Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress
We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C...
Saved in:
Published in | Physiologia plantarum Vol. 137; no. 2; pp. 139 - 147 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2009
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m⁻² d⁻¹] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH₄ emission rates [ng g⁻¹ dry weight (DW) h⁻¹] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO₂ assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH₄ emissions. Crop species varied in CH₄ emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH₄ emission was negatively correlated with stem height and AG biomass. We conclude that CH₄ emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'. |
---|---|
AbstractList | We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m-2 d-1] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH4 emission rates [ng g-1 dry weight (DW) h-1] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO2 assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH4 emissions. Crop species varied in CH4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH4 emission was negatively correlated with stem height and AG biomass. We conclude that CH4 emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'. We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m⁻² d⁻¹] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH₄ emission rates [ng g⁻¹ dry weight (DW) h⁻¹] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO₂ assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH₄ emissions. Crop species varied in CH₄ emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH₄ emission was negatively correlated with stem height and AG biomass. We conclude that CH₄ emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'. We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops–faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled‐environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m−2 d−1] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH4 emission rates [ng g−1 dry weight (DW) h−1] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO2 assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH4 emissions. Crop species varied in CH4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH4 emission was negatively correlated with stem height and AG biomass. We conclude that CH4 emissions may increase under climatic stress conditions and this extra source might contribute to the ‘greenhouse effect'. We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26 degrees C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m(-2) d(-1)] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH(4) emission rates [ng g(-1) dry weight (DW) h(-1)] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO(2) assimilation (A(N)), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH(4) emissions. Crop species varied in CH(4) emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A(N) and WUE but increased E, whereas water stress decreased A(N) but increased E and WUE. Zero and enhanced UVB reduced A(N) and E. Growth and gas exchange varied with species. Overall, CH(4) emission was negatively correlated with stem height and AG biomass. We conclude that CH(4) emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'. We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH 4 ) emission from six crops–faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled‐environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m −2 d −1 ] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH 4 emission rates [ng g −1 dry weight (DW) h −1 ] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO 2 assimilation (A N ), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH 4 emissions. Crop species varied in CH 4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A N and WUE but increased E, whereas water stress decreased A N but increased E and WUE. Zero and enhanced UVB reduced A N and E. Growth and gas exchange varied with species. Overall, CH 4 emission was negatively correlated with stem height and AG biomass. We conclude that CH 4 emissions may increase under climatic stress conditions and this extra source might contribute to the ‘greenhouse effect'. |
Author | Reid, David M. Qaderi, Mirwais M. |
Author_xml | – sequence: 1 fullname: Qaderi, Mirwais M – sequence: 2 fullname: Reid, David M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21914211$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19678898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNktFy1CAUhhmnjt1WX0G50atmhRBI4owX2rHVcdV2tHrJsOFkm20SUmDt9jl8YU_Mznqp3ADD9x8O_88ROehdD4RQzuYcx8v1nIuyTAST2TxlrJwznqpivn1AZvuDAzJjTPCkFDw_JEchrBnjSvH0ETnkpcqLoixm5NcniNemBwpdE0Lj-kBr7zoami2tvBtoGKBqIFDYDi6ApdHReO0BaOW6AbvqY6CupqvWLU1Lq7bpTMRDrLmCVzRCN4A3cePhhG7a6M3PxrUQk7fUG9uYiDdS01t6hypPQ_QQwmPysDZtgCe7-Zhcnb37dvo-WXw5_3D6ZpFUUqoiqS2-plaWVRJ4JgtjMpbWKhNVli8t7nOpDPAabGbALI1dZikIBlJYKwpcHpMXU93Bu9sNhKjRgwraFv1wm6BVrqTiufonmLJClEIKBIsJROtC8FDrwaMh_l5zpsfk9FqPAekxID0mp_8kp7cofbq7Y7PswP4V7qJC4PkOMKEybe1NXzVhz6W85FnKOXKvJ-6uaeH-vxvQFxeLcYX6ZNI3IcJ2rzf-Bg0RudQ_Pp_ry7OPQn2_5Foi_2zia-O0WXns6epryrjA35bnIuXiN2md0fk |
CODEN | PHPLAI |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2019_04_030 crossref_primary_10_1038_srep46185 crossref_primary_10_1007_s11738_017_2420_y crossref_primary_10_1086_652389 crossref_primary_10_1093_plankt_fbab069 crossref_primary_10_1111_nph_19724 crossref_primary_10_4161_15592316_2014_970095 crossref_primary_10_5194_bg_12_1907_2015 crossref_primary_10_1016_j_atmosenv_2012_02_012 crossref_primary_10_1111_j_1469_8137_2010_03259_x crossref_primary_10_1016_j_earscirev_2013_10_001 crossref_primary_10_1126_sciadv_aax5343 crossref_primary_10_3389_fphys_2019_01244 crossref_primary_10_1016_j_envexpbot_2015_11_013 crossref_primary_10_1016_j_hal_2019_01_009 crossref_primary_10_1016_j_atmosenv_2011_06_001 crossref_primary_10_1111_jac_12014 crossref_primary_10_1111_ppl_12514 crossref_primary_10_1016_j_sajb_2024_03_041 crossref_primary_10_1186_s12870_018_1426_y crossref_primary_10_3390_antiox12071381 crossref_primary_10_1007_s13580_019_00219_4 crossref_primary_10_1111_nph_17365 crossref_primary_10_1016_j_scitotenv_2023_169662 crossref_primary_10_1071_FP10119 crossref_primary_10_1038_s41586_022_04511_9 crossref_primary_10_1016_j_jplph_2018_12_006 crossref_primary_10_1002_lno_12095 crossref_primary_10_1016_j_ecoenv_2017_09_054 crossref_primary_10_1016_j_atmosenv_2015_05_019 crossref_primary_10_1016_j_jphotobiol_2016_11_019 crossref_primary_10_1139_cjb_2021_0002 crossref_primary_10_1016_j_jplph_2018_05_010 crossref_primary_10_1016_j_plaphy_2020_10_016 crossref_primary_10_1111_nph_15624 crossref_primary_10_1016_j_atmosenv_2010_11_014 crossref_primary_10_1007_s40626_020_00170_1 crossref_primary_10_1139_cjb_2018_0126 crossref_primary_10_1016_j_scitotenv_2024_173730 crossref_primary_10_1007_s11157_020_09562_w crossref_primary_10_1111_j_1399_3054_2011_01551_x crossref_primary_10_1073_pnas_2308516120 crossref_primary_10_3390_agronomy13030930 crossref_primary_10_1111_nph_18120 crossref_primary_10_1111_pce_12489 crossref_primary_10_1007_s10533_014_9974_1 crossref_primary_10_1016_j_atmosenv_2012_01_033 crossref_primary_10_1590_0102_7786344071 crossref_primary_10_1071_EN09137 crossref_primary_10_5194_bg_9_5291_2012 crossref_primary_10_1111_ppl_12531 |
Cites_doi | 10.1038/443405a 10.1139/B06-157 10.1016/j.tree.2006.05.017 10.1029/2006JD007268 10.1039/B700017K 10.5194/bgd-6-1403-2009 10.1038/nature05132 10.5194/acp-6-5315-2006 10.1098/rspb.2008.1731 10.1111/j.1365-3040.1994.tb00161.x 10.1111/j.1399-3054.2006.00804.x 10.1016/S1011-1344(98)00184-5 10.1021/es071224l 10.1029/2006GL026162 10.1038/30934 10.1038/nature04420 10.1139/b02-018 10.1002/9780470988695.ch6 10.1007/978-3-662-04145-1_7 10.1093/oso/9780195131871.003.0004 10.1111/j.1751-1097.2004.tb00029.x doi:10.1029/2001GL014521 10.5194/acp-7-237-2007 10.1126/science.1106644 10.1023/A:1009827626715 10.1111/j.1469-8137.2007.02103.x 10.1111/j.1399-3054.1990.tb02091.x 10.1111/j.1365-3040.2008.01892.x 10.1038/439148a 10.1111/j.1399-3054.2005.00566.x 10.1046/j.1365-2435.1999.00010.x 10.2134/jeq2003.1978 10.1038/scientificamerican0207-52 10.1088/1755-1307/6/4/042013 10.1046/j.1365-2486.2003.00578.x 10.1071/FP06051 10.1016/j.agrformet.2003.08.015 10.5194/bgd-5-243-2008 10.1029/2008GL034300 10.1021/es062404i 10.1111/j.1469-8137.2009.02797.x 10.1111/j.1469-8137.2008.02411.x 10.1111/j.1469-8137.2008.02571.x |
ContentType | Journal Article |
Copyright | Copyright © Physiologia Plantarum 2009 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © Physiologia Plantarum 2009 – notice: 2009 INIST-CNRS |
DBID | FBQ BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TV C1K 7X8 |
DOI | 10.1111/j.1399-3054.2009.01268.x |
DatabaseName | AGRIS Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Pollution Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Pollution Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Pollution Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 147 |
ExternalDocumentID | 10_1111_j_1399_3054_2009_01268_x 19678898 21914211 PPL1268 ark_67375_WNG_QFK36VQ1_5 US201301677321 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 08R AAPBV IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TV C1K 7X8 |
ID | FETCH-LOGICAL-c5568-fd661f6d0c5e1458aa402f643c47bd58a756ae1fed4aeabadb42e30e53dd382e3 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 |
IngestDate | Thu Aug 15 22:45:15 EDT 2024 Fri Aug 16 04:10:30 EDT 2024 Thu Sep 26 19:16:50 EDT 2024 Sat Sep 28 07:56:40 EDT 2024 Sun Oct 22 16:08:56 EDT 2023 Sat Aug 24 00:59:59 EDT 2024 Wed Oct 30 09:46:00 EDT 2024 Wed Dec 27 19:32:55 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Dynamical climatology Methane Climate change Temperature Gas emission Plant physiology UVB radiation Global change Cultivated plant Species Water stress |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5568-fd661f6d0c5e1458aa402f643c47bd58a756ae1fed4aeabadb42e30e53dd382e3 |
Notes | http://dx.doi.org/10.1111/j.1399-3054.2009.01268.x ArticleID:PPL1268 ark:/67375/WNG-QFK36VQ1-5 istex:A9C0A00F04C021452D405460869D13FF75C47613 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19678898 |
PQID | 20839353 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67656176 proquest_miscellaneous_20839353 crossref_primary_10_1111_j_1399_3054_2009_01268_x pubmed_primary_19678898 pascalfrancis_primary_21914211 wiley_primary_10_1111_j_1399_3054_2009_01268_x_PPL1268 istex_primary_ark_67375_WNG_QFK36VQ1_5 fao_agris_US201301677321 |
PublicationCentury | 2000 |
PublicationDate | October 2009 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: Denmark |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | Allen LH Jr, Albrecht SL, Colón-Guasp W, Covell SA, Baker JT, Pan D, Boote KJ (2003) Methane emissions of rice increased by elevated carbon dioxide and temperature. J Environ Qual 32: 1978-1991 Frankenberg C, Meirink JF, Van Weele M, Platt M, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 380: 1010-1014 Liu J, Mukherjee I, Reid DM (1990) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus). III. The role of ethylene. Physiol Plant 78: 268-276 Dueck TA, De Visser R, Poorter H, Persijn S, Gorissen A, De Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, Van Der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35 Sanhueza E, Donoso L (2006) Methane emission from tropical savanna Trachypogon sp. grasses. Atmos Chem Phys 6: 5315-5319 McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180: 124-132 Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Köner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISTA: 2. Evaluation based on inverse model simulations. J Geophys Res-Atmos 112: D02304 Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM (2007) Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmos Chem Phys 7: 237-241 Do Carmo JB, Keller M, Dias JD, De Camargo PB, Crill P (2006) A source of methane from upland forests in the Brazilian Amazon. Geophys Res Lett 33: L04809 Houweling S, Röckmann T, Aben I, Keppler F, Krol M, Meirink JF, Dlugokencky E, Frankenberg C (2006) Atmospheric constraints on global emissions of methane from plants. Geophys Res Lett 33: L15821 Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68 Reddy KR, Kakani VG, Zhao D, Koti S, Gao W (2004) Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol 79: 416-427 Rodriguez J (2007) Aerobic methane production by banana plant. Cantaurus 15: 21-23 Parsons AJ, Newton PCD, Clark H, Kelliher M (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424 Simpson IJ, Blake DR, Rowland FS, Chen T-Y (2002) Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophys Res Lett 29: 1479, DOI: doi:10.1029/2001GL014521. Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128: 710-721 Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2under controlled environment conditions. Physiol Plant 125: 247-259 Emery RJN, Reid DM, Chinnappa CC (1994) Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind. Plant Cell Environ 17: 691-700 Frankenberg C, Bergamaschi P, Butz A, Houweling S, Meirink JF, Notholt J, Petersen AK, Schrijver H, Warneke T, Aben I (2008) Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT. Geophys Res Lett 35: L15811 Hofmann RW, Campbell BD, Fountain DF (2003) Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Glob Change Biol 9: 473-477 Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191 Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393: 447-450 McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth's surface. Photochem Photobiol Sci 6: 218-231 Qaderi MM, Islam MA, Reid DM, Shah S (2007) Do low-ethylene-producing transgenic canola (Brassica napus) plants expressing the ACC deaminase gene differ from wild-type plants in response to UVB radiation?. Can J Bot 85: 148-159 Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteor 120: 191-218 Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420 Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Photochem Photobiol 46: 40-52 Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037 Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9 Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097 Lowe DC (2006) A green source of surprise. Nature 439: 148-149 Keppler F, Röckmann T (2007) Methane, plants and climate change. Sci Am 296: 52-57 Bruhn D, Mikkelsen TN, Øbro J, Williams WGT, Ambus P (2009) The newly discovered aerobic methane release from terrestrial vegetation: causes and consequences. IOP Conf Ser: Earth Environ Sci 6: 042013 Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354 Cheng W, Chander K, Inubushi K (2000) Effects of elevated CO2 and temperature on methane production and emission from submerged soil microcosm. Nutr Cycl Agroecosys 58: 339-347 Lelieveld J (2006) A nasty surprise in the greenhouse. Nature 443: 405-406 Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57-60 Jones HG (1992) Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd Edn. Cambridge University Press, Cambridge Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke E-G, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439-443 Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918 SAS Institute Inc. (2004) SAS Onlinedoc®: SAS/STAT User's Guide, V9. SAS Institute Inc., Cary, NC Vigano I, Van Weelden H, Holzinger R, Keppler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosci Discuss 5: 243-270 Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530 Bray S, Reid DM (2002) The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Can J Bot 80: 349-359 Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178: 808-814 Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewiston B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA and Wratt D (2007) Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL, (eds.)]. Cambridge University Press, Cambridge and New York, 19-91 2006; 439 1990; 78 2009; 182 2006; 33 2009; 276 2007 2006; 6 2008; 35 2006 2008; 5 2004 1992 2002; 80 1998; 393 2003; 32 2007; 15 1998; 46 2008; 180 2007; 112 2005; 380 2009; 32 2002; 29 2000; 58 2001 2000 2006; 21 2005; 125 2007; 175 2003; 9 2007; 296 2004; 79 2007; 6 2007; 7 2009; 6 2007; 41 1994; 17 2007; 85 2008; 42 2008; 178 2003; 421 2006; 128 2003; 120 2006; 443 e_1_2_7_5_1 (e_1_2_7_45_1) 2004 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 Rodriguez J (e_1_2_7_42_1) 2007; 15 e_1_2_7_35_1 e_1_2_7_39_1 Solomon S (e_1_2_7_47_1) 2007 e_1_2_7_6_1 Jones HG (e_1_2_7_21_1) 1992 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Potvin C (e_1_2_7_37_1) 2001 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Do Carmo JB (e_1_2_7_13_1) 2006; 33 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Crutzen PJ (e_1_2_7_11_1) 2006; 6 |
References_xml | – volume: 6 start-page: 1403 year: 2009 end-page: 1420 article-title: Physical injury stimulates aerobic methane emissions from terrestrial plants publication-title: Biogeosci Discuss – volume: 33 start-page: 521 year: 2006 end-page: 530 article-title: A comment on the quantitative significance of aerobic methane release by plants publication-title: Funct Plant Biol – volume: 182 start-page: 912 year: 2009 end-page: 918 article-title: Nonmicrobial aerobic methane emission from poplar shoot cultures under low‐light conditions publication-title: New Phytol – volume: 296 start-page: 52 year: 2007 end-page: 57 article-title: Methane, plants and climate change publication-title: Sci Am – volume: 6 start-page: 5315 year: 2006 end-page: 5319 article-title: Methane emission from tropical savanna grasses. publication-title: Atmos Chem Phys – volume: 128 start-page: 710 year: 2006 end-page: 721 article-title: Growth and physiological responses of canola ( ) to three components of global climate change: temperature, carbon dioxide and drought publication-title: Physiol Plant – volume: 421 start-page: 57 year: 2003 end-page: 60 article-title: Fingerprints of global warming on wild animals and plants publication-title: Nature – volume: 125 start-page: 247 year: 2005 end-page: 259 article-title: Growth and physiological responses of canola ( ) to UV‐B and CO under controlled environment conditions publication-title: Physiol Plant – volume: 78 start-page: 268 year: 1990 end-page: 276 article-title: Adventitious rooting in hypocotyls of sunflower ( ). III. The role of ethylene. publication-title: Physiol Plant – volume: 85 start-page: 148 year: 2007 end-page: 159 article-title: Do low‐ethylene‐producing transgenic canola ( ) plants expressing the ACC deaminase gene differ from wild‐type plants in response to UVB radiation? publication-title: Can J Bot – volume: 17 start-page: 691 year: 1994 end-page: 700 article-title: Phenotypic plasticity of stem elongation in two ecotypes of : the role of ethylene and response to wind publication-title: Plant Cell Environ – volume: 439 start-page: 187 year: 2006 end-page: 191 article-title: Methane emissions from terrestrial plants under aerobic conditions publication-title: Nature – volume: 180 start-page: 124 year: 2008 end-page: 132 article-title: Ultraviolet radiation drives methane emissions from terrestrial plant pectins publication-title: New Phytol – volume: 7 start-page: 237 year: 2007 end-page: 241 article-title: Stable isotopes provide revised global limits of aerobic methane emissions from plants publication-title: Atmos Chem Phys – volume: 439 start-page: 148 year: 2006 end-page: 149 article-title: A green source of surprise publication-title: Nature – volume: 58 start-page: 339 year: 2000 end-page: 347 article-title: Effects of elevated CO and temperature on methane production and emission from submerged soil microcosm publication-title: Nutr Cycl Agroecosys – volume: 15 start-page: 21 year: 2007 end-page: 23 article-title: Aerobic methane production by banana plant publication-title: Cantaurus – volume: 41 start-page: 4032 year: 2007 end-page: 4037 article-title: Global methane emissions from terrestrial plants publication-title: Environ Sci Technol – volume: 380 start-page: 1010 year: 2005 end-page: 1014 article-title: Assessing methane emissions from global space‐borne observations publication-title: Science – volume: 80 start-page: 349 year: 2002 end-page: 359 article-title: The effect of salinity and CO enrichment on the growth and anatomy of the second trifoliate leaf of publication-title: Can J Bot – volume: 33 start-page: L15821 year: 2006 article-title: Atmospheric constraints on global emissions of methane from plants publication-title: Geophys Res Lett – volume: 9 start-page: 473 year: 2003 end-page: 477 article-title: Sensitivity of white clover to UV‐B radiation depends on water availability, plant productivity and duration of stress publication-title: Glob Change Biol – volume: 443 start-page: 405 year: 2006 end-page: 406 article-title: A nasty surprise in the greenhouse publication-title: Nature – volume: 42 start-page: 62 year: 2008 end-page: 68 article-title: Aerobic methane emission from plants in the Inner Mongolia Steppe publication-title: Environ Sci Technol – year: 2004 – start-page: 118 year: 2006 end-page: 145 – start-page: 19 year: 2007 end-page: 91 – volume: 6 start-page: 042013 year: 2009 article-title: The newly discovered aerobic methane release from terrestrial vegetation: causes and consequences publication-title: IOP Conf Ser: Earth Environ Sci – volume: 29 start-page: 1479 year: 2002 article-title: Implications of the recent fluctuations in the growth rate of tropospheric methane publication-title: Geophys Res Lett – volume: 32 start-page: 1978 year: 2003 end-page: 1991 article-title: Methane emissions of rice increased by elevated carbon dioxide and temperature publication-title: J Environ Qual – volume: 35 start-page: L15811 year: 2008 article-title: Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT publication-title: Geophys Res Lett – volume: 21 start-page: 423 year: 2006 end-page: 424 article-title: Scaling methane emissions from vegetation publication-title: Trends Ecol Evol – volume: 276 start-page: 1347 year: 2009 end-page: 1354 article-title: Emission of methane from plants publication-title: Proc R Soc B – volume: 120 start-page: 191 year: 2003 end-page: 218 article-title: Field crop responses to ultraviolet‐B radiation: a review publication-title: Agric For Meteor – volume: 46 start-page: 40 year: 1998 end-page: 52 article-title: Effects of increased solar ultraviolet radiation on terrestrial ecosystems publication-title: Photochem Photobiol – volume: 5 start-page: 243 year: 2008 end-page: 270 article-title: Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components publication-title: Biogeosci Discuss – volume: 6 start-page: 3093 year: 2006 end-page: 3097 article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela publication-title: Atmos Chem Phys Discuss – volume: 443 start-page: 439 year: 2006 end-page: 443 article-title: Contribution of anthropogenic and natural sources to atmospheric methane variability publication-title: Nature – year: 1992 – volume: 33 start-page: L04809 year: 2006 article-title: A source of methane from upland forests in the Brazilian Amazon publication-title: Geophys Res Lett – volume: 6 start-page: 218 year: 2007 end-page: 231 article-title: Changes in biologically‐active ultraviolet radiation reaching the Earth's surface publication-title: Photochem Photobiol Sci – volume: 112 start-page: D02304 year: 2007 article-title: Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISTA: 2. Evaluation based on inverse model simulations. publication-title: J Geophys Res–Atmos – volume: 32 start-page: 1 year: 2009 end-page: 9 article-title: The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin publication-title: Plant Cell Environ – volume: 175 start-page: 29 year: 2007 end-page: 35 article-title: No evidence for substantial aerobic methane emission by terrestrial plants: a C‐labelling approach publication-title: New Phytol – start-page: 98 year: 2000 end-page: 111 – volume: 79 start-page: 416 year: 2004 end-page: 427 article-title: Interactive effects of ultraviolet‐B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance publication-title: Photochem Photobiol – volume: 393 start-page: 447 year: 1998 end-page: 450 article-title: Continuing decline in the growth rate of the atmospheric methane burden publication-title: Nature – volume: 178 start-page: 808 year: 2008 end-page: 814 article-title: Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies publication-title: New Phytol – start-page: 63 year: 2001 end-page: 76 – ident: e_1_2_7_28_1 doi: 10.1038/443405a – ident: e_1_2_7_40_1 doi: 10.1139/B06-157 – ident: e_1_2_7_35_1 doi: 10.1016/j.tree.2006.05.017 – ident: e_1_2_7_3_1 doi: 10.1029/2006JD007268 – volume: 15 start-page: 21 year: 2007 ident: e_1_2_7_42_1 article-title: Aerobic methane production by banana plant publication-title: Cantaurus contributor: fullname: Rodriguez J – volume-title: SAS Onlinedoc®: SAS/STAT User's Guide, V9 year: 2004 ident: e_1_2_7_45_1 – start-page: 19 volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_7_47_1 contributor: fullname: Solomon S – ident: e_1_2_7_31_1 doi: 10.1039/B700017K – ident: e_1_2_7_50_1 doi: 10.5194/bgd-6-1403-2009 – volume-title: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology year: 1992 ident: e_1_2_7_21_1 contributor: fullname: Jones HG – ident: e_1_2_7_4_1 doi: 10.1038/nature05132 – ident: e_1_2_7_44_1 doi: 10.5194/acp-6-5315-2006 – ident: e_1_2_7_34_1 doi: 10.1098/rspb.2008.1731 – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-3040.1994.tb00161.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1399-3054.2006.00804.x – ident: e_1_2_7_9_1 doi: 10.1016/S1011-1344(98)00184-5 – ident: e_1_2_7_49_1 doi: 10.1021/es071224l – ident: e_1_2_7_20_1 doi: 10.1029/2006GL026162 – ident: e_1_2_7_12_1 doi: 10.1038/30934 – ident: e_1_2_7_23_1 doi: 10.1038/nature04420 – ident: e_1_2_7_5_1 doi: 10.1139/b02-018 – ident: e_1_2_7_36_1 doi: 10.1002/9780470988695.ch6 – ident: e_1_2_7_26_1 doi: 10.1007/978-3-662-04145-1_7 – start-page: 63 volume-title: Design and Analysis of Ecological Experiments year: 2001 ident: e_1_2_7_37_1 doi: 10.1093/oso/9780195131871.003.0004 contributor: fullname: Potvin C – ident: e_1_2_7_41_1 doi: 10.1111/j.1751-1097.2004.tb00029.x – volume: 6 start-page: 3093 year: 2006 ident: e_1_2_7_11_1 article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela publication-title: Atmos Chem Phys Discuss contributor: fullname: Crutzen PJ – ident: e_1_2_7_46_1 doi: doi:10.1029/2001GL014521 – ident: e_1_2_7_16_1 doi: 10.5194/acp-7-237-2007 – ident: e_1_2_7_18_1 doi: 10.1126/science.1106644 – ident: e_1_2_7_10_1 doi: 10.1023/A:1009827626715 – ident: e_1_2_7_14_1 doi: 10.1111/j.1469-8137.2007.02103.x – ident: e_1_2_7_29_1 doi: 10.1111/j.1399-3054.1990.tb02091.x – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-3040.2008.01892.x – ident: e_1_2_7_30_1 doi: 10.1038/439148a – volume: 33 start-page: L04809 year: 2006 ident: e_1_2_7_13_1 article-title: A source of methane from upland forests in the Brazilian Amazon publication-title: Geophys Res Lett contributor: fullname: Do Carmo JB – ident: e_1_2_7_38_1 doi: 10.1111/j.1399-3054.2005.00566.x – ident: e_1_2_7_43_1 doi: 10.1046/j.1365-2435.1999.00010.x – ident: e_1_2_7_2_1 doi: 10.2134/jeq2003.1978 – ident: e_1_2_7_25_1 doi: 10.1038/scientificamerican0207-52 – ident: e_1_2_7_7_1 doi: 10.1088/1755-1307/6/4/042013 – ident: e_1_2_7_19_1 doi: 10.1046/j.1365-2486.2003.00578.x – ident: e_1_2_7_27_1 doi: 10.1071/FP06051 – ident: e_1_2_7_22_1 doi: 10.1016/j.agrformet.2003.08.015 – ident: e_1_2_7_48_1 doi: 10.5194/bgd-5-243-2008 – ident: e_1_2_7_17_1 doi: 10.1029/2008GL034300 – ident: e_1_2_7_8_1 doi: 10.1021/es062404i – ident: e_1_2_7_6_1 doi: 10.1111/j.1469-8137.2009.02797.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1469-8137.2008.02411.x – ident: e_1_2_7_32_1 doi: 10.1111/j.1469-8137.2008.02571.x |
SSID | ssj0016612 |
Score | 2.2550483 |
Snippet | We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean,... We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops–faba bean,... We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean,... We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH 4 ) emission from six crops–faba bean,... We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops-faba bean,... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 139 |
SubjectTerms | air temperature barley beans Biological and medical sciences Biomass Brassica napus canola carbon dioxide Carbon Dioxide - metabolism climate change crops Crops, Agricultural - growth & development Crops, Agricultural - metabolism Crops, Agricultural - radiation effects Dehydration detectors Fundamental and applied biological sciences. Psychology gas chromatography gas emissions gas exchange greenhouse effect growth chambers Helianthus Helianthus annuus Hordeum vulgare ionization leaf area leaves methane Methane - metabolism peas Pisum sativum plant growth Plant Leaves - growth & development Plant Leaves - metabolism Plant Leaves - radiation effects Plant physiology and development stems Temperature transpiration Triticum aestivum ultraviolet radiation Ultraviolet Rays Vicia faba water stress water use efficiency wheat |
Title | Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress |
URI | https://api.istex.fr/ark:/67375/WNG-QFK36VQ1-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2009.01268.x https://www.ncbi.nlm.nih.gov/pubmed/19678898 https://search.proquest.com/docview/20839353 https://search.proquest.com/docview/67656176 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFNzQ8ig-IE1nFiR8JNwosFdCqBRZ6s5zYrqqtNtUmKxZO_AQu_EF-CTNOdiGoSAhxy2rjKB5_jr-xZ74h5EFiklLllYq5lzLmJitiI20S8wxcMVeINAlSSrt7cmfCXx6Kwz7-CXNhOn2I9YYbzozwvcYJbspmOMlhcY0Br7yXnWSpzEfIJ1mmMLrr2Zu1khSDZagTDs9YXMCaOQzqOfNBg5XqvDc18Fc0_RLjJ00DJvRd7YuzyOmQ64bFanyZTFfd7GJUpqNFW46qz78pQP4fO1whl3pOS590ILxKzrnZNXJhuwbe-ek6-bbrcHveUawsh3tzDcWcFtocLynWD6OY7An-OnXL07pxlrY1bQFhjmK4ez3DSA9ae9pJl9Dq5BhINvwZ0iIeU9TW6oWhH9HFSTs3Idag_f7l6zado_ICQo-amaUfod2cdtkxN8hk_Pzd0524LwYRVyiSFnsLQ-gBRpVwjIvcGPB8PfCpiqvSwm8lpHHMO8uNM6WxJU9dljiRWZvlcHmTbMzgnTcJlSU45kwazyrHrUtNIRx33lQuL4XP84iw1cDr007zQ__iK4G1NVobK3gWOlhbLyOyCQjR5gg-zXryNsUDYSaVylIWkYcBNutnmfkUw-mU0B_2XuiD8atMvj9gWkRka4CrdYMURfjAU4_I_RXQNAwZHu3A8NWLBl4lxxzr7M93SAXMnSkZkVsdQn92rQDCkhfQbRlw9td91vv7r_Hq9r82vEMuhsO5EBt5l2y084W7BxyvLbfC7P0BROtEFA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgIMHL-GbhY_MD4olUcew4CW8MKIW11QYr7M1yEnuaVjVTkorCEz-BF_4gv4R7nbRQNCSEeEvVOIqvj-Nz7XvPJeRRoIMsTvLYF1ZKX2ie-loWgS84uGImjcLASSmNxnIwEW-OoqOuHBDmwrT6EKsNN5wZ7nuNExw3pNdnOayuPgBWdLqTLJRJDwjlJZj9HOs4vHi70pJisBC10uGc-SmsmuthPec-aW2tumh1CQwWjb_ACEpdgxFtW_3iPHq6znbdctW_RqbLjrZRKqe9eZP18s-_aUD-J0tcJ5sdraXPWhzeIBfM7Ca5vFsC9fx0i3wbGdyhNxSLy-H2XE0xrYXWJwuKJcQo5nuCy07N4qysTUGbkjYAMkMx4r2cYbAHLS1t1UtoPj0Bng1_usyIpxTltTpt6Cd0Pm0q7cINmu9fvu7SCsUXEH1Uzwr6EdpVtE2QuU0m_ZeHzwd-Vw_Cz1EnzbcFjKEFJOWRYSJKtAbn1wKlykWcFfA7jqQ2zJpCaKMzXWQiNDwwES8KnsDlHbIxg3feIlRm4JszqS3LjShMqNPICGN1bpIsskniEbYceXXWyn6oX9wlsLZCa2MRz1Q5a6uFR7YAIkofw9dZTd6FeCbMZBzzkHnkscPN6lm6OsWIujhSH8av1EF_j8v3B0xFHtleA9aqQYg6fOCse2RniTQFQ4anOzB85byGV0kwzZr_-Q4ZA3lnsfTI3RaiP7uWAmdJUui2dED76z6r_f0hXt3714Y75MrgcDRUw9fjvfvkqjurc6GSD8hGU83NQ6B8TbbtpvIPYKFILA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgIMSFb2j4aH1AnMgqThwn4UaBpdB2tQWW9mY5sY2qrTarJCsWTvwELvxBfgkzTnYhqEgIcctq4ygeP8dv7Jk3hDwMVJAnaZH43ArhcxVlvhI68HkErpjJ4jBwUkoHI7E74a-P4-Mu_glzYVp9iPWGG84M973GCT7Xtj_JYXH1Aa-8k51koUgHwCcvcAFEGAnSm7WUFIN1qFUOj5ifwaLZj-o580m9peq8VSUQWLT9EgMoVQ02tG3xi7PYaZ_sutVqeJVMV_1sg1Smg0WTD4rPv0lA_h9DXCNXOlJLn7YovE7OmdkNcnGnBOL56Sb5dmBwf95QLC2Hm3M1xaQWWp8sKRYQo5jtCQ47Nct5WRtNm5I2ADFDMd69nGGoBy0tbbVLaHF6Aiwb_nR5EU8oimt1ytCP6eK0qZQLNmi-f_m6QyuUXkDsUTXT9CO0q2ibHnOLTIYv3j3b9btqEH6BKmm-1TCEFnBUxIbxOFUKXF8LhKrgSa7hdxILZZg1miujcqVzHpooMHGkdZTC5W2yMYN33iRU5OCZM6EsKwzXJlRZbLixqjBpHts09QhbDbyct6If8hdnCawt0dpYwjOTztpy6ZFNQIhUH-DbLCdvQzwRZiJJopB55JGDzfpZqppiPF0Sy6PRS3k43IvE-0MmY49s9XC1bhCiCh-46h7ZXgFNwpDh2Q4MX7mo4VVSTLKO_nyHSIC6s0R45E6L0J9dy4CxpBl0Wzic_XWf5Xi8j1d3_7XhNrk0fj6U-69Ge_fIZXdQ5-Ik75ONplqYB8D3mnzLTeQfRURG2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+emissions+from+six+crop+species+exposed+to+three+components+of+global+climate+change%3A+temperature%2C+ultraviolet%E2%80%90B+radiation+and+water+stress&rft.jtitle=Physiologia+plantarum&rft.au=Qaderi%2C+Mirwais+M.&rft.au=Reid%2C+David+M.&rft.date=2009-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=137&rft.issue=2&rft.spage=139&rft.epage=147&rft_id=info:doi/10.1111%2Fj.1399-3054.2009.01268.x&rft.externalDBID=10.1111%252Fj.1399-3054.2009.01268.x&rft.externalDocID=PPL1268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |