The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelligence
Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 14; p. 63 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
28.07.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5188 1662-5188 |
DOI | 10.3389/fncom.2020.00063 |
Cover
Loading…
Abstract | Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior. |
---|---|
AbstractList | Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these impressive technological developments is directly related to progress in artificial neural networks — initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps — an internal representation of space — recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of the technology being used to record from an unprecedented number of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increase in the intersection of AI and neuroscience, mainly as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point – to understand the brain – these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modelled using descriptive, mechanistic and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior. Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks—initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps—an internal representation of space—recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point—to understand the brain—these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior. Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior. |
Author | Clark, Benjamin J. Wilber, Aaron Bermudez-Contreras, Edgar |
AuthorAffiliation | 3 Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, FL , United States 2 Department of Psychology, University of New Mexico , Albuquerque, NM , United States 1 Canadian Centre for Behavioural Neuroscience, University of Lethbridge , Lethbridge, AB , Canada |
AuthorAffiliation_xml | – name: 1 Canadian Centre for Behavioural Neuroscience, University of Lethbridge , Lethbridge, AB , Canada – name: 3 Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, FL , United States – name: 2 Department of Psychology, University of New Mexico , Albuquerque, NM , United States |
Author_xml | – sequence: 1 givenname: Edgar surname: Bermudez-Contreras fullname: Bermudez-Contreras, Edgar – sequence: 2 givenname: Benjamin J. surname: Clark fullname: Clark, Benjamin J. – sequence: 3 givenname: Aaron surname: Wilber fullname: Wilber, Aaron |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32848684$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktrGzEUhUVJaB7tvqsy0E03dvUeaVMIIU0MIYEk7VZoNJItM5ZcSRPov688TkMS6EoX6btH93FOwEGIwQLwCcE5IUJ-c8HEzRxDDOcQQk7egWPEOZ4xJMTBi_gInOS8rgTmDL4HRwQLKrigx-DXw8o2N3ZMMRtvg7FNdM39Vhevh-ZGP_plDWNodOibUtE7O0wXeeW3TYnNWSreebOjF6HYYfDLncoHcOj0kO3Hp_MU_Pxx8XB-Nbu-vVycn13PDGO8zJB2jEkksNEIwg4x3RFotREMO0KYtchBjForaGt6rTuBaIckM1T22LSCk1Ow2Ov2Ua_VNvmNTn9U1F5NFzEtla4VmsEqRkzriHNQCk5dbwRnhNUPaZ1DLzpYtb7vtbZjt7G9saEkPbwSff0S_Eot46NqiZRQiCrw9Ukgxd-jzUVtfDZ1JjrYOGaFKWkFpVTIin55g67jmEIdVaVw7Uwiiiv1-WVFz6X8W18F4B4wdX85WfeMIKh2DlGTQ9TOIWpySE3hb1KML9NKa09--H_iX2ZwwQ0 |
CitedBy_id | crossref_primary_10_1007_s42235_023_00454_7 crossref_primary_10_1016_j_cub_2022_06_090 crossref_primary_10_1108_JOSM_05_2024_0220 crossref_primary_10_1016_j_neunet_2022_04_001 crossref_primary_10_3389_fnins_2022_848654 crossref_primary_10_1007_s00422_021_00862_0 crossref_primary_10_1016_j_shpsa_2024_02_001 crossref_primary_10_3390_info15080487 crossref_primary_10_7554_eLife_73097 crossref_primary_10_1038_s41598_023_30307_6 crossref_primary_10_1038_s41598_022_14916_1 crossref_primary_10_1002_ctm2_294 crossref_primary_10_1142_S0129065722500381 crossref_primary_10_3389_fncom_2022_1044659 crossref_primary_10_1126_sciadv_adt0780 crossref_primary_10_1152_jn_00422_2022 crossref_primary_10_1145_3656469 crossref_primary_10_1016_j_autcon_2022_104715 crossref_primary_10_7759_cureus_71213 crossref_primary_10_1371_journal_pcbi_1010320 crossref_primary_10_3389_frvir_2022_875197 crossref_primary_10_1152_physrev_00042_2020 crossref_primary_10_1016_j_tics_2021_02_010 crossref_primary_10_1523_ENEURO_0274_23_2023 crossref_primary_10_3389_fninf_2023_1134405 crossref_primary_10_1116_6_0001836 crossref_primary_10_1093_brain_awad255 |
Cites_doi | 10.3389/fncir.2018.00121 10.1037/bne0000260 10.1038/nn.4658 10.1209/0295-5075/124/50001 10.1016/j.imavis.2007.08.014 10.1371/journal.pcbi.1005268 10.1038/381425a0 10.1126/sciadv.aaz2322 10.3389/fncir.2012.00007 10.1002/hipo.20244 10.1038/s41593-019-0562-5 10.1016/j.neunet.2018.10.017 10.1038/nrn1932 10.1038/s41593-018-0189-y 10.1109/ITW.2015.7133169 10.1038/s41467-019-10722-y 10.1016/0006-8993(71)90358-1 10.1016/j.conb.2018.01.009 10.1016/j.neuron.2018.10.002 10.1002/9780470147658.chpsy0106 10.1146/annurev-neuro-062111-150351 10.3389/fncir.2019.00075 10.1038/nrn.2018.6 10.1126/science.1166466 10.1002/hipo.20939 10.1007/s004220000171 10.1038/s41586-019-1077-7 10.1038/nature14622 10.1016/j.neubiorev.2004.09.012 10.1038/s41598-018-28241-z 10.1002/hipo.22101 10.1016/j.conb.2020.01.015 10.1126/science.aat6766 10.1162/1064546053278946 10.1523/JNEUROSCI.1319-09.2009 10.1016/j.cois.2016.02.011 10.1023/A:1012695023768 10.7554/eLife.32548 10.1016/j.dsp.2017.10.011 10.1038/nn.4058 10.1016/j.neuron.2019.08.034 10.1093/cercor/8.4.346 10.1523/JNEUROSCI.19-10-04090.1999 10.1101/871848 10.1523/JNEUROSCI.0508-17.2018 10.3758/s13414-019-01760-1 10.1038/nn.3311 10.1038/nn.2602 10.1016/j.asd.2017.07.001 10.1371/journal.pcbi.1000291 10.1007/BF02478259 10.1038/s41586-018-0102-6 10.1126/science.1148979 10.1038/s41467-017-00180-9 10.1007/BF00243212 10.1109/IJCNN.2016.7727651 10.1016/j.tins.2011.08.001 10.1038/nn.4650 10.1126/science.1127241 10.1016/j.pneurobio.2019.101693 10.7551/mitpress/6979.001.0001 10.5555/2627435.2670313 10.1016/j.conb.2019.09.011 10.1016/j.tins.2011.08.004 10.1101/786434 10.1038/s41593-018-0209-y 10.1038/nature03721 10.1038/nrn1607 10.1038/nn.3304 10.1038/s41467-020-14578-5 10.1017/S0140525X19001365 10.1016/j.jtbi.2009.11.021 10.1016/j.neuron.2011.12.028 10.1126/science.271.5257.1870 10.1038/nmeth.4549 10.1371/journal.pcbi.1000995 10.1523/JNEUROSCI.10-02-00420.1990 10.1152/jn.00145.2018 10.1038/nn.3968 10.1371/journal.pbio.3000516 10.1037/0033-295X.114.2.340 10.1126/science.aau6595 10.1038/nn1053 10.1038/nrn2258 10.1109/3477.499799 10.1017/S0140525X19001997 10.1152/physrev.00021.2010 10.1016/j.conb.2019.11.005 10.1016/S0166-43280100359-X 10.1016/j.neuron.2011.07.023 10.1162/jocn.1991.3.2.190 10.1038/nature14153 10.1016/j.procs.2018.07.018 10.1007/978-1-4939-1969-7_14 10.1109/TNNLS.2017.2690910 10.1371/journal.pcbi.1006316 10.1126/science.aau4940 10.3389/fncir.2016.00023 10.1523/JNEUROSCI.0741-19.2019 10.3389/fnbot.2017.00004 10.1016/j.neuron.2015.07.006 10.3389/fnbeh.2012.00079 10.1371/journal.pcbi.1006624 10.1016/j.autcon.2019.04.011 10.1038/s41593-019-0517-x 10.1007/s10514-012-9317-9 10.1073/pnas.1803224115 10.1523/JNEUROSCI.0511-14.2014 10.1016/j.tics.2019.02.006 10.1113/JP270666 10.1007/s00422-009-0311-z 10.1126/science.aax4192 10.1016/j.neuron.2013.06.013 10.1016/j.neuron.2015.09.021 10.1126/science.aaf0941 10.1016/j.neuron.2017.06.011 10.1146/annurev.neuro.29.051605.112854 10.1111/cogs.12142 10.1016/S0166-2236(97)01149-1 10.1073/pnas.1618228114 10.1016/j.neuron.2006.01.037 10.1196/annals.1440.002 10.1146/annurev-neuro-062111-150512 10.1037/0735-7044.115.3.571 10.1037/h0061626 10.1016/j.conb.2019.12.002 10.1016/j.neubiorev.2019.09.018 10.1016/j.neunet.2014.09.003 10.1007/s00422-020-00820-2 10.1038/416090a 10.1038/nn.3977 10.1038/s41467-019-11786-6 10.1093/cercor/4.1.27 10.1038/s41593-019-0520-2 10.1016/j.neuron.2017.08.033 10.1038/nature09633 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Bermudez-Contreras, Clark and Wilber. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Bermudez-Contreras, Clark and Wilber. 2020 Bermudez-Contreras, Clark and Wilber |
Copyright_xml | – notice: Copyright © 2020 Bermudez-Contreras, Clark and Wilber. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Bermudez-Contreras, Clark and Wilber. 2020 Bermudez-Contreras, Clark and Wilber |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncom.2020.00063 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_53c7f3ff09864fdc865355ab4684d8b0 PMC7399088 32848684 10_3389_fncom_2020_00063 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R21 AA024983 – fundername: NIA NIH HHS grantid: K99 AG049090 – fundername: NIA NIH HHS grantid: R00 AG049090 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c556t-1af559182ca100b15ab30eac852f335ee1f0217e847cdaab814b195c49d2c7863 |
IEDL.DBID | M48 |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 01:30:00 EDT 2025 Thu Aug 21 13:59:10 EDT 2025 Fri Sep 05 10:44:14 EDT 2025 Fri Jul 25 11:51:21 EDT 2025 Mon Jul 21 05:51:29 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Tue Jul 01 02:18:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | deep learning memory neuroscience spatial navigation learning artificial intelligence reinforcement learning |
Language | English |
License | Copyright © 2020 Bermudez-Contreras, Clark and Wilber. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-1af559182ca100b15ab30eac852f335ee1f0217e847cdaab814b195c49d2c7863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Blake A. Richards, McGill University, Canada Reviewed by: Daoyun Ji, Baylor College of Medicine, United States; Daqing Guo, University of Electronic Science and Technology of China, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2020.00063 |
PMID | 32848684 |
PQID | 2427869142 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53c7f3ff09864fdc865355ab4684d8b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399088 proquest_miscellaneous_2437844489 proquest_journals_2427869142 pubmed_primary_32848684 crossref_primary_10_3389_fncom_2020_00063 crossref_citationtrail_10_3389_fncom_2020_00063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationTitleAlternate | Front Comput Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Rosenzweig (B115) 2003; 6 Clark (B38) 2012; 6 Angelaki (B5) 2020; 60 Botvinick (B18) 2019; 23 Graham (B59) 2017; 46 Burak (B21) 2009; 5 Colgin (B40) 2019; 40 Kanitscheider (B72) 2017 Cueva (B42) 2018 Finn (B54) 2017; 3 Gallistel (B57) 1990 Sutherland (B134) 2004; 28 Giocomo (B58) 2011; 71 Stachenfeld (B131) 2017; 20 Ullman (B143) 2019; 363 Sutton (B136) 2018 Frankland (B55) 2005; 6 Krichmar (B76) 2005; 11 Srivastava (B130) 2014; 15 Ryait (B117) 2019; 17 Bermudez Contreras (B14) 2013; 79 Chen (B33) 1994; 101 Almássy (B4) 1998; 8 Sinz (B124) 2019; 103 Solstad (B128) 2006; 16 Navratilova (B101) 2012; 22 O'Keefe (B107) 1978 Burgess (B22) 2008; 1124 Lee (B81) 2012; 35 Knierim (B75) 2012; 35 Montavon (B97) 2018; 73 Wang (B148) 2020; 60 Buzsáki (B24) 2013; 16 Harvey (B63) 2019; 107 Banino (B9) 2018; 26 Euston (B50) 2007; 318 Skaggs (B125) 1994 Sorscher (B129) 2019 Vogt (B145) 2018; 15 Dragoi (B47) 2011; 469 Hinman (B68) 2019; 10 Bermudez Contreras (B13) 2008; 26 Chalmers (B32) 2017; 29 Nitz (B102) 2006; 49 Webb (B150) 2016; 15 Anggraini (B6) 2018; 8 Evans (B52) 2019 Thelen (B140) 2007 Wang (B149) 2018; 362 Bush (B23) 2015; 87 Cohen (B39) 2020; 11 Santoro (B120) 2019; 1904 McCulloch (B88) 1943; 5 Clark (B37) 2018; 132 Munn (B99) 2020; 23 Alexander (B3) 2015; 18 Xu (B157) 2019; 104 Guo (B61) 2018; 124 Krupic (B78) 2015; 518 Mao (B86) 2018; 115 Khamassi (B73) 2012; 6 Noe (B103) 2001; 129 Brette (B19) 2019; 42 Skaggs (B126) 1996; 271 Cazin (B30) 2020; 114 Alexander (B2) 2020; 6 Peyrache (B110) 2015; 18 McNaughton (B91) 1994; 4 Cazin (B29) 2019; 15 Dayan (B44) 2001 Oess (B104) 2017; 11 Bonnevie (B17) 2013; 16 O'Keefe (B106) 1971; 34 Xu (B158) 2019; 13 Boccara (B15) 2010; 13 Munn (B98) 2020; 64 Chersi (B34) 2015; 88 Yoder (B160) 2011; 34 Walker (B147) 2019; 22 O'Keefe (B105) 1996; 381 Lever (B83) 2002; 416 Vu (B146) 2018; 38 Behrens (B11) 2018; 100 Taube (B138) 1990; 10 Lipson (B84) 2016 Jonas (B71) 2017; 13 Schmidhuber (B121) 2014; 61 Peyrache (B109) 2019; 183 B118 Swanson (B137) 2003 Kropff (B77) 2015; 523 Pozzi (B112) 2019 Musall (B100) 2019; 58 Faisal (B53) 2008; 9 Chiel (B35) 1997; 20 Zador (B161) 2019; 10 Hebb (B67) 1949 Hafting (B62) 2005; 436 Bellmund (B12) 2018; 362 Hawkins (B66) 2019; 12 Solstad (B127) 2008; 322 Hawkins (B65) 2016; 10 McNaughton (B92) 1991; 3 Knierim (B74) 2011; 91 Bonner (B16) 2017; 114 Roelfsema (B114) 2018; 19 Alemi (B1) 2019 Mirowski (B95) 2017 Chalmers (B31) 2016; 2016 LaChance (B80) 2019; 365 Mathis (B87) 2018; 21 Wu (B156) 2019; 110 Deshmukh (B45) 2013; 23 Whittington (B153) 2018 Pfeifer (B111) 1999 Schultheiss (B122) 2015; 18 Whishaw (B151) 2001; 127 Byrne (B25) 2007; 114 Zafar (B162) 2018; 133 Lever (B82) 2009; 29 Brunec (B20) 2019 Cullen (B43) 2017; 20 Evans (B51) 2016; 594 Høydal (B69) 2019; 568 Tolman (B142) 1948; 55 Vickerstaff (B144) 2010; 263 Richards (B113) 2019; 22 Yamauchi (B159) 1996; 26 B135 Tishby (B141) 2015 Johnson (B70) 2015 Rumelhart (B116) 1988 McNaughton (B90) 1995 Momennejad (B96) 2018; 7 Cadena (B26) 2019 Kudrimoti (B79) 1999; 19 Frey (B56) 2019 Constantinescu (B41) 2016; 352 Pennartz (B108) 2011; 34 Dudek (B49) 2002 B94 Campbell (B27) 2018; 21 Mao (B85) 2017; 8 Sharp (B123) 2001; 115 Beer (B10) 2015; 39 Destexhe (B46) 2006; 85 Ball (B8) 2013; 34 Whitlock (B152) 2012; 73 Graves (B60) 2013 Arleo (B7) 2000; 83 Duan (B48) 2017 Samu (B119) 2009; 101 Stoianov (B133) 2018; 14 Taube (B139) 2007; 30 Milford (B93) 2010; 6 Steinmetz (B132) 2018; 50 Hassabis (B64) 2017; 95 Cisek (B36) 2019; 81 Wilber (B155) 2017; 95 McNaughton (B89) 2006; 7 Wilber (B154) 2014; 34 Cazé (B28) 2018; 120 |
References_xml | – volume: 12 start-page: 121 year: 2019 ident: B66 article-title: A framework for intelligence and cortical function based on grid cells in the neocortex publication-title: Front. Neural Circ. doi: 10.3389/fncir.2018.00121 – volume: 132 start-page: 416 year: 2018 ident: B37 article-title: The retrosplenial-parietal network and reference frame coordination for spatial navigation publication-title: Behav. Neurosci. doi: 10.1037/bne0000260 – volume: 20 start-page: 1465 year: 2017 ident: B43 article-title: Our sense of direction: progress, controversies and challenges publication-title: Nat. Neurosci. doi: 10.1038/nn.4658 – volume: 124 start-page: 1 year: 2018 ident: B61 article-title: Functional importance of noise in neuronal information processing publication-title: Europhys. Lett. doi: 10.1209/0295-5075/124/50001 – volume: 26 start-page: 776 year: 2008 ident: B13 article-title: Attention can improve a simple model for visual object recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2007.08.014 – volume: 13 start-page: 1 year: 2017 ident: B71 article-title: Could a neuroscientist understand a microprocessor? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005268 – ident: B135 – volume: 381 start-page: 425 year: 1996 ident: B105 article-title: Geometric determinants of the neurons publication-title: Nature doi: 10.1038/381425a0 – volume: 6 start-page: eaaz2322 year: 2020 ident: B2 article-title: Egocentric boundary vector tuning of the retrosplenial cortex publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz2322 – volume: 6 start-page: 7 year: 2012 ident: B38 article-title: Vestibular and attractor network basis of the head direction cell signal in subcortical circuits publication-title: Front Neural Circuits doi: 10.3389/fncir.2012.00007 – volume: 16 start-page: 1026 year: 2006 ident: B128 article-title: From grid cells to place cells: a matematical model publication-title: Hippocampus doi: 10.1002/hipo.20244 – volume: 23 start-page: 239 year: 2020 ident: B99 article-title: Entorhinal velocity signals reflect environmental geometry publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0562-5 – volume: 110 start-page: 91 year: 2019 ident: B156 article-title: Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.10.017 – volume: 7 start-page: 663 year: 2006 ident: B89 article-title: Path integration and the neural basis of the cognitive map publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1932 – volume: 21 start-page: 1096 year: 2018 ident: B27 article-title: Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0189-y – volume-title: 2015 IEEE Information Theory Workshop ITW 2015 year: 2015 ident: B141 article-title: Deep learning and the information bottleneck principle doi: 10.1109/ITW.2015.7133169 – volume: 10 start-page: 10722 year: 2019 ident: B68 article-title: Neuronal representation of environmental boundaries in egocentric coordinates publication-title: Nat. Commun. doi: 10.1038/s41467-019-10722-y – volume: 34 start-page: 171 year: 1971 ident: B106 article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat publication-title: Brain Res. doi: 10.1016/0006-8993(71)90358-1 – volume: 50 start-page: 92 year: 2018 ident: B132 article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.01.009 – volume: 100 start-page: 490 year: 2018 ident: B11 article-title: What is a cognitive map? Organizing knowledge for flexible behavior publication-title: Neuron doi: 10.1016/j.neuron.2018.10.002 – start-page: 258 year: 2007 ident: B140 article-title: Dynamic systems theories publication-title: Handb. Child. Psychol. doi: 10.1002/9780470147658.chpsy0106 – volume: 35 start-page: 267 year: 2012 ident: B75 article-title: Attractor dynamics of spatially correlated neural activity in the limbic system publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150351 – volume: 13 start-page: 75 year: 2019 ident: B158 article-title: A comparison of neural decoding methods and population coding across thalamo-cortical head direction cells publication-title: Front. Neural Circ. doi: 10.3389/fncir.2019.00075 – volume: 19 start-page: 166 year: 2018 ident: B114 article-title: Control of synaptic plasticity in deep cortical networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2018.6 – volume: 322 start-page: 1865 year: 2008 ident: B127 article-title: Representation of geometric borders in the enthorinal cortex publication-title: Science doi: 10.1126/science.1166466 – volume: 22 start-page: 772 year: 2012 ident: B101 article-title: Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics publication-title: Hippocampus doi: 10.1002/hipo.20939 – volume: 83 start-page: 287 year: 2000 ident: B7 article-title: Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity publication-title: Biol. Cybern doi: 10.1007/s004220000171 – volume: 568 start-page: 400 year: 2019 ident: B69 article-title: Object-vector coding in the medial entorhinal cortex publication-title: Nature doi: 10.1038/s41586-019-1077-7 – volume: 523 start-page: 419 year: 2015 ident: B77 article-title: Speed cells in the medial entorhinal cortex publication-title: Nature doi: 10.1038/nature14622 – volume: 28 start-page: 687 year: 2004 ident: B134 article-title: Rodent spatial navigation: At the crossroads of cognition and movement publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2004.09.012 – start-page: 8484 year: 2018 ident: B153 article-title: Generalisation of structural knowledge in the hippocampal-entorhinal system publication-title: Proceedings of the International Conference of Neural Information Processing Systems (NeurIPS) – start-page: 173 volume-title: Proceedings of the Seventh International Conference of Neural Information Processing Systems (NIPS) year: 1994 ident: B125 article-title: A model of the neural basis of the rat's sense of direction – volume: 8 start-page: 10110 year: 2018 ident: B6 article-title: Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation publication-title: Sci. Rep. doi: 10.1038/s41598-018-28241-z – volume: 23 start-page: 253 year: 2013 ident: B45 article-title: Influence of local objects on hippocampal representations: landmark vectors and memory publication-title: Hippocampus doi: 10.1002/hipo.22101 – volume-title: Driverless: Intelligent Cars and the Road Ahead year: 2016 ident: B84 – volume: 64 start-page: 32 year: 2020 ident: B98 article-title: Multiple head direction signals within entorhinal cortex: origin and function publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2020.01.015 – volume-title: NeurIPS Workshop Neuro-AI year: 2019 ident: B26 article-title: How well do deep neural networks trained on object recognition characterize the mouse visual system? – volume-title: The Organization of Behavior year: 1949 ident: B67 – volume: 362 start-page: eaat6766 year: 2018 ident: B12 article-title: Navigating cognition: spatial codes for human thinking publication-title: Science doi: 10.1126/science.aat6766 – volume: 11 start-page: 63 year: 2005 ident: B76 article-title: Brain-based devices for the study of nervous systems and the development of intelligent machines publication-title: Artif. Life doi: 10.1162/1064546053278946 – volume: 29 start-page: 9771 year: 2009 ident: B82 article-title: Boundary vector cells in the subiculum of the hippocampal formation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1319-09.2009 – volume: 15 start-page: 27 year: 2016 ident: B150 article-title: Neural mechanisms of insect navigation publication-title: Curr. Opin. Insect. Sci. doi: 10.1016/j.cois.2016.02.011 – ident: B118 – volume: 129 start-page: 79 year: 2001 ident: B103 article-title: What it is like to see: a sensorimotor theory of perceptual experience publication-title: Synthese doi: 10.1023/A:1012695023768 – volume: 7 start-page: 1 year: 2018 ident: B96 article-title: Offline replay supports planning in human reinforcement learning publication-title: Elife doi: 10.7554/eLife.32548 – start-page: 1 volume-title: 5th International Conference on Learning Representations ICLR 2017e Track Proc year: 2019 ident: B1 article-title: Deep variational information bottleneck – volume: 73 start-page: 1 year: 2018 ident: B97 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit. Signal Process A Rev. J. doi: 10.1016/j.dsp.2017.10.011 – volume: 18 start-page: 1143 year: 2015 ident: B3 article-title: Retrosplenial cortex maps the conjunction of internal and external spaces publication-title: Nat. Neurosci. doi: 10.1038/nn.4058 – volume: 103 start-page: 967 year: 2019 ident: B124 article-title: Engineering a less artificial intelligence publication-title: Neuron doi: 10.1016/j.neuron.2019.08.034 – volume: 8 start-page: 346 year: 1998 ident: B4 article-title: Behavioral constraints in the development of neuronal properties: a cortical model embedded in a real-world device publication-title: Cereb. Cortex doi: 10.1093/cercor/8.4.346 – volume: 19 start-page: 4090 year: 1999 ident: B79 article-title: Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-10-04090.1999 – start-page: 1 year: 2019 ident: B56 article-title: Deep insight : a general framework for interpretting wide-band neural activity publication-title: bioRxiv [Preprint] doi: 10.1101/871848 – volume: 3 start-page: 1856 year: 2017 ident: B54 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: 34th International Conference on Machine Learning (ICML) – volume: 38 start-page: 1601 year: 2018 ident: B146 article-title: A shared vision for machine learning in neuroscience publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0508-17.2018 – volume: 81 start-page: 2265 year: 2019 ident: B36 article-title: Resynthesizing behavior through phylogenetic refinement publication-title: Atten. Percep. Psychophys doi: 10.3758/s13414-019-01760-1 – ident: B94 – volume: 16 start-page: 309 year: 2013 ident: B17 article-title: Grid cells require excitatory drive from the hippocampus publication-title: Nat. Neurosci. doi: 10.1038/nn.3311 – volume: 13 start-page: 987 year: 2010 ident: B15 article-title: Grid cells in pre-and parasubiculum publication-title: Nat. Neurosci. doi: 10.1038/nn.2602 – volume: 46 start-page: 718 year: 2017 ident: B59 article-title: Vision for navigation: what can we learn from ants? publication-title: Arthropod. Struct. Dev. doi: 10.1016/j.asd.2017.07.001 – volume: 5 start-page: e1000291 year: 2009 ident: B21 article-title: Accurate path integration in continuous attractor network models of grid cells publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000291 – start-page: 585 volume-title: The Cognitive Neurosciences year: 1995 ident: B90 article-title: Vector encoding and the vestibular foundations of spatial cognition: neurophysiological and computational mechanisms – volume: 5 start-page: 115 year: 1943 ident: B88 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 26 start-page: 429 year: 2018 ident: B9 article-title: Vector-based navigation using grid-like representations in artificial agents publication-title: Nature doi: 10.1038/s41586-018-0102-6 – volume: 318 start-page: 1147 year: 2007 ident: B50 article-title: Fast-forward playback of recent memory sequences in prefrontal cortex during sleep publication-title: Science doi: 10.1126/science.1148979 – volume: 8 start-page: 243 year: 2017 ident: B85 article-title: Sparse orthogonal population representation of spatial context in the retrosplenial cortex publication-title: Nat. Commun. doi: 10.1038/s41467-017-00180-9 – volume: 101 start-page: 8 year: 1994 ident: B33 article-title: Head-direction cells in the rat posterior cortex - anatomical distribution and behavioral modulation publication-title: Exp. Brain Res. doi: 10.1007/BF00243212 – volume: 2016 start-page: 3522 year: 2016 ident: B31 article-title: Context-switching and adaptation: brain-inspired mechanisms for handling environmental changes publication-title: Proc. Int. Jt. Conf. Neural. Netw. doi: 10.1109/IJCNN.2016.7727651 – volume: 34 start-page: 548 year: 2011 ident: B108 article-title: The hippocampal-striatal axis in learning, prediction and goal-directed behavior publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.08.001 – volume: 20 start-page: 1643 year: 2017 ident: B131 article-title: The hippocampus as a predictive map publication-title: Nat. Neurosci. doi: 10.1038/nn.4650 – volume: 85 start-page: 85 year: 2006 ident: B46 article-title: Neuronal computations with stochastic network states publication-title: Science doi: 10.1126/science.1127241 – volume-title: Advances in Neural Information Processing Systems (NeurIPS) year: 2019 ident: B52 article-title: Coordinated hippocampal-entorhinal replay as structural inference – volume-title: The Organization of Learning year: 1990 ident: B57 – volume: 183 start-page: 101693 year: 2019 ident: B109 article-title: Thalamocortical processing of the head-direction sense publication-title: Prog Neurobiol. doi: 10.1016/j.pneurobio.2019.101693 – volume-title: Understanding Intelligence year: 1999 ident: B111 doi: 10.7551/mitpress/6979.001.0001 – volume-title: Parallel Distributed Processing, Vol. 1 year: 1988 ident: B116 – volume: 15 start-page: 1929 year: 2014 ident: B130 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. doi: 10.5555/2627435.2670313 – volume: 58 start-page: 229 year: 2019 ident: B100 article-title: Harnessing behavioral diversity to understand circuits for cognition publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2019.09.011 – volume: 34 start-page: 561 year: 2011 ident: B160 article-title: Origins of landmark encoding in the brain publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.08.004 – volume-title: Computational and Mathematical Modeling of Neural Systems. year: 2001 ident: B44 article-title: Theoretical Neuroscience – start-page: 1 year: 2019 ident: B20 article-title: Predictive representations in hippocampal and prefrontal hierarchies publication-title: bioRxiv [Preprint] doi: 10.1101/786434 – volume: 21 start-page: 1281 year: 2018 ident: B87 article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0209-y – year: 2019 ident: B112 article-title: A biologically plausible learning rule for deep learning in the brain publication-title: arXiv [Preprint] – year: 2013 ident: B60 article-title: Generating sequences with recurrent neural networks publication-title: arXiv [Preprint] – volume-title: International Conference on Learning Representations (ICLR). year: 2017 ident: B95 article-title: Learning to navigate in complex environments – volume: 436 start-page: 801 year: 2005 ident: B62 article-title: Microstructure of a spatial map in the entorhinal cortex publication-title: Nature doi: 10.1038/nature03721 – volume: 6 start-page: 119 year: 2005 ident: B55 article-title: The organization of recent and remote memories publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1607 – volume: 16 start-page: 130 year: 2013 ident: B24 article-title: Memory, navigation and theta rhythm in the hippocampal-entorhinal system publication-title: Nat. Neurosci. doi: 10.1038/nn.3304 – volume: 11 start-page: 1 year: 2020 ident: B39 article-title: Separability and geometry of object manifolds in deep neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-020-14578-5 – volume: 1904 start-page: 1 year: 2019 ident: B120 article-title: Is coding a relevant metaphor for building AI? A commentary on is coding a relevant metaphor for the brain?, by romain brette publication-title: arXiv. doi: 10.1017/S0140525X19001365 – volume: 263 start-page: 242 year: 2010 ident: B144 article-title: Which coordinate system for modelling path integration? publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2009.11.021 – volume: 73 start-page: 789 year: 2012 ident: B152 article-title: Functional split between parietal and entorhinal cortices in the rat publication-title: Neuron doi: 10.1016/j.neuron.2011.12.028 – volume: 271 start-page: 1870 year: 1996 ident: B126 article-title: Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience publication-title: Science doi: 10.1126/science.271.5257.1870 – start-page: 1 volume-title: Advances in Neural Information Processing Systems (NeurIPS) year: 2019 ident: B129 article-title: A unified theory for the origin of grid cells through the lens of pattern formation – volume: 15 start-page: 33 year: 2018 ident: B145 article-title: Machine learning in neuroscience publication-title: Nat. Methods doi: 10.1038/nmeth.4549 – volume-title: Computational Principles of Mobile Robotics year: 2002 ident: B49 – volume: 6 start-page: e1000995 year: 2010 ident: B93 article-title: Solving navigational uncertainty using grid cells on robots publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000995 – volume: 10 start-page: 420 year: 1990 ident: B138 article-title: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.10-02-00420.1990 – volume: 120 start-page: 2877 year: 2018 ident: B28 article-title: Hippocampal replays under the scrutiny of reinforcement learning models publication-title: J. Neurophysiol. doi: 10.1152/jn.00145.2018 – volume: 18 start-page: 569 year: 2015 ident: B110 article-title: Internally organized mechanisms of the head direction sense publication-title: Nat. Neurosci doi: 10.1038/nn.3968 – volume: 17 start-page: e3000516 year: 2019 ident: B117 article-title: Data-driven analyses of motor impairments in animal models and neurological disorders publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000516 – volume: 114 start-page: 340 year: 2007 ident: B25 article-title: Remembering the past and imagining the future : a neural model of spatial memory and imagery publication-title: Psychol. Rev. doi: 10.1037/0033-295X.114.2.340 – volume: 363 start-page: 692 year: 2019 ident: B143 article-title: Using neuroscience to develop artificial intelligence publication-title: Science doi: 10.1126/science.aau6595 – volume: 6 start-page: 609 year: 2003 ident: B115 article-title: Hippocampal map realignment and spatial learning publication-title: Nat. Neurosci. doi: 10.1038/nn1053 – volume: 9 start-page: 292 year: 2008 ident: B53 article-title: Noise in the nervous system publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2258 – volume-title: An Introduction, 2nd Edn year: 2018 ident: B136 article-title: Reinforcement Learning – volume: 26 start-page: 496 year: 1996 ident: B159 article-title: Spatial learning for navigation in dynamic environments publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/3477.499799 – volume: 42 start-page: e215 year: 2019 ident: B19 article-title: Is coding a relevant metaphor for the brain publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X19001997 – volume: 91 start-page: 1245 year: 2011 ident: B74 article-title: Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation publication-title: Physiol Rev. doi: 10.1152/physrev.00021.2010 – volume: 60 start-page: 12 year: 2020 ident: B148 article-title: Egocentric and allocentric representations of space in the rodent brain publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2019.11.005 – volume: 127 start-page: 49 year: 2001 ident: B151 article-title: Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests publication-title: Behav. Brain Res. doi: 10.1016/S0166-43280100359-X – volume: 71 start-page: 589 year: 2011 ident: B58 article-title: Computational models of grid cells publication-title: Neuron. doi: 10.1016/j.neuron.2011.07.023 – volume: 3 start-page: 190 year: 1991 ident: B92 article-title: Dead reckoning, landmark learning, and the sense of direction: a neurophysiological and computational hypothesis publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.2.190 – volume: 518 start-page: 232 year: 2015 ident: B78 article-title: Grid cell symmetry is shaped by environmental geometry publication-title: Nature doi: 10.1038/nature14153 – volume: 133 start-page: 141 year: 2018 ident: B162 article-title: Methodology for path planning and optimization of mobile robots: a review publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.018 – start-page: 299 volume-title: Analysis and Modeling of Coordinated Multi-neuronal Activity year: 2015 ident: B70 article-title: Reinforcement learning and hippocampal dynamics doi: 10.1007/978-1-4939-1969-7_14 – volume: 29 start-page: 1 year: 2017 ident: B32 article-title: Learning to predict consequences as a method of knowledge transfer in reinforcement learning publication-title: IEEE Trans Neural Netw. Learn Syst doi: 10.1109/TNNLS.2017.2690910 – start-page: 1 volume-title: International Conference on Learning Representations (ICLR) year: 2018 ident: B42 article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization – volume: 14 start-page: 1 year: 2018 ident: B133 article-title: Model-based spatial navigation in the hippocampus-ventral striatum circuit: a computational analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006316 – volume: 362 start-page: 945 year: 2018 ident: B149 article-title: Egocentric coding of external items in the lateral entorhinal cortex publication-title: Science doi: 10.1126/science.aau4940 – volume-title: The Hippocampus as a Cognitive Map year: 1978 ident: B107 – volume: 10 start-page: 23 year: 2016 ident: B65 article-title: Why neurons have thousands of synapses, a theory of sequence memory in neocortex publication-title: Front. Neural Circ. doi: 10.3389/fncir.2016.00023 – volume: 40 start-page: 0741 year: 2019 ident: B40 article-title: Five decades of hippocampal place cells and EEG rhythms in behaving rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0741-19.2019 – volume: 11 start-page: 4 year: 2017 ident: B104 article-title: A computational model for spatial navigation based on reference frames in the hippocampus, retrosplenial cortex, and posterior parietal cortex publication-title: Front. Neurorobot doi: 10.3389/fnbot.2017.00004 – volume: 87 start-page: 507 year: 2015 ident: B23 article-title: Using grid cells for navigation publication-title: Neuron doi: 10.1016/j.neuron.2015.07.006 – volume: 6 start-page: 79 year: 2012 ident: B73 article-title: Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2012.00079 – volume: 15 start-page: e1006624 year: 2019 ident: B29 article-title: Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006624 – volume: 104 start-page: 230 year: 2019 ident: B157 article-title: An occupancy grid mapping enhanced visual SLAM for real-time locating applications in indoor GPS-denied environments publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.011 – volume: 22 start-page: 2060 year: 2019 ident: B147 article-title: Inception loops discover what excites neurons most using deep predictive models publication-title: Nat. Neurosci doi: 10.1038/s41593-019-0517-x – volume: 34 start-page: 149 year: 2013 ident: B8 article-title: OpenRatSLAM: an open source brain-based SLAM system publication-title: Auton. Robots doi: 10.1007/s10514-012-9317-9 – start-page: 1 year: 2017 ident: B48 article-title: RL2: Fast reinforcement learning via slow reinforcement learning publication-title: Fifth International Conference on Learning Representations (ICLR) – volume: 115 start-page: 8015 year: 2018 ident: B86 article-title: Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1803224115 – volume: 34 start-page: 5431 year: 2014 ident: B154 article-title: Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0511-14.2014 – volume: 23 start-page: 408 year: 2019 ident: B18 article-title: Reinforcement learning, fast and slow publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2019.02.006 – volume: 594 start-page: 6535 year: 2016 ident: B51 article-title: How environment and self-motion combine in neural representations of space publication-title: J. Physiol. doi: 10.1113/JP270666 – volume: 101 start-page: 19 year: 2009 ident: B119 article-title: Robust path integration in the entorhinal grid cell system with hippocampal feed-back publication-title: Biol. Cybern. doi: 10.1007/s00422-009-0311-z – start-page: 4530 volume-title: Advances in Neural Information Processing Systems (NIPS) year: 2017 ident: B72 article-title: Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems – volume: 365 start-page: eaax4192 year: 2019 ident: B80 article-title: A sense of space in postrhinal cortex publication-title: Science doi: 10.1126/science.aax4192 – volume: 79 start-page: 555 year: 2013 ident: B14 article-title: Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization publication-title: Neuron doi: 10.1016/j.neuron.2013.06.013 – volume: 88 start-page: 64 year: 2015 ident: B34 article-title: The cognitive architecture of spatial navigation: hippocampal and striatal contributions publication-title: Neuron doi: 10.1016/j.neuron.2015.09.021 – volume: 352 start-page: 1464 year: 2016 ident: B41 article-title: Organizing conceptual knowledge in humans with a gridlike code publication-title: Science doi: 10.1126/science.aaf0941 – volume: 95 start-page: 245 year: 2017 ident: B64 article-title: Neuroscience-inspired artificial intelligence publication-title: Neuron doi: 10.1016/j.neuron.2017.06.011 – volume: 30 start-page: 181 year: 2007 ident: B139 article-title: The head direction signal: origins and sensory-motor integration publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.112854 – volume: 39 start-page: 1 year: 2015 ident: B10 article-title: Information processing and dynamics in minimally cognitive agents publication-title: Cogn. Sci. doi: 10.1111/cogs.12142 – volume: 20 start-page: 553 year: 1997 ident: B35 article-title: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(97)01149-1 – volume: 114 start-page: 4793 year: 2017 ident: B16 article-title: Coding of navigational affordances in the human visual system publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1618228114 – volume: 49 start-page: 747 year: 2006 ident: B102 article-title: Tracking route progression in the posterior parietal cortex publication-title: Neuron doi: 10.1016/j.neuron.2006.01.037 – volume-title: Brain Architecture year: 2003 ident: B137 – volume: 1124 start-page: 77 year: 2008 ident: B22 article-title: Spatial cognition and the brain publication-title: Ann. N.Y. Acad. Sci. doi: 10.1196/annals.1440.002 – volume: 35 start-page: 287 year: 2012 ident: B81 article-title: Neural basis of reinforcement learning and decision making publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150512 – volume: 115 start-page: 571 year: 2001 ident: B123 article-title: Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: Implications for path integration in the head direction cell circuit publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.115.3.571 – volume: 55 start-page: 189 year: 1948 ident: B142 article-title: Cognitive maps in rats and men publication-title: Psychol. Rev. doi: 10.1037/h0061626 – volume: 60 start-page: 136 year: 2020 ident: B5 article-title: The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2019.12.002 – volume: 107 start-page: 775 year: 2019 ident: B63 article-title: The effects of developmental alcohol exposure on the neurobiology of spatial processing publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2019.09.018 – volume: 61 start-page: 85 year: 2014 ident: B121 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 114 start-page: 249 year: 2020 ident: B30 article-title: Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization publication-title: Biol. Cybern doi: 10.1007/s00422-020-00820-2 – volume: 416 start-page: 236 year: 2002 ident: B83 article-title: Long-term plasticity in hippocampal place-cell representation of environmental geometry publication-title: Nature doi: 10.1038/416090a – volume: 18 start-page: 482 year: 2015 ident: B122 article-title: The compass within publication-title: Nat. Neurosci. doi: 10.1038/nn.3977 – volume: 10 start-page: 3770 year: 2019 ident: B161 article-title: A critique of pure learning: what artificial neural networks can learn from animal brains publication-title: Nat. Commun. doi: 10.1038/s41467-019-11786-6 – volume: 4 start-page: 27 year: 1994 ident: B91 article-title: Cortical representation of motion during unrestrained spatial navigation in the rat publication-title: Cereb. Cortex doi: 10.1093/cercor/4.1.27 – volume: 22 start-page: 1761 year: 2019 ident: B113 article-title: A deep learning framework for neuroscience publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0520-2 – volume: 95 start-page: 1406 year: 2017 ident: B155 article-title: Laminar organization of encoding and memory reactivation in the parietal cortex publication-title: Neuron doi: 10.1016/j.neuron.2017.08.033 – volume: 469 start-page: 397 year: 2011 ident: B47 article-title: Preplay of future place cell sequences by hippocampal cellular assemblies publication-title: Nature doi: 10.1038/nature09633 |
SSID | ssj0062650 |
Score | 2.3827918 |
SecondaryResourceType | review_article |
Snippet | Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 63 |
SubjectTerms | Algorithms Animal behavior Animal cognition Artificial intelligence Brain mapping Brain research Cognitive ability Computer programs deep learning Machine learning Memory Motivation Navigation behavior Nervous system Neural networks Neurobiology Neuroscience Neurosciences reinforcement learning Spatial discrimination learning spatial navigation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxUxFA3SlZtSrbWjVSIUwcXwksnHJMsqlir0rax0F_JJCzVT6qvgv_cmM298T6Ru3E4yTObkJvee5HIuQsfgVZ3XsAA7r1PLwWe1LinRakst9Z44m8p5x_lSnl3wz5ficqPUV8kJG-WBR-AWgvk-sZRI0RFPwSspwEVax6XiQbnK1sHnrcnUuAdDlC7IeCkJFEwvUi6pIcDzSx4XkWzLCVWt_r8FmH_mSW44ntM9tDtFjPhkHOkT9Cjmp2j_JANb_vYTv8U1h7Meju-jrzDrePlbojLiIeFSdRisDC_tj6qnMWRsc8AQ-eE5Fe7q-havhvqRUVICf9rQ6nyGLk4_fvlw1k6VE1ovhFy11CZgCkAdvKWEOAp4MQJbrBJdYkzESFPhIhFckw_WOkW5o1p4rkPneyXZAdrJQ46HCGsJEYyQMGch8CSdBrRJoCp4QmygsUGLNZTGT7LipbrFjQF6UcA3FXxTwDcV_Aa9m9-4HSU1Huj7vszO3K-IYdcHYCJmMhHzLxNp0NF6bs20Qr-brtQYkZryrkFv5mZYW-XCxOY43Jc-rFccCKxu0PPRFOaRMPDrCj7QoH7LSLaGut2Sr6-qfncPQSFs7i_-x7-9RI8LWuW0uVNHaGd1dx9fQZi0cq_rivgFDwkR8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0-uKLVOvH1ioRRPBhuWR3s5c8SSstbcFDxErflnxsbKHunu1V8L93Jpvb9krp6yZLwnzPZPgNwAf0qtZpVMDC6ZBX6LNyG5TMtRFGOMetCVTv-DqvD0-q41N5mgpuV6mtcmUTo6H2vaMa-bSgmRC1FlXxefEnp6lR9LqaRmg8hg00wUpOYGNvf_7t-8oWY7Qu-fA4iamYnoaOWkQw36d-Ll6Xa84oYvbfF2je7Ze85YAONuFpihzZ7sDqZ_Co7Z7D1m6HWfPvf-wji72csUi-BT-R-2x-A1XZsj4wmj6M0sbm5m_E1eg7ZjrPMAJkY0vc2fmCLft4yAAtwY5uYXa-gJOD_R9fDvM0QSF3UtbLXJiAGQOmEM4Izq2QxpYcTa2SRShL2bYiUE7Sooty3hirRGWFlq7SvnBI7vIlTLq-a18D0zVGMrJG3nlfhdrqgmvuhfKOc-NFm8F0RcrGJXhxmnJx0WCaQcRvIvEbIn4TiZ_Bp_GPxQCt8cDePeLOuI9AseOH_vJXk3SskaWbhTIETpDzwTtVS4ymjK1qVXlleQY7K942SVOvmhu5yuD9uIw6Rg8npmv7a9pTzlSFiazO4NUgCuNNSvTvCg_IYLYmJGtXXV_pzs8ijvcMg0M08tsPX-sNPCE6UD25UDswWV5et28xEFrad0na_wOStQr6 priority: 102 providerName: ProQuest |
Title | The Neuroscience of Spatial Navigation and the Relationship to Artificial Intelligence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32848684 https://www.proquest.com/docview/2427869142 https://www.proquest.com/docview/2437844489 https://pubmed.ncbi.nlm.nih.gov/PMC7399088 https://doaj.org/article/53c7f3ff09864fdc865355ab4684d8b0 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BK6FeEFA-AmVlJITEIdRObK99QKhFLQWpK4RYtLfIH3FbqSRl2SL67xk72bSLFi57SJxs5JnJm2dP3gC8RFS1TmMAFk6HnCNm5TYokWvDDHOOWhPiesfxRB5N-aeZmF1_Ht1P4M-11C72k5rOz9_8_nH1DgP-bWSciLe7oYmFH8jiY5UWQu5t2ERcktHHj_mwp4CZe-rXyqRE-sWU6jYt195hC-6U-N5WUvEVvEqy_uty0b9LKm9g1OE9uNsnl2Sv84b7cKtuHsD2XoPE-vsVeUVSuWdaR9-Gb-ggZHKtZlmTNpDYoBgdkkzMryS90TbENJ5gkkiGqrnTswuyaNOfdOoT5OMNWc-HMD08-Pr-KO-bLOROCLnImQlIKpBlOMMotUwYW1J8GytRhLIUdc1CpC01opjzxljFuGVaOK594cZKlo9go2mb-gkQLTHZERLN6z0P0uqCauqZ8o5S41mdwe5yKivXK5DHRhjnFTKRaIcq2aGKdqiSHTJ4PVxx0alv_GfsfrTOMC7qZqcD7fyk6sOwEqUbhzIEGlXpg3dKCky4jOVoaa8szWBnadtq6YtVEduRSM14kcGL4TSGYdxbMU3dXsYx5Vhx5Lo6g8edKwxPsnSlDMYrTrLyqKtnmrPTJPU9xvwRceDpP-_5DLbiFMTV5kLtwMZiflk_xzRpYUewuX8w-fxllJYZ8PfDjI1SRPwBohESdg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXBJRHoICRAIlDWNuJs_EBoRZa7dI2QqhFvaV-xLQSJEu7BfVP8RsZO492Eeqt18RJrPE3M9_YkxmAl-hVtZGogNxIF6fos2LtchFLxRQzhmrl_H7HbpFN9tNPB-JgCf70_8L4tMreJgZDbRvj98hH3PeEyCRL-fvZz9h3jfKnq30LjRYW29X5bwzZTt9NP-L6vuJ8a3PvwyTuugrERohsHjPlkEUjrTaKUaqZUDqhaH5ywV2SiKpizvP0Cs22sUrpnKWaSWFSabnBKST43huwgjRDohatbGwWn7_0th-jA0Hbw1AM_eTI1T4lhSMlexvIwILzCz0C_kds_83PvOTwtu7A7Y6pkvUWWndhqarvwep6jVH6j3PymoTc0bApvwpfEW2kuCiNWZHGEd_tGNFNCvUr1PFoaqJqS5BxkiEF7-h4RuZN-EhbyoJML9UIvQ_71yLbB7BcN3X1CIjMkDmJDLFibeoyLTmV1LLcGkqVZVUEo16UpenKmfuuGt9LDGu88Msg_NILvwzCj-DN8MSsLeVxxdgNvzrDOF-EO1xoTr6VnU6XIjFjlzhHfYl7Z02eCWRvSqdZntpc0wjW-rUtO8twWl7gOIIXw23UaX9Qo-qqOfNjknGeYuAsI3jYQmGYSYJ8IscPRDBeAMnCVBfv1MdHoW74GMkoOpXHV0_rOdyc7O3ulDvTYvsJ3PIy8XvZPF-D5fnJWfUUSdhcP-uQT-DwupXtL8YVR4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcwtpJnLUPCLW0qy6FqEIU9Rb8iGklSJZ2C-pf49cxdh7tItRbr4mTWON5fGNPvgF4jlFVG4kGmBjp4gxjVqyd4LFUTDFjqFbO73d8LPKd_ez9AT9YgT_9vzC-rLL3icFR28b4PfJx4ntC5JJlydh1ZRF7W9O385-x7yDlT1r7dhqtiuxWZ78xfTt5M9vCtX6RJNPtz-924q7DQGw4zxcxUw4RNUJsoxilmnGlU4quSPDEpSmvKuY8Zq_QhRurlBYs00xyk0mbGJxOiu-9BqsTjIpiBKub28Xepz4OYKbAaXswimmgHLval6ckCM9eB2CwFAhDv4D_gdx_azUvBL_pLbjZoVay0arZbVip6juwtlFjxv7jjLwkoY40bNCvwRfUPFKc02RWpHHEdz5GTSeF-hU4PZqaqNoSRJ9kKMc7PJqTRRM-0tJakNkFvtC7sH8lsr0Ho7qpqwdAZI4oiueoN9ZmLtcyoZJaJqyhVFlWRTDuRVmajtrcd9j4XmKK44VfBuGXXvhlEH4Er4Yn5i2txyVjN_3qDOM8IXe40Bx_Kzv7LnlqJi51jnq6e2eNyDkiOaWzXGRWaBrBer-2ZeclTspznY7g2XAb7dsf2qi6ak79mHQiMkyiZQT3W1UYZpIithD4gQgmS0qyNNXlO_XRYeAQnyAwxQDz8PJpPYXraGTlh1mx-whueJH4be1ErMNocXxaPUY8ttBPOsUn8PWqbe0vti5LsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Neuroscience+of+Spatial+Navigation+and+the+Relationship+to+Artificial+Intelligence&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Bermudez-Contreras%2C+Edgar&rft.au=Clark%2C+Benjamin+J&rft.au=Wilber%2C+Aaron&rft.date=2020-07-28&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=14&rft.spage=63&rft_id=info:doi/10.3389%2Ffncom.2020.00063&rft_id=info%3Apmid%2F32848684&rft.externalDocID=32848684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |