A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set
Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify t...
Saved in:
Published in | Neurobiology of aging Vol. 36; pp. S178 - S184 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0197-4580 1558-1497 1558-1497 |
DOI | 10.1016/j.neurobiolaging.2014.03.043 |
Cover
Loading…
Abstract | Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale. |
---|---|
AbstractList | Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale.Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale. Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale. Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale. Abstract Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scale-cognitive subscale. |
Author | Lang, Andrew Gel, Yulia Liu, Bo Jedynak, Bruno M. Prince, Jerry L. |
Author_xml | – sequence: 1 givenname: Bruno M. orcidid: 0000-0002-0824-5745 surname: Jedynak fullname: Jedynak, Bruno M. email: bruno.jedynak@jhu.edu organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA – sequence: 2 givenname: Bo surname: Liu fullname: Liu, Bo organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA – sequence: 3 givenname: Andrew surname: Lang fullname: Lang, Andrew organization: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA – sequence: 4 givenname: Yulia surname: Gel fullname: Gel, Yulia organization: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA – sequence: 5 givenname: Jerry L. orcidid: 0000-0002-6553-0876 surname: Prince fullname: Prince, Jerry L. organization: Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25444605$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl-PEyEUxYlZ43arX8HwYKIvM8IMzJ9oTOquq5ts9EF9JhTutFQGKjCr65MfXWqriZuY9AUSOOfH5Z57hk6cd4DQE0pKSmjzfFM6mIJfGm_lyrhVWRHKSlKXhNX30Ixy3hWU9e0JmhHatwXjHTlFZzFuCCEta5sH6LTijLGG8Bn6ucDKj9spyWS8kxaPkNZe48GHw0V-AkuHF_bHGswI4WnE2kSQEfA2-FWAGLMTR-UDvMDwfQshy1yK2aXxjbRG_2bjbyatcVoDXly8v8L5UOII6SG6P0gb4dFhn6PPl28-nb8rrj-8vTpfXBeK8yYVtFIEqBo4Uz1o3ikOUOl8xiEvSlPSVv0wdEvd9axXDFjVtGTZtTWtWFVDPUfP9txc9NcJYhKjiQqslQ78FAVt6p51TZMdc_T4IJ2WI2ixzR-S4Vb86VoWvNwLVPAxBhj-SigRu5DERvwbktiFJEgtckjZ_vqOXZl9_1OQxh4LudxDIDftxkAQURlwCrQJoJLQ3hwLenUHpKxxRkn7BW4hbvwU8lzkBolYCSI-7oZqN1OUEZKj6TPg4v-A4-v4BVyN6Mg |
CitedBy_id | crossref_primary_10_1089_brain_2020_0905 crossref_primary_10_1007_s10654_017_0326_z crossref_primary_10_1287_ijds_2022_0015 crossref_primary_10_3389_fdata_2020_00024 crossref_primary_10_1016_j_biopsych_2019_12_021 crossref_primary_10_1002_alz_12363 crossref_primary_10_1155_2019_6216530 crossref_primary_10_1007_s11682_018_0019_6 crossref_primary_10_1016_j_neuroimage_2020_117460 crossref_primary_10_1016_j_neuroimage_2016_04_001 crossref_primary_10_1016_j_pharmthera_2024_108655 crossref_primary_10_1002_cpt_1166 crossref_primary_10_1002_sim_9581 |
Cites_doi | 10.1016/j.neuroimage.2012.07.059 10.1214/ss/1023798998 10.1016/S1474-4422(09)70299-6 10.1212/01.WNL.0000163773.21794.0B 10.1212/WNL.0b013e3181e7ca82 10.3233/JAD-2012-111367 10.1001/archneurol.2011.167 10.1371/journal.pone.0016032 10.1016/j.neurobiolaging.2010.04.024 10.1214/ss/1063994977 10.1090/qam/10666 10.1016/S1474-4422(13)70044-9 10.1007/978-0-387-73186-5_7 10.1385/JMN:17:2:101 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
CorporateAuthor | Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neurobiolaging.2014.03.043 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | S184 |
ExternalDocumentID | 25444605 10_1016_j_neurobiolaging_2014_03_043 S0197458014005569 1_s2_0_S0197458014005569 |
Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01EB012547 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: R01 EB012547 – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIBIB NIH HHS grantid: P41EB015909 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c556t-12c0e1cf54c9ed58c5ee2dc0e5ec0ecd10729ff8bd8949c4e42670b87312423e3 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Fri Jul 11 05:06:11 EDT 2025 Mon Jul 21 05:58:31 EDT 2025 Tue Jul 01 01:28:12 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 23 02:19:57 EST 2024 Sun Feb 23 10:19:38 EST 2025 Tue Aug 26 16:35:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomarkers Sampling from the residuals Alzheimer's disease Progression score |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c556t-12c0e1cf54c9ed58c5ee2dc0e5ec0ecd10729ff8bd8949c4e42670b87312423e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-6553-0876 0000-0002-0824-5745 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4267989 |
PMID | 25444605 |
PQID | 1639486687 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1639486687 pubmed_primary_25444605 crossref_primary_10_1016_j_neurobiolaging_2014_03_043 crossref_citationtrail_10_1016_j_neurobiolaging_2014_03_043 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2014_03_043 elsevier_clinicalkeyesjournals_1_s2_0_S0197458014005569 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2014_03_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015 2015-01-00 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Perrin, Craig-Schapiro, Malone, Shah, Gilmore, Davis, Roe, Peskind, Li, Galasko, Clark, Quinn, Kaye, Morris, Holtzman, Townsend, Fagan (bib11) 2011; 6 Chernick (bib7) 2007 Graham (bib3) 2012 Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling, Fischl (bib13) 2011; 68 Jedynak, Lang, Liu, Katz, Zhang, Wyman, Raunig, Jedynak, Caffo, Prince (bib5) 2012; 63 Vemuri, Wiste, Weigand, Knopman, Trojanowski, Shaw, Bernstein, Aisen, Weiner, Petersen, Jack (bib17) 2010; 75 Villemagne, Burnham, Bourgeat, Brown, Ellis, Salvado, Szoeke, Macaulay, Martins, Maruff, Ames, Rowe, Masters (bib18) 2013; 12 Caroli, Frisoni (bib2) 2010; 31 Mouiha, Duchesne (bib9) 2012; 30 Politis (bib12) 2003; 18 Newsom, Jones, Hofer (bib10) 2013 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib4) 2010; 9 Bühlman (bib1) 2002; 17 Skrondal, Rabe-Hesketh (bib15) 2008 Morris, Price (bib8) 2001; 17 Shao, Tu (bib14) 1995 Tierney, Yao, Kiss, McDowell (bib16) 2005; 64 Levenberg (bib6) 1944; 2 Levenberg (10.1016/j.neurobiolaging.2014.03.043_bib6) 1944; 2 Jack (10.1016/j.neurobiolaging.2014.03.043_bib4) 2010; 9 Villemagne (10.1016/j.neurobiolaging.2014.03.043_bib18) 2013; 12 Bühlman (10.1016/j.neurobiolaging.2014.03.043_bib1) 2002; 17 Graham (10.1016/j.neurobiolaging.2014.03.043_bib3) 2012 Skrondal (10.1016/j.neurobiolaging.2014.03.043_bib15) 2008 Sabuncu (10.1016/j.neurobiolaging.2014.03.043_bib13) 2011; 68 Vemuri (10.1016/j.neurobiolaging.2014.03.043_bib17) 2010; 75 Perrin (10.1016/j.neurobiolaging.2014.03.043_bib11) 2011; 6 Tierney (10.1016/j.neurobiolaging.2014.03.043_bib16) 2005; 64 Jedynak (10.1016/j.neurobiolaging.2014.03.043_bib5) 2012; 63 Mouiha (10.1016/j.neurobiolaging.2014.03.043_bib9) 2012; 30 Shao (10.1016/j.neurobiolaging.2014.03.043_bib14) 1995 Chernick (10.1016/j.neurobiolaging.2014.03.043_bib7) 2007 Politis (10.1016/j.neurobiolaging.2014.03.043_bib12) 2003; 18 Newsom (10.1016/j.neurobiolaging.2014.03.043_bib10) 2013 Caroli (10.1016/j.neurobiolaging.2014.03.043_bib2) 2010; 31 Morris (10.1016/j.neurobiolaging.2014.03.043_bib8) 2001; 17 |
References_xml | – volume: 63 start-page: 1478 year: 2012 end-page: 1486 ident: bib5 article-title: Alzheimer's Disease Neuroimaging Initiative. A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort publication-title: Neuroimage – volume: 75 start-page: 143 year: 2010 end-page: 151 ident: bib17 article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD publication-title: Neurology – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bib4 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade publication-title: Lancet Neurol. – volume: 17 start-page: 101 year: 2001 end-page: 118 ident: bib8 article-title: Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease publication-title: J. Mol. Neurosci. – year: 2007 ident: bib7 article-title: Bootstrap Methods: A Guide for Practitioners and Researchers – volume: 6 start-page: e16032 year: 2011 ident: bib11 article-title: Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease publication-title: PLoS One – volume: 31 start-page: 1263 year: 2010 end-page: 1274 ident: bib2 article-title: The dynamics of Alzheimer’s disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort publication-title: Neurobiol. Aging – volume: 17 start-page: 52 year: 2002 end-page: 72 ident: bib1 article-title: Bootstraps for time series publication-title: Stat. Sci. – volume: 68 start-page: 1040 year: 2011 end-page: 1048 ident: bib13 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease publication-title: Arch. Neurol. – year: 2008 ident: bib15 article-title: Multilevel and Related Models for Longitudinal Data – volume: 12 start-page: 357 year: 2013 end-page: 367 ident: bib18 article-title: Amyloid-beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study publication-title: Lancet Neurol. – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib6 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Quart. Appl. Math. – year: 2012 ident: bib3 article-title: Missing Data: Analysis and Design – volume: 30 start-page: 91 year: 2012 end-page: 100 ident: bib9 article-title: Toward a dynamic biomarker model in Alzheimer’s disease publication-title: J. Alzheimers Dis. – year: 1995 ident: bib14 article-title: The Jackknife and Bootstrap – volume: 64 start-page: 1853 year: 2005 end-page: 1859 ident: bib16 article-title: Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years publication-title: Neurology – year: 2013 ident: bib10 article-title: Longitudinal Data Analysis: A Practical Guide for Researchers in Aging, Health, and Social Sciences – volume: 18 start-page: 219 year: 2003 end-page: 230 ident: bib12 article-title: The impact of bootstrap methods on time series analysis publication-title: Stat. Sci. – volume: 63 start-page: 1478 year: 2012 ident: 10.1016/j.neurobiolaging.2014.03.043_bib5 article-title: Alzheimer's Disease Neuroimaging Initiative. A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.07.059 – year: 1995 ident: 10.1016/j.neurobiolaging.2014.03.043_bib14 – year: 2012 ident: 10.1016/j.neurobiolaging.2014.03.043_bib3 – volume: 17 start-page: 52 year: 2002 ident: 10.1016/j.neurobiolaging.2014.03.043_bib1 article-title: Bootstraps for time series publication-title: Stat. Sci. doi: 10.1214/ss/1023798998 – volume: 9 start-page: 119 year: 2010 ident: 10.1016/j.neurobiolaging.2014.03.043_bib4 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – volume: 64 start-page: 1853 year: 2005 ident: 10.1016/j.neurobiolaging.2014.03.043_bib16 article-title: Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years publication-title: Neurology doi: 10.1212/01.WNL.0000163773.21794.0B – year: 2013 ident: 10.1016/j.neurobiolaging.2014.03.043_bib10 – volume: 75 start-page: 143 year: 2010 ident: 10.1016/j.neurobiolaging.2014.03.043_bib17 article-title: Serial MRI and CSF biomarkers in normal aging, MCI, and AD publication-title: Neurology doi: 10.1212/WNL.0b013e3181e7ca82 – volume: 30 start-page: 91 year: 2012 ident: 10.1016/j.neurobiolaging.2014.03.043_bib9 article-title: Toward a dynamic biomarker model in Alzheimer’s disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-111367 – volume: 68 start-page: 1040 year: 2011 ident: 10.1016/j.neurobiolaging.2014.03.043_bib13 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2011.167 – volume: 6 start-page: e16032 year: 2011 ident: 10.1016/j.neurobiolaging.2014.03.043_bib11 article-title: Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0016032 – year: 2007 ident: 10.1016/j.neurobiolaging.2014.03.043_bib7 – volume: 31 start-page: 1263 year: 2010 ident: 10.1016/j.neurobiolaging.2014.03.043_bib2 article-title: The dynamics of Alzheimer’s disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.04.024 – volume: 18 start-page: 219 year: 2003 ident: 10.1016/j.neurobiolaging.2014.03.043_bib12 article-title: The impact of bootstrap methods on time series analysis publication-title: Stat. Sci. doi: 10.1214/ss/1063994977 – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.neurobiolaging.2014.03.043_bib6 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Quart. Appl. Math. doi: 10.1090/qam/10666 – volume: 12 start-page: 357 year: 2013 ident: 10.1016/j.neurobiolaging.2014.03.043_bib18 article-title: Amyloid-beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70044-9 – year: 2008 ident: 10.1016/j.neurobiolaging.2014.03.043_bib15 doi: 10.1007/978-0-387-73186-5_7 – volume: 17 start-page: 101 year: 2001 ident: 10.1016/j.neurobiolaging.2014.03.043_bib8 article-title: Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease publication-title: J. Mol. Neurosci. doi: 10.1385/JMN:17:2:101 |
SSID | ssj0007476 |
Score | 2.2200947 |
Snippet | Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes... Abstract Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | S178 |
SubjectTerms | Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - pathology Alzheimer Disease - psychology Alzheimer's disease Biomarkers Cognition Cohort Studies Computing Methodologies Diagnostic Techniques, Neurological Disease Progression Hippocampus - pathology Humans Intelligence Tests Internal Medicine Monte Carlo Method Neuroimaging Neurology Progression score Psychological Tests Sampling from the residuals Time Factors Verbal Learning |
Title | A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458014005569 https://www.clinicalkey.es/playcontent/1-s2.0-S0197458014005569 https://dx.doi.org/10.1016/j.neurobiolaging.2014.03.043 https://www.ncbi.nlm.nih.gov/pubmed/25444605 https://www.proquest.com/docview/1639486687 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KBfFF1PpxfpQRij7Fy8cmu6GIhGq5Kt6LFvq2bDYTetKmpbk-6IP4pzuz2dxRtFDxJbAJwy6zk9nf7s78RogdFcd1azGPEutcJEuNkbYyixqbFGlbS1QlJwp_nhezQ_nxKD_aEHtjLgyHVQbfP_h0763Dm2nQ5vR8sZh-IXCiZM7sJ0wkVXASn5SKrfzNz3WYB8HlYkiZZn5vHd8WO-sYL88ZyWxHviIQB3pJT3kqs-uWqetgqF-O9u-JuwFHQjUM9b7YwO6B2Ko62kOffodX4CM7_ZH5lvhVgfPFG8LBHwxlo4HwavhAwwLbQXXy4xgXp3jxuodwcwM-gGsg74CeOS93YV0VoCepBshYF0NpJuBjXSBMCdX7-QFw-Cn0uHwoDvc_fN2bRaHyQuRIk8soSV2MiWtz6Upscu1yxLShdznSwzUJ8423ra4bXcrSSaR1XsW1VlnC-AyzR2KzO-vwiQDlmloWVuoCaStqJTVqZUvdpAR-rJQTsTsq2rhAS87VMU7MGH_2zVydJsPTZOLM0DRNRL6SPh_oOW4o93acUzOmoJLTNLSO3FBe_U0e--ABepOYPjWx-cNKJ-LdSvKKof9D3y9HIzTkC_iCx3Z4dkl9EtwkRRdaTcTjwTpXWmEqOr4Df_rf_T8Td6iVD-dQz8Xm8uISXxAyW9bb_tfbFreqg0-z-W9P7D4d |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qFdQXUav1_Byh6FO4fOwmG4pIqJY7296LLfRt2WwmeNKmpbk-6JN_urPJ5krRQsWXQLIMu8xOZn87O_sbgK0sDMvakAwiY20gckWBMiIJKhOlcV0KynJ3Ufhgnk6PxJdjebwGO8NdGJdW6X1_79M7b-2_TLw2J-eLxeQrg5NMSMd-4oik0vwOrDt2KjmC9WK2N52vHDIj5rS_Ne0ovlV4F7au0rw62khHeNQVBXK5XqJjPRXJTSvVTUi0W5F2H8IDDyWx6Ef7CNaoeQwbRcPb6NMf-A675M4uar4Bvwq0Xf0GH_vDvnI0MmT1DTwsNA0WJz-_0eKULt636A9vsMvh6vk7sHW0l9t4VRigZakK2V4XfXUmdJFdZFiJxaf5DF0GKra0fAJHu58Pd6aBL74QWFbmMohiG1JkaylsTpVUVhLFFX-TxA9bRY5yvK5VWalc5FYQL_VZWKosiRxEo-QpjJqzhp4BZrYqRWqESol3o0bwS5mZXFUx4x8jxBi2B0Vr65nJXYGMEz2koH3X16dJu2nSYaJ5msYgV9LnPUPHLeU-DHOqh1uo7Dc1LyW3lM_-Jk-tdwKtjnQb61D_Yahj-LiSvGbr_9D328EINbsDd8ZjGjq75D4ZcbKiU5WNYbO3zpVWHBudOwZ__t_9v4F708ODfb0_m--9gPvcIvuw1EsYLS8u6RUDtWX52v-IvwEIl0DO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+method+for+computing+an+Alzheimer%27s+disease+progression+score%3B+experiments+and+validation+with+the+ADNI+data+set&rft.jtitle=Neurobiology+of+aging&rft.au=Jedynak%2C+Bruno+M&rft.au=Liu%2C+Bo&rft.au=Lang%2C+Andrew&rft.au=Gel%2C+Yulia&rft.date=2015&rft.issn=0197-4580&rft.volume=36&rft.spage=S178&rft.epage=S184&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2014.03.043&rft.externalDBID=ECK1-s2.0-S0197458014005569&rft.externalDocID=1_s2_0_S0197458014005569 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458014X00151%2Fcov150h.gif |