A Facile Synthetic Route to a New SHG Material with Two Types of Parallel π-Conjugated Planar Triangular Units
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− ani...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 12; pp. 3679 - 3682 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
16.03.2015
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.
Pb2(BO3)(NO3) is a new second‐harmonic generation (SHG) material that contains parallel π‐conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase‐matchable. |
---|---|
AbstractList | A new SHG material, namely, Pb sub(2)(BO sub(3))(NO sub(3)), which contains parallel pi -conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO sub(3)) sub(2) and Mg(BO sub(2)) sub(2)H sub(2 )O as starting materials. Its structure contains honeycomb [Pb sub(2)(BO sub(3))] sub( [infin]) layers with noncoordination [NO sub(3)] super(-) anions located at the interlayer space. Pb sub(2)(BO sub(3))(NO sub(3)) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb sub(2)(BO sub(3))(NO sub(3)) arises from the synergistic effect of the stereoactive lone pairs on Pb super(2+) cations and parallel alignment of pi -conjugated BO sub(3) and NO sub(3) units. Based on its unique properties, Pb sub(2)(BO sub(3))(NO sub(3)) may have great potential as a high performance NLO material in photonic applications. Pb sub(2)(BO sub(3))(NO sub(3)) is a new second-harmonic generation (SHG) material that contains parallel pi -conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase-matchable. A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications. Pb2(BO3)(NO3) is a new second‐harmonic generation (SHG) material that contains parallel π‐conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase‐matchable. A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications. A new SHG material, namely, Pb 2 (BO 3 )(NO 3 ), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO 3 ) 2 and Mg(BO 2 ) 2 ⋅H 2 O as starting materials. Its structure contains honeycomb [Pb 2 (BO 3 )] ∞ layers with noncoordination [NO 3 ] − anions located at the interlayer space. Pb 2 (BO 3 )(NO 3 ) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb 2 (BO 3 )(NO 3 ) arises from the synergistic effect of the stereoactive lone pairs on Pb 2+ cations and parallel alignment of π‐conjugated BO 3 and NO 3 units. Based on its unique properties, Pb 2 (BO 3 )(NO 3 ) may have great potential as a high performance NLO material in photonic applications. A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications. |
Author | Mao, Jiang-Gao Song, Jun-Ling Kong, Fang Hu, Chun-Li Xu, Xiang |
Author_xml | – sequence: 1 givenname: Jun-Ling surname: Song fullname: Song, Jun-Ling organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/ – sequence: 2 givenname: Chun-Li surname: Hu fullname: Hu, Chun-Li organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/ – sequence: 3 givenname: Xiang surname: Xu fullname: Xu, Xiang organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/ – sequence: 4 givenname: Fang surname: Kong fullname: Kong, Fang organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/ – sequence: 5 givenname: Jiang-Gao surname: Mao fullname: Mao, Jiang-Gao email: mjg@fjirsm.ac.cn organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25630286$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URB-wZYm8ZDNhPH7OMkTttFIIFUmFxMbyOJ7WxRmntkchO_5h_1IdpUQICXXla-kc3-v7nYKj3vcGgPeoHKGyrD6p3ppRVSKCKkzIK3CCaIUKzDk-yjXBuOCComNwGuN95oUo2RtwXFGG84WdAD-GF0pbZ-B826c7k6yG3_yQDEweKjgzGzi_bOAXlUywysGNTXdwsfFwsV2bCH0Hr1VQzhkHH38XE9_fD7eZXcJrp3oV4CJb_e3gcnnT2xTfgtedctG8ez7PwM3F-WJyWUy_NleT8bTQlDJSUIJ0iwVTJn9LCNLVSPNaVFRQhTtE2yXmVaVF2SotsDBM1Ia0qqs5b1HNFT4DH_fvroN_GExMcmWjNi5PZfwQJeIl2i2QsZdRxiqGa1TTjH54Rod2ZZZyHexKha38s88MjPaADj7GYLoDgkq56yd3gclDYFkg_wjaJpWs71NQ1v1fq_faJke3faGJHM-uzv92i71rYzK_Dq4KPyXjmFP5fdbIppl__sGmM8nxE0Cwt-c |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_1c01181 crossref_primary_10_1039_D3DT01740K crossref_primary_10_1002_anie_201905558 crossref_primary_10_1039_C9CC08739G crossref_primary_10_1039_C5RA13647D crossref_primary_10_1039_C8CC03007C crossref_primary_10_1016_j_jssc_2019_01_011 crossref_primary_10_1021_acs_chemmater_0c03383 crossref_primary_10_1039_C9DT03337H crossref_primary_10_1039_D4SC05081A crossref_primary_10_1021_acs_inorgchem_0c02868 crossref_primary_10_3390_molecules28135068 crossref_primary_10_1002_ange_201804354 crossref_primary_10_1016_j_xcrm_2024_101694 crossref_primary_10_1002_bkcs_11935 crossref_primary_10_1021_acs_inorgchem_7b02765 crossref_primary_10_1021_acs_inorgchem_3c00722 crossref_primary_10_1039_C6RA23193D crossref_primary_10_1021_acs_cgd_1c00931 crossref_primary_10_1039_D2QI01533A crossref_primary_10_1021_acs_inorgchem_6b02457 crossref_primary_10_1039_C5RA21011A crossref_primary_10_1002_ange_201606782 crossref_primary_10_1039_C9DT03839F crossref_primary_10_1021_acs_inorgchem_6b00944 crossref_primary_10_1016_j_jssc_2018_07_015 crossref_primary_10_1016_j_jssc_2019_121046 crossref_primary_10_1039_D3DT04286C crossref_primary_10_1039_C6RA22000B crossref_primary_10_1021_acs_inorgchem_2c01381 crossref_primary_10_1016_j_jssc_2017_08_019 crossref_primary_10_1002_anie_201609876 crossref_primary_10_1002_anie_202201616 crossref_primary_10_1021_jacs_0c00702 crossref_primary_10_1016_j_ccr_2019_213045 crossref_primary_10_1021_acs_inorgchem_5b01126 crossref_primary_10_1039_D3DT02529B crossref_primary_10_1021_acs_jpcc_0c06991 crossref_primary_10_1016_j_cjsc_2024_100455 crossref_primary_10_1016_j_jssc_2018_04_031 crossref_primary_10_1021_acs_inorgchem_2c04084 crossref_primary_10_1039_C5NJ03059E crossref_primary_10_1016_j_ccr_2018_02_017 crossref_primary_10_1002_ange_201611770 crossref_primary_10_1021_acs_jpcc_6b00265 crossref_primary_10_1039_D2QI01410F crossref_primary_10_1021_acs_inorgchem_7b00120 crossref_primary_10_1021_acs_cgd_6b00529 crossref_primary_10_1021_acs_inorgchem_6b01587 crossref_primary_10_1002_slct_201601967 crossref_primary_10_1016_j_ijleo_2022_169325 crossref_primary_10_1002_smll_202401464 crossref_primary_10_1007_s40843_021_1998_4 crossref_primary_10_1002_chin_201524005 crossref_primary_10_1039_D1QI00634G crossref_primary_10_1002_ange_202403328 crossref_primary_10_1002_ejic_202001110 crossref_primary_10_1021_acs_inorgchem_1c03711 crossref_primary_10_1039_D3QI01213A crossref_primary_10_1016_j_inoche_2020_108390 crossref_primary_10_1002_ejic_202000025 crossref_primary_10_1039_D1CE00910A crossref_primary_10_3390_cryst6100121 crossref_primary_10_1364_OL_43_001734 crossref_primary_10_1021_acs_inorgchem_3c00515 crossref_primary_10_1039_C7DT04223J crossref_primary_10_3390_cryst7040109 crossref_primary_10_3390_cryst7040107 crossref_primary_10_1021_acs_inorgchem_5b00653 crossref_primary_10_2139_ssrn_4198873 crossref_primary_10_1016_j_jssc_2016_04_013 crossref_primary_10_1039_D4CE00542B crossref_primary_10_1016_j_ccr_2018_07_013 crossref_primary_10_1002_slct_201801072 crossref_primary_10_1039_D1DT03660B crossref_primary_10_1002_adfm_202210718 crossref_primary_10_1021_acs_cgd_8b00804 crossref_primary_10_1039_D1DT01275D crossref_primary_10_1039_C9CC00581A crossref_primary_10_1016_j_solidstatesciences_2018_02_012 crossref_primary_10_1021_acs_inorgchem_3c04328 crossref_primary_10_1021_acs_inorgchem_7b02689 crossref_primary_10_1021_acs_inorgchem_8b02778 crossref_primary_10_34133_research_0053 crossref_primary_10_1016_j_cjsc_2023_100020 crossref_primary_10_1002_ange_201909735 crossref_primary_10_1016_j_ccr_2018_03_012 crossref_primary_10_1039_C7DT00251C crossref_primary_10_1021_acs_inorgchem_9b00593 crossref_primary_10_1021_acs_inorgchem_5b01848 crossref_primary_10_1039_C7RA02027A crossref_primary_10_1016_j_ccr_2019_213152 crossref_primary_10_1039_C6TC01512C crossref_primary_10_3390_cryst12020266 crossref_primary_10_1016_j_jhazmat_2019_121872 crossref_primary_10_1021_acs_inorgchem_2c04450 crossref_primary_10_1021_acs_inorgchem_0c00756 crossref_primary_10_1021_acs_inorgchem_7b02317 crossref_primary_10_1039_C7NJ00203C crossref_primary_10_1021_jacs_6b06680 crossref_primary_10_1038_s41467_018_05575_w crossref_primary_10_1021_acs_inorgchem_2c02262 crossref_primary_10_1021_acs_accounts_1c00188 crossref_primary_10_1007_s40843_022_2088_0 crossref_primary_10_1002_chem_201602135 crossref_primary_10_1016_j_fmre_2022_04_009 crossref_primary_10_1039_C5TC02925B crossref_primary_10_1039_D2CC05307A crossref_primary_10_1021_acs_inorgchem_2c00079 crossref_primary_10_1039_D1CC02548A crossref_primary_10_1002_bkcs_12720 crossref_primary_10_1021_acs_inorgchem_2c03905 crossref_primary_10_1002_ejic_201900769 crossref_primary_10_1515_znb_2022_0106 crossref_primary_10_1021_acs_cgd_8b01102 crossref_primary_10_1039_D0NJ00249F crossref_primary_10_1002_sstr_202300274 crossref_primary_10_1039_C5CE00509D crossref_primary_10_3390_molecules24152763 crossref_primary_10_1039_D4SC05640J crossref_primary_10_1021_acs_inorgchem_7b00872 crossref_primary_10_1039_D1QI00869B crossref_primary_10_1021_acs_inorgchem_8b01017 crossref_primary_10_1002_anie_202110582 crossref_primary_10_1007_s10876_016_1148_y crossref_primary_10_1021_acs_inorgchem_2c00102 crossref_primary_10_1039_C9QI00678H crossref_primary_10_1016_j_jssc_2018_10_051 crossref_primary_10_1002_anie_201813968 crossref_primary_10_1039_D0DT03307C crossref_primary_10_1039_C8DT04400G crossref_primary_10_1021_acs_inorgchem_5c00066 crossref_primary_10_1016_j_cclet_2020_11_014 crossref_primary_10_3390_sym15071399 crossref_primary_10_1021_acs_cgd_1c00647 crossref_primary_10_1039_C9QI01036J crossref_primary_10_1002_ejic_202001167 crossref_primary_10_1021_acs_chemmater_8b05175 crossref_primary_10_1016_j_jssc_2015_11_005 crossref_primary_10_1039_C7NJ04288D crossref_primary_10_1016_j_inoche_2020_107803 crossref_primary_10_1021_acs_chemmater_3c03278 crossref_primary_10_1039_D4QI00832D crossref_primary_10_1039_C8NJ02623H crossref_primary_10_1002_asia_201901562 crossref_primary_10_1016_j_jssc_2016_05_018 crossref_primary_10_1016_j_ccr_2022_214443 crossref_primary_10_1021_acs_inorgchem_9b00271 crossref_primary_10_1021_acs_inorgchem_5b02859 crossref_primary_10_1002_adfm_202419204 crossref_primary_10_1021_jacs_6b02203 crossref_primary_10_1039_C8SC04342F crossref_primary_10_1002_adom_202302560 crossref_primary_10_1016_j_inoche_2017_07_004 crossref_primary_10_1021_acs_cgd_2c00725 crossref_primary_10_1021_acs_inorgchem_7b00975 crossref_primary_10_1039_C6TC02306A crossref_primary_10_1021_acs_cgd_3c01122 crossref_primary_10_1016_j_ccr_2020_213380 crossref_primary_10_1002_anie_201909735 crossref_primary_10_1142_S2010324719500152 crossref_primary_10_1002_anie_202012456 crossref_primary_10_1002_slct_201900404 crossref_primary_10_1021_acs_inorgchem_4c02288 crossref_primary_10_1021_jacs_4c16182 crossref_primary_10_1021_acs_cgd_8b00584 crossref_primary_10_1039_C7DT02116J crossref_primary_10_1039_C5CP06884C crossref_primary_10_1002_ange_201905558 crossref_primary_10_1002_ange_202112844 crossref_primary_10_1002_anie_202403328 crossref_primary_10_1039_D4QI01781A crossref_primary_10_1002_anie_202000587 crossref_primary_10_1021_acs_chemmater_0c00610 crossref_primary_10_1021_acs_inorgchem_8b03343 crossref_primary_10_1021_acs_inorgchem_7b00647 crossref_primary_10_1515_znb_2016_0242 crossref_primary_10_1002_ange_202012456 crossref_primary_10_1039_D1QI00945A crossref_primary_10_3390_cryst6040042 crossref_primary_10_1021_acs_inorgchem_4c02939 crossref_primary_10_1021_acs_inorgchem_0c02909 crossref_primary_10_1021_acs_inorgchem_3c02845 crossref_primary_10_1002_ange_201609876 crossref_primary_10_1002_chem_201804126 crossref_primary_10_1021_acs_inorgchem_2c02979 crossref_primary_10_1021_acs_inorgchem_3c04344 crossref_primary_10_1002_asia_202001086 crossref_primary_10_1021_acs_inorgchem_5c00633 crossref_primary_10_1039_D2DT00183G crossref_primary_10_1039_D3QI00828B crossref_primary_10_1039_D2CC00134A crossref_primary_10_1002_anie_201611770 crossref_primary_10_1002_anie_201804354 crossref_primary_10_1016_j_cclet_2021_11_089 crossref_primary_10_1007_s40843_023_2743_5 crossref_primary_10_1021_acs_inorgchem_4c05416 crossref_primary_10_1016_j_cclet_2025_111011 crossref_primary_10_1002_ejic_201700772 crossref_primary_10_1016_j_jallcom_2018_08_266 crossref_primary_10_1002_anie_201606782 crossref_primary_10_1039_D2CC04193F crossref_primary_10_1016_j_jssc_2021_122481 crossref_primary_10_1021_acs_cgd_2c00255 crossref_primary_10_1515_znb_2016_0105 crossref_primary_10_1039_C7QI00004A crossref_primary_10_1002_anie_202112844 crossref_primary_10_1021_jacs_8b04333 crossref_primary_10_1021_acs_inorgchem_5b01588 crossref_primary_10_1039_C5CP07313H crossref_primary_10_1016_j_jssc_2015_08_031 crossref_primary_10_1039_C9CC06532F crossref_primary_10_1039_C8NJ04072A crossref_primary_10_1021_acs_inorgchem_9b00860 crossref_primary_10_1039_D1DT01639C crossref_primary_10_1021_acs_inorgchem_7b01517 crossref_primary_10_1039_D0QI00778A crossref_primary_10_1002_ange_202105777 crossref_primary_10_1039_D1DT01368H crossref_primary_10_1039_D4QI01044B crossref_primary_10_1016_j_inoche_2017_03_032 crossref_primary_10_1021_acs_inorgchem_8b01965 crossref_primary_10_1016_j_scriptamat_2023_115437 crossref_primary_10_1021_acs_chemmater_8b03642 crossref_primary_10_1002_slct_202304922 crossref_primary_10_1007_s40843_018_9390_2 crossref_primary_10_1016_j_jallcom_2015_11_023 crossref_primary_10_1039_C9CC05021C crossref_primary_10_1016_j_jallcom_2016_11_001 crossref_primary_10_1002_ange_202201616 crossref_primary_10_1002_ange_201813968 crossref_primary_10_1039_C5RA17209H crossref_primary_10_1002_ange_202000587 crossref_primary_10_1021_acs_chemmater_0c03353 crossref_primary_10_1039_D1QI00595B crossref_primary_10_1021_acs_inorgchem_8b03356 crossref_primary_10_1039_C8CE02175A crossref_primary_10_1021_acs_inorgchem_2c03083 crossref_primary_10_1039_D4SC08166H crossref_primary_10_1039_C9NJ06320J crossref_primary_10_1016_j_jssc_2022_123715 crossref_primary_10_1021_acs_jpcc_6b03862 crossref_primary_10_1039_D0DT00593B crossref_primary_10_1039_D4SC05747C crossref_primary_10_1021_acs_inorgchem_9b01730 crossref_primary_10_1002_ange_202110582 crossref_primary_10_1021_acs_inorgchem_7b02508 crossref_primary_10_1002_anie_202116790 crossref_primary_10_1039_C7QI00001D crossref_primary_10_1021_acs_inorgchem_2c03985 crossref_primary_10_1002_ange_201700540 crossref_primary_10_1039_C9TC01249D crossref_primary_10_1016_j_jallcom_2015_12_091 crossref_primary_10_1021_acs_inorgchem_5b02523 crossref_primary_10_1021_acs_cgd_7b00677 crossref_primary_10_1039_D2CC03495F crossref_primary_10_1039_C6TC03424A crossref_primary_10_1002_anie_202105777 crossref_primary_10_1002_anie_201700540 crossref_primary_10_1016_j_jssc_2019_02_034 crossref_primary_10_1039_D0CE00075B crossref_primary_10_1021_acs_inorgchem_8b02044 crossref_primary_10_1021_acs_inorgchem_8b03495 crossref_primary_10_1002_ange_202116790 |
Cites_doi | 10.1021/ac60056a039 10.1039/c3ce40327k 10.1021/ja204179g 10.1021/ic400515m 10.1039/c002588g 10.1021/cm050215d 10.1039/C1JM14590H 10.1039/b511119f 10.1038/373322a0 10.1002/anie.201103960 10.1002/anie.201200413 10.1039/c3tc32002b 10.1021/ic402404a 10.1021/ic400752y 10.1021/ic901698b 10.1016/j.jssc.2013.07.032 10.1021/ic2008705 10.1021/cm030004d 10.1021/ja400500m 10.1021/ja9015099 10.1016/j.jssc.2014.09.016 10.1021/ja106066k 10.1002/ange.201200413 10.1002/ange.201103960 10.1146/annurev.ms.16.080186.001223 10.1364/JOSAB.6.000616 10.1021/ja4117389 10.1021/ic401175r 10.1021/cr3004696 10.1021/ja408982d 10.1021/ic3005135 10.1021/ja035314b 10.1021/ja9091209 10.1021/cm010387k 10.1134/1.1526424 10.1016/j.materresbull.2012.04.145 10.1021/ic102356d |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201412344 |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
EndPage | 3682 |
ExternalDocumentID | 25630286 10_1002_anie_201412344 ANIE201412344 ark_67375_WNG_GGSBZ6LN_7 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 2123006; 21403232; 2137222; 21203197 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION NPM 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c5564-541cb386ae234884f91c7982585a3f15bd3722c80bac838e689e4baf977b197a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:56:19 EDT 2025 Fri Jul 11 16:54:08 EDT 2025 Mon Jul 21 06:04:57 EDT 2025 Tue Jul 01 03:26:47 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Jan 22 16:31:18 EST 2025 Wed Oct 30 10:05:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | density functional calculations second-harmonic generation hydrothermal synthesis lone-pair cations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5564-541cb386ae234884f91c7982585a3f15bd3722c80bac838e689e4baf977b197a3 |
Notes | ArticleID:ANIE201412344 We thank the National Natural Science Foundation of China (grant numbers 2123006, 21403232, 2137222 , and 21203197) for financial support. SHG=second-harmonic generation. National Natural Science Foundation of China - No. 2123006; No. 21403232; No. 2137222; No. 21203197 istex:D3D7FEA0FED294B03E2CACE289BF36D275F12320 ark:/67375/WNG-GGSBZ6LN-7 We thank the National Natural Science Foundation of China (grant numbers 2123006, 21403232, 2137222 , and 21203197) for financial support. SHG=second‐harmonic generation. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25630286 |
PQID | 1662639195 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1701100266 proquest_miscellaneous_1662639195 pubmed_primary_25630286 crossref_primary_10_1002_anie_201412344 crossref_citationtrail_10_1002_anie_201412344 wiley_primary_10_1002_anie_201412344_ANIE201412344 istex_primary_ark_67375_WNG_GGSBZ6LN_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 16, 2015 |
PublicationDateYYYYMMDD | 2015-03-16 |
PublicationDate_xml | – month: 03 year: 2015 text: March 16, 2015 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Chem. Commun. 2010, 46, 3955-3957 T. S. Ortner, K. Wurst, L. Perfler, M. Tribus, H. Huppertz, J. Solid State Chem. 2015, 221, 66-72 C. T. Chen, G. Z. Liu, Annu. Rev. Mater. Sci. 1986, 16, 203-243. C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616-621. H. Huang, J. Yao, Z. Lin, X. Wang, R. He, W. Yao, N. Zhai, C. Chen, Angew. Chem. Int. Ed. 2011, 50, 9141-9144 W. J. Yao, H. W. Huang, J. Y. Yao, T. Xu, X. X. Jiang, Z. S. Lin, C. T. Chen, Inorg. Chem. 2013, 52, 6136-6141. R. K. Li, P. Chen, Inorg. Chem. 2010, 49, 1561-1565. Z.-T. Yu, Z. Shi, Y.-S. Jiang, H.-M. Yuan, J.-S. Chen, Chem. Mater. 2002, 14, 1314-1318. Angew. Chem. 2012, 124, 4940-4943. C. D. McMillen, J. W. Kolis, Inorg. Chem. 2011, 50, 6809-6813 L. Y. Li, G. B. Li, Y. X. Wang, F. H. Liao, J. H. Lin, Chem. Mater. 2005, 17, 4174-4180. S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, S. K. Filatov, Chem. Rev. 2013, 113, 6459-6535. G.-H. Zou, L. Huang, N. Ye, C. S. Lin, W.-D. Cheng, H. Huang, J. Am. Chem. Soc. 2013, 135, 18560-18566. L.-Z. Wu, L. Cheng, J.-N. Shen, G.-Y. Yang, CrystEngComm 2013, 15, 4483-4488. W. L. Zhang, W. D. Cheng, H. Zhang, L. Geng, C. S. Lin, Z. Z. He, J. Am. Chem. Soc. 2010, 132, 1508-1509. O. V. Yakubovich, I. V. Perevoznikova, O. V. Dimitrova, V. S. Urusov, Dokl. Phys. 2002, 47, 791-797. H.-R. Tian, W.-H. Wang, Y.-E. Gao, T.-T. Deng, J.-Y. Wang, Y.-L. Feng, J.-W. Cheng, Inorg. Chem. 2013, 52, 6242-6244. C. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, L. H. Yu, Nature 1995, 373, 322-324 L. Y. Li, X. L. Jin, G. B. Li, Y. X. Wang, F. H. Liao, G. Q. Yao,, J. H. Lin, Chem. Mater. 2003, 15, 2253-2260 H. Y. Chang, S. H. Kim, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2009, 131, 6865-6873. K. M. Ok, E. O. Chi, P. S. Halasyamani, Chem. Soc. Rev. 2006, 35, 710-717. R. H. Cong, T. Yang, F. H. Liao, Y. X. Wang, Z. S. Lin, J. H. Lin, Mater. Res. Bull. 2012, 47, 2573-2578. R. Mu, Q. Fu, L. Jin, L. Yu, G. Fang, D. Tan, X. Bao, Angew. Chem. Int. Ed. 2012, 51, 4856-4859 H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764-7765 J. Zhao, R. K. Li, Inorg. Chem. 2012, 51, 4568-4571 Angew. Chem. 2011, 123, 9307-9310. S. Wang, E. M. Villa, J. Diwu, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Inorg. Chem. 2011, 50, 2527-2533. H. Y. Li, H. P. Wu, X. Su, H. W. Yu, S. L. Pan, Z. H. Yang, Y. Lu, J. Han, K. R. Poeppelmeier, J. Mater. Chem. C 2014, 2, 1704-1710 H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. L. Hou, X. Su, Q. Jing, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2014, 136, 1264-1267. B.-C. Zhao, W. Sun, W.-J. Ren, Y.-X. Huang, Z. Li, Y. Pan, J.-X. Mi, J. Solid State Chem. 2013, 206, 91-98. L. X. Chang, L. Wang, X. Su, S. L. Pang, R. Hailili, H. W. Yu, Z. H. Yang, Inorg. Chem. 2014, 53, 3320-3325. J.-L. Song, C.-L. Hu, X. Xu, F. Kong, J.-G. Mao, Inorg. Chem. 2013, 52, 8979-8986. D. Stetten Jr, Anal. Chem. 1951, 23, 1177-1179. S.-C. Wang, N. Ye, J. Am. Chem. Soc. 2011, 133, 11458-11461 H. W. Yu, S. L. Pan, H. P. Wu, W. W. Zhao, F. F. Zhang, H. Y. Liab, Z. H. Yang, J. Mater. Chem. 2012, 22, 2105-2110. H. Wu, S. L. Pan, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2013, 135, 4215-4218 Y. Z. Huang, L. M. Wu, X. T. Wu, L. H. Li, L. Chen, Y. F. Zhang, J. Am. Chem. Soc. 2010, 132, 12788-12789. 2002; 14 2006; 35 1989; 6 2015; 221 2013; 206 1986; 16 1951; 23 2003; 15 2009; 131 1995; 373 2014; 136 2011; 133 2012; 51 2002; 47 2010; 49 2013; 15 2010; 46 2014; 2 2012 2012; 51 124 2013; 52 2011; 50 2010; 132 2013; 113 2013; 135 2011 2011; 50 123 2012; 47 2003; 125 2005; 17 2012; 22 2014; 53 e_1_2_3_19_2 e_1_2_3_1_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_3_3 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_7_3 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_30_2 e_1_2_3_32_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_26_2 e_1_2_3_27_2 e_1_2_3_28_2 e_1_2_3_29_2 e_1_2_3_22_2 e_1_2_3_23_2 e_1_2_3_44_2 e_1_2_3_24_2 e_1_2_3_25_2 e_1_2_3_41_2 e_1_2_3_40_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_21_2 e_1_2_3_42_2 |
References_xml | – reference: H. W. Yu, S. L. Pan, H. P. Wu, W. W. Zhao, F. F. Zhang, H. Y. Liab, Z. H. Yang, J. Mater. Chem. 2012, 22, 2105-2110. – reference: S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, S. K. Filatov, Chem. Rev. 2013, 113, 6459-6535. – reference: Z.-T. Yu, Z. Shi, Y.-S. Jiang, H.-M. Yuan, J.-S. Chen, Chem. Mater. 2002, 14, 1314-1318. – reference: W. J. Yao, H. W. Huang, J. Y. Yao, T. Xu, X. X. Jiang, Z. S. Lin, C. T. Chen, Inorg. Chem. 2013, 52, 6136-6141. – reference: C. T. Chen, G. Z. Liu, Annu. Rev. Mater. Sci. 1986, 16, 203-243. – reference: H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764-7765; – reference: C. D. McMillen, J. W. Kolis, Inorg. Chem. 2011, 50, 6809-6813; – reference: S. Wang, E. M. Villa, J. Diwu, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Inorg. Chem. 2011, 50, 2527-2533. – reference: Y. Z. Huang, L. M. Wu, X. T. Wu, L. H. Li, L. Chen, Y. F. Zhang, J. Am. Chem. Soc. 2010, 132, 12788-12789. – reference: L.-Z. Wu, L. Cheng, J.-N. Shen, G.-Y. Yang, CrystEngComm 2013, 15, 4483-4488. – reference: Angew. Chem. 2012, 124, 4940-4943. – reference: H. Y. Chang, S. H. Kim, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2009, 131, 6865-6873. – reference: R. H. Cong, T. Yang, F. H. Liao, Y. X. Wang, Z. S. Lin, J. H. Lin, Mater. Res. Bull. 2012, 47, 2573-2578. – reference: S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Chem. Commun. 2010, 46, 3955-3957; – reference: H. Huang, J. Yao, Z. Lin, X. Wang, R. He, W. Yao, N. Zhai, C. Chen, Angew. Chem. Int. Ed. 2011, 50, 9141-9144; – reference: R. K. Li, P. Chen, Inorg. Chem. 2010, 49, 1561-1565. – reference: Angew. Chem. 2011, 123, 9307-9310. – reference: W. L. Zhang, W. D. Cheng, H. Zhang, L. Geng, C. S. Lin, Z. Z. He, J. Am. Chem. Soc. 2010, 132, 1508-1509. – reference: L. Y. Li, G. B. Li, Y. X. Wang, F. H. Liao, J. H. Lin, Chem. Mater. 2005, 17, 4174-4180. – reference: H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. L. Hou, X. Su, Q. Jing, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2014, 136, 1264-1267. – reference: K. M. Ok, E. O. Chi, P. S. Halasyamani, Chem. Soc. Rev. 2006, 35, 710-717. – reference: J. Zhao, R. K. Li, Inorg. Chem. 2012, 51, 4568-4571; – reference: H. Y. Li, H. P. Wu, X. Su, H. W. Yu, S. L. Pan, Z. H. Yang, Y. Lu, J. Han, K. R. Poeppelmeier, J. Mater. Chem. C 2014, 2, 1704-1710; – reference: L. X. Chang, L. Wang, X. Su, S. L. Pang, R. Hailili, H. W. Yu, Z. H. Yang, Inorg. Chem. 2014, 53, 3320-3325. – reference: T. S. Ortner, K. Wurst, L. Perfler, M. Tribus, H. Huppertz, J. Solid State Chem. 2015, 221, 66-72; – reference: L. Y. Li, X. L. Jin, G. B. Li, Y. X. Wang, F. H. Liao, G. Q. Yao,, J. H. Lin, Chem. Mater. 2003, 15, 2253-2260; – reference: G.-H. Zou, L. Huang, N. Ye, C. S. Lin, W.-D. Cheng, H. Huang, J. Am. Chem. Soc. 2013, 135, 18560-18566. – reference: H.-R. Tian, W.-H. Wang, Y.-E. Gao, T.-T. Deng, J.-Y. Wang, Y.-L. Feng, J.-W. Cheng, Inorg. Chem. 2013, 52, 6242-6244. – reference: S.-C. Wang, N. Ye, J. Am. Chem. Soc. 2011, 133, 11458-11461; – reference: C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616-621. – reference: R. Mu, Q. Fu, L. Jin, L. Yu, G. Fang, D. Tan, X. Bao, Angew. Chem. Int. Ed. 2012, 51, 4856-4859; – reference: C. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, L. H. Yu, Nature 1995, 373, 322-324; – reference: H. Wu, S. L. Pan, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2013, 135, 4215-4218; – reference: D. Stetten Jr, Anal. Chem. 1951, 23, 1177-1179. – reference: J.-L. Song, C.-L. Hu, X. Xu, F. Kong, J.-G. Mao, Inorg. Chem. 2013, 52, 8979-8986. – reference: B.-C. Zhao, W. Sun, W.-J. Ren, Y.-X. Huang, Z. Li, Y. Pan, J.-X. Mi, J. Solid State Chem. 2013, 206, 91-98. – reference: O. V. Yakubovich, I. V. Perevoznikova, O. V. Dimitrova, V. S. Urusov, Dokl. Phys. 2002, 47, 791-797. – volume: 135 start-page: 4215 year: 2013 end-page: 4218 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1314 year: 2002 end-page: 1318 publication-title: Chem. Mater. – volume: 16 start-page: 203 year: 1986 end-page: 243 publication-title: Annu. Rev. Mater. Sci. – volume: 51 start-page: 4568 year: 2012 end-page: 4571 publication-title: Inorg. Chem. – volume: 50 start-page: 2527 year: 2011 end-page: 2533 publication-title: Inorg. Chem. – volume: 49 start-page: 1561 year: 2010 end-page: 1565 publication-title: Inorg. Chem. – volume: 23 start-page: 1177 year: 1951 end-page: 1179 publication-title: Anal. Chem. – volume: 22 start-page: 2105 year: 2012 end-page: 2110 publication-title: J. Mater. Chem. – volume: 131 start-page: 6865 year: 2009 end-page: 6873 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1704 year: 2014 end-page: 1710 publication-title: J. Mater. Chem. C – volume: 51 124 start-page: 4856 4940 year: 2012 2012 end-page: 4859 4943 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 1264 year: 2014 end-page: 1267 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 4483 year: 2013 end-page: 4488 publication-title: CrystEngComm – volume: 133 start-page: 11458 year: 2011 end-page: 11461 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 18560 year: 2013 end-page: 18566 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 9141 9307 year: 2011 2011 end-page: 9144 9310 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 1508 year: 2010 end-page: 1509 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 3320 year: 2014 end-page: 3325 publication-title: Inorg. Chem. – volume: 17 start-page: 4174 year: 2005 end-page: 4180 publication-title: Chem. Mater. – volume: 47 start-page: 2573 year: 2012 end-page: 2578 publication-title: Mater. Res. Bull. – volume: 15 start-page: 2253 year: 2003 end-page: 2260 publication-title: Chem. Mater. – volume: 373 start-page: 322 year: 1995 end-page: 324 publication-title: Nature – volume: 6 start-page: 616 year: 1989 end-page: 621 publication-title: J. Opt. Soc. Am. B – volume: 50 start-page: 6809 year: 2011 end-page: 6813 publication-title: Inorg. Chem. – volume: 206 start-page: 91 year: 2013 end-page: 98 publication-title: J. Solid State Chem. – volume: 52 start-page: 6136 year: 2013 end-page: 6141 publication-title: Inorg. Chem. – volume: 132 start-page: 12788 year: 2010 end-page: 12789 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8979 year: 2013 end-page: 8986 publication-title: Inorg. Chem. – volume: 221 start-page: 66 year: 2015 end-page: 72 publication-title: J. Solid State Chem. – volume: 47 start-page: 791 year: 2002 end-page: 797 publication-title: Dokl. Phys. – volume: 113 start-page: 6459 year: 2013 end-page: 6535 publication-title: Chem. Rev. – volume: 35 start-page: 710 year: 2006 end-page: 717 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 6242 year: 2013 end-page: 6244 publication-title: Inorg. Chem. – volume: 46 start-page: 3955 year: 2010 end-page: 3957 publication-title: Chem. Commun. – volume: 125 start-page: 7764 year: 2003 end-page: 7765 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_26_2 doi: 10.1021/ac60056a039 – ident: e_1_2_3_38_2 doi: 10.1039/c3ce40327k – ident: e_1_2_3_15_2 doi: 10.1021/ja204179g – ident: e_1_2_3_17_2 doi: 10.1021/ic400515m – ident: e_1_2_3_36_2 – ident: e_1_2_3_31_2 doi: 10.1039/c002588g – ident: e_1_2_3_43_2 doi: 10.1021/cm050215d – ident: e_1_2_3_42_2 doi: 10.1039/C1JM14590H – ident: e_1_2_3_1_2 doi: 10.1039/b511119f – ident: e_1_2_3_9_2 doi: 10.1038/373322a0 – ident: e_1_2_3_14_2 – ident: e_1_2_3_7_2 doi: 10.1002/anie.201103960 – ident: e_1_2_3_3_2 doi: 10.1002/anie.201200413 – ident: e_1_2_3_41_2 doi: 10.1039/c3tc32002b – ident: e_1_2_3_44_2 doi: 10.1021/ic402404a – ident: e_1_2_3_39_2 doi: 10.1021/ic400752y – ident: e_1_2_3_8_2 – ident: e_1_2_3_33_2 – ident: e_1_2_3_25_2 doi: 10.1021/ic901698b – ident: e_1_2_3_32_2 doi: 10.1016/j.jssc.2013.07.032 – ident: e_1_2_3_19_2 – ident: e_1_2_3_20_2 doi: 10.1021/ic2008705 – ident: e_1_2_3_30_2 doi: 10.1021/cm030004d – ident: e_1_2_3_5_2 doi: 10.1021/ja400500m – ident: e_1_2_3_22_2 doi: 10.1021/ja9015099 – ident: e_1_2_3_34_2 doi: 10.1016/j.jssc.2014.09.016 – ident: e_1_2_3_40_2 – ident: e_1_2_3_13_2 doi: 10.1021/ja106066k – ident: e_1_2_3_23_2 – ident: e_1_2_3_3_3 doi: 10.1002/ange.201200413 – ident: e_1_2_3_7_3 doi: 10.1002/ange.201103960 – ident: e_1_2_3_10_2 doi: 10.1146/annurev.ms.16.080186.001223 – ident: e_1_2_3_11_2 doi: 10.1364/JOSAB.6.000616 – ident: e_1_2_3_6_2 doi: 10.1021/ja4117389 – ident: e_1_2_3_28_2 doi: 10.1021/ic401175r – ident: e_1_2_3_2_2 doi: 10.1021/cr3004696 – ident: e_1_2_3_16_2 doi: 10.1021/ja408982d – ident: e_1_2_3_24_2 doi: 10.1021/ic3005135 – ident: e_1_2_3_21_2 doi: 10.1021/ja035314b – ident: e_1_2_3_12_2 doi: 10.1021/ja9091209 – ident: e_1_2_3_37_2 doi: 10.1021/cm010387k – ident: e_1_2_3_35_2 doi: 10.1134/1.1526424 – ident: e_1_2_3_18_2 doi: 10.1016/j.materresbull.2012.04.145 – ident: e_1_2_3_27_2 doi: 10.1021/ic102356d – ident: e_1_2_3_4_2 – ident: e_1_2_3_29_2 |
SSID | ssj0028806 |
Score | 2.5824456 |
Snippet | A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction... A new SHG material, namely, Pb 2 (BO 3 )(NO 3 ), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal... A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction... A new SHG material, namely, Pb sub(2)(BO sub(3))(NO sub(3)), which contains parallel pi -conjugated nitrate and borate anions, was obtained through a facile... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3679 |
SubjectTerms | Anions Borates density functional calculations Honeycomb Hydrothermal reactions hydrothermal synthesis Interlayers lone-pair cations Nitrates Phosphates Potassium second-harmonic generation |
Title | A Facile Synthetic Route to a New SHG Material with Two Types of Parallel π-Conjugated Planar Triangular Units |
URI | https://api.istex.fr/ark:/67375/WNG-GGSBZ6LN-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201412344 https://www.ncbi.nlm.nih.gov/pubmed/25630286 https://www.proquest.com/docview/1662639195 https://www.proquest.com/docview/1701100266 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQuIAbGL8rA3SQEFxlS2I7cS67am1BUCHaiYkby3YdJDYl0Kbi52qPsDfjHXgSzkmaQBE_EtzFynHi2Mf2Z-fzdxh7aJxIbeLnQZrbMBDYykGWmjAgbXZpk9A7W7MtJsn4SDw9lsc_nOJv9CG6DTfqGfV4TR3c2OX-d9FQOoFN1CyBY68gQVAibBEqetnpR8XonM3xIs4DikLfqjaG8f5m9o1Z6SJV8MdfQc5NBFtPQcOrzLSFb5gnJ3uryu65zz_pOv7P122zK2t8Cv3Goa6xC764zi4N2rBwN9j7PgyNw2fC9FOB6BHtgGhFHqoSDOCgCdPxCJ6bqvZtoI1emH0ogVa8SyhzeGEWFMDlFL6cfT07H5TF2xXt5c2BAiiZBcwwX_GG6LFAiHh5kx0ND2eDcbCO2xA4KRMRSBE5y1ViPJZdKZFnkUszXIoqaXgeSTvnaRw7FVrjFFc-UZkX1uQIRW2EnsJvsa2iLPwOg5yW74jZwthkIrI8y7n3oXKYnCvPVY8FbbtptxY1p9gap7qRY441VaTuKrLHHnf27xo5j99aPqrdoDMzixMiwaVSv5qM9Gg0PXidPJvotMcetH6isSnof4spfLla6ighqZ8syuQfbNJatA9hUo_dbpyse2NM2m2xwjtx7Sp_KbHuT54cdqk7_5Jpl13Ga0kcuyi5y7aqxcrfQ9BV2ft1x_oG-OEhaQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg97BceLOU5yAhOGU3ie3EOZZq2y50I0S7AnGxbNdBYlcJtKl4nPYn8M_4D_wSPE4TVMRDgqOTceLYY_ubyfgbQh4qw1Kd2HmQFjoMmBvlIEtVGCA3O9dJaI320RZ5Mj5mT1_xNpoQz8I0_BCdww1nhl-vcYKjQ3r_B2soHsHG2CzmFl_GzpNtTOvtraoXHYNU7NSzOWBEaYB56FvexjDe36y_sS9tYxd__BXo3MSwfhMaXiK6bX4Te3Kyt6r1nvn8E7Pjf33fZXJxDVGh3-jUFXLOllfJzqDNDHeNvO_DUBn3UJh-Kh2AdHKAkUUW6goUuHUTpuMRHKnaqzegrxdmHypAo3cJVQHP1QJzuJzC17NvZ18GVfl2he68OWAOJbWAmatXvsEIWUBQvLxOjocHs8E4WKduCAznCQs4i4ymIlHWtV0IVmSRSTNnjQquaBFxPadpHBsRamUEFTYRmWVaFQ6N6sgpC71BtsqqtDcJFGjBO9gWxipjkaZZQa0NhXHFubBU9EjQDpw0a15zTK9xKhtG5lhiR8quI3vkcSf_rmH0-K3kI68HnZhanGAcXMrly3wkR6Ppk9fJJJdpjzxoFUW6ocBfLqq01WopowTZfrIo43-QST1vn0NKPbLbaFn3xhjp22Lh7sReV_7SYtnPDw-60q1_qXSf7IxnRxM5Ocyf3SYX3HWOIXdRcods1YuVveswWK3v-Vn2HQiGJYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZbtQwFLWglYAX9mVYjYTgKW3iLc7jMO3MFEpUMVNR8WLZjlOprZIykxHLUz-BP-Mf-BJ8k0lgEIsEj06uE8c-to-d63MReqIti41wWRDnJgyYb-UgiXUYgDY7NyJ01tTeFqkY77MXB_zgh1P8jT5Et-EGPaMer6GDn2b55nfRUDiBDa5ZzI-9jJ1H60yEEnC99boTkCIenc35IkoDCEPfyjaGZHM1_8q0tA41_OFXnHOVwtZz0PAK0m3pG9eT441FZTbsp5-EHf_n866iy0uCivsNoq6hc664ji4O2rhwN9C7Ph5q65-JJx8LTx-9HQa_IoerEmvsR008GY_wK13V4Maw04un70sMS945LnO8p2cQweUEfzn7evZ5UBZHC9jMyzBEUNIzPPX5ikPwj8VAiec30f5wezoYB8vADYHlXLCAs8gaKoV2vuxSsjyJbJz4tajkmuYRNxmNCbEyNNpKKp2QiWNG556LmshDhd5Ca0VZuDsI57B-96QtJDphkaFJTp0LpfXJTDoqeyho203Zpao5BNc4UY0eM1FQkaqryB561tmfNnoev7V8WsOgM9OzY_CCi7l6k47UaDR5_lbspiruocctTpRvCvjhogtXLuYqEqD1k0QJ_4NNXKv2eZ7UQ7cbkHVvJCDeRqS_Q2qo_KXEqp_ubHepu_-S6RG6sLc1VLs76ct76JK_zMHfLhL30Vo1W7gHnoBV5mHdx74BjYEkPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Synthetic+Route+to+a+New+SHG+Material+with+Two+Types+of+Parallel+pi+-Conjugated+Planar+Triangular+Units&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Jun-Ling&rft.au=Hu%2C+Chun-Li&rft.au=Xu%2C+Xiang&rft.au=Kong%2C+Fang&rft.date=2015-03-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=12&rft.spage=3679&rft.epage=3682&rft_id=info:doi/10.1002%2Fanie.201412344&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |