Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress

We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 137; no. 2; pp. 139 - 147
Main Authors Qaderi, Mirwais M, Reid, David M
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2009
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m⁻² d⁻¹] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH₄ emission rates [ng g⁻¹ dry weight (DW) h⁻¹] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO₂ assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH₄ emissions. Crop species varied in CH₄ emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH₄ emission was negatively correlated with stem height and AG biomass. We conclude that CH₄ emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.
AbstractList We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m-2 d-1] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH4 emission rates [ng g-1 dry weight (DW) h-1] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO2 assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH4 emissions. Crop species varied in CH4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH4 emission was negatively correlated with stem height and AG biomass. We conclude that CH4 emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.
We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m⁻² d⁻¹] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH₄ emission rates [ng g⁻¹ dry weight (DW) h⁻¹] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO₂ assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH₄ emissions. Crop species varied in CH₄ emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH₄ emission was negatively correlated with stem height and AG biomass. We conclude that CH₄ emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.
We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops–faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled‐environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m−2 d−1] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH4 emission rates [ng g−1 dry weight (DW) h−1] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO2 assimilation (AN), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH4 emissions. Crop species varied in CH4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased AN and WUE but increased E, whereas water stress decreased AN but increased E and WUE. Zero and enhanced UVB reduced AN and E. Growth and gas exchange varied with species. Overall, CH4 emission was negatively correlated with stem height and AG biomass. We conclude that CH4 emissions may increase under climatic stress conditions and this extra source might contribute to the ‘greenhouse effect'.
We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26 degrees C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m(-2) d(-1)] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH(4) emission rates [ng g(-1) dry weight (DW) h(-1)] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO(2) assimilation (A(N)), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH(4) emissions. Crop species varied in CH(4) emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A(N) and WUE but increased E, whereas water stress decreased A(N) but increased E and WUE. Zero and enhanced UVB reduced A(N) and E. Growth and gas exchange varied with species. Overall, CH(4) emission was negatively correlated with stem height and AG biomass. We conclude that CH(4) emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.
We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH 4 ) emission from six crops–faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled‐environment growth chambers under two temperature regimes (24/20 and 30/26°C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m −2 d −1 ] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH 4 emission rates [ng g −1 dry weight (DW) h −1 ] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO 2 assimilation (A N ), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH 4 emissions. Crop species varied in CH 4 emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A N and WUE but increased E, whereas water stress decreased A N but increased E and WUE. Zero and enhanced UVB reduced A N and E. Growth and gas exchange varied with species. Overall, CH 4 emission was negatively correlated with stem height and AG biomass. We conclude that CH 4 emissions may increase under climatic stress conditions and this extra source might contribute to the ‘greenhouse effect'.
Author Reid, David M.
Qaderi, Mirwais M.
Author_xml – sequence: 1
  fullname: Qaderi, Mirwais M
– sequence: 2
  fullname: Reid, David M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21914211$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19678898$$D View this record in MEDLINE/PubMed
BookMark eNqNktFy1CAUhhmnjt1WX0G50atmhRBI4owX2rHVcdV2tHrJsOFkm20SUmDt9jl8YU_Mznqp3ADD9x8O_88ROehdD4RQzuYcx8v1nIuyTAST2TxlrJwznqpivn1AZvuDAzJjTPCkFDw_JEchrBnjSvH0ETnkpcqLoixm5NcniNemBwpdE0Lj-kBr7zoami2tvBtoGKBqIFDYDi6ApdHReO0BaOW6AbvqY6CupqvWLU1Lq7bpTMRDrLmCVzRCN4A3cePhhG7a6M3PxrUQk7fUG9uYiDdS01t6hypPQ_QQwmPysDZtgCe7-Zhcnb37dvo-WXw5_3D6ZpFUUqoiqS2-plaWVRJ4JgtjMpbWKhNVli8t7nOpDPAabGbALI1dZikIBlJYKwpcHpMXU93Bu9sNhKjRgwraFv1wm6BVrqTiufonmLJClEIKBIsJROtC8FDrwaMh_l5zpsfk9FqPAekxID0mp_8kp7cofbq7Y7PswP4V7qJC4PkOMKEybe1NXzVhz6W85FnKOXKvJ-6uaeH-vxvQFxeLcYX6ZNI3IcJ2rzf-Bg0RudQ_Pp_ry7OPQn2_5Foi_2zia-O0WXns6epryrjA35bnIuXiN2md0fk
CODEN PHPLAI
CitedBy_id crossref_primary_10_1016_j_plaphy_2019_04_030
crossref_primary_10_1038_srep46185
crossref_primary_10_1007_s11738_017_2420_y
crossref_primary_10_1086_652389
crossref_primary_10_1093_plankt_fbab069
crossref_primary_10_1111_nph_19724
crossref_primary_10_4161_15592316_2014_970095
crossref_primary_10_5194_bg_12_1907_2015
crossref_primary_10_1016_j_atmosenv_2012_02_012
crossref_primary_10_1111_j_1469_8137_2010_03259_x
crossref_primary_10_1016_j_earscirev_2013_10_001
crossref_primary_10_1126_sciadv_aax5343
crossref_primary_10_3389_fphys_2019_01244
crossref_primary_10_1016_j_envexpbot_2015_11_013
crossref_primary_10_1016_j_hal_2019_01_009
crossref_primary_10_1016_j_atmosenv_2011_06_001
crossref_primary_10_1111_jac_12014
crossref_primary_10_1111_ppl_12514
crossref_primary_10_1016_j_sajb_2024_03_041
crossref_primary_10_1186_s12870_018_1426_y
crossref_primary_10_3390_antiox12071381
crossref_primary_10_1007_s13580_019_00219_4
crossref_primary_10_1111_nph_17365
crossref_primary_10_1016_j_scitotenv_2023_169662
crossref_primary_10_1071_FP10119
crossref_primary_10_1038_s41586_022_04511_9
crossref_primary_10_1016_j_jplph_2018_12_006
crossref_primary_10_1002_lno_12095
crossref_primary_10_1016_j_ecoenv_2017_09_054
crossref_primary_10_1016_j_atmosenv_2015_05_019
crossref_primary_10_1016_j_jphotobiol_2016_11_019
crossref_primary_10_1139_cjb_2021_0002
crossref_primary_10_1016_j_jplph_2018_05_010
crossref_primary_10_1016_j_plaphy_2020_10_016
crossref_primary_10_1111_nph_15624
crossref_primary_10_1016_j_atmosenv_2010_11_014
crossref_primary_10_1007_s40626_020_00170_1
crossref_primary_10_1139_cjb_2018_0126
crossref_primary_10_1016_j_scitotenv_2024_173730
crossref_primary_10_1007_s11157_020_09562_w
crossref_primary_10_1111_j_1399_3054_2011_01551_x
crossref_primary_10_1073_pnas_2308516120
crossref_primary_10_3390_agronomy13030930
crossref_primary_10_1111_nph_18120
crossref_primary_10_1111_pce_12489
crossref_primary_10_1007_s10533_014_9974_1
crossref_primary_10_1016_j_atmosenv_2012_01_033
crossref_primary_10_1590_0102_7786344071
crossref_primary_10_1071_EN09137
crossref_primary_10_5194_bg_9_5291_2012
crossref_primary_10_1111_ppl_12531
Cites_doi 10.1038/443405a
10.1139/B06-157
10.1016/j.tree.2006.05.017
10.1029/2006JD007268
10.1039/B700017K
10.5194/bgd-6-1403-2009
10.1038/nature05132
10.5194/acp-6-5315-2006
10.1098/rspb.2008.1731
10.1111/j.1365-3040.1994.tb00161.x
10.1111/j.1399-3054.2006.00804.x
10.1016/S1011-1344(98)00184-5
10.1021/es071224l
10.1029/2006GL026162
10.1038/30934
10.1038/nature04420
10.1139/b02-018
10.1002/9780470988695.ch6
10.1007/978-3-662-04145-1_7
10.1093/oso/9780195131871.003.0004
10.1111/j.1751-1097.2004.tb00029.x
doi:10.1029/2001GL014521
10.5194/acp-7-237-2007
10.1126/science.1106644
10.1023/A:1009827626715
10.1111/j.1469-8137.2007.02103.x
10.1111/j.1399-3054.1990.tb02091.x
10.1111/j.1365-3040.2008.01892.x
10.1038/439148a
10.1111/j.1399-3054.2005.00566.x
10.1046/j.1365-2435.1999.00010.x
10.2134/jeq2003.1978
10.1038/scientificamerican0207-52
10.1088/1755-1307/6/4/042013
10.1046/j.1365-2486.2003.00578.x
10.1071/FP06051
10.1016/j.agrformet.2003.08.015
10.5194/bgd-5-243-2008
10.1029/2008GL034300
10.1021/es062404i
10.1111/j.1469-8137.2009.02797.x
10.1111/j.1469-8137.2008.02411.x
10.1111/j.1469-8137.2008.02571.x
ContentType Journal Article
Copyright Copyright © Physiologia Plantarum 2009
2009 INIST-CNRS
Copyright_xml – notice: Copyright © Physiologia Plantarum 2009
– notice: 2009 INIST-CNRS
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TV
C1K
7X8
DOI 10.1111/j.1399-3054.2009.01268.x
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Pollution Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Pollution Abstracts


MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 147
ExternalDocumentID 10_1111_j_1399_3054_2009_01268_x
19678898
21914211
PPL1268
ark_67375_WNG_QFK36VQ1_5
US201301677321
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
08R
AAPBV
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TV
C1K
7X8
ID FETCH-LOGICAL-c5568-fd661f6d0c5e1458aa402f643c47bd58a756ae1fed4aeabadb42e30e53dd382e3
IEDL.DBID DR2
ISSN 0031-9317
IngestDate Thu Aug 15 22:45:15 EDT 2024
Fri Aug 16 04:10:30 EDT 2024
Thu Sep 26 19:16:50 EDT 2024
Sat Sep 28 07:56:40 EDT 2024
Sun Oct 22 16:08:56 EDT 2023
Sat Aug 24 00:59:59 EDT 2024
Wed Oct 30 09:46:00 EDT 2024
Wed Dec 27 19:32:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Dynamical climatology
Methane
Climate change
Temperature
Gas emission
Plant physiology
UVB radiation
Global change
Cultivated plant
Species
Water stress
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5568-fd661f6d0c5e1458aa402f643c47bd58a756ae1fed4aeabadb42e30e53dd382e3
Notes http://dx.doi.org/10.1111/j.1399-3054.2009.01268.x
ArticleID:PPL1268
ark:/67375/WNG-QFK36VQ1-5
istex:A9C0A00F04C021452D405460869D13FF75C47613
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19678898
PQID 20839353
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_67656176
proquest_miscellaneous_20839353
crossref_primary_10_1111_j_1399_3054_2009_01268_x
pubmed_primary_19678898
pascalfrancis_primary_21914211
wiley_primary_10_1111_j_1399_3054_2009_01268_x_PPL1268
istex_primary_ark_67375_WNG_QFK36VQ1_5
fao_agris_US201301677321
PublicationCentury 2000
PublicationDate October 2009
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: October 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: Denmark
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Allen LH Jr, Albrecht SL, Colón-Guasp W, Covell SA, Baker JT, Pan D, Boote KJ (2003) Methane emissions of rice increased by elevated carbon dioxide and temperature. J Environ Qual 32: 1978-1991
Frankenberg C, Meirink JF, Van Weele M, Platt M, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 380: 1010-1014
Liu J, Mukherjee I, Reid DM (1990) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus). III. The role of ethylene. Physiol Plant 78: 268-276
Dueck TA, De Visser R, Poorter H, Persijn S, Gorissen A, De Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, Van Der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35
Sanhueza E, Donoso L (2006) Methane emission from tropical savanna Trachypogon sp. grasses. Atmos Chem Phys 6: 5315-5319
McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180: 124-132
Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Köner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISTA: 2. Evaluation based on inverse model simulations. J Geophys Res-Atmos 112: D02304
Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM (2007) Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmos Chem Phys 7: 237-241
Do Carmo JB, Keller M, Dias JD, De Camargo PB, Crill P (2006) A source of methane from upland forests in the Brazilian Amazon. Geophys Res Lett 33: L04809
Houweling S, Röckmann T, Aben I, Keppler F, Krol M, Meirink JF, Dlugokencky E, Frankenberg C (2006) Atmospheric constraints on global emissions of methane from plants. Geophys Res Lett 33: L15821
Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68
Reddy KR, Kakani VG, Zhao D, Koti S, Gao W (2004) Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol 79: 416-427
Rodriguez J (2007) Aerobic methane production by banana plant. Cantaurus 15: 21-23
Parsons AJ, Newton PCD, Clark H, Kelliher M (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424
Simpson IJ, Blake DR, Rowland FS, Chen T-Y (2002) Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophys Res Lett 29: 1479, DOI: doi:10.1029/2001GL014521.
Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128: 710-721
Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2under controlled environment conditions. Physiol Plant 125: 247-259
Emery RJN, Reid DM, Chinnappa CC (1994) Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind. Plant Cell Environ 17: 691-700
Frankenberg C, Bergamaschi P, Butz A, Houweling S, Meirink JF, Notholt J, Petersen AK, Schrijver H, Warneke T, Aben I (2008) Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT. Geophys Res Lett 35: L15811
Hofmann RW, Campbell BD, Fountain DF (2003) Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Glob Change Biol 9: 473-477
Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191
Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393: 447-450
McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth's surface. Photochem Photobiol Sci 6: 218-231
Qaderi MM, Islam MA, Reid DM, Shah S (2007) Do low-ethylene-producing transgenic canola (Brassica napus) plants expressing the ACC deaminase gene differ from wild-type plants in response to UVB radiation?. Can J Bot 85: 148-159
Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteor 120: 191-218
Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420
Caldwell MM, Björn LO, Bornman JF, Flint SD, Kulandaivelu G, Teramura AH, Tevini M (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Photochem Photobiol 46: 40-52
Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037
Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9
Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097
Lowe DC (2006) A green source of surprise. Nature 439: 148-149
Keppler F, Röckmann T (2007) Methane, plants and climate change. Sci Am 296: 52-57
Bruhn D, Mikkelsen TN, Øbro J, Williams WGT, Ambus P (2009) The newly discovered aerobic methane release from terrestrial vegetation: causes and consequences. IOP Conf Ser: Earth Environ Sci 6: 042013
Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354
Cheng W, Chander K, Inubushi K (2000) Effects of elevated CO2 and temperature on methane production and emission from submerged soil microcosm. Nutr Cycl Agroecosys 58: 339-347
Lelieveld J (2006) A nasty surprise in the greenhouse. Nature 443: 405-406
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57-60
Jones HG (1992) Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd Edn. Cambridge University Press, Cambridge
Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke E-G, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439-443
Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918
SAS Institute Inc. (2004) SAS Onlinedoc®: SAS/STAT User's Guide, V9. SAS Institute Inc., Cary, NC
Vigano I, Van Weelden H, Holzinger R, Keppler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosci Discuss 5: 243-270
Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530
Bray S, Reid DM (2002) The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Can J Bot 80: 349-359
Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178: 808-814
Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewiston B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA and Wratt D (2007) Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL, (eds.)]. Cambridge University Press, Cambridge and New York, 19-91
2006; 439
1990; 78
2009; 182
2006; 33
2009; 276
2007
2006; 6
2008; 35
2006
2008; 5
2004
1992
2002; 80
1998; 393
2003; 32
2007; 15
1998; 46
2008; 180
2007; 112
2005; 380
2009; 32
2002; 29
2000; 58
2001
2000
2006; 21
2005; 125
2007; 175
2003; 9
2007; 296
2004; 79
2007; 6
2007; 7
2009; 6
2007; 41
1994; 17
2007; 85
2008; 42
2008; 178
2003; 421
2006; 128
2003; 120
2006; 443
e_1_2_7_5_1
(e_1_2_7_45_1) 2004
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
Rodriguez J (e_1_2_7_42_1) 2007; 15
e_1_2_7_35_1
e_1_2_7_39_1
Solomon S (e_1_2_7_47_1) 2007
e_1_2_7_6_1
Jones HG (e_1_2_7_21_1) 1992
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Potvin C (e_1_2_7_37_1) 2001
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Do Carmo JB (e_1_2_7_13_1) 2006; 33
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Crutzen PJ (e_1_2_7_11_1) 2006; 6
References_xml – volume: 6
  start-page: 1403
  year: 2009
  end-page: 1420
  article-title: Physical injury stimulates aerobic methane emissions from terrestrial plants
  publication-title: Biogeosci Discuss
– volume: 33
  start-page: 521
  year: 2006
  end-page: 530
  article-title: A comment on the quantitative significance of aerobic methane release by plants
  publication-title: Funct Plant Biol
– volume: 182
  start-page: 912
  year: 2009
  end-page: 918
  article-title: Nonmicrobial aerobic methane emission from poplar shoot cultures under low‐light conditions
  publication-title: New Phytol
– volume: 296
  start-page: 52
  year: 2007
  end-page: 57
  article-title: Methane, plants and climate change
  publication-title: Sci Am
– volume: 6
  start-page: 5315
  year: 2006
  end-page: 5319
  article-title: Methane emission from tropical savanna grasses.
  publication-title: Atmos Chem Phys
– volume: 128
  start-page: 710
  year: 2006
  end-page: 721
  article-title: Growth and physiological responses of canola ( ) to three components of global climate change: temperature, carbon dioxide and drought
  publication-title: Physiol Plant
– volume: 421
  start-page: 57
  year: 2003
  end-page: 60
  article-title: Fingerprints of global warming on wild animals and plants
  publication-title: Nature
– volume: 125
  start-page: 247
  year: 2005
  end-page: 259
  article-title: Growth and physiological responses of canola ( ) to UV‐B and CO under controlled environment conditions
  publication-title: Physiol Plant
– volume: 78
  start-page: 268
  year: 1990
  end-page: 276
  article-title: Adventitious rooting in hypocotyls of sunflower ( ). III. The role of ethylene.
  publication-title: Physiol Plant
– volume: 85
  start-page: 148
  year: 2007
  end-page: 159
  article-title: Do low‐ethylene‐producing transgenic canola ( ) plants expressing the ACC deaminase gene differ from wild‐type plants in response to UVB radiation?
  publication-title: Can J Bot
– volume: 17
  start-page: 691
  year: 1994
  end-page: 700
  article-title: Phenotypic plasticity of stem elongation in two ecotypes of : the role of ethylene and response to wind
  publication-title: Plant Cell Environ
– volume: 439
  start-page: 187
  year: 2006
  end-page: 191
  article-title: Methane emissions from terrestrial plants under aerobic conditions
  publication-title: Nature
– volume: 180
  start-page: 124
  year: 2008
  end-page: 132
  article-title: Ultraviolet radiation drives methane emissions from terrestrial plant pectins
  publication-title: New Phytol
– volume: 7
  start-page: 237
  year: 2007
  end-page: 241
  article-title: Stable isotopes provide revised global limits of aerobic methane emissions from plants
  publication-title: Atmos Chem Phys
– volume: 439
  start-page: 148
  year: 2006
  end-page: 149
  article-title: A green source of surprise
  publication-title: Nature
– volume: 58
  start-page: 339
  year: 2000
  end-page: 347
  article-title: Effects of elevated CO and temperature on methane production and emission from submerged soil microcosm
  publication-title: Nutr Cycl Agroecosys
– volume: 15
  start-page: 21
  year: 2007
  end-page: 23
  article-title: Aerobic methane production by banana plant
  publication-title: Cantaurus
– volume: 41
  start-page: 4032
  year: 2007
  end-page: 4037
  article-title: Global methane emissions from terrestrial plants
  publication-title: Environ Sci Technol
– volume: 380
  start-page: 1010
  year: 2005
  end-page: 1014
  article-title: Assessing methane emissions from global space‐borne observations
  publication-title: Science
– volume: 80
  start-page: 349
  year: 2002
  end-page: 359
  article-title: The effect of salinity and CO enrichment on the growth and anatomy of the second trifoliate leaf of
  publication-title: Can J Bot
– volume: 33
  start-page: L15821
  year: 2006
  article-title: Atmospheric constraints on global emissions of methane from plants
  publication-title: Geophys Res Lett
– volume: 9
  start-page: 473
  year: 2003
  end-page: 477
  article-title: Sensitivity of white clover to UV‐B radiation depends on water availability, plant productivity and duration of stress
  publication-title: Glob Change Biol
– volume: 443
  start-page: 405
  year: 2006
  end-page: 406
  article-title: A nasty surprise in the greenhouse
  publication-title: Nature
– volume: 42
  start-page: 62
  year: 2008
  end-page: 68
  article-title: Aerobic methane emission from plants in the Inner Mongolia Steppe
  publication-title: Environ Sci Technol
– year: 2004
– start-page: 118
  year: 2006
  end-page: 145
– start-page: 19
  year: 2007
  end-page: 91
– volume: 6
  start-page: 042013
  year: 2009
  article-title: The newly discovered aerobic methane release from terrestrial vegetation: causes and consequences
  publication-title: IOP Conf Ser: Earth Environ Sci
– volume: 29
  start-page: 1479
  year: 2002
  article-title: Implications of the recent fluctuations in the growth rate of tropospheric methane
  publication-title: Geophys Res Lett
– volume: 32
  start-page: 1978
  year: 2003
  end-page: 1991
  article-title: Methane emissions of rice increased by elevated carbon dioxide and temperature
  publication-title: J Environ Qual
– volume: 35
  start-page: L15811
  year: 2008
  article-title: Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT
  publication-title: Geophys Res Lett
– volume: 21
  start-page: 423
  year: 2006
  end-page: 424
  article-title: Scaling methane emissions from vegetation
  publication-title: Trends Ecol Evol
– volume: 276
  start-page: 1347
  year: 2009
  end-page: 1354
  article-title: Emission of methane from plants
  publication-title: Proc R Soc B
– volume: 120
  start-page: 191
  year: 2003
  end-page: 218
  article-title: Field crop responses to ultraviolet‐B radiation: a review
  publication-title: Agric For Meteor
– volume: 46
  start-page: 40
  year: 1998
  end-page: 52
  article-title: Effects of increased solar ultraviolet radiation on terrestrial ecosystems
  publication-title: Photochem Photobiol
– volume: 5
  start-page: 243
  year: 2008
  end-page: 270
  article-title: Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components
  publication-title: Biogeosci Discuss
– volume: 6
  start-page: 3093
  year: 2006
  end-page: 3097
  article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela
  publication-title: Atmos Chem Phys Discuss
– volume: 443
  start-page: 439
  year: 2006
  end-page: 443
  article-title: Contribution of anthropogenic and natural sources to atmospheric methane variability
  publication-title: Nature
– year: 1992
– volume: 33
  start-page: L04809
  year: 2006
  article-title: A source of methane from upland forests in the Brazilian Amazon
  publication-title: Geophys Res Lett
– volume: 6
  start-page: 218
  year: 2007
  end-page: 231
  article-title: Changes in biologically‐active ultraviolet radiation reaching the Earth's surface
  publication-title: Photochem Photobiol Sci
– volume: 112
  start-page: D02304
  year: 2007
  article-title: Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISTA: 2. Evaluation based on inverse model simulations.
  publication-title: J Geophys Res–Atmos
– volume: 32
  start-page: 1
  year: 2009
  end-page: 9
  article-title: The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin
  publication-title: Plant Cell Environ
– volume: 175
  start-page: 29
  year: 2007
  end-page: 35
  article-title: No evidence for substantial aerobic methane emission by terrestrial plants: a C‐labelling approach
  publication-title: New Phytol
– start-page: 98
  year: 2000
  end-page: 111
– volume: 79
  start-page: 416
  year: 2004
  end-page: 427
  article-title: Interactive effects of ultraviolet‐B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance
  publication-title: Photochem Photobiol
– volume: 393
  start-page: 447
  year: 1998
  end-page: 450
  article-title: Continuing decline in the growth rate of the atmospheric methane burden
  publication-title: Nature
– volume: 178
  start-page: 808
  year: 2008
  end-page: 814
  article-title: Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies
  publication-title: New Phytol
– start-page: 63
  year: 2001
  end-page: 76
– ident: e_1_2_7_28_1
  doi: 10.1038/443405a
– ident: e_1_2_7_40_1
  doi: 10.1139/B06-157
– ident: e_1_2_7_35_1
  doi: 10.1016/j.tree.2006.05.017
– ident: e_1_2_7_3_1
  doi: 10.1029/2006JD007268
– volume: 15
  start-page: 21
  year: 2007
  ident: e_1_2_7_42_1
  article-title: Aerobic methane production by banana plant
  publication-title: Cantaurus
  contributor:
    fullname: Rodriguez J
– volume-title: SAS Onlinedoc®: SAS/STAT User's Guide, V9
  year: 2004
  ident: e_1_2_7_45_1
– start-page: 19
  volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_7_47_1
  contributor:
    fullname: Solomon S
– ident: e_1_2_7_31_1
  doi: 10.1039/B700017K
– ident: e_1_2_7_50_1
  doi: 10.5194/bgd-6-1403-2009
– volume-title: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology
  year: 1992
  ident: e_1_2_7_21_1
  contributor:
    fullname: Jones HG
– ident: e_1_2_7_4_1
  doi: 10.1038/nature05132
– ident: e_1_2_7_44_1
  doi: 10.5194/acp-6-5315-2006
– ident: e_1_2_7_34_1
  doi: 10.1098/rspb.2008.1731
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-3040.1994.tb00161.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1399-3054.2006.00804.x
– ident: e_1_2_7_9_1
  doi: 10.1016/S1011-1344(98)00184-5
– ident: e_1_2_7_49_1
  doi: 10.1021/es071224l
– ident: e_1_2_7_20_1
  doi: 10.1029/2006GL026162
– ident: e_1_2_7_12_1
  doi: 10.1038/30934
– ident: e_1_2_7_23_1
  doi: 10.1038/nature04420
– ident: e_1_2_7_5_1
  doi: 10.1139/b02-018
– ident: e_1_2_7_36_1
  doi: 10.1002/9780470988695.ch6
– ident: e_1_2_7_26_1
  doi: 10.1007/978-3-662-04145-1_7
– start-page: 63
  volume-title: Design and Analysis of Ecological Experiments
  year: 2001
  ident: e_1_2_7_37_1
  doi: 10.1093/oso/9780195131871.003.0004
  contributor:
    fullname: Potvin C
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1751-1097.2004.tb00029.x
– volume: 6
  start-page: 3093
  year: 2006
  ident: e_1_2_7_11_1
  article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela
  publication-title: Atmos Chem Phys Discuss
  contributor:
    fullname: Crutzen PJ
– ident: e_1_2_7_46_1
  doi: doi:10.1029/2001GL014521
– ident: e_1_2_7_16_1
  doi: 10.5194/acp-7-237-2007
– ident: e_1_2_7_18_1
  doi: 10.1126/science.1106644
– ident: e_1_2_7_10_1
  doi: 10.1023/A:1009827626715
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1469-8137.2007.02103.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1399-3054.1990.tb02091.x
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-3040.2008.01892.x
– ident: e_1_2_7_30_1
  doi: 10.1038/439148a
– volume: 33
  start-page: L04809
  year: 2006
  ident: e_1_2_7_13_1
  article-title: A source of methane from upland forests in the Brazilian Amazon
  publication-title: Geophys Res Lett
  contributor:
    fullname: Do Carmo JB
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1399-3054.2005.00566.x
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1365-2435.1999.00010.x
– ident: e_1_2_7_2_1
  doi: 10.2134/jeq2003.1978
– ident: e_1_2_7_25_1
  doi: 10.1038/scientificamerican0207-52
– ident: e_1_2_7_7_1
  doi: 10.1088/1755-1307/6/4/042013
– ident: e_1_2_7_19_1
  doi: 10.1046/j.1365-2486.2003.00578.x
– ident: e_1_2_7_27_1
  doi: 10.1071/FP06051
– ident: e_1_2_7_22_1
  doi: 10.1016/j.agrformet.2003.08.015
– ident: e_1_2_7_48_1
  doi: 10.5194/bgd-5-243-2008
– ident: e_1_2_7_17_1
  doi: 10.1029/2008GL034300
– ident: e_1_2_7_8_1
  doi: 10.1021/es062404i
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1469-8137.2009.02797.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.2008.02411.x
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1469-8137.2008.02571.x
SSID ssj0016612
Score 2.2550483
Snippet We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH₄) emission from six crops-faba bean,...
We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops–faba bean,...
We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean,...
We examined the effects of temperature, ultraviolet‐B (UVB) radiation and watering regime on aerobic methane (CH 4 ) emission from six crops–faba bean,...
We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH4) emission from six crops-faba bean,...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 139
SubjectTerms air temperature
barley
beans
Biological and medical sciences
Biomass
Brassica napus
canola
carbon dioxide
Carbon Dioxide - metabolism
climate change
crops
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Crops, Agricultural - radiation effects
Dehydration
detectors
Fundamental and applied biological sciences. Psychology
gas chromatography
gas emissions
gas exchange
greenhouse effect
growth chambers
Helianthus
Helianthus annuus
Hordeum vulgare
ionization
leaf area
leaves
methane
Methane - metabolism
peas
Pisum sativum
plant growth
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant Leaves - radiation effects
Plant physiology and development
stems
Temperature
transpiration
Triticum aestivum
ultraviolet radiation
Ultraviolet Rays
Vicia faba
water stress
water use efficiency
wheat
Title Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress
URI https://api.istex.fr/ark:/67375/WNG-QFK36VQ1-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2009.01268.x
https://www.ncbi.nlm.nih.gov/pubmed/19678898
https://search.proquest.com/docview/20839353
https://search.proquest.com/docview/67656176
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFNzQ8ig-IE1nFiR8JNwosFdCqBRZ6s5zYrqqtNtUmKxZO_AQu_EF-CTNOdiGoSAhxy2rjKB5_jr-xZ74h5EFiklLllYq5lzLmJitiI20S8wxcMVeINAlSSrt7cmfCXx6Kwz7-CXNhOn2I9YYbzozwvcYJbspmOMlhcY0Br7yXnWSpzEfIJ1mmMLrr2Zu1khSDZagTDs9YXMCaOQzqOfNBg5XqvDc18Fc0_RLjJ00DJvRd7YuzyOmQ64bFanyZTFfd7GJUpqNFW46qz78pQP4fO1whl3pOS590ILxKzrnZNXJhuwbe-ek6-bbrcHveUawsh3tzDcWcFtocLynWD6OY7An-OnXL07pxlrY1bQFhjmK4ez3DSA9ae9pJl9Dq5BhINvwZ0iIeU9TW6oWhH9HFSTs3Idag_f7l6zado_ICQo-amaUfod2cdtkxN8hk_Pzd0524LwYRVyiSFnsLQ-gBRpVwjIvcGPB8PfCpiqvSwm8lpHHMO8uNM6WxJU9dljiRWZvlcHmTbMzgnTcJlSU45kwazyrHrUtNIRx33lQuL4XP84iw1cDr007zQ__iK4G1NVobK3gWOlhbLyOyCQjR5gg-zXryNsUDYSaVylIWkYcBNutnmfkUw-mU0B_2XuiD8atMvj9gWkRka4CrdYMURfjAU4_I_RXQNAwZHu3A8NWLBl4lxxzr7M93SAXMnSkZkVsdQn92rQDCkhfQbRlw9td91vv7r_Hq9r82vEMuhsO5EBt5l2y084W7BxyvLbfC7P0BROtEFA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgIMHL-GbhY_MD4olUcew4CW8MKIW11QYr7M1yEnuaVjVTkorCEz-BF_4gv4R7nbRQNCSEeEvVOIqvj-Nz7XvPJeRRoIMsTvLYF1ZKX2ie-loWgS84uGImjcLASSmNxnIwEW-OoqOuHBDmwrT6EKsNN5wZ7nuNExw3pNdnOayuPgBWdLqTLJRJDwjlJZj9HOs4vHi70pJisBC10uGc-SmsmuthPec-aW2tumh1CQwWjb_ACEpdgxFtW_3iPHq6znbdctW_RqbLjrZRKqe9eZP18s-_aUD-J0tcJ5sdraXPWhzeIBfM7Ca5vFsC9fx0i3wbGdyhNxSLy-H2XE0xrYXWJwuKJcQo5nuCy07N4qysTUGbkjYAMkMx4r2cYbAHLS1t1UtoPj0Bng1_usyIpxTltTpt6Cd0Pm0q7cINmu9fvu7SCsUXEH1Uzwr6EdpVtE2QuU0m_ZeHzwd-Vw_Cz1EnzbcFjKEFJOWRYSJKtAbn1wKlykWcFfA7jqQ2zJpCaKMzXWQiNDwwES8KnsDlHbIxg3feIlRm4JszqS3LjShMqNPICGN1bpIsskniEbYceXXWyn6oX9wlsLZCa2MRz1Q5a6uFR7YAIkofw9dZTd6FeCbMZBzzkHnkscPN6lm6OsWIujhSH8av1EF_j8v3B0xFHtleA9aqQYg6fOCse2RniTQFQ4anOzB85byGV0kwzZr_-Q4ZA3lnsfTI3RaiP7uWAmdJUui2dED76z6r_f0hXt3714Y75MrgcDRUw9fjvfvkqjurc6GSD8hGU83NQ6B8TbbtpvIPYKFILA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgIMSFb2j4aH1AnMgqThwn4UaBpdB2tQWW9mY5sY2qrTarJCsWTvwELvxBfgkzTnYhqEgIcctq4ygeP8dv7Jk3hDwMVJAnaZH43ArhcxVlvhI68HkErpjJ4jBwUkoHI7E74a-P4-Mu_glzYVp9iPWGG84M973GCT7Xtj_JYXH1Aa-8k51koUgHwCcvcAFEGAnSm7WUFIN1qFUOj5ifwaLZj-o580m9peq8VSUQWLT9EgMoVQ02tG3xi7PYaZ_sutVqeJVMV_1sg1Smg0WTD4rPv0lA_h9DXCNXOlJLn7YovE7OmdkNcnGnBOL56Sb5dmBwf95QLC2Hm3M1xaQWWp8sKRYQo5jtCQ47Nct5WRtNm5I2ADFDMd69nGGoBy0tbbVLaHF6Aiwb_nR5EU8oimt1ytCP6eK0qZQLNmi-f_m6QyuUXkDsUTXT9CO0q2ibHnOLTIYv3j3b9btqEH6BKmm-1TCEFnBUxIbxOFUKXF8LhKrgSa7hdxILZZg1miujcqVzHpooMHGkdZTC5W2yMYN33iRU5OCZM6EsKwzXJlRZbLixqjBpHts09QhbDbyct6If8hdnCawt0dpYwjOTztpy6ZFNQIhUH-DbLCdvQzwRZiJJopB55JGDzfpZqppiPF0Sy6PRS3k43IvE-0MmY49s9XC1bhCiCh-46h7ZXgFNwpDh2Q4MX7mo4VVSTLKO_nyHSIC6s0R45E6L0J9dy4CxpBl0Wzic_XWf5Xi8j1d3_7XhNrk0fj6U-69Ge_fIZXdQ5-Ik75ONplqYB8D3mnzLTeQfRURG2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+emissions+from+six+crop+species+exposed+to+three+components+of+global+climate+change%3A+temperature%2C+ultraviolet%E2%80%90B+radiation+and+water+stress&rft.jtitle=Physiologia+plantarum&rft.au=Qaderi%2C+Mirwais+M.&rft.au=Reid%2C+David+M.&rft.date=2009-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=137&rft.issue=2&rft.spage=139&rft.epage=147&rft_id=info:doi/10.1111%2Fj.1399-3054.2009.01268.x&rft.externalDBID=10.1111%252Fj.1399-3054.2009.01268.x&rft.externalDocID=PPL1268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon