415 year: 2014 ident: B23 article-title: Classifying different emotional states by means of EEG-based functional connectivity patterns publication-title: PLoS ONE doi: 10.1371/journal.pone.0095415 – volume: 2011 start-page: 1717 year: 2011 ident: B42 article-title: Induced gamma activity in EEG represents cognitive control during detecting emotional expressions publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. doi: 10.1109/IEMBS.2011.6090492 – volume: 85 start-page: 2161 year: 2005 ident: B5 article-title: Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise publication-title: Signal Process. doi: 10.1016/j.sigpro.2005.07.007 – volume-title: Hamilton Anxiety Rating Scale year: 2013 ident: B40 – volume-title: The Hamilton Rating Scale for Depression year: 1986 ident: B17 doi: 10.1007/978-3-642-70486-4_14 – volume: 18 start-page: 193 year: 1995 ident: B11 article-title: Neural mechanisms of selective visual attention publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.001205 – volume: 19 start-page: 719 year: 2005 ident: B31 article-title: The development of native chinese affective picture system-a pretest in 46 college students publication-title: Chin. Ment. Health J. – volume: 26 start-page: 1910 year: 2016 ident: B30 article-title: The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv001 – volume: 10 start-page: 1 year: 1999 ident: B19 article-title: The fixed-point algorithm and maximum likelihood estimation for independent component analysis publication-title: Neural Process. Lett. doi: 10.1023/A:1018647011077 – volume: 29 start-page: 1021 year: 2012 ident: B38 article-title: Analysis of characteristics of alpha electroencephalogram during the interaction between emotion and cognition based on granger causality publication-title: J. Biomed. Eng. – volume: 397 start-page: 430 year: 1999 ident: B39 article-title: Perception's shadow: long–distance synchronization of human brain activity publication-title: Nature doi: 10.1038/17120 – volume: 3 start-page: 61 year: 2009 ident: B22 article-title: High-frequency broadband modulation of electroencephalographic spectra publication-title: Front. Hum. Neurosci. doi: 10.3389/neuro.09.061.2009 – volume: 15 start-page: 200 year: 2011 ident: B4 article-title: Understanding complexity in the human brain publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.03.006 – volume: 66 start-page: 2869 year: 2019 ident: B29 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2897651 – volume: 3 start-page: 185 year: 2005 ident: B12 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – volume-title: Beck Anxiety Inventory year: 2011 ident: B15 doi: 10.1007/978-0-387-79061-9_3159 – volume: 35 start-page: 63 year: 1995 ident: B35 article-title: Observations SAM: the self-assessment manikin- an efficient cross-cultural measurement of emotional response publication-title: J. Advert. Res. – volume: 110 start-page: 1913 year: 1999 ident: B36 article-title: Processing of affective pictures modulates right-hemispheric gamma band EEG activity publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00151-0 – volume: 8 start-page: 387 year: 1996 ident: B8 article-title: Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1996.8.5.387 – volume: 2017 start-page: 5282670 year: 2017 ident: B13 article-title: Emotion processing by ERP combined with development and plasticity publication-title: Neural Plast. doi: 10.1155/2017/5282670 – volume: 32 start-page: 229 year: 2015 ident: B44 article-title: Research progress on emotion recognition based on physiological signals publication-title: J. Biomed. Eng. doi: 10.7507/1001-5515.20150042 – start-page: 851 volume-title: International Conference on Neural Information Processing year: 2017 ident: B45 article-title: “Brain effective connectivity analysis from EEG for positive and negative emotion,” doi: 10.1007/978-3-319-70093-9_90 – volume: 67 start-page: 41 year: 2008 ident: B1 article-title: Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2007.10.002 – volume: 2 start-page: 1 year: 2011 ident: B7 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 397 start-page: 434 year: 1999 ident: B34 article-title: Coherence of gamma-band EEG activity as a basis for associative learning publication-title: Nature doi: 10.1038/17126 – volume: 60 start-page: 922 year: 2012 ident: B32 article-title: The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.060 – volume: 146 start-page: 1142 year: 2017 ident: B37 article-title: Gamma-band activity reflects attentional guidance by facial expression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.025 – volume: 58 start-page: 231 year: 2016 ident: B18 article-title: Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity publication-title: Comput. Human Behav. doi: 10.1016/j.chb.2016.01.005 – volume: 24 start-page: 725 year: 2016 ident: B24 article-title: The time-varying networks in P300: a task-evoked EEG Study publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2523678 – volume: 22 start-page: 340 year: 2015 ident: B3 article-title: Human brain networks in health and disease publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d93dd – volume: 43 start-page: 533 year: 2010 ident: B33 article-title: Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00461.x – volume: 4 start-page: 595 year: 2012 ident: B10 article-title: A survey on EEG based emotion recognition publication-title: Chin. J.Biomed. Eng. doi: 10.3969/j.issn.0258-8021.2012.04.00 – volume: 36 start-page: 16 year: 2014 ident: B6 article-title: Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma modulations publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22609 – volume: 18 start-page: 841 year: 2018 ident: B46 article-title: Investigating patterns for self-induced emotion recognition from EEG signals publication-title: Sensors doi: 10.3390/s18030841 – volume: 21 start-page: 181 year: 2009 ident: B20 article-title: Brain networks: from anatomy to dynamics publication-title: Chin. Bull. Life Sci. – volume: 64 start-page: 91 year: 2007 ident: B16 article-title: Emotional face expressions are differentiated with brain oscillations publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2006.07.003 – volume: 7 start-page: 41941 year: 2017 ident: B43 article-title: Temporal course of implicit emotion regulation during a priming-identify task: an ERP study publication-title: Sci. Rep. doi: 10.1038/srep41941 – volume: 5 start-page: 15129 year: 2015 ident: B25 article-title: Relationships between the resting-state network and the P3: evidence from a scalp EEG study publication-title: Sci. Rep. doi: 10.1038/srep15129 |
SSID | ssj0062651 |
Score | 2.5849802 |
Snippet | High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under... High frequency electroencephalography (EEG) signals have been playing an important role in researches of human emotions. However, there is not enough clarity... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 89 |
SubjectTerms | Brain EEG Electrodes Electroencephalography emotion Emotions Experiments Frequency dependence functional network fusion feature high gamma band Human Neuroscience Physiology Researchers Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTr0gWqBNSysjISQO0a4_Yie9AdoFcUAcQOJm2Y4tkHaTCnYP_PvO2NnVblW1l15jR3Kex5438fMMISdcKu9aVpd4ibGUjRewD3Jd2rENLEgrrUsC2Vt1_SBvHqvHjVJfqAnL6YEzcCOvVCNb1kSF92c5eCcg2E6FNoZaWpHukYPPWwVTeQ8Gll6xfCgJIVgzit3TEq-dc9RxjbGk-4YTSrn6_0Qwf9dJbjie6R7ZHRgjPc8j_UDehe4j2T_vIFqev9FTmjSc6ef4PrlD2Qa9svO5pRe2a-lkckUvZ_1rmL3RpHsLLV30dJKL9_ygq6KidPrSz-kUnFz-N0hvszz8gDxMJ_eX1-VQM6H0VaUWJfMRKEVdN0xyJxwssVq00QahPaBXMddE1wjhfLTARVjbSNk6RCvqSqpai0Oy0_Vd-Ewo8w64oebWqwhBCnNj4WKQsfbax7riBRmtQDR-SCiOdS1mBgILhN0k2A3CbhLsBTlbv_EzJ9P4S98LnJd1P0yDnR6AcZjBOMy_jKMgR6tZNcPafDVAUjgmXqvGBTleN8OqwqMS24V-mfpoTOHMREE-ZSNYjwS2QCDBWhZEb5nH1lC3W7rnp5S5G-ichg31y__4tq_kPaKFejguj8jO4mUZvgFBWrjvaS38AlX0DAs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCgPIIFGQkhMQh2nXsxE4vqFtlW3FYVYhKvVm2Y9NKu0nZx6H_vjNOsnQR6jV2JGs8j2_szzOEfMlE4WzNVIqPGFNROg5-MJOpmRjPvDDC2EiQnRfnl-LHVX7VH7ite1rl4BOjo65bh2fkYwgtGZbLyiffb_-k2DUKb1f7FhpPyQG4YKVG5GBazS9-Dr4Y0HrOustJSMXKcWiut_j8PEM-1wRbuz8IRrFm__-A5r98yQcBaPaCPO-RIz3ptvoleeKbV-TwpIGseXlHv9LI5YyH5IfkAukb9Mwsl4ZOTVPTqjqjp4t27Rd3NPLffE03La26Jj7HdGguSmerdklnEOy6M0I672jir8nlrPp1ep72vRNSB0LapMwFgBZKlUxkllswNcXrYDyXTkDKw2wZbMm5dcEAJmF1KURtUVpB5qJQkr8ho6Zt_DtCmbOAEWVmXBEgWWF2wm3wIignXVB5lpDxIETt-sLi2N9ioSHBQLHrKHaNYtdR7An5tvvjtiuq8cjcKe7Lbh6Ww44f2tVv3VuXdkVRipqVocBH1hlAGMjCbOHr4JUwXCbkaNhV3dvoWv_VqIR83g2DdeGViWl8u41zJJZyZjwhbzsl2K0EXCGAYSkSIvfUY2-p-yPNzXWs4A2wToJjff_4sj6QZygHZLxl4oiMNqut_wgQaGM_9Xp-D7P0Bc0 priority: 102 providerName: ProQuest |
Title | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32265674 https://www.proquest.com/docview/2382255650 https://www.proquest.com/docview/2387690613 https://pubmed.ncbi.nlm.nih.gov/PMC7107011 https://doaj.org/article/c6694d19f611462293753b6edfe84a37 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Ni9QwFH_o7sWLqOtHdR0iiOCh7qRJk1YQ2Vk6swgOizgwt5Kkya4w0-rsDDj_vS9ppzoyiJce2rQNv-Tl_V7yPgBeJ1wYXdEs9kGMMc8Nw3UwkbEaKkstV1zp4CA7FZcz_mmezn-HR3cA3h407Xw9qdlq8e7nj-1HFPgP3uJEfXvm6puNDypPvJfWMMvvwjHqJenrGXzm_ZkCMvdQjJEKgeYXEp320PLgF_aUVMjlf4iA_u1H-YdiGj-A-x2jJOftFHgId2z9CE7Oa7Sml1vyhgQfz7B5fgJX3q2DTNRyqchI1RUpigm5WDS3drElwS_OVmTdkKIt7vOe7IqOkvGqWZIxKsF275BMW_fxxzAbF18vLuOupkJs0lSsY2ocUo4syylPNNMoghmrnLJMGo6mENW50zlj2jiFXIVWOeeV9sg5mXKRSfYEjuqmts-AUKORO8pEGeHQiKF6yLSz3GVGGpelSQRnOxBL0yUc93UvFiUaHh72MsBeetjLAHsEb_s3vrfJNv7RduTHpW_n02SHG83quuykrjRC5LyiuRM--DpBaoPWmRa2cjbjiskITnejWu6mXokkJvGJ2dJhBK_6xyh1_ihF1bbZhDbSp3imLIKn7SToe4JLJJJkySOQe9Njr6v7T-pvNyGzN9I9iQvu8__47wu458Hw7nAJP4Wj9WpjXyI_WusBHI-K6dWXQdhfwOtkTgdBFH4BV_UPfQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-AgOMBEg8RI0d10mQEFpHu46NakKbtLdgOzZDapPRD6H-U_yNnJ2krAjtba_xObLO5_uwf3cH8JpxoVVB09AlMYY80zHqQZaEMpKGGi65VB4gOxajM_75vHe-Bb_bXBgHq2x1olfURaXdHXkXTQtz5bJ60cfLn6HrGuVeV9sWGrVYHJnVLwzZ5h8OP-H-vmFsODjdH4VNV4FQ4_RFSLVFo5umGeVMxQqFMI0LK02caI7BAFWZVRjlK20lWmtaZJwXioketUmPizSJ8b-3YJvHImId2O4PxidfW90vHF39GIqhX9a15cXSpbszhx-LXCv5K8bP9wj4n2P7Lz7zisEb3oO7jadK9mrRug9bpnwAO3slRunTFXlLPHbUX8rvwImDi5ADOZ1K0pdlQQaDA7I_qeZmsiIeb2cKsqjIoG4a9J60zUzJcFZNyRCNa30nScY1LP0hnN0IVx9Bp6xK8wQI1Qp90oRJLSwGR1RFsbKG21Qn2qY9FkC3ZWKum0Lmrp_GJMeAxrE992zPHdtzz_YA3q1nXNZFPK6h7bt9WdO58tv-QzX7njenOddCZLygmRUuqZuhy4RRnxKmsCblMk4C2G13NW90wjz_K8EBvFoP42l2TzSyNNXS0ySudDSNA3hcC8F6Jah60flOeADJhnhsLHVzpPxx4SuGoxuZoCJ_ev2yXsLt0emX4_z4cHz0DO44nji0HeO70FnMluY5ul8L9aKReQLfbvqY_QFT0UEW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFcQXUevHatUIKviw3CWb2-wKIr32rq2Vo4iFvq1JNrHC3W69D-T-Nf86Z_bj7In0ra-bbAiTycz8kl9mAF4LGVuT8ySkR4yhTG2EdlCoUPe0405qqU1FkB3HR2fy03n_fAt-t29hiFbZ2sTKUOelpTPyLroWQemy-r2ub2gRpwejj5c_Q6ogRTetbTmNWkVO3OoXwrf5h-MDXOs3QoyGX_ePwqbCQGhxqEXIrUcHnCQpl8JEBhUyiXKvXaSsRGDATeoNIn5jvUbPzfNUytyIuM-96ss4URGOewu2FaGiDmwPhuPTL60fiKlffTGKMDDt-uJiSU_fBXHJelRW_oojrOoF_C_I_ZerecX5je7B3SZqZXu1mt2HLVc8gJ29AhH7dMXesopHWh3Q78ApUUfYoZ5ONRvoImfD4SHbn5RzN1mxinvncrYo2bAuIPSetYVN2WhWTtkIHW19PsnGNUX9IZzdiFQfQacoC_cEGLcG41MltI09AiVuepHxTvrEKuuTvgig2woxs01Sc6qtMckQ3JDYs0rsGYk9q8QewLv1H5d1Qo9r-g5oXdb9KBV39aGcfc-anZ3ZOE5lzlMf0wNvgeETIkATu9y7ROpIBbDbrmrW2Id59lebA3i1bsadTdc1unDlsuqjKI00jwJ4XCvBeiZohjEQVzIAtaEeG1PdbCl-XFTZwzGkVGjUn14_rZdwG7dX9vl4fPIM7pBIiHgn5C50FrOle46R2MK8aFSewbeb3mV_AEeoRUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Gamma+Band+EEG+Closely+Related+to+Emotion%3A+Evidence+From+Functional+Network&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Yang%2C+Kai&rft.au=Tong%2C+Li&rft.au=Shu%2C+Jun&rft.au=Zhuang%2C+Ning&rft.date=2020-03-24&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=14&rft.spage=89&rft_id=info:doi/10.3389%2Ffnhum.2020.00089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |