A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set

Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify t...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 36; pp. S178 - S184
Main Authors Jedynak, Bruno M., Liu, Bo, Lang, Andrew, Gel, Yulia, Prince, Jerry L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2015
Subjects
Online AccessGet full text
ISSN0197-4580
1558-1497
1558-1497
DOI10.1016/j.neurobiolaging.2014.03.043

Cover

Loading…
Abstract Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
AbstractList Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
Abstract Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.
Author Lang, Andrew
Gel, Yulia
Liu, Bo
Jedynak, Bruno M.
Prince, Jerry L.
Author_xml – sequence: 1
  givenname: Bruno M.
  orcidid: 0000-0002-0824-5745
  surname: Jedynak
  fullname: Jedynak, Bruno M.
  email: bruno.jedynak@jhu.edu
  organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
– sequence: 3
  givenname: Andrew
  surname: Lang
  fullname: Lang, Andrew
  organization: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
– sequence: 4
  givenname: Yulia
  surname: Gel
  fullname: Gel, Yulia
  organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
– sequence: 5
  givenname: Jerry L.
  orcidid: 0000-0002-6553-0876
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25444605$$D View this record in MEDLINE/PubMed
BookMark eNqNkl-PEyEUxYlZ43arX8HwYKIvM8IMzJ9oTOquq5ts9EF9JhTutFQGKjCr65MfXWqriZuY9AUSOOfH5Z57hk6cd4DQE0pKSmjzfFM6mIJfGm_lyrhVWRHKSlKXhNX30Ixy3hWU9e0JmhHatwXjHTlFZzFuCCEta5sH6LTijLGG8Bn6ucDKj9spyWS8kxaPkNZe48GHw0V-AkuHF_bHGswI4WnE2kSQEfA2-FWAGLMTR-UDvMDwfQshy1yK2aXxjbRG_2bjbyatcVoDXly8v8L5UOII6SG6P0gb4dFhn6PPl28-nb8rrj-8vTpfXBeK8yYVtFIEqBo4Uz1o3ikOUOl8xiEvSlPSVv0wdEvd9axXDFjVtGTZtTWtWFVDPUfP9txc9NcJYhKjiQqslQ78FAVt6p51TZMdc_T4IJ2WI2ixzR-S4Vb86VoWvNwLVPAxBhj-SigRu5DERvwbktiFJEgtckjZ_vqOXZl9_1OQxh4LudxDIDftxkAQURlwCrQJoJLQ3hwLenUHpKxxRkn7BW4hbvwU8lzkBolYCSI-7oZqN1OUEZKj6TPg4v-A4-v4BVyN6Mg
CitedBy_id crossref_primary_10_1089_brain_2020_0905
crossref_primary_10_1007_s10654_017_0326_z
crossref_primary_10_1287_ijds_2022_0015
crossref_primary_10_3389_fdata_2020_00024
crossref_primary_10_1016_j_biopsych_2019_12_021
crossref_primary_10_1002_alz_12363
crossref_primary_10_1155_2019_6216530
crossref_primary_10_1007_s11682_018_0019_6
crossref_primary_10_1016_j_neuroimage_2020_117460
crossref_primary_10_1016_j_neuroimage_2016_04_001
crossref_primary_10_1016_j_pharmthera_2024_108655
crossref_primary_10_1002_cpt_1166
crossref_primary_10_1002_sim_9581
Cites_doi 10.1016/j.neuroimage.2012.07.059
10.1214/ss/1023798998
10.1016/S1474-4422(09)70299-6
10.1212/01.WNL.0000163773.21794.0B
10.1212/WNL.0b013e3181e7ca82
10.3233/JAD-2012-111367
10.1001/archneurol.2011.167
10.1371/journal.pone.0016032
10.1016/j.neurobiolaging.2010.04.024
10.1214/ss/1063994977
10.1090/qam/10666
10.1016/S1474-4422(13)70044-9
10.1007/978-0-387-73186-5_7
10.1385/JMN:17:2:101
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neurobiolaging.2014.03.043
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage S184
ExternalDocumentID 25444605
10_1016_j_neurobiolaging_2014_03_043
S0197458014005569
1_s2_0_S0197458014005569
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01EB012547
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: R01 EB012547
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIBIB NIH HHS
  grantid: P41EB015909
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AFYLN
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c556t-12c0e1cf54c9ed58c5ee2dc0e5ec0ecd10729ff8bd8949c4e42670b87312423e3
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Fri Jul 11 05:06:11 EDT 2025
Mon Jul 21 05:58:31 EDT 2025
Tue Jul 01 01:28:12 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 23 02:19:57 EST 2024
Sun Feb 23 10:19:38 EST 2025
Tue Aug 26 16:35:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomarkers
Sampling from the residuals
Alzheimer's disease
Progression score
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-12c0e1cf54c9ed58c5ee2dc0e5ec0ecd10729ff8bd8949c4e42670b87312423e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-6553-0876
0000-0002-0824-5745
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4267989
PMID 25444605
PQID 1639486687
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1639486687
pubmed_primary_25444605
crossref_primary_10_1016_j_neurobiolaging_2014_03_043
crossref_citationtrail_10_1016_j_neurobiolaging_2014_03_043
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2014_03_043
elsevier_clinicalkeyesjournals_1_s2_0_S0197458014005569
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2014_03_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015
2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Perrin, Craig-Schapiro, Malone, Shah, Gilmore, Davis, Roe, Peskind, Li, Galasko, Clark, Quinn, Kaye, Morris, Holtzman, Townsend, Fagan (bib11) 2011; 6
Chernick (bib7) 2007
Graham (bib3) 2012
Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl (bib13) 2011; 68
Jedynak, Lang, Liu, Katz, Zhang, Wyman, Raunig, Jedynak, Caffo, Prince (bib5) 2012; 63
Vemuri, Wiste, Weigand, Knopman, Trojanowski, Shaw, Bernstein, Aisen, Weiner, Petersen, Jack (bib17) 2010; 75
Villemagne, Burnham, Bourgeat, Brown, Ellis, Salvado, Szoeke, Macaulay, Martins, Maruff, Ames, Rowe, Masters (bib18) 2013; 12
Caroli, Frisoni (bib2) 2010; 31
Mouiha, Duchesne (bib9) 2012; 30
Politis (bib12) 2003; 18
Newsom, Jones, Hofer (bib10) 2013
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib4) 2010; 9
Bühlman (bib1) 2002; 17
Skrondal, Rabe-Hesketh (bib15) 2008
Morris, Price (bib8) 2001; 17
Shao, Tu (bib14) 1995
Tierney, Yao, Kiss, McDowell (bib16) 2005; 64
Levenberg (bib6) 1944; 2
Levenberg (10.1016/j.neurobiolaging.2014.03.043_bib6) 1944; 2
Jack (10.1016/j.neurobiolaging.2014.03.043_bib4) 2010; 9
Villemagne (10.1016/j.neurobiolaging.2014.03.043_bib18) 2013; 12
Bühlman (10.1016/j.neurobiolaging.2014.03.043_bib1) 2002; 17
Graham (10.1016/j.neurobiolaging.2014.03.043_bib3) 2012
Skrondal (10.1016/j.neurobiolaging.2014.03.043_bib15) 2008
Sabuncu (10.1016/j.neurobiolaging.2014.03.043_bib13) 2011; 68
Vemuri (10.1016/j.neurobiolaging.2014.03.043_bib17) 2010; 75
Perrin (10.1016/j.neurobiolaging.2014.03.043_bib11) 2011; 6
Tierney (10.1016/j.neurobiolaging.2014.03.043_bib16) 2005; 64
Jedynak (10.1016/j.neurobiolaging.2014.03.043_bib5) 2012; 63
Mouiha (10.1016/j.neurobiolaging.2014.03.043_bib9) 2012; 30
Shao (10.1016/j.neurobiolaging.2014.03.043_bib14) 1995
Chernick (10.1016/j.neurobiolaging.2014.03.043_bib7) 2007
Politis (10.1016/j.neurobiolaging.2014.03.043_bib12) 2003; 18
Newsom (10.1016/j.neurobiolaging.2014.03.043_bib10) 2013
Caroli (10.1016/j.neurobiolaging.2014.03.043_bib2) 2010; 31
Morris (10.1016/j.neurobiolaging.2014.03.043_bib8) 2001; 17
References_xml – volume: 63
  start-page: 1478
  year: 2012
  end-page: 1486
  ident: bib5
  article-title: Alzheimer's Disease Neuroimaging Initiative. A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort
  publication-title: Neuroimage
– volume: 75
  start-page: 143
  year: 2010
  end-page: 151
  ident: bib17
  article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD
  publication-title: Neurology
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bib4
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade
  publication-title: Lancet Neurol.
– volume: 17
  start-page: 101
  year: 2001
  end-page: 118
  ident: bib8
  article-title: Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease
  publication-title: J. Mol. Neurosci.
– year: 2007
  ident: bib7
  article-title: Bootstrap Methods: A Guide for Practitioners and Researchers
– volume: 6
  start-page: e16032
  year: 2011
  ident: bib11
  article-title: Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease
  publication-title: PLoS One
– volume: 31
  start-page: 1263
  year: 2010
  end-page: 1274
  ident: bib2
  article-title: The dynamics of Alzheimer’s disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort
  publication-title: Neurobiol. Aging
– volume: 17
  start-page: 52
  year: 2002
  end-page: 72
  ident: bib1
  article-title: Bootstraps for time series
  publication-title: Stat. Sci.
– volume: 68
  start-page: 1040
  year: 2011
  end-page: 1048
  ident: bib13
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
– year: 2008
  ident: bib15
  article-title: Multilevel and Related Models for Longitudinal Data
– volume: 12
  start-page: 357
  year: 2013
  end-page: 367
  ident: bib18
  article-title: Amyloid-beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study
  publication-title: Lancet Neurol.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib6
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Quart. Appl. Math.
– year: 2012
  ident: bib3
  article-title: Missing Data: Analysis and Design
– volume: 30
  start-page: 91
  year: 2012
  end-page: 100
  ident: bib9
  article-title: Toward a dynamic biomarker model in Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
– year: 1995
  ident: bib14
  article-title: The Jackknife and Bootstrap
– volume: 64
  start-page: 1853
  year: 2005
  end-page: 1859
  ident: bib16
  article-title: Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years
  publication-title: Neurology
– year: 2013
  ident: bib10
  article-title: Longitudinal Data Analysis: A Practical Guide for Researchers in Aging, Health, and Social Sciences
– volume: 18
  start-page: 219
  year: 2003
  end-page: 230
  ident: bib12
  article-title: The impact of bootstrap methods on time series analysis
  publication-title: Stat. Sci.
– volume: 63
  start-page: 1478
  year: 2012
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib5
  article-title: Alzheimer's Disease Neuroimaging Initiative. A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.059
– year: 1995
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib14
– year: 2012
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib3
– volume: 17
  start-page: 52
  year: 2002
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib1
  article-title: Bootstraps for time series
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1023798998
– volume: 9
  start-page: 119
  year: 2010
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib4
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 64
  start-page: 1853
  year: 2005
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib16
  article-title: Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000163773.21794.0B
– year: 2013
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib10
– volume: 75
  start-page: 143
  year: 2010
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib17
  article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e7ca82
– volume: 30
  start-page: 91
  year: 2012
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib9
  article-title: Toward a dynamic biomarker model in Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-111367
– volume: 68
  start-page: 1040
  year: 2011
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib13
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2011.167
– volume: 6
  start-page: e16032
  year: 2011
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib11
  article-title: Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016032
– year: 2007
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib7
– volume: 31
  start-page: 1263
  year: 2010
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib2
  article-title: The dynamics of Alzheimer’s disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.04.024
– volume: 18
  start-page: 219
  year: 2003
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib12
  article-title: The impact of bootstrap methods on time series analysis
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1063994977
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib6
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 12
  start-page: 357
  year: 2013
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib18
  article-title: Amyloid-beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70044-9
– year: 2008
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib15
  doi: 10.1007/978-0-387-73186-5_7
– volume: 17
  start-page: 101
  year: 2001
  ident: 10.1016/j.neurobiolaging.2014.03.043_bib8
  article-title: Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease
  publication-title: J. Mol. Neurosci.
  doi: 10.1385/JMN:17:2:101
SSID ssj0007476
Score 2.2200947
Snippet Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes...
Abstract Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S178
SubjectTerms Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - pathology
Alzheimer Disease - psychology
Alzheimer's disease
Biomarkers
Cognition
Cohort Studies
Computing Methodologies
Diagnostic Techniques, Neurological
Disease Progression
Hippocampus - pathology
Humans
Intelligence Tests
Internal Medicine
Monte Carlo Method
Neuroimaging
Neurology
Progression score
Psychological Tests
Sampling from the residuals
Time Factors
Verbal Learning
Title A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458014005569
https://www.clinicalkey.es/playcontent/1-s2.0-S0197458014005569
https://dx.doi.org/10.1016/j.neurobiolaging.2014.03.043
https://www.ncbi.nlm.nih.gov/pubmed/25444605
https://www.proquest.com/docview/1639486687
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KBfFF1PpxfpQRij7Fy8cmu6GIhGq5Kt6LFvq2bDYTetKmpbk-6IP4pzuz2dxRtFDxJbAJwy6zk9nf7s78RogdFcd1azGPEutcJEuNkbYyixqbFGlbS1QlJwp_nhezQ_nxKD_aEHtjLgyHVQbfP_h0763Dm2nQ5vR8sZh-IXCiZM7sJ0wkVXASn5SKrfzNz3WYB8HlYkiZZn5vHd8WO-sYL88ZyWxHviIQB3pJT3kqs-uWqetgqF-O9u-JuwFHQjUM9b7YwO6B2Ko62kOffodX4CM7_ZH5lvhVgfPFG8LBHwxlo4HwavhAwwLbQXXy4xgXp3jxuodwcwM-gGsg74CeOS93YV0VoCepBshYF0NpJuBjXSBMCdX7-QFw-Cn0uHwoDvc_fN2bRaHyQuRIk8soSV2MiWtz6Upscu1yxLShdznSwzUJ8423ra4bXcrSSaR1XsW1VlnC-AyzR2KzO-vwiQDlmloWVuoCaStqJTVqZUvdpAR-rJQTsTsq2rhAS87VMU7MGH_2zVydJsPTZOLM0DRNRL6SPh_oOW4o93acUzOmoJLTNLSO3FBe_U0e--ABepOYPjWx-cNKJ-LdSvKKof9D3y9HIzTkC_iCx3Z4dkl9EtwkRRdaTcTjwTpXWmEqOr4Df_rf_T8Td6iVD-dQz8Xm8uISXxAyW9bb_tfbFreqg0-z-W9P7D4d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qFdQXUav1_Byh6FO4fOwmG4pIqJY7296LLfRt2WwmeNKmpbk-6JN_urPJ5krRQsWXQLIMu8xOZn87O_sbgK0sDMvakAwiY20gckWBMiIJKhOlcV0KynJ3Ufhgnk6PxJdjebwGO8NdGJdW6X1_79M7b-2_TLw2J-eLxeQrg5NMSMd-4oik0vwOrDt2KjmC9WK2N52vHDIj5rS_Ne0ovlV4F7au0rw62khHeNQVBXK5XqJjPRXJTSvVTUi0W5F2H8IDDyWx6Ef7CNaoeQwbRcPb6NMf-A675M4uar4Bvwq0Xf0GH_vDvnI0MmT1DTwsNA0WJz-_0eKULt636A9vsMvh6vk7sHW0l9t4VRigZakK2V4XfXUmdJFdZFiJxaf5DF0GKra0fAJHu58Pd6aBL74QWFbmMohiG1JkaylsTpVUVhLFFX-TxA9bRY5yvK5VWalc5FYQL_VZWKosiRxEo-QpjJqzhp4BZrYqRWqESol3o0bwS5mZXFUx4x8jxBi2B0Vr65nJXYGMEz2koH3X16dJu2nSYaJ5msYgV9LnPUPHLeU-DHOqh1uo7Dc1LyW3lM_-Jk-tdwKtjnQb61D_Yahj-LiSvGbr_9D328EINbsDd8ZjGjq75D4ZcbKiU5WNYbO3zpVWHBudOwZ__t_9v4F708ODfb0_m--9gPvcIvuw1EsYLS8u6RUDtWX52v-IvwEIl0DO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+method+for+computing+an+Alzheimer%27s+disease+progression+score%3B+experiments+and+validation+with+the+ADNI+data+set&rft.jtitle=Neurobiology+of+aging&rft.au=Jedynak%2C+Bruno+M&rft.au=Liu%2C+Bo&rft.au=Lang%2C+Andrew&rft.au=Gel%2C+Yulia&rft.date=2015&rft.issn=0197-4580&rft.volume=36&rft.spage=S178&rft.epage=S184&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2014.03.043&rft.externalDBID=ECK1-s2.0-S0197458014005569&rft.externalDocID=1_s2_0_S0197458014005569
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458014X00151%2Fcov150h.gif