Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain–Computer Interfaces
An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic l...
Saved in:
Published in | Frontiers in human neuroscience Vol. 13; p. 250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
25.07.2019
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2019.00250 |
Cover
Abstract | An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli to maintain the user's motivation during the BCI operation; however, most ALS patients who have taken part in auditory ERP-based BCIs tend to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI could overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single-channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under an offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis measured online performances on the different day of offline and first online analyses on a different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI. |
---|---|
AbstractList | An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli to maintain the user's motivation during the BCI operation; however, most ALS patients who have taken part in auditory ERP-based BCIs tend to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI could overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single-channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under an offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis measured online performances on the different day of offline and first online analyses on a different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI.An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli to maintain the user's motivation during the BCI operation; however, most ALS patients who have taken part in auditory ERP-based BCIs tend to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI could overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single-channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under an offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis measured online performances on the different day of offline and first online analyses on a different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI. An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli to maintain the user's motivation during the BCI operation; however, most ALS patients who have taken part in auditory ERP-based BCIs tend to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI could overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single-channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under an offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis measured online performances on the different day of offline and first online analyses on a different day (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI. Electroencephalogram (EEG)-based brain–computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the brain. This technology has the potential to provide patients who have severe generalized myopathy, such as those suffering from amyotrophic lateral sclerosis (ALS), with the ability to communicate. Recently, auditory oddball paradigms have been developed to implement more practical event-related potential (ERP)-based BCIs because they can operate without ocular activities. These paradigms generally make use of clinical (over 16-channel) EEG devices and natural sound stimuli for maintaining the user’s motivation during the BCI operation; however, most of ALS patients who took part in auditory ERP-based BCIs tended to complain about the following factors: (i) total device cost and (ii) setup time. The development of a portable auditory ERP-based BCI would overcome considerable obstacles that prevent the use of this technology in communication in everyday life. To address this issue, we analyzed prefrontal single-channel EEG data acquired from a consumer-grade single- channel EEG device using a natural sound-based auditory oddball paradigm. In our experiments, EEG data was gathered from nine healthy subjects and one ALS patient. The performance of auditory ERP-based BCI was quantified under offline condition and two online conditions. The offline analysis indicated that our paradigm maintained a high level of detection accuracy (%) and ITR (bits/min) across all subjects through a cross-validation procedure (for five commands: 70.0 ± 16.1 and 1.29 ± 0.93, for four commands: 73.8 ± 14.2 and 1.16 ± 0.78, for three commands: 78.7 ± 11.8 and 0.95 ± 0.61, and for two commands: 85.7 ± 8.6 and 0.63 ± 0.38). Furthermore, the first online analysis demonstrated that our paradigm also achieved high performance for new data in an online data acquisition stream (for three commands: 80.0 ± 19.4 and 1.16 ± 0.83). The second online analysis demonstrated online performances on the different day of offline and first online analyses (for three commands: 62.5 ± 14.3 and 0.43 ± 0.36). These results indicate that prefrontal single-channel EEGs have the potential to contribute to the development of a user-friendly portable auditory ERP-based BCI. |
Author | Ogino, Mikito Mitsukura, Yasue Muto, Masatane Kanoga, Suguru |
AuthorAffiliation | 1 Dentsu ScienceJam Inc. , Tokyo , Japan 3 WITH ALS General Incorporated Foundation , Tokyo , Japan 4 School of Integrated Design Engineering, Keio University , Kanagawa , Japan 2 National Institute of Advanced Industrial Science and Technology , Tokyo , Japan |
AuthorAffiliation_xml | – name: 1 Dentsu ScienceJam Inc. , Tokyo , Japan – name: 2 National Institute of Advanced Industrial Science and Technology , Tokyo , Japan – name: 4 School of Integrated Design Engineering, Keio University , Kanagawa , Japan – name: 3 WITH ALS General Incorporated Foundation , Tokyo , Japan |
Author_xml | – sequence: 1 givenname: Mikito surname: Ogino fullname: Ogino, Mikito – sequence: 2 givenname: Suguru surname: Kanoga fullname: Kanoga, Suguru – sequence: 3 givenname: Masatane surname: Muto fullname: Muto, Masatane – sequence: 4 givenname: Yasue surname: Mitsukura fullname: Mitsukura, Yasue |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31404255$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstqGzEUhoeS0lzafVdF0E024-oy0sxsCo7rJIZATS9rIUtnbJmx5Eqagnd9h75hn6SynYYk0I0kjr7zcw7_f16cOO-gKN4SPGKsaT90bjVsRhSTdoQx5fhFcUaEoCUngpw8ep8W5zGuMRZUcPKqOGWkwhXl_KxYj53qd9FG5Ds0D9AF75Lq0Vfrlj2Uk5VyDno0nd6gTyop1PmA5j4ktegBjQdjkw87NP0yL69UBIOugrLuz6_fE7_ZDgkCmrl8dkpDfF287FQf4c39fVF8v55-m9yWd59vZpPxXak5F6kkbVPXlVC1wKZiXQctdKY2jHHOiRGiBdw1Lc3b8sZgTaiGmkANjEFDMAZ2UcyOusartdwGu1FhJ72y8lDwYSlVSFb3IDWlCgDjRWPaCteNMoYQjanqiKHEkKz18ai1HRYbMBpcCqp_Ivr0x9mVXPqfUuRBW8KywOW9QPA_BohJbmzU0PfKgR-ipLSmNROU0Yy-f4au_RCyPXuq4bitBBaZevd4oodR_lmaAXwEdPAxZkcfEILlPjXykBq5T408pCa3iGct2iaVrN_vZPv_N_4FtDHH5Q |
CitedBy_id | crossref_primary_10_1109_JBHI_2023_3314197 crossref_primary_10_3390_s24206734 crossref_primary_10_1088_1741_2552_ac9edd crossref_primary_10_3390_a13100259 crossref_primary_10_3390_s22072566 crossref_primary_10_3390_brainsci11010039 crossref_primary_10_1109_ACCESS_2021_3067337 crossref_primary_10_1016_j_bspc_2023_104573 crossref_primary_10_1016_j_bspc_2023_105622 crossref_primary_10_1088_2057_1976_ad12f9 crossref_primary_10_1088_1741_2552_abdd44 crossref_primary_10_3389_fnhum_2020_00173 crossref_primary_10_1088_2057_1976_ad9bb6 crossref_primary_10_1109_ACCESS_2020_3046993 crossref_primary_10_1027_0269_8803_a000282 crossref_primary_10_3390_s20061545 crossref_primary_10_1016_j_bspc_2024_107396 crossref_primary_10_1038_s41598_021_90437_7 crossref_primary_10_1088_1741_2552_ac40a1 crossref_primary_10_1177_1550059420946648 crossref_primary_10_1109_TNSRE_2022_3164126 crossref_primary_10_3390_s24051554 crossref_primary_10_1016_j_pscychresns_2021_111424 crossref_primary_10_1016_j_compbiomed_2021_104246 crossref_primary_10_3390_s23031235 crossref_primary_10_1109_TNSRE_2021_3054733 crossref_primary_10_3390_s22030931 crossref_primary_10_3389_fnins_2023_1278652 crossref_primary_10_1016_j_dib_2021_106826 crossref_primary_10_1007_s00521_020_05393_6 |
Cites_doi | 10.3389/fnins.2011.00099 10.1016/S1388-2457(02)00057-3 10.1186/s12883-016-0782-1 10.1016/j.clinph.2015.08.007 10.1016/j.clinph.2012.08.006 10.1088/1741-2560/9/3/036013 10.3389/fnins.2018.00307 10.1371/journal.pone.0009813 10.1109/TBME.2002.803536 10.3389/fnins.2017.00109 10.1088/1741-2560/3/4/007 10.1016/j.ijpsycho.2005.10.015 10.1016/j.jneumeth.2007.02.009 10.1016/j.ijpsycho.2013.08.010 10.1007/s11571-017-9456-y 10.1016/j.jneumeth.2017.01.011 10.3389/fnhum.2017.00068 10.1016/j.compbiomed.2017.03.011 10.1111/j.1469-8986.2008.00783.x 10.1371/journal.pone.0098322 10.1016/j.ijpsycho.2016.06.006 10.1109/IEMBS.2010.5627379 10.1109/TNSRE.2016.2627556 10.3389/fnins.2015.00207 10.3389/fnins.2017.00522 10.1016/j.clinph.2010.01.034 10.1016/j.bspc.2016.09.005 10.1016/j.clinph.2005.06.027 10.3389/fnins.2011.00112 10.3389/fnhum.2014.01039 10.1016/j.clinph.2015.04.054 10.1088/1741-2560/11/3/035003 10.3389/fnhum.2018.00391 10.1002/hbm.22558 10.1016/j.clinph.2010.10.029 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Ogino, Kanoga, Muto and Mitsukura. 2019 Ogino, Kanoga, Muto and Mitsukura |
Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Ogino, Kanoga, Muto and Mitsukura. 2019 Ogino, Kanoga, Muto and Mitsukura |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2019.00250 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_c22aee00b8d94078add11c02af1d21d1 PMC6669913 31404255 10_3389_fnhum_2019_00250 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IHW IPNFZ IPY ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c556t-1987746a760d43ffe9efd7d335551d669e0f89225058d0c12ce71e7e33e8100e3 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:16:51 EDT 2025 Thu Aug 21 14:30:39 EDT 2025 Thu Sep 04 20:25:59 EDT 2025 Fri Jul 25 12:04:39 EDT 2025 Thu Jan 02 23:01:14 EST 2025 Tue Jul 01 03:44:25 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | auditory event-related potential brain–computer interface portable measurement device single-channel data electroencephalogram |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-1987746a760d43ffe9efd7d335551d669e0f89225058d0c12ce71e7e33e8100e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Tamer Demiralp, Istanbul University, Turkey Reviewed by: Han-Jeong Hwang, Kumoh National Institute of Technology, South Korea; Sebastian Halder, University of Essex, United Kingdom |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2019.00250 |
PMID | 31404255 |
PQID | 2285094606 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c22aee00b8d94078add11c02af1d21d1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6669913 proquest_miscellaneous_2272736232 proquest_journals_2285094606 pubmed_primary_31404255 crossref_primary_10_3389_fnhum_2019_00250 crossref_citationtrail_10_3389_fnhum_2019_00250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-25 |
PublicationDateYYYYMMDD | 2019-07-25 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2019 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Krigolson (B22) 2017; 11 Huang (B15) 2018; 12 Spataro (B35) 2017; 11 Schreuder (B32) 2011; 5 Sellers (B33) 2006; 117 Hill (B10) 2014; 11 McFarland (B25) 2011; 122 Furdea (B5) 2009; 46 Jasper (B17) 1958; 10 Höhne (B12) 2011; 5 Wang (B36) 2017; 25 Schreuder (B31) 2010; 5 Rogers (B30) 2016; 106 Erlbeck (B4) 2017; 17 Lopez-Gordo (B24) 2012; 9 Heo (B8) 2017; 84 Hübner (B16) 2018; 12 Minguillon (B26) 2017; 31 De Vos (B3) 2014; 91 Paraskevopoulos (B29) 2014; 35 Holm (B14) 2006; 61 Cheng (B2) 2002; 49 Hammer (B7) 2018; 12 Krusienski (B23) 2006; 3 Nijboer (B27) 2008; 167 Wolpaw (B37) 2002; 113 Höhne (B11) 2010 Halder (B6) 2016; 127 Käthner (B20) 2013; 124 Hill (B9) 2005 Käthner (B19) 2015; 9 Höhne (B13) 2014; 9 Kaongoen (B18) 2017; 279 Simon (B34) 2015; 8 Baykara (B1) 2016; 127 Onishi (B28) 2017; 11 Kleih (B21) 2010; 121 |
References_xml | – volume: 5 start-page: 99 year: 2011 ident: B12 article-title: A novel 9-class auditory ERP paradigm driving a predictive text entry system publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00099 – volume: 113 start-page: 767 year: 2002 ident: B37 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 17 start-page: 3 year: 2017 ident: B4 article-title: Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis-implications for brain-computer interfaces (BCI) publication-title: BMC Neurol. doi: 10.1186/s12883-016-0782-1 – volume: 127 start-page: 1288 year: 2016 ident: B6 article-title: Training leads to increased auditory brain–computer interface performance of end-users with motor impairments publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.08.007 – volume: 124 start-page: 327 year: 2013 ident: B20 article-title: A portable auditory P300 brain–computer interface with directional cues publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.08.006 – volume: 9 start-page: 036013 year: 2012 ident: B24 article-title: An auditory brain–computer interface evoked by natural speech publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/3/036013 – volume: 12 start-page: 307 year: 2018 ident: B7 article-title: Psychological predictors of visual and auditory P300 brain-computer interface performance publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00307 – volume: 5 start-page: e9813 year: 2010 ident: B31 article-title: A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue publication-title: PloS ONE doi: 10.1371/journal.pone.0009813 – volume: 49 start-page: 1181 year: 2002 ident: B2 article-title: Design and implementation of a brain-computer interface with high transfer rates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2002.803536 – volume: 11 start-page: 109 year: 2017 ident: B22 article-title: Choosing MUSE: validation of a low-cost, portable EEG system for ERP research publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00109 – volume: 10 start-page: 370 year: 1958 ident: B17 article-title: The ten-twenty electrode system of the international federation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 3 start-page: 299 year: 2006 ident: B23 article-title: A comparison of classification techniques for the P300 speller publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/4/007 – volume: 61 start-page: 244 year: 2006 ident: B14 article-title: Relationship of p300 single-trial responses with reaction time and preceding stimulus sequence publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.10.015 – volume: 167 start-page: 43 year: 2008 ident: B27 article-title: An auditory brain–computer interface (BCI) publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.02.009 – volume: 91 start-page: 46 year: 2014 ident: B3 article-title: Towards a truly mobile auditory brain–computer interface: exploring the P300 to take away publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.08.010 – volume: 12 start-page: 85 year: 2018 ident: B15 article-title: Usage of drip drops as stimuli in an auditory P300 BCI paradigm publication-title: Cogn. Neurodynam. doi: 10.1007/s11571-017-9456-y – volume: 279 start-page: 44 year: 2017 ident: B18 article-title: A novel hybrid auditory BCI paradigm combining ASSR and P300 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.01.011 – volume: 11 start-page: 68 year: 2017 ident: B35 article-title: Reaching and grasping a glass of water by locked-in ALS patients through a BCI-controlled humanoid robot publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00068 – volume: 84 start-page: 45 year: 2017 ident: B8 article-title: Music and natural sounds in an auditory steady-state response based brain–computer interface to increase user acceptance publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.03.011 – start-page: 569 volume-title: Advances in Neural Information Processing Systems year: 2005 ident: B9 article-title: “An auditory paradigm for brain-computer interfaces,” – volume: 46 start-page: 617 year: 2009 ident: B5 article-title: An auditory oddball (p300) spelling system for brain-computer interfaces publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00783.x – volume: 9 start-page: e98322 year: 2014 ident: B13 article-title: Towards user-friendly spelling with an auditory brain-computer interface: the charstreamer paradigm publication-title: PLoS ONE doi: 10.1371/journal.pone.0098322 – volume: 106 start-page: 87 year: 2016 ident: B30 article-title: Test-retest reliability of a single-channel, wireless EEG system publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.06.006 – start-page: 4185 volume-title: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE year: 2010 ident: B11 article-title: “Two-dimensional auditory P300 speller with predictive text system,” doi: 10.1109/IEMBS.2010.5627379 – volume: 25 start-page: 1746 year: 2017 ident: B36 article-title: A benchmark dataset for SSVEP-based brain–computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627556 – volume: 9 start-page: 207 year: 2015 ident: B19 article-title: Rapid p300 brain-computer interface communication with a head-mounted display publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00207 – volume: 11 start-page: 522 year: 2017 ident: B28 article-title: Affective stimuli for an auditory P300 brain-computer interface publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00522 – volume: 121 start-page: 1023 year: 2010 ident: B21 article-title: Motivation modulates the P300 amplitude during brain–computer interface use publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.01.034 – volume: 31 start-page: 407 year: 2017 ident: B26 article-title: Trends in EEG-BCI for daily-life: requirements for artifact removal publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.09.005 – volume: 117 start-page: 538 year: 2006 ident: B33 article-title: A P300-based brain–computer interface: initial tests by ALS patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.06.027 – volume: 5 start-page: 112 year: 2011 ident: B32 article-title: Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00112 – volume: 8 start-page: 1039 year: 2015 ident: B34 article-title: An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.01039 – volume: 127 start-page: 379 year: 2016 ident: B1 article-title: Effects of training and motivation on auditory P300 brain–computer interface performance publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.04.054 – volume: 11 start-page: 035003 year: 2014 ident: B10 article-title: A practical, intuitive brain–computer interface for communicating ‘yes' or 'no' by listening publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035003 – volume: 12 start-page: 391 year: 2018 ident: B16 article-title: Eyes-closed increases the usability of brain-computer interfaces based on auditory event-related potentials publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00391 – volume: 35 start-page: 5389 year: 2014 ident: B29 article-title: Tones and numbers: a combined EEG–MEG study on the effects of musical expertise in magnitude comparisons of audiovisual stimuli publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22558 – volume: 122 start-page: 731 year: 2011 ident: B25 article-title: The P300-based brain–computer interface (BCI): effects of stimulus rate publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.10.029 |
SSID | ssj0062651 |
Score | 2.382254 |
Snippet | An electroencephalogram (EEG)-based brain-computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the... Electroencephalogram (EEG)-based brain–computer interface (BCI) is a tool to non-invasively control computers by translating the electrical activity of the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 250 |
SubjectTerms | Accuracy Amyotrophic lateral sclerosis auditory event-related potential brain–computer interface Communication Computers Data acquisition EEG Electrodes electroencephalogram Electroencephalography Event-related potentials Interfaces Internet Motivation Myopathy Neuroscience Paradigms Patients portable measurement device single-channel data Usability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgoyEkDhE60ce9nGXbltVAlVApd4sJx6roG0Wld1Db_wH_iG_hBknWe0iVC5cE0dxPOP4-8bjbxh73VgdQiyQ5EBd5kULdW6NF7kpoCy0Ri9KuTnvP1Qn58XpRXmxVeqLcsJ6eeB-4CatUh5AiMYES3tOOB-lbIXyUQYlQyI-woqRTPX_YETppew3JZGC2UnsLtd07FySOKWiM_Zbi1DS6v8bwPwzT3Jr4Tm6z-4NiJFP-54-YHege8j2px2y5asb_oanHM4UHN9nX0eNEb6M_AzfS_IE-PAnXKAWkNNRgg4WfD4_5od-5TkiVp5ySZsF8Ckd0Fhe3_D5x7N8hqtb4DMqIPHrx8-x9gNPAcRIaVyP2PnR_PO7k3yoppC3ZVmtcoou1EXl60qEQscIFmKog0bAUcpQVRZENFYRJDJBtFKh3STUoDUYKQTox2yvW3bwlHHTeg_RUAzVFDpIH3VlVah9kMZ6aDI2GYfXtYPUOFW8WDikHGQQlwziyCAuGSRjbzdPfOtlNm5pOyOLbdqRQHa6gG7jBrdx_3KbjB2M9nbDrP3ulDKkJ4icLmOvNrdxvtEmiu9guaY2hPgQNKqMPendY9MTTVpFyNEyVu84zk5Xd-90Xy6TpjeySETq-tn_-Lbn7C6NFkWgVXnA9lbXa3iB0GnVvEyz5DfcsBlY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZKe-GCgPITKMhICIlDtLGdH-eAql1IqZBYrQqVerOceExBS1KW3UNvvEPfkCdhxpssXYR6TWzFyozH34xnvmHsZV0q53yKTg4UWZw2UMSltkmsU8hSpVCLQm7Ox2l-fJp-OMvOdth0qIWhtMrBJgZD7bqGYuQjKTVxvSHePrz4EVPXKLpdHVpo2L61gnsTKMZusT00yRr1fm9STWcng21G9J6J9WUlumblyLfnKypHF0RaKan2_trhFDj8_wc8_82fvHYgHd1ld3okycdr0d9jO9DeZ_vjFr3o75f8FQ-5nSFovs--DdwjvPN8ht8l2gKc_AkPrjnEVGLQwpxX1Xv-zi4tRyTLQ45pPQc-psKNbnHJq5NZPMFTz_EJNZb4_etq6AnBQ2DRU3rXA3Z6VH1-exz3XRbiJsvyZUxRhyLNbZEnLlXeQwneFU4hEMmEy_MSEq9LSVBJu6QREuUpoAClQIskAfWQ7bZdC48Z14214DXFVnWqnLBe5aV0hXVClxbqiI2G32uanoKcOmHMDboiJBATBGJIICYIJGKvNzMu1vQbN4ydkMQ244g4OzzoFl9Mvw9NI6UFSJJau5KuMNG8C9Ek0nrhpHAiYgeDvE2_m3-av7oXsReb17gP6XLFttCtaAwhQQSTMmKP1uqxWYkiDiP03SJWbCnO1lK337RfzwPXN3qXiODVk5uX9ZTdpv9AMWeZHbDd5WIFzxAsLevn_Q74A93CFtc priority: 102 providerName: ProQuest |
Title | Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain–Computer Interfaces |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31404255 https://www.proquest.com/docview/2285094606 https://www.proquest.com/docview/2272736232 https://pubmed.ncbi.nlm.nih.gov/PMC6669913 https://doaj.org/article/c22aee00b8d94078add11c02af1d21d1 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELXQ7oULYlk-AktlJITEIWxsJ45zQKiF7K6QdlUtVOotcuMxCwrJUlqJ3vgP_EN-CTPuBxRVSFwqtXFSyzPOvDe23zD2dFIo53yKJAfyLE5ryOPC2CQ2KWSpUuhFYW_O-YU-G6Vvx9n49_Ho1QB-3UntqJ7UaNq8-PZl8Qon_EtinBhvj317NadD5YKkJyUR-H2MS5qo2Hm6WVNA5B6KMQqtsWcIdJaLljufsBWkgpb_LgD69z7KPwLTyW12a4UoeX_pAgfsBrR32GG_RTb9ecGf8bDHMyTPD9mntQYJ7zwf4v-SfAHe_A4DWAMxHTVooeFlecrf2JnliGh52Gs6aYD36QBHN13w8nIYDzD6OT6gAhM_v_9Y14bgIcHoaZvXXTY6Kd-_PotX1RbiOsv0LKbsQ55qm-vEpcp7KMC73CkEJJlwWheQeFNIgkzGJbWQaFcBOSgFRiQJqHtsr-1aeMC4qa0FbyjHalLlhPVKF9Ll1glTWJhE7Hg9vFW9kiKnihhNhZSEDFIFg1RkkCoYJGLPN3dcL2U4_tF2QBbbtCMB7fBDN_1QreZjVUtpAZJkYlxBS5n4mheiTqT1wknhRMSO1vau1k5ZSWlIbxA5X8SebC7jfKRFFttCN6c2hAgRVMqI3V-6x6YnirSMkMNFLN9ynK2ubl9pP14FzW9kmYjk1cP_GIdH7CZ9oUS0zI7Y3mw6h8eIoGaTHtsflBfDy17IQODn6Vj0wmT5Bb5zHVk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKeoALAsrPQgEjARKHVdb2_ngPFUpoSkrbKCqt1NvWWc9SUNgtaSKUG-_A-_AwPAkzzm5oEOqt16w3cTxjz3zjmW8YezlKlbVFiCAHksgPc0j8VJvA1yFEoVKoRS4352AQ94_DDyfRyRr71dTCUFplcya6g9pWOcXI21Jq4npDf_vt-TefukbR7WrTQsPUrRXslqMYqws79mD-HSHcxdbuNsr7lZQ7vaN3fb_uMuDnURRPfULdSRibJA5sqIoCUihsYhUa4kjYOE4hKHQqyVXQNsiFxP8jIAGlQIsgAIXfe4Oth1Th2mLr3d5geNjYAkQLkVhcjiIUTNtFeTaj8ndBJJmSav0vGUPXM-B_ju6_-ZqXDODOHXa79lx5Z6Fqd9kalPfYRqdE1P51zl9zl0vqgvQb7EvDdcKrgg_xd4kmAV_-iIZyDD6VNJQw5r3ee75tpoaj58xdTutoDLxDhSLVZM57h0O_i1bW8i41svj942fTg4K7QGZB6WT32fG1rPcD1iqrEh4xrnNjoNAUy9WhssIUKk6lTYwVOjUw8li7Wd4srynPqfPGOEPoQwLJnEAyEkjmBOKxN8s3zhd0H1eM7ZLEluOIqNt9UE0-ZfW-z3IpDUAQjLRN6coUzYkQeSBNIawUVnhss5F3Vp8eF9lfXffYi-Vj3Pd0mWNKqGY0hjxPdF6lxx4u1GM5E0WcSYgVPZasKM7KVFeflJ_PHLc4ollEDOrx1dN6zm72jw72s_3dwd4TdovWhOLdMtpkrelkBk_RUZuOntW7gbPT696AfwCNX1JA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiEuCCg_CwWMBEgcVlnb-3uoUEISWgpRVKjU2-Ksx7RV2C1pIpQb78Bb8Rg8CTPObmgQ6q3XrDdxPGPPfOOZbxh7Ps6UMTZEkANJ5IcFJH6W6sBPQ4hCpVCLXG7Oh2G8exi-O4qONtivphaG0iqbM9Ed1KYqKEbeljIlrjf0t9u2TosY9Qavz7751EGKblqbdhq6brNgdhzdWF3ksQ-L7wjnznf2eij7F1IO-p_e7Pp1xwG_iKJ45hMCT8JYJ3FgQmUtZGBNYhQa5UiYOM4gsGkmyW1ITVAIif9NQAJKQSqCABR-7zW2maCVDFtss9sfjg4au4DIIRLLi1KEhVnblsdzKoUXRJgpqe7_gmF0_QP-5_T-m7t5wRgObrGbtRfLO0u1u802oLzDtjolIvivC_6Su7xSF7DfYqcN7wmvLB_h7xJlAr78EY3mBHwqbyhhwvv9t7ynZ5qjF81dfut4ArxDRSPVdMH7ByO_ixbX8C41tfj942fTj4K7oKal1LK77PBK1vsea5VVCQ8YTwutwaYU101DZYS2Ks6kSbQRaaZh7LF2s7x5UdOfUxeOSY4wiASSO4HkJJDcCcRjr1ZvnC2pPy4Z2yWJrcYRabf7oJp-yeszIC-k1ABBME5NRtenaFqEKAKprTBSGOGx7UbeeX2SnOd_9d5jz1aP8Qygix1dQjWnMeSFoiMrPXZ_qR6rmSjiT0Lc6LFkTXHWprr-pDw5djzjiGwRPaiHl0_rKbuOGzF_vzfcf8Ru0JJQ6FtG26w1m87hMfpss_GTejNw9vmq998fDpFWbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Prefrontal+Single-Channel+EEG+Data+for+Portable+Auditory+ERP-Based+Brain%E2%80%93Computer+Interfaces&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Ogino%2C+Mikito&rft.au=Kanoga%2C+Suguru&rft.au=Muto%2C+Masatane&rft.au=Mitsukura%2C+Yasue&rft.date=2019-07-25&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=13&rft_id=info:doi/10.3389%2Ffnhum.2019.00250&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2019_00250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |