Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart

RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrop...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 124; no. 6; pp. 881 - 890
Main Authors Heo, Gyu Seong, Kopecky, Benjamin, Sultan, Deborah, Ou, Monica, Feng, Guoshuai, Bajpai, Geetika, Zhang, Xiaohui, Luehmann, Hannah, Detering, Lisa, Su, Yi, Leuschner, Florian, Combadière, Christophe, Kreisel, Daniel, Gropler, Robert J., Brody, Steven L., Liu, Yongjian, Lavine, Kory J.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 15.03.2019
American Heart Association
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE:To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS:We synthesized and tested the performance of a positron emission tomography radiotracer (Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS:These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
AbstractList Rationale: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. Objective: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. Methods and Results: We synthesized and tested the performance of a positron emission tomography radiotracer ( 68 Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68 Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68 Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 −/ − mice, demonstrating target specificity. Autoradiography demonstrated that 68 Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. Conclusions: These findings demonstrate the sensitivity and specificity of 68 Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE:To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS:We synthesized and tested the performance of a positron emission tomography radiotracer (Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS:These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.RATIONALEParadigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.OBJECTIVETo develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.METHODS AND RESULTSWe synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.CONCLUSIONSThese findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. We synthesized and tested the performance of a positron emission tomography radiotracer ( Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.
Author Luehmann, Hannah
Su, Yi
Liu, Yongjian
Zhang, Xiaohui
Combadière, Christophe
Heo, Gyu Seong
Feng, Guoshuai
Bajpai, Geetika
Kopecky, Benjamin
Ou, Monica
Leuschner, Florian
Brody, Steven L.
Lavine, Kory J.
Detering, Lisa
Gropler, Robert J.
Kreisel, Daniel
Sultan, Deborah
AuthorAffiliation From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.)
AuthorAffiliation_xml – name: From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.)
– name: 8 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA
– name: 7 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA
– name: 1 Department of Radiology, Washington University School of Medicine, St. Louis, MO USA
– name: 2 Department of Medicine, Washington University School of Medicine, St. Louis, MO USA
– name: 5 Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, F-75013 Paris, France
– name: 6 Department of Surgery, Washington University School of Medicine, St. Louis, MO USA
– name: 3 Department of Biology, Saint Louis University, St. Louis, MO USA
– name: 4 Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
Author_xml – sequence: 1
  givenname: Gyu
  surname: Heo
  middlename: Seong
  fullname: Heo, Gyu Seong
  organization: From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.)
– sequence: 2
  givenname: Benjamin
  surname: Kopecky
  fullname: Kopecky, Benjamin
– sequence: 3
  givenname: Deborah
  surname: Sultan
  fullname: Sultan, Deborah
– sequence: 4
  givenname: Monica
  surname: Ou
  fullname: Ou, Monica
– sequence: 5
  givenname: Guoshuai
  surname: Feng
  fullname: Feng, Guoshuai
– sequence: 6
  givenname: Geetika
  surname: Bajpai
  fullname: Bajpai, Geetika
– sequence: 7
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
– sequence: 8
  givenname: Hannah
  surname: Luehmann
  fullname: Luehmann, Hannah
– sequence: 9
  givenname: Lisa
  surname: Detering
  fullname: Detering, Lisa
– sequence: 10
  givenname: Yi
  surname: Su
  fullname: Su, Yi
– sequence: 11
  givenname: Florian
  surname: Leuschner
  fullname: Leuschner, Florian
– sequence: 12
  givenname: Christophe
  surname: Combadière
  fullname: Combadière, Christophe
– sequence: 13
  givenname: Daniel
  surname: Kreisel
  fullname: Kreisel, Daniel
– sequence: 14
  givenname: Robert
  surname: Gropler
  middlename: J.
  fullname: Gropler, Robert J.
– sequence: 15
  givenname: Steven
  surname: Brody
  middlename: L.
  fullname: Brody, Steven L.
– sequence: 16
  givenname: Yongjian
  surname: Liu
  fullname: Liu, Yongjian
– sequence: 17
  givenname: Kory
  surname: Lavine
  middlename: J.
  fullname: Lavine, Kory J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30661445$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03815255$$DView record in HAL
BookMark eNqFkl1v0zAUhi00xLrBTwDlEi4y_B1HSEhVNWilVkjl49ZyHafxcOJiO5vKr8dVxoDdcGPrHD_v6-NzfAHOBj8YAF4ieIUQR28Xq-1ie_15vpznWFwRRCGBT8AMMUxLyip0BmYQwrqsCIHn4CLGGwgRJbh-Bs4J5BxRymZgv_HO6NGpUKx6tbfDvvhm46ic_WlisTU6jDb1ZkiFb4vV0DrV9yr5cCw2fvD6mDKlhqbYKB38oVP7HCdfpM5k-mYMpimWRoX0HDxtlYvmxf1-Cb5-uP6yWJbrTx9Xi_m61IxxVhIkqloRUXNecUUQqXaM6oZy1ea1QhXmusYcYtzQnYBYKNgSveOoFRUVRpNL8H7yPYy73jQ6Vx6Uk4dgexWO0isr_z0ZbCf3_lZyShgkNBu8mQy6R7LlfC1POUhE7jFjtyizr-8vC_7HaGKSvY3aOKcG48coMapqIjDELKOv_q7rwfn3JDLAJiD3McZg2gcEQXmauPwz8RwLOU0869490mmbVLL-9Dzr_qumk_rOu2RC_O7GOxNkZ5RLncz_J0MIlxiiGhLEYJkziJFfCE7BbA
CitedBy_id crossref_primary_10_2967_jnumed_120_255539
crossref_primary_10_1161_RES_0000000000000406
crossref_primary_10_3389_fcvm_2022_889963
crossref_primary_10_1161_ATVBAHA_120_315812
crossref_primary_10_1016_j_immuni_2021_07_003
crossref_primary_10_1038_s44161_023_00335_6
crossref_primary_10_1093_eurheartj_ehac223
crossref_primary_10_1186_s13062_024_00521_x
crossref_primary_10_1007_s43032_024_01654_0
crossref_primary_10_3389_fimmu_2023_1097295
crossref_primary_10_1016_j_addr_2023_114865
crossref_primary_10_1016_j_jacbts_2022_06_001
crossref_primary_10_3390_biomedicines10030661
crossref_primary_10_1016_j_addr_2021_05_004
crossref_primary_10_1021_acsanm_0c02297
crossref_primary_10_1038_s41467_022_34971_6
crossref_primary_10_1161_CIRCIMAGING_120_010586
crossref_primary_10_1038_s44325_024_00012_y
crossref_primary_10_1161_CIRCIMAGING_122_014067
crossref_primary_10_23736_S1824_4785_20_03230_6
crossref_primary_10_1016_j_jhepr_2024_101220
crossref_primary_10_1021_acs_molpharmaceut_0c01183
crossref_primary_10_1021_acsptsci_3c00303
crossref_primary_10_3389_fphar_2024_1503757
crossref_primary_10_1093_eurheartj_ehaa598
crossref_primary_10_3390_ijms25031939
crossref_primary_10_1007_s12350_020_02319_6
crossref_primary_10_3390_ijms23095023
crossref_primary_10_1016_j_it_2019_07_002
crossref_primary_10_1038_s41569_022_00702_z
crossref_primary_10_1053_j_semnuclmed_2024_03_005
crossref_primary_10_3389_fcvm_2022_948332
crossref_primary_10_1093_ehjci_jead128
crossref_primary_10_1136_gutjnl_2020_323405
crossref_primary_10_1161_CIRCRESAHA_119_314754
crossref_primary_10_1007_s11886_022_01714_4
crossref_primary_10_1161_CIRCULATIONAHA_121_055888
crossref_primary_10_3390_ph18030387
crossref_primary_10_14336_AD_2021_1022
crossref_primary_10_3390_ph15020183
crossref_primary_10_1161_CIRCIMAGING_119_009889
crossref_primary_10_1136_rmdopen_2023_003880
crossref_primary_10_2967_jnumed_123_266526
crossref_primary_10_1016_j_addr_2019_12_001
crossref_primary_10_1016_j_ebiom_2024_105431
crossref_primary_10_1016_j_nuclcard_2024_102012
crossref_primary_10_1016_j_jcmg_2019_11_007
crossref_primary_10_3389_fmed_2022_902155
crossref_primary_10_3390_biomedicines9020212
crossref_primary_10_1016_j_ijcard_2023_131602
crossref_primary_10_1016_j_jconrel_2023_03_008
crossref_primary_10_1161_CIRCIMAGING_120_011605
crossref_primary_10_1016_j_mtbio_2022_100249
crossref_primary_10_1021_acsnano_1c03029
crossref_primary_10_1161_CIRCIMAGING_120_011603
crossref_primary_10_2967_jnumed_119_240440
crossref_primary_10_1016_j_cbi_2024_111010
crossref_primary_10_1093_eurheartj_ehaa625
crossref_primary_10_1016_j_yacr_2022_04_008
crossref_primary_10_3389_fcvm_2021_719031
crossref_primary_10_1007_s11307_024_01912_2
crossref_primary_10_1016_j_nuclcard_2024_101870
crossref_primary_10_1161_CIRCULATIONAHA_122_062551
crossref_primary_10_1016_j_medj_2023_10_006
crossref_primary_10_1021_acsnano_0c08185
crossref_primary_10_3390_molecules26175174
crossref_primary_10_1016_j_jacbts_2022_12_014
crossref_primary_10_1007_s12350_020_02379_8
crossref_primary_10_1016_j_cpet_2019_11_004
crossref_primary_10_2967_jnumed_121_263507
crossref_primary_10_1007_s00109_021_02058_2
crossref_primary_10_1093_cvr_cvab374
crossref_primary_10_1016_j_ajpath_2022_03_013
crossref_primary_10_1007_s11886_021_01529_9
crossref_primary_10_1038_s44161_023_00345_4
crossref_primary_10_3390_pharmaceutics15051532
crossref_primary_10_1016_j_critrevonc_2024_104266
crossref_primary_10_1007_s11886_021_01526_y
crossref_primary_10_2967_jnumed_122_264865
crossref_primary_10_1146_annurev_physiol_021119_034412
crossref_primary_10_1007_s12410_019_9515_3
crossref_primary_10_1016_j_cellsig_2021_110141
crossref_primary_10_1016_j_celrep_2025_115380
crossref_primary_10_1161_HYPERTENSIONAHA_120_16809
crossref_primary_10_1016_j_ccl_2023_01_013
crossref_primary_10_23736_S1824_4785_20_03232_X
crossref_primary_10_1016_j_engmed_2024_100040
crossref_primary_10_2967_jnumed_120_244673
Cites_doi 10.1161/CIRCULATIONAHA.111.061986
10.1016/j.jacc.2015.12.048
10.2741/3506
10.1016/j.jacc.2017.07.750
10.1161/CIRCULATIONAHA.113.000731
10.1073/pnas.1406508111
10.1093/jb/mvj216
10.1016/j.ijcard.2015.05.073
10.1016/j.jcmg.2018.05.026
10.1111/eci.12023
10.1097/MD.0000000000003466
10.1096/fj.201500116
10.1161/CIRCRESAHA.117.311519
10.1161/CIRCRESAHA.116.302317
10.5482/HAMO-14-09-0045
10.1016/j.immuni.2013.11.019
10.1148/radiol.2016161409
10.1016/j.jcmg.2018.01.001
10.1016/j.immuni.2017.10.011
10.1038/nature11260
10.1161/CIRCRESAHA.117.312535
10.1093/cvr/cvu025
10.1161/CIRCRESAHA.116.301313
10.1016/j.jcmg.2015.09.007
10.1536/ihj.14-174
10.1161/CIRCRESAHA.115.308270
10.1084/jem.20111009
10.1161/CIRCRESAHA.115.303567
10.1055/s-2004-821153
10.1111/ajt.13907
10.1084/jem.20070885
10.1016/j.stem.2015.04.008
10.1056/NEJMoa1707914
10.1007/s00259-014-2884-6
10.1016/S0140-6736(17)32814-3
10.1161/ATVBAHA.117.310517
10.1007/s11897-015-0255-7
10.1161/CIRCRESAHA.115.306656
10.1016/j.jcmg.2015.09.008
ContentType Journal Article
Copyright 2019 American Heart Association, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 American Heart Association, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOI 10.1161/CIRCRESAHA.118.314030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 890
ExternalDocumentID PMC6435034
oai_HAL_hal_03815255v1
30661445
10_1161_CIRCRESAHA_118_314030
00003012-201903150-00015
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL131908
– fundername: NIBIB NIH HHS
  grantid: P41 EB025815
– fundername: BLRD VA
  grantid: I01 BX002730
– fundername: NHLBI NIH HHS
  grantid: T32 HL007081
– fundername: NHLBI NIH HHS
  grantid: R01 HL139714
– fundername: NIAID NIH HHS
  grantid: P01 AI116501
– fundername: NHLBI NIH HHS
  grantid: R01 HL094601
– fundername: NHLBI NIH HHS
  grantid: R01 HL125655
– fundername: NHLBI NIH HHS
  grantid: K08 HL123519
– fundername: NHLBI NIH HHS
  grantid: R01 HL138466
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE3
AE6
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
DU5
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
AAYXX
ADGHP
CITATION
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ADSXY
5PM
ID FETCH-LOGICAL-c5565-31879a3896676a3137b54cd46afcd471726c926022d4b8028a0f3cb61f8748ec3
ISSN 0009-7330
1524-4571
IngestDate Thu Aug 21 13:53:02 EDT 2025
Wed Aug 13 07:45:04 EDT 2025
Fri Jul 11 16:36:11 EDT 2025
Thu Apr 03 06:54:45 EDT 2025
Tue Jul 01 04:27:49 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Fri May 16 03:49:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords monocytes
macrophages
molecular imaging
positron emission tomography
myocardial infarction
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5565-31879a3896676a3137b54cd46afcd471726c926022d4b8028a0f3cb61f8748ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-senior authors
AUTHOR CONTRIBUTIONS
K.J. Lavine and Y. Liu designed and supervised the project. G.S. Heo, B. Kopecky, M. Ou, G. Feng, G. Bajpai, D. Sultan, X. Zhang, H. Luehmann, L. Detering, and Y. Su performed the experiments and analyzed the data. F. Leuschner provided human ischemic cardiomyopathy specimens. Y. Liu and K.J. Lavine wrote and edited the manuscript. D. Kreisel, R.J. Gropler, C. Combadiere, S.L. Brody, K.J. Lavine and Y. Liu edited the manuscript.
ORCID 0000-0002-1755-4531
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.118.314030
PMID 30661445
PQID 2179382025
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6435034
hal_primary_oai_HAL_hal_03815255v1
proquest_miscellaneous_2179382025
pubmed_primary_30661445
crossref_primary_10_1161_CIRCRESAHA_118_314030
crossref_citationtrail_10_1161_CIRCRESAHA_118_314030
wolterskluwer_health_00003012-201903150-00015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-March-15
2019-03-15
20190315
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-March-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2019
Publisher American Heart Association, Inc
American Heart Association
Publisher_xml – name: American Heart Association, Inc
– name: American Heart Association
References e_1_3_5_28_2
e_1_3_5_27_2
e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_29_2
e_1_3_5_2_2
e_1_3_5_40_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_6_2
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_36_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_18_2
e_1_3_5_31_2
e_1_3_5_30_2
30870125 - Circ Res. 2019 Mar 15;124(6):827-829
References_xml – ident: e_1_3_5_22_2
  doi: 10.1161/CIRCULATIONAHA.111.061986
– ident: e_1_3_5_2_2
  doi: 10.1016/j.jacc.2015.12.048
– ident: e_1_3_5_8_2
  doi: 10.2741/3506
– ident: e_1_3_5_26_2
  doi: 10.1016/j.jacc.2017.07.750
– ident: e_1_3_5_32_2
  doi: 10.1161/CIRCULATIONAHA.113.000731
– ident: e_1_3_5_12_2
  doi: 10.1073/pnas.1406508111
– ident: e_1_3_5_19_2
  doi: 10.1093/jb/mvj216
– ident: e_1_3_5_30_2
  doi: 10.1016/j.ijcard.2015.05.073
– ident: e_1_3_5_39_2
  doi: 10.1016/j.jcmg.2018.05.026
– ident: e_1_3_5_3_2
  doi: 10.1111/eci.12023
– ident: e_1_3_5_4_2
  doi: 10.1097/MD.0000000000003466
– ident: e_1_3_5_18_2
  doi: 10.1096/fj.201500116
– ident: e_1_3_5_15_2
  doi: 10.1161/CIRCRESAHA.117.311519
– ident: e_1_3_5_34_2
  doi: 10.1161/CIRCRESAHA.116.302317
– ident: e_1_3_5_7_2
  doi: 10.5482/HAMO-14-09-0045
– ident: e_1_3_5_11_2
  doi: 10.1016/j.immuni.2013.11.019
– ident: e_1_3_5_16_2
  doi: 10.1148/radiol.2016161409
– ident: e_1_3_5_28_2
  doi: 10.1016/j.jcmg.2018.01.001
– ident: e_1_3_5_40_2
  doi: 10.1016/j.immuni.2017.10.011
– ident: e_1_3_5_23_2
  doi: 10.1038/nature11260
– ident: e_1_3_5_27_2
  doi: 10.1161/CIRCRESAHA.117.312535
– ident: e_1_3_5_9_2
  doi: 10.1093/cvr/cvu025
– ident: e_1_3_5_33_2
  doi: 10.1161/CIRCRESAHA.116.301313
– ident: e_1_3_5_29_2
  doi: 10.1016/j.jcmg.2015.09.007
– ident: e_1_3_5_5_2
  doi: 10.1536/ihj.14-174
– ident: e_1_3_5_13_2
  doi: 10.1161/CIRCRESAHA.115.308270
– ident: e_1_3_5_20_2
  doi: 10.1084/jem.20111009
– ident: e_1_3_5_38_2
  doi: 10.1161/CIRCRESAHA.115.303567
– ident: e_1_3_5_24_2
  doi: 10.1055/s-2004-821153
– ident: e_1_3_5_17_2
  doi: 10.1111/ajt.13907
– ident: e_1_3_5_10_2
  doi: 10.1084/jem.20070885
– ident: e_1_3_5_21_2
  doi: 10.1016/j.stem.2015.04.008
– ident: e_1_3_5_37_2
  doi: 10.1056/NEJMoa1707914
– ident: e_1_3_5_31_2
  doi: 10.1007/s00259-014-2884-6
– ident: e_1_3_5_36_2
  doi: 10.1016/S0140-6736(17)32814-3
– ident: e_1_3_5_14_2
  doi: 10.1161/ATVBAHA.117.310517
– ident: e_1_3_5_6_2
  doi: 10.1007/s11897-015-0255-7
– ident: e_1_3_5_35_2
  doi: 10.1161/CIRCRESAHA.115.306656
– ident: e_1_3_5_25_2
  doi: 10.1016/j.jcmg.2015.09.008
– reference: 30870125 - Circ Res. 2019 Mar 15;124(6):827-829
SSID ssj0014329
Score 2.579108
Snippet RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and...
Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult...
Rationale: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 881
SubjectTerms Animals
Cell Movement
Heart - diagnostic imaging
Humans
Life Sciences
Macrophages - physiology
Mice
Mice, Inbred C57BL
Molecular Imaging
Monocytes - physiology
Myocardial Reperfusion Injury - pathology
Myocytes, Cardiac - pathology
Positron-Emission Tomography
Receptors, CCR2 - analysis
Title Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-201903150-00015
https://www.ncbi.nlm.nih.gov/pubmed/30661445
https://www.proquest.com/docview/2179382025
https://hal.science/hal-03815255
https://pubmed.ncbi.nlm.nih.gov/PMC6435034
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6ISEkhLgTbjKItymlSexcHksFSxHlATbUtyhxnbVjTaY1AW1_hr_KObHjpusEjBerdRq36fl8fO6HkDcez3k0y1xbCJ7bLBLMBpSktpPJTIRYjURg7vDksx8fso9TPu31fnWiluoq64uLK_NK_oeqMAd0xSzZa1DWLAoT8BroCyNQGMZ_ovGk7W27N16qbkPfFivMkryQq0YgrBdV6-wfFzkQf6mc6rCTS3GOJlcVZ4F9vOapLveg4imPa4xMj-WlIkijxZnQHb_2dKEgY1COld11_7wGFlTqI7FJqzmVQtlo38niOF0uDCK_1idV2mV8xuhbN6ZaLNybdi0TmAzl2So303DbyA487XeRmsG6zGZctV0xHFilUWuodflpqPq5tEez6iy6zfV95Pqj8ZcRoHYYD2Em7HtYiXCwPuZa1_6l08_EJDbakO8k62XgfZioZXbIDRf0EGyRsT81MUQga7pR26oPH1SniMEyb6_8NRvCz84cQ2-39Zrt8NzbP0sMnVh9bzInOvLPwV1yRysudKhQeI_0ZHGf3Jzo0IwH5MiAkWow0jUYaQeMtMxpF4zUgJECGGkHjLQqKYCRajDSBowPyeGH9wej2NZdPGzBQVvA9PwgSkEuxmjq1HO8IONMzJif5jAGIED7IgKt2nVnLAtB3E0HuScy38nDgIVSeI_IblEW8gmhLgjPHIS6cOZkDETbLJU5E9yTDkjBwSC0CGv_3kToEvfYaeUk-SNxLdI3t52qGi9_u-E10M58Fiu0x8NPCc6h452Dmv7DscirlrQJsGz0w6WFLOtV4uKhCJK3yy3yWJHarAUaPJpo4EqwAYKNL9u8UizmTVl40C34wGMWsTfgkqiEaowyQfOHa-NWxd4uTUUJhz-97tM_I7fWu_052a3OavkCJPMqe9nsjt_4jN5U
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Imaging+Visualizes+Recruitment+of+Inflammatory+Monocytes+and+Macrophages+to+the+Injured+Heart&rft.jtitle=Circulation+research&rft.au=Heo%2C+Gyu+Seong&rft.au=Kopecky%2C+Benjamin&rft.au=Sultan%2C+Deborah&rft.au=Ou%2C+Monica&rft.date=2019-03-15&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=124&rft.issue=6&rft.spage=881&rft.epage=890&rft_id=info:doi/10.1161%2FCIRCRESAHA.118.314030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCRESAHA_118_314030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon