Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart
RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrop...
Saved in:
Published in | Circulation research Vol. 124; no. 6; pp. 881 - 890 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
15.03.2019
American Heart Association |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.
OBJECTIVE:To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.
METHODS AND RESULTS:We synthesized and tested the performance of a positron emission tomography radiotracer (Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.
CONCLUSIONS:These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients. |
---|---|
AbstractList | Rationale: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. Objective: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. Methods and Results: We synthesized and tested the performance of a positron emission tomography radiotracer ( 68 Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68 Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68 Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 −/ − mice, demonstrating target specificity. Autoradiography demonstrated that 68 Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. Conclusions: These findings demonstrate the sensitivity and specificity of 68 Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients. RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2− (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE:To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS:We synthesized and tested the performance of a positron emission tomography radiotracer (Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS:These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients. Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.RATIONALEParadigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy.To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.OBJECTIVETo develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart.We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.METHODS AND RESULTSWe synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance.These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.CONCLUSIONSThese findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients. Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. We synthesized and tested the performance of a positron emission tomography radiotracer ( Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2 mice, demonstrating target specificity. Autoradiography demonstrated that Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. These findings demonstrate the sensitivity and specificity of Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients. |
Author | Luehmann, Hannah Su, Yi Liu, Yongjian Zhang, Xiaohui Combadière, Christophe Heo, Gyu Seong Feng, Guoshuai Bajpai, Geetika Kopecky, Benjamin Ou, Monica Leuschner, Florian Brody, Steven L. Lavine, Kory J. Detering, Lisa Gropler, Robert J. Kreisel, Daniel Sultan, Deborah |
AuthorAffiliation | From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.) |
AuthorAffiliation_xml | – name: From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.) – name: 8 Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO USA – name: 7 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO USA – name: 1 Department of Radiology, Washington University School of Medicine, St. Louis, MO USA – name: 2 Department of Medicine, Washington University School of Medicine, St. Louis, MO USA – name: 5 Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, F-75013 Paris, France – name: 6 Department of Surgery, Washington University School of Medicine, St. Louis, MO USA – name: 3 Department of Biology, Saint Louis University, St. Louis, MO USA – name: 4 Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany |
Author_xml | – sequence: 1 givenname: Gyu surname: Heo middlename: Seong fullname: Heo, Gyu Seong organization: From the Department of Radiology (G.S.H., D.S., X.Z., H.L., L.D., Y.S., R.J.G., Y.L.), Washington University School of Medicine, St. Louis, MO Department of Medicine (B.K., G.F., G.B., S.L.B., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Surgery (D.K.), Washington University School of Medicine, St. Louis, MO Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Immunology and Pathology (D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO Department of Biology, Saint Louis University, MO (M.O.) Department of Internal Medicine III, University of Heidelberg, Germany (F.L.) Sorbonne Université, Inserm, CNRS, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, France (C.C.) – sequence: 2 givenname: Benjamin surname: Kopecky fullname: Kopecky, Benjamin – sequence: 3 givenname: Deborah surname: Sultan fullname: Sultan, Deborah – sequence: 4 givenname: Monica surname: Ou fullname: Ou, Monica – sequence: 5 givenname: Guoshuai surname: Feng fullname: Feng, Guoshuai – sequence: 6 givenname: Geetika surname: Bajpai fullname: Bajpai, Geetika – sequence: 7 givenname: Xiaohui surname: Zhang fullname: Zhang, Xiaohui – sequence: 8 givenname: Hannah surname: Luehmann fullname: Luehmann, Hannah – sequence: 9 givenname: Lisa surname: Detering fullname: Detering, Lisa – sequence: 10 givenname: Yi surname: Su fullname: Su, Yi – sequence: 11 givenname: Florian surname: Leuschner fullname: Leuschner, Florian – sequence: 12 givenname: Christophe surname: Combadière fullname: Combadière, Christophe – sequence: 13 givenname: Daniel surname: Kreisel fullname: Kreisel, Daniel – sequence: 14 givenname: Robert surname: Gropler middlename: J. fullname: Gropler, Robert J. – sequence: 15 givenname: Steven surname: Brody middlename: L. fullname: Brody, Steven L. – sequence: 16 givenname: Yongjian surname: Liu fullname: Liu, Yongjian – sequence: 17 givenname: Kory surname: Lavine middlename: J. fullname: Lavine, Kory J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30661445$$D View this record in MEDLINE/PubMed https://hal.science/hal-03815255$$DView record in HAL |
BookMark | eNqFkl1v0zAUhi00xLrBTwDlEi4y_B1HSEhVNWilVkjl49ZyHafxcOJiO5vKr8dVxoDdcGPrHD_v6-NzfAHOBj8YAF4ieIUQR28Xq-1ie_15vpznWFwRRCGBT8AMMUxLyip0BmYQwrqsCIHn4CLGGwgRJbh-Bs4J5BxRymZgv_HO6NGpUKx6tbfDvvhm46ic_WlisTU6jDb1ZkiFb4vV0DrV9yr5cCw2fvD6mDKlhqbYKB38oVP7HCdfpM5k-mYMpimWRoX0HDxtlYvmxf1-Cb5-uP6yWJbrTx9Xi_m61IxxVhIkqloRUXNecUUQqXaM6oZy1ea1QhXmusYcYtzQnYBYKNgSveOoFRUVRpNL8H7yPYy73jQ6Vx6Uk4dgexWO0isr_z0ZbCf3_lZyShgkNBu8mQy6R7LlfC1POUhE7jFjtyizr-8vC_7HaGKSvY3aOKcG48coMapqIjDELKOv_q7rwfn3JDLAJiD3McZg2gcEQXmauPwz8RwLOU0869490mmbVLL-9Dzr_qumk_rOu2RC_O7GOxNkZ5RLncz_J0MIlxiiGhLEYJkziJFfCE7BbA |
CitedBy_id | crossref_primary_10_2967_jnumed_120_255539 crossref_primary_10_1161_RES_0000000000000406 crossref_primary_10_3389_fcvm_2022_889963 crossref_primary_10_1161_ATVBAHA_120_315812 crossref_primary_10_1016_j_immuni_2021_07_003 crossref_primary_10_1038_s44161_023_00335_6 crossref_primary_10_1093_eurheartj_ehac223 crossref_primary_10_1186_s13062_024_00521_x crossref_primary_10_1007_s43032_024_01654_0 crossref_primary_10_3389_fimmu_2023_1097295 crossref_primary_10_1016_j_addr_2023_114865 crossref_primary_10_1016_j_jacbts_2022_06_001 crossref_primary_10_3390_biomedicines10030661 crossref_primary_10_1016_j_addr_2021_05_004 crossref_primary_10_1021_acsanm_0c02297 crossref_primary_10_1038_s41467_022_34971_6 crossref_primary_10_1161_CIRCIMAGING_120_010586 crossref_primary_10_1038_s44325_024_00012_y crossref_primary_10_1161_CIRCIMAGING_122_014067 crossref_primary_10_23736_S1824_4785_20_03230_6 crossref_primary_10_1016_j_jhepr_2024_101220 crossref_primary_10_1021_acs_molpharmaceut_0c01183 crossref_primary_10_1021_acsptsci_3c00303 crossref_primary_10_3389_fphar_2024_1503757 crossref_primary_10_1093_eurheartj_ehaa598 crossref_primary_10_3390_ijms25031939 crossref_primary_10_1007_s12350_020_02319_6 crossref_primary_10_3390_ijms23095023 crossref_primary_10_1016_j_it_2019_07_002 crossref_primary_10_1038_s41569_022_00702_z crossref_primary_10_1053_j_semnuclmed_2024_03_005 crossref_primary_10_3389_fcvm_2022_948332 crossref_primary_10_1093_ehjci_jead128 crossref_primary_10_1136_gutjnl_2020_323405 crossref_primary_10_1161_CIRCRESAHA_119_314754 crossref_primary_10_1007_s11886_022_01714_4 crossref_primary_10_1161_CIRCULATIONAHA_121_055888 crossref_primary_10_3390_ph18030387 crossref_primary_10_14336_AD_2021_1022 crossref_primary_10_3390_ph15020183 crossref_primary_10_1161_CIRCIMAGING_119_009889 crossref_primary_10_1136_rmdopen_2023_003880 crossref_primary_10_2967_jnumed_123_266526 crossref_primary_10_1016_j_addr_2019_12_001 crossref_primary_10_1016_j_ebiom_2024_105431 crossref_primary_10_1016_j_nuclcard_2024_102012 crossref_primary_10_1016_j_jcmg_2019_11_007 crossref_primary_10_3389_fmed_2022_902155 crossref_primary_10_3390_biomedicines9020212 crossref_primary_10_1016_j_ijcard_2023_131602 crossref_primary_10_1016_j_jconrel_2023_03_008 crossref_primary_10_1161_CIRCIMAGING_120_011605 crossref_primary_10_1016_j_mtbio_2022_100249 crossref_primary_10_1021_acsnano_1c03029 crossref_primary_10_1161_CIRCIMAGING_120_011603 crossref_primary_10_2967_jnumed_119_240440 crossref_primary_10_1016_j_cbi_2024_111010 crossref_primary_10_1093_eurheartj_ehaa625 crossref_primary_10_1016_j_yacr_2022_04_008 crossref_primary_10_3389_fcvm_2021_719031 crossref_primary_10_1007_s11307_024_01912_2 crossref_primary_10_1016_j_nuclcard_2024_101870 crossref_primary_10_1161_CIRCULATIONAHA_122_062551 crossref_primary_10_1016_j_medj_2023_10_006 crossref_primary_10_1021_acsnano_0c08185 crossref_primary_10_3390_molecules26175174 crossref_primary_10_1016_j_jacbts_2022_12_014 crossref_primary_10_1007_s12350_020_02379_8 crossref_primary_10_1016_j_cpet_2019_11_004 crossref_primary_10_2967_jnumed_121_263507 crossref_primary_10_1007_s00109_021_02058_2 crossref_primary_10_1093_cvr_cvab374 crossref_primary_10_1016_j_ajpath_2022_03_013 crossref_primary_10_1007_s11886_021_01529_9 crossref_primary_10_1038_s44161_023_00345_4 crossref_primary_10_3390_pharmaceutics15051532 crossref_primary_10_1016_j_critrevonc_2024_104266 crossref_primary_10_1007_s11886_021_01526_y crossref_primary_10_2967_jnumed_122_264865 crossref_primary_10_1146_annurev_physiol_021119_034412 crossref_primary_10_1007_s12410_019_9515_3 crossref_primary_10_1016_j_cellsig_2021_110141 crossref_primary_10_1016_j_celrep_2025_115380 crossref_primary_10_1161_HYPERTENSIONAHA_120_16809 crossref_primary_10_1016_j_ccl_2023_01_013 crossref_primary_10_23736_S1824_4785_20_03232_X crossref_primary_10_1016_j_engmed_2024_100040 crossref_primary_10_2967_jnumed_120_244673 |
Cites_doi | 10.1161/CIRCULATIONAHA.111.061986 10.1016/j.jacc.2015.12.048 10.2741/3506 10.1016/j.jacc.2017.07.750 10.1161/CIRCULATIONAHA.113.000731 10.1073/pnas.1406508111 10.1093/jb/mvj216 10.1016/j.ijcard.2015.05.073 10.1016/j.jcmg.2018.05.026 10.1111/eci.12023 10.1097/MD.0000000000003466 10.1096/fj.201500116 10.1161/CIRCRESAHA.117.311519 10.1161/CIRCRESAHA.116.302317 10.5482/HAMO-14-09-0045 10.1016/j.immuni.2013.11.019 10.1148/radiol.2016161409 10.1016/j.jcmg.2018.01.001 10.1016/j.immuni.2017.10.011 10.1038/nature11260 10.1161/CIRCRESAHA.117.312535 10.1093/cvr/cvu025 10.1161/CIRCRESAHA.116.301313 10.1016/j.jcmg.2015.09.007 10.1536/ihj.14-174 10.1161/CIRCRESAHA.115.308270 10.1084/jem.20111009 10.1161/CIRCRESAHA.115.303567 10.1055/s-2004-821153 10.1111/ajt.13907 10.1084/jem.20070885 10.1016/j.stem.2015.04.008 10.1056/NEJMoa1707914 10.1007/s00259-014-2884-6 10.1016/S0140-6736(17)32814-3 10.1161/ATVBAHA.117.310517 10.1007/s11897-015-0255-7 10.1161/CIRCRESAHA.115.306656 10.1016/j.jcmg.2015.09.008 |
ContentType | Journal Article |
Copyright | 2019 American Heart Association, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 American Heart Association, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.1161/CIRCRESAHA.118.314030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 890 |
ExternalDocumentID | PMC6435034 oai_HAL_hal_03815255v1 30661445 10_1161_CIRCRESAHA_118_314030 00003012-201903150-00015 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL131908 – fundername: NIBIB NIH HHS grantid: P41 EB025815 – fundername: BLRD VA grantid: I01 BX002730 – fundername: NHLBI NIH HHS grantid: T32 HL007081 – fundername: NHLBI NIH HHS grantid: R01 HL139714 – fundername: NIAID NIH HHS grantid: P01 AI116501 – fundername: NHLBI NIH HHS grantid: R01 HL094601 – fundername: NHLBI NIH HHS grantid: R01 HL125655 – fundername: NHLBI NIH HHS grantid: K08 HL123519 – fundername: NHLBI NIH HHS grantid: R01 HL138466 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM DU5 E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV AAYXX ADGHP CITATION ACIJW CGR CUY CVF ECM EIF NPM 7X8 1XC ADSXY 5PM |
ID | FETCH-LOGICAL-c5565-31879a3896676a3137b54cd46afcd471726c926022d4b8028a0f3cb61f8748ec3 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Aug 21 13:53:02 EDT 2025 Wed Aug 13 07:45:04 EDT 2025 Fri Jul 11 16:36:11 EDT 2025 Thu Apr 03 06:54:45 EDT 2025 Tue Jul 01 04:27:49 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri May 16 03:49:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | monocytes macrophages molecular imaging positron emission tomography myocardial infarction |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5565-31879a3896676a3137b54cd46afcd471726c926022d4b8028a0f3cb61f8748ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-senior authors AUTHOR CONTRIBUTIONS K.J. Lavine and Y. Liu designed and supervised the project. G.S. Heo, B. Kopecky, M. Ou, G. Feng, G. Bajpai, D. Sultan, X. Zhang, H. Luehmann, L. Detering, and Y. Su performed the experiments and analyzed the data. F. Leuschner provided human ischemic cardiomyopathy specimens. Y. Liu and K.J. Lavine wrote and edited the manuscript. D. Kreisel, R.J. Gropler, C. Combadiere, S.L. Brody, K.J. Lavine and Y. Liu edited the manuscript. |
ORCID | 0000-0002-1755-4531 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.118.314030 |
PMID | 30661445 |
PQID | 2179382025 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6435034 hal_primary_oai_HAL_hal_03815255v1 proquest_miscellaneous_2179382025 pubmed_primary_30661445 crossref_primary_10_1161_CIRCRESAHA_118_314030 crossref_citationtrail_10_1161_CIRCRESAHA_118_314030 wolterskluwer_health_00003012-201903150-00015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-March-15 2019-03-15 20190315 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-March-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2019 |
Publisher | American Heart Association, Inc American Heart Association |
Publisher_xml | – name: American Heart Association, Inc – name: American Heart Association |
References | e_1_3_5_28_2 e_1_3_5_27_2 e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_29_2 e_1_3_5_2_2 e_1_3_5_40_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_6_2 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_36_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_18_2 e_1_3_5_31_2 e_1_3_5_30_2 30870125 - Circ Res. 2019 Mar 15;124(6):827-829 |
References_xml | – ident: e_1_3_5_22_2 doi: 10.1161/CIRCULATIONAHA.111.061986 – ident: e_1_3_5_2_2 doi: 10.1016/j.jacc.2015.12.048 – ident: e_1_3_5_8_2 doi: 10.2741/3506 – ident: e_1_3_5_26_2 doi: 10.1016/j.jacc.2017.07.750 – ident: e_1_3_5_32_2 doi: 10.1161/CIRCULATIONAHA.113.000731 – ident: e_1_3_5_12_2 doi: 10.1073/pnas.1406508111 – ident: e_1_3_5_19_2 doi: 10.1093/jb/mvj216 – ident: e_1_3_5_30_2 doi: 10.1016/j.ijcard.2015.05.073 – ident: e_1_3_5_39_2 doi: 10.1016/j.jcmg.2018.05.026 – ident: e_1_3_5_3_2 doi: 10.1111/eci.12023 – ident: e_1_3_5_4_2 doi: 10.1097/MD.0000000000003466 – ident: e_1_3_5_18_2 doi: 10.1096/fj.201500116 – ident: e_1_3_5_15_2 doi: 10.1161/CIRCRESAHA.117.311519 – ident: e_1_3_5_34_2 doi: 10.1161/CIRCRESAHA.116.302317 – ident: e_1_3_5_7_2 doi: 10.5482/HAMO-14-09-0045 – ident: e_1_3_5_11_2 doi: 10.1016/j.immuni.2013.11.019 – ident: e_1_3_5_16_2 doi: 10.1148/radiol.2016161409 – ident: e_1_3_5_28_2 doi: 10.1016/j.jcmg.2018.01.001 – ident: e_1_3_5_40_2 doi: 10.1016/j.immuni.2017.10.011 – ident: e_1_3_5_23_2 doi: 10.1038/nature11260 – ident: e_1_3_5_27_2 doi: 10.1161/CIRCRESAHA.117.312535 – ident: e_1_3_5_9_2 doi: 10.1093/cvr/cvu025 – ident: e_1_3_5_33_2 doi: 10.1161/CIRCRESAHA.116.301313 – ident: e_1_3_5_29_2 doi: 10.1016/j.jcmg.2015.09.007 – ident: e_1_3_5_5_2 doi: 10.1536/ihj.14-174 – ident: e_1_3_5_13_2 doi: 10.1161/CIRCRESAHA.115.308270 – ident: e_1_3_5_20_2 doi: 10.1084/jem.20111009 – ident: e_1_3_5_38_2 doi: 10.1161/CIRCRESAHA.115.303567 – ident: e_1_3_5_24_2 doi: 10.1055/s-2004-821153 – ident: e_1_3_5_17_2 doi: 10.1111/ajt.13907 – ident: e_1_3_5_10_2 doi: 10.1084/jem.20070885 – ident: e_1_3_5_21_2 doi: 10.1016/j.stem.2015.04.008 – ident: e_1_3_5_37_2 doi: 10.1056/NEJMoa1707914 – ident: e_1_3_5_31_2 doi: 10.1007/s00259-014-2884-6 – ident: e_1_3_5_36_2 doi: 10.1016/S0140-6736(17)32814-3 – ident: e_1_3_5_14_2 doi: 10.1161/ATVBAHA.117.310517 – ident: e_1_3_5_6_2 doi: 10.1007/s11897-015-0255-7 – ident: e_1_3_5_35_2 doi: 10.1161/CIRCRESAHA.115.306656 – ident: e_1_3_5_25_2 doi: 10.1016/j.jcmg.2015.09.008 – reference: 30870125 - Circ Res. 2019 Mar 15;124(6):827-829 |
SSID | ssj0014329 |
Score | 2.579108 |
Snippet | RATIONALE:Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and... Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult... Rationale: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and... |
SourceID | pubmedcentral hal proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 881 |
SubjectTerms | Animals Cell Movement Heart - diagnostic imaging Humans Life Sciences Macrophages - physiology Mice Mice, Inbred C57BL Molecular Imaging Monocytes - physiology Myocardial Reperfusion Injury - pathology Myocytes, Cardiac - pathology Positron-Emission Tomography Receptors, CCR2 - analysis |
Title | Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-201903150-00015 https://www.ncbi.nlm.nih.gov/pubmed/30661445 https://www.proquest.com/docview/2179382025 https://hal.science/hal-03815255 https://pubmed.ncbi.nlm.nih.gov/PMC6435034 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6ISEkhLgTbjKItymlSexcHksFSxHlATbUtyhxnbVjTaY1AW1_hr_KObHjpusEjBerdRq36fl8fO6HkDcez3k0y1xbCJ7bLBLMBpSktpPJTIRYjURg7vDksx8fso9TPu31fnWiluoq64uLK_NK_oeqMAd0xSzZa1DWLAoT8BroCyNQGMZ_ovGk7W27N16qbkPfFivMkryQq0YgrBdV6-wfFzkQf6mc6rCTS3GOJlcVZ4F9vOapLveg4imPa4xMj-WlIkijxZnQHb_2dKEgY1COld11_7wGFlTqI7FJqzmVQtlo38niOF0uDCK_1idV2mV8xuhbN6ZaLNybdi0TmAzl2So303DbyA487XeRmsG6zGZctV0xHFilUWuodflpqPq5tEez6iy6zfV95Pqj8ZcRoHYYD2Em7HtYiXCwPuZa1_6l08_EJDbakO8k62XgfZioZXbIDRf0EGyRsT81MUQga7pR26oPH1SniMEyb6_8NRvCz84cQ2-39Zrt8NzbP0sMnVh9bzInOvLPwV1yRysudKhQeI_0ZHGf3Jzo0IwH5MiAkWow0jUYaQeMtMxpF4zUgJECGGkHjLQqKYCRajDSBowPyeGH9wej2NZdPGzBQVvA9PwgSkEuxmjq1HO8IONMzJif5jAGIED7IgKt2nVnLAtB3E0HuScy38nDgIVSeI_IblEW8gmhLgjPHIS6cOZkDETbLJU5E9yTDkjBwSC0CGv_3kToEvfYaeUk-SNxLdI3t52qGi9_u-E10M58Fiu0x8NPCc6h452Dmv7DscirlrQJsGz0w6WFLOtV4uKhCJK3yy3yWJHarAUaPJpo4EqwAYKNL9u8UizmTVl40C34wGMWsTfgkqiEaowyQfOHa-NWxd4uTUUJhz-97tM_I7fWu_052a3OavkCJPMqe9nsjt_4jN5U |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Imaging+Visualizes+Recruitment+of+Inflammatory+Monocytes+and+Macrophages+to+the+Injured+Heart&rft.jtitle=Circulation+research&rft.au=Heo%2C+Gyu+Seong&rft.au=Kopecky%2C+Benjamin&rft.au=Sultan%2C+Deborah&rft.au=Ou%2C+Monica&rft.date=2019-03-15&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=124&rft.issue=6&rft.spage=881&rft.epage=890&rft_id=info:doi/10.1161%2FCIRCRESAHA.118.314030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCRESAHA_118_314030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |