The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelligence

Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 14; p. 63
Main Authors Bermudez-Contreras, Edgar, Clark, Benjamin J., Wilber, Aaron
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 28.07.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2020.00063

Cover

Loading…
Abstract Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
AbstractList Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these impressive technological developments is directly related to progress in artificial neural networks — initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps — an internal representation of space — recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of the technology being used to record from an unprecedented number of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increase in the intersection of AI and neuroscience, mainly as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point – to understand the brain – these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modelled using descriptive, mechanistic and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks—initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps—an internal representation of space—recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point—to understand the brain—these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
Author Clark, Benjamin J.
Wilber, Aaron
Bermudez-Contreras, Edgar
AuthorAffiliation 3 Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, FL , United States
2 Department of Psychology, University of New Mexico , Albuquerque, NM , United States
1 Canadian Centre for Behavioural Neuroscience, University of Lethbridge , Lethbridge, AB , Canada
AuthorAffiliation_xml – name: 1 Canadian Centre for Behavioural Neuroscience, University of Lethbridge , Lethbridge, AB , Canada
– name: 3 Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, FL , United States
– name: 2 Department of Psychology, University of New Mexico , Albuquerque, NM , United States
Author_xml – sequence: 1
  givenname: Edgar
  surname: Bermudez-Contreras
  fullname: Bermudez-Contreras, Edgar
– sequence: 2
  givenname: Benjamin J.
  surname: Clark
  fullname: Clark, Benjamin J.
– sequence: 3
  givenname: Aaron
  surname: Wilber
  fullname: Wilber, Aaron
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32848684$$D View this record in MEDLINE/PubMed
BookMark eNp1kktrGzEUhUVJaB7tvqsy0E03dvUeaVMIIU0MIYEk7VZoNJItM5ZcSRPov688TkMS6EoX6btH93FOwEGIwQLwCcE5IUJ-c8HEzRxDDOcQQk7egWPEOZ4xJMTBi_gInOS8rgTmDL4HRwQLKrigx-DXw8o2N3ZMMRtvg7FNdM39Vhevh-ZGP_plDWNodOibUtE7O0wXeeW3TYnNWSreebOjF6HYYfDLncoHcOj0kO3Hp_MU_Pxx8XB-Nbu-vVycn13PDGO8zJB2jEkksNEIwg4x3RFotREMO0KYtchBjForaGt6rTuBaIckM1T22LSCk1Ow2Ov2Ua_VNvmNTn9U1F5NFzEtla4VmsEqRkzriHNQCk5dbwRnhNUPaZ1DLzpYtb7vtbZjt7G9saEkPbwSff0S_Eot46NqiZRQiCrw9Ukgxd-jzUVtfDZ1JjrYOGaFKWkFpVTIin55g67jmEIdVaVw7Uwiiiv1-WVFz6X8W18F4B4wdX85WfeMIKh2DlGTQ9TOIWpySE3hb1KML9NKa09--H_iX2ZwwQ0
CitedBy_id crossref_primary_10_1007_s42235_023_00454_7
crossref_primary_10_1016_j_cub_2022_06_090
crossref_primary_10_1108_JOSM_05_2024_0220
crossref_primary_10_1016_j_neunet_2022_04_001
crossref_primary_10_3389_fnins_2022_848654
crossref_primary_10_1007_s00422_021_00862_0
crossref_primary_10_1016_j_shpsa_2024_02_001
crossref_primary_10_3390_info15080487
crossref_primary_10_7554_eLife_73097
crossref_primary_10_1038_s41598_023_30307_6
crossref_primary_10_1038_s41598_022_14916_1
crossref_primary_10_1002_ctm2_294
crossref_primary_10_1142_S0129065722500381
crossref_primary_10_3389_fncom_2022_1044659
crossref_primary_10_1126_sciadv_adt0780
crossref_primary_10_1152_jn_00422_2022
crossref_primary_10_1145_3656469
crossref_primary_10_1016_j_autcon_2022_104715
crossref_primary_10_7759_cureus_71213
crossref_primary_10_1371_journal_pcbi_1010320
crossref_primary_10_3389_frvir_2022_875197
crossref_primary_10_1152_physrev_00042_2020
crossref_primary_10_1016_j_tics_2021_02_010
crossref_primary_10_1523_ENEURO_0274_23_2023
crossref_primary_10_3389_fninf_2023_1134405
crossref_primary_10_1116_6_0001836
crossref_primary_10_1093_brain_awad255
Cites_doi 10.3389/fncir.2018.00121
10.1037/bne0000260
10.1038/nn.4658
10.1209/0295-5075/124/50001
10.1016/j.imavis.2007.08.014
10.1371/journal.pcbi.1005268
10.1038/381425a0
10.1126/sciadv.aaz2322
10.3389/fncir.2012.00007
10.1002/hipo.20244
10.1038/s41593-019-0562-5
10.1016/j.neunet.2018.10.017
10.1038/nrn1932
10.1038/s41593-018-0189-y
10.1109/ITW.2015.7133169
10.1038/s41467-019-10722-y
10.1016/0006-8993(71)90358-1
10.1016/j.conb.2018.01.009
10.1016/j.neuron.2018.10.002
10.1002/9780470147658.chpsy0106
10.1146/annurev-neuro-062111-150351
10.3389/fncir.2019.00075
10.1038/nrn.2018.6
10.1126/science.1166466
10.1002/hipo.20939
10.1007/s004220000171
10.1038/s41586-019-1077-7
10.1038/nature14622
10.1016/j.neubiorev.2004.09.012
10.1038/s41598-018-28241-z
10.1002/hipo.22101
10.1016/j.conb.2020.01.015
10.1126/science.aat6766
10.1162/1064546053278946
10.1523/JNEUROSCI.1319-09.2009
10.1016/j.cois.2016.02.011
10.1023/A:1012695023768
10.7554/eLife.32548
10.1016/j.dsp.2017.10.011
10.1038/nn.4058
10.1016/j.neuron.2019.08.034
10.1093/cercor/8.4.346
10.1523/JNEUROSCI.19-10-04090.1999
10.1101/871848
10.1523/JNEUROSCI.0508-17.2018
10.3758/s13414-019-01760-1
10.1038/nn.3311
10.1038/nn.2602
10.1016/j.asd.2017.07.001
10.1371/journal.pcbi.1000291
10.1007/BF02478259
10.1038/s41586-018-0102-6
10.1126/science.1148979
10.1038/s41467-017-00180-9
10.1007/BF00243212
10.1109/IJCNN.2016.7727651
10.1016/j.tins.2011.08.001
10.1038/nn.4650
10.1126/science.1127241
10.1016/j.pneurobio.2019.101693
10.7551/mitpress/6979.001.0001
10.5555/2627435.2670313
10.1016/j.conb.2019.09.011
10.1016/j.tins.2011.08.004
10.1101/786434
10.1038/s41593-018-0209-y
10.1038/nature03721
10.1038/nrn1607
10.1038/nn.3304
10.1038/s41467-020-14578-5
10.1017/S0140525X19001365
10.1016/j.jtbi.2009.11.021
10.1016/j.neuron.2011.12.028
10.1126/science.271.5257.1870
10.1038/nmeth.4549
10.1371/journal.pcbi.1000995
10.1523/JNEUROSCI.10-02-00420.1990
10.1152/jn.00145.2018
10.1038/nn.3968
10.1371/journal.pbio.3000516
10.1037/0033-295X.114.2.340
10.1126/science.aau6595
10.1038/nn1053
10.1038/nrn2258
10.1109/3477.499799
10.1017/S0140525X19001997
10.1152/physrev.00021.2010
10.1016/j.conb.2019.11.005
10.1016/S0166-43280100359-X
10.1016/j.neuron.2011.07.023
10.1162/jocn.1991.3.2.190
10.1038/nature14153
10.1016/j.procs.2018.07.018
10.1007/978-1-4939-1969-7_14
10.1109/TNNLS.2017.2690910
10.1371/journal.pcbi.1006316
10.1126/science.aau4940
10.3389/fncir.2016.00023
10.1523/JNEUROSCI.0741-19.2019
10.3389/fnbot.2017.00004
10.1016/j.neuron.2015.07.006
10.3389/fnbeh.2012.00079
10.1371/journal.pcbi.1006624
10.1016/j.autcon.2019.04.011
10.1038/s41593-019-0517-x
10.1007/s10514-012-9317-9
10.1073/pnas.1803224115
10.1523/JNEUROSCI.0511-14.2014
10.1016/j.tics.2019.02.006
10.1113/JP270666
10.1007/s00422-009-0311-z
10.1126/science.aax4192
10.1016/j.neuron.2013.06.013
10.1016/j.neuron.2015.09.021
10.1126/science.aaf0941
10.1016/j.neuron.2017.06.011
10.1146/annurev.neuro.29.051605.112854
10.1111/cogs.12142
10.1016/S0166-2236(97)01149-1
10.1073/pnas.1618228114
10.1016/j.neuron.2006.01.037
10.1196/annals.1440.002
10.1146/annurev-neuro-062111-150512
10.1037/0735-7044.115.3.571
10.1037/h0061626
10.1016/j.conb.2019.12.002
10.1016/j.neubiorev.2019.09.018
10.1016/j.neunet.2014.09.003
10.1007/s00422-020-00820-2
10.1038/416090a
10.1038/nn.3977
10.1038/s41467-019-11786-6
10.1093/cercor/4.1.27
10.1038/s41593-019-0520-2
10.1016/j.neuron.2017.08.033
10.1038/nature09633
ContentType Journal Article
Copyright Copyright © 2020 Bermudez-Contreras, Clark and Wilber.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Bermudez-Contreras, Clark and Wilber. 2020 Bermudez-Contreras, Clark and Wilber
Copyright_xml – notice: Copyright © 2020 Bermudez-Contreras, Clark and Wilber.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Bermudez-Contreras, Clark and Wilber. 2020 Bermudez-Contreras, Clark and Wilber
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2020.00063
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_53c7f3ff09864fdc865355ab4684d8b0
PMC7399088
32848684
10_3389_fncom_2020_00063
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R21 AA024983
– fundername: NIA NIH HHS
  grantid: K99 AG049090
– fundername: NIA NIH HHS
  grantid: R00 AG049090
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-1af559182ca100b15ab30eac852f335ee1f0217e847cdaab814b195c49d2c7863
IEDL.DBID M48
ISSN 1662-5188
IngestDate Wed Aug 27 01:30:00 EDT 2025
Thu Aug 21 13:59:10 EDT 2025
Fri Sep 05 10:44:14 EDT 2025
Fri Jul 25 11:51:21 EDT 2025
Mon Jul 21 05:51:29 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Tue Jul 01 02:18:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
memory
neuroscience
spatial navigation
learning
artificial intelligence
reinforcement learning
Language English
License Copyright © 2020 Bermudez-Contreras, Clark and Wilber.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-1af559182ca100b15ab30eac852f335ee1f0217e847cdaab814b195c49d2c7863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Blake A. Richards, McGill University, Canada
Reviewed by: Daoyun Ji, Baylor College of Medicine, United States; Daqing Guo, University of Electronic Science and Technology of China, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2020.00063
PMID 32848684
PQID 2427869142
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_53c7f3ff09864fdc865355ab4684d8b0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399088
proquest_miscellaneous_2437844489
proquest_journals_2427869142
pubmed_primary_32848684
crossref_primary_10_3389_fncom_2020_00063
crossref_citationtrail_10_3389_fncom_2020_00063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-28
PublicationDateYYYYMMDD 2020-07-28
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Rosenzweig (B115) 2003; 6
Clark (B38) 2012; 6
Angelaki (B5) 2020; 60
Botvinick (B18) 2019; 23
Graham (B59) 2017; 46
Burak (B21) 2009; 5
Colgin (B40) 2019; 40
Kanitscheider (B72) 2017
Cueva (B42) 2018
Finn (B54) 2017; 3
Gallistel (B57) 1990
Sutherland (B134) 2004; 28
Giocomo (B58) 2011; 71
Stachenfeld (B131) 2017; 20
Ullman (B143) 2019; 363
Sutton (B136) 2018
Frankland (B55) 2005; 6
Krichmar (B76) 2005; 11
Srivastava (B130) 2014; 15
Ryait (B117) 2019; 17
Bermudez Contreras (B14) 2013; 79
Chen (B33) 1994; 101
Almássy (B4) 1998; 8
Sinz (B124) 2019; 103
Solstad (B128) 2006; 16
Navratilova (B101) 2012; 22
O'Keefe (B107) 1978
Burgess (B22) 2008; 1124
Lee (B81) 2012; 35
Knierim (B75) 2012; 35
Montavon (B97) 2018; 73
Wang (B148) 2020; 60
Buzsáki (B24) 2013; 16
Harvey (B63) 2019; 107
Banino (B9) 2018; 26
Euston (B50) 2007; 318
Skaggs (B125) 1994
Sorscher (B129) 2019
Vogt (B145) 2018; 15
Dragoi (B47) 2011; 469
Hinman (B68) 2019; 10
Bermudez Contreras (B13) 2008; 26
Chalmers (B32) 2017; 29
Nitz (B102) 2006; 49
Webb (B150) 2016; 15
Anggraini (B6) 2018; 8
Evans (B52) 2019
Thelen (B140) 2007
Wang (B149) 2018; 362
Bush (B23) 2015; 87
Cohen (B39) 2020; 11
Santoro (B120) 2019; 1904
McCulloch (B88) 1943; 5
Clark (B37) 2018; 132
Munn (B99) 2020; 23
Alexander (B3) 2015; 18
Xu (B157) 2019; 104
Guo (B61) 2018; 124
Krupic (B78) 2015; 518
Mao (B86) 2018; 115
Khamassi (B73) 2012; 6
Noe (B103) 2001; 129
Brette (B19) 2019; 42
Skaggs (B126) 1996; 271
Cazin (B30) 2020; 114
Alexander (B2) 2020; 6
Peyrache (B110) 2015; 18
McNaughton (B91) 1994; 4
Cazin (B29) 2019; 15
Dayan (B44) 2001
Oess (B104) 2017; 11
Bonnevie (B17) 2013; 16
O'Keefe (B106) 1971; 34
Xu (B158) 2019; 13
Boccara (B15) 2010; 13
Munn (B98) 2020; 64
Chersi (B34) 2015; 88
Yoder (B160) 2011; 34
Walker (B147) 2019; 22
O'Keefe (B105) 1996; 381
Lever (B83) 2002; 416
Vu (B146) 2018; 38
Behrens (B11) 2018; 100
Taube (B138) 1990; 10
Lipson (B84) 2016
Jonas (B71) 2017; 13
Schmidhuber (B121) 2014; 61
Peyrache (B109) 2019; 183
B118
Swanson (B137) 2003
Kropff (B77) 2015; 523
Pozzi (B112) 2019
Musall (B100) 2019; 58
Faisal (B53) 2008; 9
Chiel (B35) 1997; 20
Zador (B161) 2019; 10
Hebb (B67) 1949
Hafting (B62) 2005; 436
Bellmund (B12) 2018; 362
Hawkins (B66) 2019; 12
Solstad (B127) 2008; 322
Hawkins (B65) 2016; 10
McNaughton (B92) 1991; 3
Knierim (B74) 2011; 91
Bonner (B16) 2017; 114
Roelfsema (B114) 2018; 19
Alemi (B1) 2019
Mirowski (B95) 2017
Chalmers (B31) 2016; 2016
LaChance (B80) 2019; 365
Mathis (B87) 2018; 21
Wu (B156) 2019; 110
Deshmukh (B45) 2013; 23
Whittington (B153) 2018
Pfeifer (B111) 1999
Schultheiss (B122) 2015; 18
Whishaw (B151) 2001; 127
Byrne (B25) 2007; 114
Zafar (B162) 2018; 133
Lever (B82) 2009; 29
Brunec (B20) 2019
Cullen (B43) 2017; 20
Evans (B51) 2016; 594
Høydal (B69) 2019; 568
Tolman (B142) 1948; 55
Vickerstaff (B144) 2010; 263
Richards (B113) 2019; 22
Yamauchi (B159) 1996; 26
B135
Tishby (B141) 2015
Johnson (B70) 2015
Rumelhart (B116) 1988
McNaughton (B90) 1995
Momennejad (B96) 2018; 7
Cadena (B26) 2019
Kudrimoti (B79) 1999; 19
Frey (B56) 2019
Constantinescu (B41) 2016; 352
Pennartz (B108) 2011; 34
Dudek (B49) 2002
B94
Campbell (B27) 2018; 21
Mao (B85) 2017; 8
Sharp (B123) 2001; 115
Beer (B10) 2015; 39
Destexhe (B46) 2006; 85
Ball (B8) 2013; 34
Whitlock (B152) 2012; 73
Graves (B60) 2013
Arleo (B7) 2000; 83
Duan (B48) 2017
Samu (B119) 2009; 101
Stoianov (B133) 2018; 14
Taube (B139) 2007; 30
Milford (B93) 2010; 6
Steinmetz (B132) 2018; 50
Hassabis (B64) 2017; 95
Cisek (B36) 2019; 81
Wilber (B155) 2017; 95
McNaughton (B89) 2006; 7
Wilber (B154) 2014; 34
Cazé (B28) 2018; 120
References_xml – volume: 12
  start-page: 121
  year: 2019
  ident: B66
  article-title: A framework for intelligence and cortical function based on grid cells in the neocortex
  publication-title: Front. Neural Circ.
  doi: 10.3389/fncir.2018.00121
– volume: 132
  start-page: 416
  year: 2018
  ident: B37
  article-title: The retrosplenial-parietal network and reference frame coordination for spatial navigation
  publication-title: Behav. Neurosci.
  doi: 10.1037/bne0000260
– volume: 20
  start-page: 1465
  year: 2017
  ident: B43
  article-title: Our sense of direction: progress, controversies and challenges
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4658
– volume: 124
  start-page: 1
  year: 2018
  ident: B61
  article-title: Functional importance of noise in neuronal information processing
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/124/50001
– volume: 26
  start-page: 776
  year: 2008
  ident: B13
  article-title: Attention can improve a simple model for visual object recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.08.014
– volume: 13
  start-page: 1
  year: 2017
  ident: B71
  article-title: Could a neuroscientist understand a microprocessor?
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005268
– ident: B135
– volume: 381
  start-page: 425
  year: 1996
  ident: B105
  article-title: Geometric determinants of the neurons
  publication-title: Nature
  doi: 10.1038/381425a0
– volume: 6
  start-page: eaaz2322
  year: 2020
  ident: B2
  article-title: Egocentric boundary vector tuning of the retrosplenial cortex
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz2322
– volume: 6
  start-page: 7
  year: 2012
  ident: B38
  article-title: Vestibular and attractor network basis of the head direction cell signal in subcortical circuits
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2012.00007
– volume: 16
  start-page: 1026
  year: 2006
  ident: B128
  article-title: From grid cells to place cells: a matematical model
  publication-title: Hippocampus
  doi: 10.1002/hipo.20244
– volume: 23
  start-page: 239
  year: 2020
  ident: B99
  article-title: Entorhinal velocity signals reflect environmental geometry
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0562-5
– volume: 110
  start-page: 91
  year: 2019
  ident: B156
  article-title: Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.10.017
– volume: 7
  start-page: 663
  year: 2006
  ident: B89
  article-title: Path integration and the neural basis of the cognitive map
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1932
– volume: 21
  start-page: 1096
  year: 2018
  ident: B27
  article-title: Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0189-y
– volume-title: 2015 IEEE Information Theory Workshop ITW 2015
  year: 2015
  ident: B141
  article-title: Deep learning and the information bottleneck principle
  doi: 10.1109/ITW.2015.7133169
– volume: 10
  start-page: 10722
  year: 2019
  ident: B68
  article-title: Neuronal representation of environmental boundaries in egocentric coordinates
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10722-y
– volume: 34
  start-page: 171
  year: 1971
  ident: B106
  article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(71)90358-1
– volume: 50
  start-page: 92
  year: 2018
  ident: B132
  article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.01.009
– volume: 100
  start-page: 490
  year: 2018
  ident: B11
  article-title: What is a cognitive map? Organizing knowledge for flexible behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.10.002
– start-page: 258
  year: 2007
  ident: B140
  article-title: Dynamic systems theories
  publication-title: Handb. Child. Psychol.
  doi: 10.1002/9780470147658.chpsy0106
– volume: 35
  start-page: 267
  year: 2012
  ident: B75
  article-title: Attractor dynamics of spatially correlated neural activity in the limbic system
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150351
– volume: 13
  start-page: 75
  year: 2019
  ident: B158
  article-title: A comparison of neural decoding methods and population coding across thalamo-cortical head direction cells
  publication-title: Front. Neural Circ.
  doi: 10.3389/fncir.2019.00075
– volume: 19
  start-page: 166
  year: 2018
  ident: B114
  article-title: Control of synaptic plasticity in deep cortical networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2018.6
– volume: 322
  start-page: 1865
  year: 2008
  ident: B127
  article-title: Representation of geometric borders in the enthorinal cortex
  publication-title: Science
  doi: 10.1126/science.1166466
– volume: 22
  start-page: 772
  year: 2012
  ident: B101
  article-title: Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics
  publication-title: Hippocampus
  doi: 10.1002/hipo.20939
– volume: 83
  start-page: 287
  year: 2000
  ident: B7
  article-title: Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity
  publication-title: Biol. Cybern
  doi: 10.1007/s004220000171
– volume: 568
  start-page: 400
  year: 2019
  ident: B69
  article-title: Object-vector coding in the medial entorhinal cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1077-7
– volume: 523
  start-page: 419
  year: 2015
  ident: B77
  article-title: Speed cells in the medial entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature14622
– volume: 28
  start-page: 687
  year: 2004
  ident: B134
  article-title: Rodent spatial navigation: At the crossroads of cognition and movement
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2004.09.012
– start-page: 8484
  year: 2018
  ident: B153
  article-title: Generalisation of structural knowledge in the hippocampal-entorhinal system
  publication-title: Proceedings of the International Conference of Neural Information Processing Systems (NeurIPS)
– start-page: 173
  volume-title: Proceedings of the Seventh International Conference of Neural Information Processing Systems (NIPS)
  year: 1994
  ident: B125
  article-title: A model of the neural basis of the rat's sense of direction
– volume: 8
  start-page: 10110
  year: 2018
  ident: B6
  article-title: Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28241-z
– volume: 23
  start-page: 253
  year: 2013
  ident: B45
  article-title: Influence of local objects on hippocampal representations: landmark vectors and memory
  publication-title: Hippocampus
  doi: 10.1002/hipo.22101
– volume-title: Driverless: Intelligent Cars and the Road Ahead
  year: 2016
  ident: B84
– volume: 64
  start-page: 32
  year: 2020
  ident: B98
  article-title: Multiple head direction signals within entorhinal cortex: origin and function
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2020.01.015
– volume-title: NeurIPS Workshop Neuro-AI
  year: 2019
  ident: B26
  article-title: How well do deep neural networks trained on object recognition characterize the mouse visual system?
– volume-title: The Organization of Behavior
  year: 1949
  ident: B67
– volume: 362
  start-page: eaat6766
  year: 2018
  ident: B12
  article-title: Navigating cognition: spatial codes for human thinking
  publication-title: Science
  doi: 10.1126/science.aat6766
– volume: 11
  start-page: 63
  year: 2005
  ident: B76
  article-title: Brain-based devices for the study of nervous systems and the development of intelligent machines
  publication-title: Artif. Life
  doi: 10.1162/1064546053278946
– volume: 29
  start-page: 9771
  year: 2009
  ident: B82
  article-title: Boundary vector cells in the subiculum of the hippocampal formation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1319-09.2009
– volume: 15
  start-page: 27
  year: 2016
  ident: B150
  article-title: Neural mechanisms of insect navigation
  publication-title: Curr. Opin. Insect. Sci.
  doi: 10.1016/j.cois.2016.02.011
– ident: B118
– volume: 129
  start-page: 79
  year: 2001
  ident: B103
  article-title: What it is like to see: a sensorimotor theory of perceptual experience
  publication-title: Synthese
  doi: 10.1023/A:1012695023768
– volume: 7
  start-page: 1
  year: 2018
  ident: B96
  article-title: Offline replay supports planning in human reinforcement learning
  publication-title: Elife
  doi: 10.7554/eLife.32548
– start-page: 1
  volume-title: 5th International Conference on Learning Representations ICLR 2017e Track Proc
  year: 2019
  ident: B1
  article-title: Deep variational information bottleneck
– volume: 73
  start-page: 1
  year: 2018
  ident: B97
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process A Rev. J.
  doi: 10.1016/j.dsp.2017.10.011
– volume: 18
  start-page: 1143
  year: 2015
  ident: B3
  article-title: Retrosplenial cortex maps the conjunction of internal and external spaces
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4058
– volume: 103
  start-page: 967
  year: 2019
  ident: B124
  article-title: Engineering a less artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.08.034
– volume: 8
  start-page: 346
  year: 1998
  ident: B4
  article-title: Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/8.4.346
– volume: 19
  start-page: 4090
  year: 1999
  ident: B79
  article-title: Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-10-04090.1999
– start-page: 1
  year: 2019
  ident: B56
  article-title: Deep insight : a general framework for interpretting wide-band neural activity
  publication-title: bioRxiv [Preprint]
  doi: 10.1101/871848
– volume: 3
  start-page: 1856
  year: 2017
  ident: B54
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: 34th International Conference on Machine Learning (ICML)
– volume: 38
  start-page: 1601
  year: 2018
  ident: B146
  article-title: A shared vision for machine learning in neuroscience
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0508-17.2018
– volume: 81
  start-page: 2265
  year: 2019
  ident: B36
  article-title: Resynthesizing behavior through phylogenetic refinement
  publication-title: Atten. Percep. Psychophys
  doi: 10.3758/s13414-019-01760-1
– ident: B94
– volume: 16
  start-page: 309
  year: 2013
  ident: B17
  article-title: Grid cells require excitatory drive from the hippocampus
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3311
– volume: 13
  start-page: 987
  year: 2010
  ident: B15
  article-title: Grid cells in pre-and parasubiculum
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2602
– volume: 46
  start-page: 718
  year: 2017
  ident: B59
  article-title: Vision for navigation: what can we learn from ants?
  publication-title: Arthropod. Struct. Dev.
  doi: 10.1016/j.asd.2017.07.001
– volume: 5
  start-page: e1000291
  year: 2009
  ident: B21
  article-title: Accurate path integration in continuous attractor network models of grid cells
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000291
– start-page: 585
  volume-title: The Cognitive Neurosciences
  year: 1995
  ident: B90
  article-title: Vector encoding and the vestibular foundations of spatial cognition: neurophysiological and computational mechanisms
– volume: 5
  start-page: 115
  year: 1943
  ident: B88
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 26
  start-page: 429
  year: 2018
  ident: B9
  article-title: Vector-based navigation using grid-like representations in artificial agents
  publication-title: Nature
  doi: 10.1038/s41586-018-0102-6
– volume: 318
  start-page: 1147
  year: 2007
  ident: B50
  article-title: Fast-forward playback of recent memory sequences in prefrontal cortex during sleep
  publication-title: Science
  doi: 10.1126/science.1148979
– volume: 8
  start-page: 243
  year: 2017
  ident: B85
  article-title: Sparse orthogonal population representation of spatial context in the retrosplenial cortex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00180-9
– volume: 101
  start-page: 8
  year: 1994
  ident: B33
  article-title: Head-direction cells in the rat posterior cortex - anatomical distribution and behavioral modulation
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00243212
– volume: 2016
  start-page: 3522
  year: 2016
  ident: B31
  article-title: Context-switching and adaptation: brain-inspired mechanisms for handling environmental changes
  publication-title: Proc. Int. Jt. Conf. Neural. Netw.
  doi: 10.1109/IJCNN.2016.7727651
– volume: 34
  start-page: 548
  year: 2011
  ident: B108
  article-title: The hippocampal-striatal axis in learning, prediction and goal-directed behavior
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.08.001
– volume: 20
  start-page: 1643
  year: 2017
  ident: B131
  article-title: The hippocampus as a predictive map
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4650
– volume: 85
  start-page: 85
  year: 2006
  ident: B46
  article-title: Neuronal computations with stochastic network states
  publication-title: Science
  doi: 10.1126/science.1127241
– volume-title: Advances in Neural Information Processing Systems (NeurIPS)
  year: 2019
  ident: B52
  article-title: Coordinated hippocampal-entorhinal replay as structural inference
– volume-title: The Organization of Learning
  year: 1990
  ident: B57
– volume: 183
  start-page: 101693
  year: 2019
  ident: B109
  article-title: Thalamocortical processing of the head-direction sense
  publication-title: Prog Neurobiol.
  doi: 10.1016/j.pneurobio.2019.101693
– volume-title: Understanding Intelligence
  year: 1999
  ident: B111
  doi: 10.7551/mitpress/6979.001.0001
– volume-title: Parallel Distributed Processing, Vol. 1
  year: 1988
  ident: B116
– volume: 15
  start-page: 1929
  year: 2014
  ident: B130
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/2627435.2670313
– volume: 58
  start-page: 229
  year: 2019
  ident: B100
  article-title: Harnessing behavioral diversity to understand circuits for cognition
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2019.09.011
– volume: 34
  start-page: 561
  year: 2011
  ident: B160
  article-title: Origins of landmark encoding in the brain
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.08.004
– volume-title: Computational and Mathematical Modeling of Neural Systems.
  year: 2001
  ident: B44
  article-title: Theoretical Neuroscience
– start-page: 1
  year: 2019
  ident: B20
  article-title: Predictive representations in hippocampal and prefrontal hierarchies
  publication-title: bioRxiv [Preprint]
  doi: 10.1101/786434
– volume: 21
  start-page: 1281
  year: 2018
  ident: B87
  article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0209-y
– year: 2019
  ident: B112
  article-title: A biologically plausible learning rule for deep learning in the brain
  publication-title: arXiv [Preprint]
– year: 2013
  ident: B60
  article-title: Generating sequences with recurrent neural networks
  publication-title: arXiv [Preprint]
– volume-title: International Conference on Learning Representations (ICLR).
  year: 2017
  ident: B95
  article-title: Learning to navigate in complex environments
– volume: 436
  start-page: 801
  year: 2005
  ident: B62
  article-title: Microstructure of a spatial map in the entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature03721
– volume: 6
  start-page: 119
  year: 2005
  ident: B55
  article-title: The organization of recent and remote memories
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1607
– volume: 16
  start-page: 130
  year: 2013
  ident: B24
  article-title: Memory, navigation and theta rhythm in the hippocampal-entorhinal system
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3304
– volume: 11
  start-page: 1
  year: 2020
  ident: B39
  article-title: Separability and geometry of object manifolds in deep neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14578-5
– volume: 1904
  start-page: 1
  year: 2019
  ident: B120
  article-title: Is coding a relevant metaphor for building AI? A commentary on is coding a relevant metaphor for the brain?, by romain brette
  publication-title: arXiv.
  doi: 10.1017/S0140525X19001365
– volume: 263
  start-page: 242
  year: 2010
  ident: B144
  article-title: Which coordinate system for modelling path integration?
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2009.11.021
– volume: 73
  start-page: 789
  year: 2012
  ident: B152
  article-title: Functional split between parietal and entorhinal cortices in the rat
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.028
– volume: 271
  start-page: 1870
  year: 1996
  ident: B126
  article-title: Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience
  publication-title: Science
  doi: 10.1126/science.271.5257.1870
– start-page: 1
  volume-title: Advances in Neural Information Processing Systems (NeurIPS)
  year: 2019
  ident: B129
  article-title: A unified theory for the origin of grid cells through the lens of pattern formation
– volume: 15
  start-page: 33
  year: 2018
  ident: B145
  article-title: Machine learning in neuroscience
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4549
– volume-title: Computational Principles of Mobile Robotics
  year: 2002
  ident: B49
– volume: 6
  start-page: e1000995
  year: 2010
  ident: B93
  article-title: Solving navigational uncertainty using grid cells on robots
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000995
– volume: 10
  start-page: 420
  year: 1990
  ident: B138
  article-title: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.10-02-00420.1990
– volume: 120
  start-page: 2877
  year: 2018
  ident: B28
  article-title: Hippocampal replays under the scrutiny of reinforcement learning models
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00145.2018
– volume: 18
  start-page: 569
  year: 2015
  ident: B110
  article-title: Internally organized mechanisms of the head direction sense
  publication-title: Nat. Neurosci
  doi: 10.1038/nn.3968
– volume: 17
  start-page: e3000516
  year: 2019
  ident: B117
  article-title: Data-driven analyses of motor impairments in animal models and neurological disorders
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000516
– volume: 114
  start-page: 340
  year: 2007
  ident: B25
  article-title: Remembering the past and imagining the future : a neural model of spatial memory and imagery
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.114.2.340
– volume: 363
  start-page: 692
  year: 2019
  ident: B143
  article-title: Using neuroscience to develop artificial intelligence
  publication-title: Science
  doi: 10.1126/science.aau6595
– volume: 6
  start-page: 609
  year: 2003
  ident: B115
  article-title: Hippocampal map realignment and spatial learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1053
– volume: 9
  start-page: 292
  year: 2008
  ident: B53
  article-title: Noise in the nervous system
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2258
– volume-title: An Introduction, 2nd Edn
  year: 2018
  ident: B136
  article-title: Reinforcement Learning
– volume: 26
  start-page: 496
  year: 1996
  ident: B159
  article-title: Spatial learning for navigation in dynamic environments
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/3477.499799
– volume: 42
  start-page: e215
  year: 2019
  ident: B19
  article-title: Is coding a relevant metaphor for the brain
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X19001997
– volume: 91
  start-page: 1245
  year: 2011
  ident: B74
  article-title: Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation
  publication-title: Physiol Rev.
  doi: 10.1152/physrev.00021.2010
– volume: 60
  start-page: 12
  year: 2020
  ident: B148
  article-title: Egocentric and allocentric representations of space in the rodent brain
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2019.11.005
– volume: 127
  start-page: 49
  year: 2001
  ident: B151
  article-title: Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-43280100359-X
– volume: 71
  start-page: 589
  year: 2011
  ident: B58
  article-title: Computational models of grid cells
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2011.07.023
– volume: 3
  start-page: 190
  year: 1991
  ident: B92
  article-title: Dead reckoning, landmark learning, and the sense of direction: a neurophysiological and computational hypothesis
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.2.190
– volume: 518
  start-page: 232
  year: 2015
  ident: B78
  article-title: Grid cell symmetry is shaped by environmental geometry
  publication-title: Nature
  doi: 10.1038/nature14153
– volume: 133
  start-page: 141
  year: 2018
  ident: B162
  article-title: Methodology for path planning and optimization of mobile robots: a review
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.018
– start-page: 299
  volume-title: Analysis and Modeling of Coordinated Multi-neuronal Activity
  year: 2015
  ident: B70
  article-title: Reinforcement learning and hippocampal dynamics
  doi: 10.1007/978-1-4939-1969-7_14
– volume: 29
  start-page: 1
  year: 2017
  ident: B32
  article-title: Learning to predict consequences as a method of knowledge transfer in reinforcement learning
  publication-title: IEEE Trans Neural Netw. Learn Syst
  doi: 10.1109/TNNLS.2017.2690910
– start-page: 1
  volume-title: International Conference on Learning Representations (ICLR)
  year: 2018
  ident: B42
  article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
– volume: 14
  start-page: 1
  year: 2018
  ident: B133
  article-title: Model-based spatial navigation in the hippocampus-ventral striatum circuit: a computational analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006316
– volume: 362
  start-page: 945
  year: 2018
  ident: B149
  article-title: Egocentric coding of external items in the lateral entorhinal cortex
  publication-title: Science
  doi: 10.1126/science.aau4940
– volume-title: The Hippocampus as a Cognitive Map
  year: 1978
  ident: B107
– volume: 10
  start-page: 23
  year: 2016
  ident: B65
  article-title: Why neurons have thousands of synapses, a theory of sequence memory in neocortex
  publication-title: Front. Neural Circ.
  doi: 10.3389/fncir.2016.00023
– volume: 40
  start-page: 0741
  year: 2019
  ident: B40
  article-title: Five decades of hippocampal place cells and EEG rhythms in behaving rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0741-19.2019
– volume: 11
  start-page: 4
  year: 2017
  ident: B104
  article-title: A computational model for spatial navigation based on reference frames in the hippocampus, retrosplenial cortex, and posterior parietal cortex
  publication-title: Front. Neurorobot
  doi: 10.3389/fnbot.2017.00004
– volume: 87
  start-page: 507
  year: 2015
  ident: B23
  article-title: Using grid cells for navigation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.07.006
– volume: 6
  start-page: 79
  year: 2012
  ident: B73
  article-title: Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2012.00079
– volume: 15
  start-page: e1006624
  year: 2019
  ident: B29
  article-title: Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006624
– volume: 104
  start-page: 230
  year: 2019
  ident: B157
  article-title: An occupancy grid mapping enhanced visual SLAM for real-time locating applications in indoor GPS-denied environments
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.011
– volume: 22
  start-page: 2060
  year: 2019
  ident: B147
  article-title: Inception loops discover what excites neurons most using deep predictive models
  publication-title: Nat. Neurosci
  doi: 10.1038/s41593-019-0517-x
– volume: 34
  start-page: 149
  year: 2013
  ident: B8
  article-title: OpenRatSLAM: an open source brain-based SLAM system
  publication-title: Auton. Robots
  doi: 10.1007/s10514-012-9317-9
– start-page: 1
  year: 2017
  ident: B48
  article-title: RL2: Fast reinforcement learning via slow reinforcement learning
  publication-title: Fifth International Conference on Learning Representations (ICLR)
– volume: 115
  start-page: 8015
  year: 2018
  ident: B86
  article-title: Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1803224115
– volume: 34
  start-page: 5431
  year: 2014
  ident: B154
  article-title: Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0511-14.2014
– volume: 23
  start-page: 408
  year: 2019
  ident: B18
  article-title: Reinforcement learning, fast and slow
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2019.02.006
– volume: 594
  start-page: 6535
  year: 2016
  ident: B51
  article-title: How environment and self-motion combine in neural representations of space
  publication-title: J. Physiol.
  doi: 10.1113/JP270666
– volume: 101
  start-page: 19
  year: 2009
  ident: B119
  article-title: Robust path integration in the entorhinal grid cell system with hippocampal feed-back
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-009-0311-z
– start-page: 4530
  volume-title: Advances in Neural Information Processing Systems (NIPS)
  year: 2017
  ident: B72
  article-title: Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems
– volume: 365
  start-page: eaax4192
  year: 2019
  ident: B80
  article-title: A sense of space in postrhinal cortex
  publication-title: Science
  doi: 10.1126/science.aax4192
– volume: 79
  start-page: 555
  year: 2013
  ident: B14
  article-title: Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.013
– volume: 88
  start-page: 64
  year: 2015
  ident: B34
  article-title: The cognitive architecture of spatial navigation: hippocampal and striatal contributions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.021
– volume: 352
  start-page: 1464
  year: 2016
  ident: B41
  article-title: Organizing conceptual knowledge in humans with a gridlike code
  publication-title: Science
  doi: 10.1126/science.aaf0941
– volume: 95
  start-page: 245
  year: 2017
  ident: B64
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.011
– volume: 30
  start-page: 181
  year: 2007
  ident: B139
  article-title: The head direction signal: origins and sensory-motor integration
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.112854
– volume: 39
  start-page: 1
  year: 2015
  ident: B10
  article-title: Information processing and dynamics in minimally cognitive agents
  publication-title: Cogn. Sci.
  doi: 10.1111/cogs.12142
– volume: 20
  start-page: 553
  year: 1997
  ident: B35
  article-title: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(97)01149-1
– volume: 114
  start-page: 4793
  year: 2017
  ident: B16
  article-title: Coding of navigational affordances in the human visual system
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1618228114
– volume: 49
  start-page: 747
  year: 2006
  ident: B102
  article-title: Tracking route progression in the posterior parietal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.01.037
– volume-title: Brain Architecture
  year: 2003
  ident: B137
– volume: 1124
  start-page: 77
  year: 2008
  ident: B22
  article-title: Spatial cognition and the brain
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1196/annals.1440.002
– volume: 35
  start-page: 287
  year: 2012
  ident: B81
  article-title: Neural basis of reinforcement learning and decision making
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150512
– volume: 115
  start-page: 571
  year: 2001
  ident: B123
  article-title: Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: Implications for path integration in the head direction cell circuit
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.115.3.571
– volume: 55
  start-page: 189
  year: 1948
  ident: B142
  article-title: Cognitive maps in rats and men
  publication-title: Psychol. Rev.
  doi: 10.1037/h0061626
– volume: 60
  start-page: 136
  year: 2020
  ident: B5
  article-title: The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2019.12.002
– volume: 107
  start-page: 775
  year: 2019
  ident: B63
  article-title: The effects of developmental alcohol exposure on the neurobiology of spatial processing
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2019.09.018
– volume: 61
  start-page: 85
  year: 2014
  ident: B121
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 114
  start-page: 249
  year: 2020
  ident: B30
  article-title: Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization
  publication-title: Biol. Cybern
  doi: 10.1007/s00422-020-00820-2
– volume: 416
  start-page: 236
  year: 2002
  ident: B83
  article-title: Long-term plasticity in hippocampal place-cell representation of environmental geometry
  publication-title: Nature
  doi: 10.1038/416090a
– volume: 18
  start-page: 482
  year: 2015
  ident: B122
  article-title: The compass within
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3977
– volume: 10
  start-page: 3770
  year: 2019
  ident: B161
  article-title: A critique of pure learning: what artificial neural networks can learn from animal brains
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11786-6
– volume: 4
  start-page: 27
  year: 1994
  ident: B91
  article-title: Cortical representation of motion during unrestrained spatial navigation in the rat
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.1.27
– volume: 22
  start-page: 1761
  year: 2019
  ident: B113
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0520-2
– volume: 95
  start-page: 1406
  year: 2017
  ident: B155
  article-title: Laminar organization of encoding and memory reactivation in the parietal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.08.033
– volume: 469
  start-page: 397
  year: 2011
  ident: B47
  article-title: Preplay of future place cell sequences by hippocampal cellular assemblies
  publication-title: Nature
  doi: 10.1038/nature09633
SSID ssj0062650
Score 2.3827918
SecondaryResourceType review_article
Snippet Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 63
SubjectTerms Algorithms
Animal behavior
Animal cognition
Artificial intelligence
Brain mapping
Brain research
Cognitive ability
Computer programs
deep learning
Machine learning
Memory
Motivation
Navigation behavior
Nervous system
Neural networks
Neurobiology
Neuroscience
Neurosciences
reinforcement learning
Spatial discrimination learning
spatial navigation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA3SlZtSrbWjVSIUwcXwksnHJMsqlir0rax0F_JJCzVT6qvgv_cmM298T6Ru3E4yTObkJvee5HIuQsfgVZ3XsAA7r1PLwWe1LinRakst9Z44m8p5x_lSnl3wz5ficqPUV8kJG-WBR-AWgvk-sZRI0RFPwSspwEVax6XiQbnK1sHnrcnUuAdDlC7IeCkJFEwvUi6pIcDzSx4XkWzLCVWt_r8FmH_mSW44ntM9tDtFjPhkHOkT9Cjmp2j_JANb_vYTv8U1h7Meju-jrzDrePlbojLiIeFSdRisDC_tj6qnMWRsc8AQ-eE5Fe7q-havhvqRUVICf9rQ6nyGLk4_fvlw1k6VE1ovhFy11CZgCkAdvKWEOAp4MQJbrBJdYkzESFPhIhFckw_WOkW5o1p4rkPneyXZAdrJQ46HCGsJEYyQMGch8CSdBrRJoCp4QmygsUGLNZTGT7LipbrFjQF6UcA3FXxTwDcV_Aa9m9-4HSU1Huj7vszO3K-IYdcHYCJmMhHzLxNp0NF6bs20Qr-brtQYkZryrkFv5mZYW-XCxOY43Jc-rFccCKxu0PPRFOaRMPDrCj7QoH7LSLaGut2Sr6-qfncPQSFs7i_-x7-9RI8LWuW0uVNHaGd1dx9fQZi0cq_rivgFDwkR8Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0-uKLVOvH1ioRRPBhuWR3s5c8SSstbcFDxErflnxsbKHunu1V8L93Jpvb9krp6yZLwnzPZPgNwAf0qtZpVMDC6ZBX6LNyG5TMtRFGOMetCVTv-DqvD0-q41N5mgpuV6mtcmUTo6H2vaMa-bSgmRC1FlXxefEnp6lR9LqaRmg8hg00wUpOYGNvf_7t-8oWY7Qu-fA4iamYnoaOWkQw36d-Ll6Xa84oYvbfF2je7Ze85YAONuFpihzZ7sDqZ_Co7Z7D1m6HWfPvf-wji72csUi-BT-R-2x-A1XZsj4wmj6M0sbm5m_E1eg7ZjrPMAJkY0vc2fmCLft4yAAtwY5uYXa-gJOD_R9fDvM0QSF3UtbLXJiAGQOmEM4Izq2QxpYcTa2SRShL2bYiUE7Sooty3hirRGWFlq7SvnBI7vIlTLq-a18D0zVGMrJG3nlfhdrqgmvuhfKOc-NFm8F0RcrGJXhxmnJx0WCaQcRvIvEbIn4TiZ_Bp_GPxQCt8cDePeLOuI9AseOH_vJXk3SskaWbhTIETpDzwTtVS4ymjK1qVXlleQY7K942SVOvmhu5yuD9uIw6Rg8npmv7a9pTzlSFiazO4NUgCuNNSvTvCg_IYLYmJGtXXV_pzs8ijvcMg0M08tsPX-sNPCE6UD25UDswWV5et28xEFrad0na_wOStQr6
  priority: 102
  providerName: ProQuest
Title The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/32848684
https://www.proquest.com/docview/2427869142
https://www.proquest.com/docview/2437844489
https://pubmed.ncbi.nlm.nih.gov/PMC7399088
https://doaj.org/article/53c7f3ff09864fdc865355ab4684d8b0
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BK6FeEFA-AmVlJITEIdRObK99QKhFLQWpK4RYtLfIH3FbqSRl2SL67xk72bSLFi57SJxs5JnJm2dP3gC8RFS1TmMAFk6HnCNm5TYokWvDDHOOWhPiesfxRB5N-aeZmF1_Ht1P4M-11C72k5rOz9_8_nH1DgP-bWSciLe7oYmFH8jiY5UWQu5t2ERcktHHj_mwp4CZe-rXyqRE-sWU6jYt195hC-6U-N5WUvEVvEqy_uty0b9LKm9g1OE9uNsnl2Sv84b7cKtuHsD2XoPE-vsVeUVSuWdaR9-Gb-ggZHKtZlmTNpDYoBgdkkzMryS90TbENJ5gkkiGqrnTswuyaNOfdOoT5OMNWc-HMD08-Pr-KO-bLOROCLnImQlIKpBlOMMotUwYW1J8GytRhLIUdc1CpC01opjzxljFuGVaOK594cZKlo9go2mb-gkQLTHZERLN6z0P0uqCauqZ8o5S41mdwe5yKivXK5DHRhjnFTKRaIcq2aGKdqiSHTJ4PVxx0alv_GfsfrTOMC7qZqcD7fyk6sOwEqUbhzIEGlXpg3dKCky4jOVoaa8szWBnadtq6YtVEduRSM14kcGL4TSGYdxbMU3dXsYx5Vhx5Lo6g8edKwxPsnSlDMYrTrLyqKtnmrPTJPU9xvwRceDpP-_5DLbiFMTV5kLtwMZiflk_xzRpYUewuX8w-fxllJYZ8PfDjI1SRPwBohESdg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBJRHoICRAIlDWNuJs_EBoRZa7dI2QqhFvaV-xLQSJEu7BfVP8RsZO492Eeqt18RJrPE3M9_YkxmAl-hVtZGogNxIF6fos2LtchFLxRQzhmrl_H7HbpFN9tNPB-JgCf70_8L4tMreJgZDbRvj98hH3PeEyCRL-fvZz9h3jfKnq30LjRYW29X5bwzZTt9NP-L6vuJ8a3PvwyTuugrERohsHjPlkEUjrTaKUaqZUDqhaH5ywV2SiKpizvP0Cs22sUrpnKWaSWFSabnBKST43huwgjRDohatbGwWn7_0th-jA0Hbw1AM_eTI1T4lhSMlexvIwILzCz0C_kds_83PvOTwtu7A7Y6pkvUWWndhqarvwep6jVH6j3PymoTc0bApvwpfEW2kuCiNWZHGEd_tGNFNCvUr1PFoaqJqS5BxkiEF7-h4RuZN-EhbyoJML9UIvQ_71yLbB7BcN3X1CIjMkDmJDLFibeoyLTmV1LLcGkqVZVUEo16UpenKmfuuGt9LDGu88Msg_NILvwzCj-DN8MSsLeVxxdgNvzrDOF-EO1xoTr6VnU6XIjFjlzhHfYl7Z02eCWRvSqdZntpc0wjW-rUtO8twWl7gOIIXw23UaX9Qo-qqOfNjknGeYuAsI3jYQmGYSYJ8IscPRDBeAMnCVBfv1MdHoW74GMkoOpXHV0_rOdyc7O3ulDvTYvsJ3PIy8XvZPF-D5fnJWfUUSdhcP-uQT-DwupXtL8YVR4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcwtpJnLUPCLW0qy6FqEIU9Rb8iGklSJZ2C-pf49cxdh7tItRbr4mTWON5fGNPvgF4jlFVG4kGmBjp4gxjVqyd4LFUTDFjqFbO73d8LPKd_ez9AT9YgT_9vzC-rLL3icFR28b4PfJx4ntC5JJlydh1ZRF7W9O385-x7yDlT1r7dhqtiuxWZ78xfTt5M9vCtX6RJNPtz-924q7DQGw4zxcxUw4RNUJsoxilmnGlU4quSPDEpSmvKuY8Zq_QhRurlBYs00xyk0mbGJxOiu-9BqsTjIpiBKub28Xepz4OYKbAaXswimmgHLval6ckCM9eB2CwFAhDv4D_gdx_azUvBL_pLbjZoVay0arZbVip6juwtlFjxv7jjLwkoY40bNCvwRfUPFKc02RWpHHEdz5GTSeF-hU4PZqaqNoSRJ9kKMc7PJqTRRM-0tJakNkFvtC7sH8lsr0Ho7qpqwdAZI4oiueoN9ZmLtcyoZJaJqyhVFlWRTDuRVmajtrcd9j4XmKK44VfBuGXXvhlEH4Er4Yn5i2txyVjN_3qDOM8IXe40Bx_Kzv7LnlqJi51jnq6e2eNyDkiOaWzXGRWaBrBer-2ZeclTspznY7g2XAb7dsf2qi6ak79mHQiMkyiZQT3W1UYZpIithD4gQgmS0qyNNXlO_XRYeAQnyAwxQDz8PJpPYXraGTlh1mx-whueJH4be1ErMNocXxaPUY8ttBPOsUn8PWqbe0vti5LsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Neuroscience+of+Spatial+Navigation+and+the+Relationship+to+Artificial+Intelligence&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Bermudez-Contreras%2C+Edgar&rft.au=Clark%2C+Benjamin+J&rft.au=Wilber%2C+Aaron&rft.date=2020-07-28&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=14&rft.spage=63&rft_id=info:doi/10.3389%2Ffncom.2020.00063&rft_id=info%3Apmid%2F32848684&rft.externalDocID=32848684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon