A Facile Synthetic Route to a New SHG Material with Two Types of Parallel π-Conjugated Planar Triangular Units

A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− ani...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 12; pp. 3679 - 3682
Main Authors Song, Jun-Ling, Hu, Chun-Li, Xu, Xiang, Kong, Fang, Mao, Jiang-Gao
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 16.03.2015
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications. Pb2(BO3)(NO3) is a new second‐harmonic generation (SHG) material that contains parallel π‐conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase‐matchable.
AbstractList A new SHG material, namely, Pb sub(2)(BO sub(3))(NO sub(3)), which contains parallel pi -conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO sub(3)) sub(2) and Mg(BO sub(2)) sub(2)H sub(2 )O as starting materials. Its structure contains honeycomb [Pb sub(2)(BO sub(3))] sub( [infin]) layers with noncoordination [NO sub(3)] super(-) anions located at the interlayer space. Pb sub(2)(BO sub(3))(NO sub(3)) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb sub(2)(BO sub(3))(NO sub(3)) arises from the synergistic effect of the stereoactive lone pairs on Pb super(2+) cations and parallel alignment of pi -conjugated BO sub(3) and NO sub(3) units. Based on its unique properties, Pb sub(2)(BO sub(3))(NO sub(3)) may have great potential as a high performance NLO material in photonic applications. Pb sub(2)(BO sub(3))(NO sub(3)) is a new second-harmonic generation (SHG) material that contains parallel pi -conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase-matchable.
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3]− anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb2+ cations and parallel alignment of π‐conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications. Pb2(BO3)(NO3) is a new second‐harmonic generation (SHG) material that contains parallel π‐conjugated nitrate and borate anions. It was obtained through a facile hydrothermal reaction, shows a remarkable strong SHG response of about 9.0 times that of potassium dihydrogen phosphate (KDP), and is phase‐matchable.
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.
A new SHG material, namely, Pb 2 (BO 3 )(NO 3 ), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO 3 ) 2 and Mg(BO 2 ) 2 ⋅H 2 O as starting materials. Its structure contains honeycomb [Pb 2 (BO 3 )] ∞ layers with noncoordination [NO 3 ] − anions located at the interlayer space. Pb 2 (BO 3 )(NO 3 ) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase‐matchable. The large SHG coefficient of Pb 2 (BO 3 )(NO 3 ) arises from the synergistic effect of the stereoactive lone pairs on Pb 2+ cations and parallel alignment of π‐conjugated BO 3 and NO 3 units. Based on its unique properties, Pb 2 (BO 3 )(NO 3 ) may have great potential as a high performance NLO material in photonic applications.
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.
Author Mao, Jiang-Gao
Song, Jun-Ling
Kong, Fang
Hu, Chun-Li
Xu, Xiang
Author_xml – sequence: 1
  givenname: Jun-Ling
  surname: Song
  fullname: Song, Jun-Ling
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/
– sequence: 2
  givenname: Chun-Li
  surname: Hu
  fullname: Hu, Chun-Li
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/
– sequence: 3
  givenname: Xiang
  surname: Xu
  fullname: Xu, Xiang
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/
– sequence: 4
  givenname: Fang
  surname: Kong
  fullname: Kong, Fang
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/
– sequence: 5
  givenname: Jiang-Gao
  surname: Mao
  fullname: Mao, Jiang-Gao
  email: mjg@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (P. R. China) http://mjg.fjirsm.ac.cn/
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25630286$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URB-wZYm8ZDNhPH7OMkTttFIIFUmFxMbyOJ7WxRmntkchO_5h_1IdpUQICXXla-kc3-v7nYKj3vcGgPeoHKGyrD6p3ppRVSKCKkzIK3CCaIUKzDk-yjXBuOCComNwGuN95oUo2RtwXFGG84WdAD-GF0pbZ-B826c7k6yG3_yQDEweKjgzGzi_bOAXlUywysGNTXdwsfFwsV2bCH0Hr1VQzhkHH38XE9_fD7eZXcJrp3oV4CJb_e3gcnnT2xTfgtedctG8ez7PwM3F-WJyWUy_NleT8bTQlDJSUIJ0iwVTJn9LCNLVSPNaVFRQhTtE2yXmVaVF2SotsDBM1Ia0qqs5b1HNFT4DH_fvroN_GExMcmWjNi5PZfwQJeIl2i2QsZdRxiqGa1TTjH54Rod2ZZZyHexKha38s88MjPaADj7GYLoDgkq56yd3gclDYFkg_wjaJpWs71NQ1v1fq_faJke3faGJHM-uzv92i71rYzK_Dq4KPyXjmFP5fdbIppl__sGmM8nxE0Cwt-c
CitedBy_id crossref_primary_10_1021_acs_inorgchem_1c01181
crossref_primary_10_1039_D3DT01740K
crossref_primary_10_1002_anie_201905558
crossref_primary_10_1039_C9CC08739G
crossref_primary_10_1039_C5RA13647D
crossref_primary_10_1039_C8CC03007C
crossref_primary_10_1016_j_jssc_2019_01_011
crossref_primary_10_1021_acs_chemmater_0c03383
crossref_primary_10_1039_C9DT03337H
crossref_primary_10_1039_D4SC05081A
crossref_primary_10_1021_acs_inorgchem_0c02868
crossref_primary_10_3390_molecules28135068
crossref_primary_10_1002_ange_201804354
crossref_primary_10_1016_j_xcrm_2024_101694
crossref_primary_10_1002_bkcs_11935
crossref_primary_10_1021_acs_inorgchem_7b02765
crossref_primary_10_1021_acs_inorgchem_3c00722
crossref_primary_10_1039_C6RA23193D
crossref_primary_10_1021_acs_cgd_1c00931
crossref_primary_10_1039_D2QI01533A
crossref_primary_10_1021_acs_inorgchem_6b02457
crossref_primary_10_1039_C5RA21011A
crossref_primary_10_1002_ange_201606782
crossref_primary_10_1039_C9DT03839F
crossref_primary_10_1021_acs_inorgchem_6b00944
crossref_primary_10_1016_j_jssc_2018_07_015
crossref_primary_10_1016_j_jssc_2019_121046
crossref_primary_10_1039_D3DT04286C
crossref_primary_10_1039_C6RA22000B
crossref_primary_10_1021_acs_inorgchem_2c01381
crossref_primary_10_1016_j_jssc_2017_08_019
crossref_primary_10_1002_anie_201609876
crossref_primary_10_1002_anie_202201616
crossref_primary_10_1021_jacs_0c00702
crossref_primary_10_1016_j_ccr_2019_213045
crossref_primary_10_1021_acs_inorgchem_5b01126
crossref_primary_10_1039_D3DT02529B
crossref_primary_10_1021_acs_jpcc_0c06991
crossref_primary_10_1016_j_cjsc_2024_100455
crossref_primary_10_1016_j_jssc_2018_04_031
crossref_primary_10_1021_acs_inorgchem_2c04084
crossref_primary_10_1039_C5NJ03059E
crossref_primary_10_1016_j_ccr_2018_02_017
crossref_primary_10_1002_ange_201611770
crossref_primary_10_1021_acs_jpcc_6b00265
crossref_primary_10_1039_D2QI01410F
crossref_primary_10_1021_acs_inorgchem_7b00120
crossref_primary_10_1021_acs_cgd_6b00529
crossref_primary_10_1021_acs_inorgchem_6b01587
crossref_primary_10_1002_slct_201601967
crossref_primary_10_1016_j_ijleo_2022_169325
crossref_primary_10_1002_smll_202401464
crossref_primary_10_1007_s40843_021_1998_4
crossref_primary_10_1002_chin_201524005
crossref_primary_10_1039_D1QI00634G
crossref_primary_10_1002_ange_202403328
crossref_primary_10_1002_ejic_202001110
crossref_primary_10_1021_acs_inorgchem_1c03711
crossref_primary_10_1039_D3QI01213A
crossref_primary_10_1016_j_inoche_2020_108390
crossref_primary_10_1002_ejic_202000025
crossref_primary_10_1039_D1CE00910A
crossref_primary_10_3390_cryst6100121
crossref_primary_10_1364_OL_43_001734
crossref_primary_10_1021_acs_inorgchem_3c00515
crossref_primary_10_1039_C7DT04223J
crossref_primary_10_3390_cryst7040109
crossref_primary_10_3390_cryst7040107
crossref_primary_10_1021_acs_inorgchem_5b00653
crossref_primary_10_2139_ssrn_4198873
crossref_primary_10_1016_j_jssc_2016_04_013
crossref_primary_10_1039_D4CE00542B
crossref_primary_10_1016_j_ccr_2018_07_013
crossref_primary_10_1002_slct_201801072
crossref_primary_10_1039_D1DT03660B
crossref_primary_10_1002_adfm_202210718
crossref_primary_10_1021_acs_cgd_8b00804
crossref_primary_10_1039_D1DT01275D
crossref_primary_10_1039_C9CC00581A
crossref_primary_10_1016_j_solidstatesciences_2018_02_012
crossref_primary_10_1021_acs_inorgchem_3c04328
crossref_primary_10_1021_acs_inorgchem_7b02689
crossref_primary_10_1021_acs_inorgchem_8b02778
crossref_primary_10_34133_research_0053
crossref_primary_10_1016_j_cjsc_2023_100020
crossref_primary_10_1002_ange_201909735
crossref_primary_10_1016_j_ccr_2018_03_012
crossref_primary_10_1039_C7DT00251C
crossref_primary_10_1021_acs_inorgchem_9b00593
crossref_primary_10_1021_acs_inorgchem_5b01848
crossref_primary_10_1039_C7RA02027A
crossref_primary_10_1016_j_ccr_2019_213152
crossref_primary_10_1039_C6TC01512C
crossref_primary_10_3390_cryst12020266
crossref_primary_10_1016_j_jhazmat_2019_121872
crossref_primary_10_1021_acs_inorgchem_2c04450
crossref_primary_10_1021_acs_inorgchem_0c00756
crossref_primary_10_1021_acs_inorgchem_7b02317
crossref_primary_10_1039_C7NJ00203C
crossref_primary_10_1021_jacs_6b06680
crossref_primary_10_1038_s41467_018_05575_w
crossref_primary_10_1021_acs_inorgchem_2c02262
crossref_primary_10_1021_acs_accounts_1c00188
crossref_primary_10_1007_s40843_022_2088_0
crossref_primary_10_1002_chem_201602135
crossref_primary_10_1016_j_fmre_2022_04_009
crossref_primary_10_1039_C5TC02925B
crossref_primary_10_1039_D2CC05307A
crossref_primary_10_1021_acs_inorgchem_2c00079
crossref_primary_10_1039_D1CC02548A
crossref_primary_10_1002_bkcs_12720
crossref_primary_10_1021_acs_inorgchem_2c03905
crossref_primary_10_1002_ejic_201900769
crossref_primary_10_1515_znb_2022_0106
crossref_primary_10_1021_acs_cgd_8b01102
crossref_primary_10_1039_D0NJ00249F
crossref_primary_10_1002_sstr_202300274
crossref_primary_10_1039_C5CE00509D
crossref_primary_10_3390_molecules24152763
crossref_primary_10_1039_D4SC05640J
crossref_primary_10_1021_acs_inorgchem_7b00872
crossref_primary_10_1039_D1QI00869B
crossref_primary_10_1021_acs_inorgchem_8b01017
crossref_primary_10_1002_anie_202110582
crossref_primary_10_1007_s10876_016_1148_y
crossref_primary_10_1021_acs_inorgchem_2c00102
crossref_primary_10_1039_C9QI00678H
crossref_primary_10_1016_j_jssc_2018_10_051
crossref_primary_10_1002_anie_201813968
crossref_primary_10_1039_D0DT03307C
crossref_primary_10_1039_C8DT04400G
crossref_primary_10_1021_acs_inorgchem_5c00066
crossref_primary_10_1016_j_cclet_2020_11_014
crossref_primary_10_3390_sym15071399
crossref_primary_10_1021_acs_cgd_1c00647
crossref_primary_10_1039_C9QI01036J
crossref_primary_10_1002_ejic_202001167
crossref_primary_10_1021_acs_chemmater_8b05175
crossref_primary_10_1016_j_jssc_2015_11_005
crossref_primary_10_1039_C7NJ04288D
crossref_primary_10_1016_j_inoche_2020_107803
crossref_primary_10_1021_acs_chemmater_3c03278
crossref_primary_10_1039_D4QI00832D
crossref_primary_10_1039_C8NJ02623H
crossref_primary_10_1002_asia_201901562
crossref_primary_10_1016_j_jssc_2016_05_018
crossref_primary_10_1016_j_ccr_2022_214443
crossref_primary_10_1021_acs_inorgchem_9b00271
crossref_primary_10_1021_acs_inorgchem_5b02859
crossref_primary_10_1002_adfm_202419204
crossref_primary_10_1021_jacs_6b02203
crossref_primary_10_1039_C8SC04342F
crossref_primary_10_1002_adom_202302560
crossref_primary_10_1016_j_inoche_2017_07_004
crossref_primary_10_1021_acs_cgd_2c00725
crossref_primary_10_1021_acs_inorgchem_7b00975
crossref_primary_10_1039_C6TC02306A
crossref_primary_10_1021_acs_cgd_3c01122
crossref_primary_10_1016_j_ccr_2020_213380
crossref_primary_10_1002_anie_201909735
crossref_primary_10_1142_S2010324719500152
crossref_primary_10_1002_anie_202012456
crossref_primary_10_1002_slct_201900404
crossref_primary_10_1021_acs_inorgchem_4c02288
crossref_primary_10_1021_jacs_4c16182
crossref_primary_10_1021_acs_cgd_8b00584
crossref_primary_10_1039_C7DT02116J
crossref_primary_10_1039_C5CP06884C
crossref_primary_10_1002_ange_201905558
crossref_primary_10_1002_ange_202112844
crossref_primary_10_1002_anie_202403328
crossref_primary_10_1039_D4QI01781A
crossref_primary_10_1002_anie_202000587
crossref_primary_10_1021_acs_chemmater_0c00610
crossref_primary_10_1021_acs_inorgchem_8b03343
crossref_primary_10_1021_acs_inorgchem_7b00647
crossref_primary_10_1515_znb_2016_0242
crossref_primary_10_1002_ange_202012456
crossref_primary_10_1039_D1QI00945A
crossref_primary_10_3390_cryst6040042
crossref_primary_10_1021_acs_inorgchem_4c02939
crossref_primary_10_1021_acs_inorgchem_0c02909
crossref_primary_10_1021_acs_inorgchem_3c02845
crossref_primary_10_1002_ange_201609876
crossref_primary_10_1002_chem_201804126
crossref_primary_10_1021_acs_inorgchem_2c02979
crossref_primary_10_1021_acs_inorgchem_3c04344
crossref_primary_10_1002_asia_202001086
crossref_primary_10_1021_acs_inorgchem_5c00633
crossref_primary_10_1039_D2DT00183G
crossref_primary_10_1039_D3QI00828B
crossref_primary_10_1039_D2CC00134A
crossref_primary_10_1002_anie_201611770
crossref_primary_10_1002_anie_201804354
crossref_primary_10_1016_j_cclet_2021_11_089
crossref_primary_10_1007_s40843_023_2743_5
crossref_primary_10_1021_acs_inorgchem_4c05416
crossref_primary_10_1016_j_cclet_2025_111011
crossref_primary_10_1002_ejic_201700772
crossref_primary_10_1016_j_jallcom_2018_08_266
crossref_primary_10_1002_anie_201606782
crossref_primary_10_1039_D2CC04193F
crossref_primary_10_1016_j_jssc_2021_122481
crossref_primary_10_1021_acs_cgd_2c00255
crossref_primary_10_1515_znb_2016_0105
crossref_primary_10_1039_C7QI00004A
crossref_primary_10_1002_anie_202112844
crossref_primary_10_1021_jacs_8b04333
crossref_primary_10_1021_acs_inorgchem_5b01588
crossref_primary_10_1039_C5CP07313H
crossref_primary_10_1016_j_jssc_2015_08_031
crossref_primary_10_1039_C9CC06532F
crossref_primary_10_1039_C8NJ04072A
crossref_primary_10_1021_acs_inorgchem_9b00860
crossref_primary_10_1039_D1DT01639C
crossref_primary_10_1021_acs_inorgchem_7b01517
crossref_primary_10_1039_D0QI00778A
crossref_primary_10_1002_ange_202105777
crossref_primary_10_1039_D1DT01368H
crossref_primary_10_1039_D4QI01044B
crossref_primary_10_1016_j_inoche_2017_03_032
crossref_primary_10_1021_acs_inorgchem_8b01965
crossref_primary_10_1016_j_scriptamat_2023_115437
crossref_primary_10_1021_acs_chemmater_8b03642
crossref_primary_10_1002_slct_202304922
crossref_primary_10_1007_s40843_018_9390_2
crossref_primary_10_1016_j_jallcom_2015_11_023
crossref_primary_10_1039_C9CC05021C
crossref_primary_10_1016_j_jallcom_2016_11_001
crossref_primary_10_1002_ange_202201616
crossref_primary_10_1002_ange_201813968
crossref_primary_10_1039_C5RA17209H
crossref_primary_10_1002_ange_202000587
crossref_primary_10_1021_acs_chemmater_0c03353
crossref_primary_10_1039_D1QI00595B
crossref_primary_10_1021_acs_inorgchem_8b03356
crossref_primary_10_1039_C8CE02175A
crossref_primary_10_1021_acs_inorgchem_2c03083
crossref_primary_10_1039_D4SC08166H
crossref_primary_10_1039_C9NJ06320J
crossref_primary_10_1016_j_jssc_2022_123715
crossref_primary_10_1021_acs_jpcc_6b03862
crossref_primary_10_1039_D0DT00593B
crossref_primary_10_1039_D4SC05747C
crossref_primary_10_1021_acs_inorgchem_9b01730
crossref_primary_10_1002_ange_202110582
crossref_primary_10_1021_acs_inorgchem_7b02508
crossref_primary_10_1002_anie_202116790
crossref_primary_10_1039_C7QI00001D
crossref_primary_10_1021_acs_inorgchem_2c03985
crossref_primary_10_1002_ange_201700540
crossref_primary_10_1039_C9TC01249D
crossref_primary_10_1016_j_jallcom_2015_12_091
crossref_primary_10_1021_acs_inorgchem_5b02523
crossref_primary_10_1021_acs_cgd_7b00677
crossref_primary_10_1039_D2CC03495F
crossref_primary_10_1039_C6TC03424A
crossref_primary_10_1002_anie_202105777
crossref_primary_10_1002_anie_201700540
crossref_primary_10_1016_j_jssc_2019_02_034
crossref_primary_10_1039_D0CE00075B
crossref_primary_10_1021_acs_inorgchem_8b02044
crossref_primary_10_1021_acs_inorgchem_8b03495
crossref_primary_10_1002_ange_202116790
Cites_doi 10.1021/ac60056a039
10.1039/c3ce40327k
10.1021/ja204179g
10.1021/ic400515m
10.1039/c002588g
10.1021/cm050215d
10.1039/C1JM14590H
10.1039/b511119f
10.1038/373322a0
10.1002/anie.201103960
10.1002/anie.201200413
10.1039/c3tc32002b
10.1021/ic402404a
10.1021/ic400752y
10.1021/ic901698b
10.1016/j.jssc.2013.07.032
10.1021/ic2008705
10.1021/cm030004d
10.1021/ja400500m
10.1021/ja9015099
10.1016/j.jssc.2014.09.016
10.1021/ja106066k
10.1002/ange.201200413
10.1002/ange.201103960
10.1146/annurev.ms.16.080186.001223
10.1364/JOSAB.6.000616
10.1021/ja4117389
10.1021/ic401175r
10.1021/cr3004696
10.1021/ja408982d
10.1021/ic3005135
10.1021/ja035314b
10.1021/ja9091209
10.1021/cm010387k
10.1134/1.1526424
10.1016/j.materresbull.2012.04.145
10.1021/ic102356d
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201412344
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
EndPage 3682
ExternalDocumentID 25630286
10_1002_anie_201412344
ANIE201412344
ark_67375_WNG_GGSBZ6LN_7
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 2123006; 21403232; 2137222; 21203197
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5564-541cb386ae234884f91c7982585a3f15bd3722c80bac838e689e4baf977b197a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:56:19 EDT 2025
Fri Jul 11 16:54:08 EDT 2025
Mon Jul 21 06:04:57 EDT 2025
Tue Jul 01 03:26:47 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Jan 22 16:31:18 EST 2025
Wed Oct 30 10:05:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords density functional calculations
second-harmonic generation
hydrothermal synthesis
lone-pair cations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5564-541cb386ae234884f91c7982585a3f15bd3722c80bac838e689e4baf977b197a3
Notes ArticleID:ANIE201412344
We thank the National Natural Science Foundation of China (grant numbers 2123006, 21403232, 2137222 , and 21203197) for financial support. SHG=second-harmonic generation.
National Natural Science Foundation of China - No. 2123006; No. 21403232; No. 2137222; No. 21203197
istex:D3D7FEA0FED294B03E2CACE289BF36D275F12320
ark:/67375/WNG-GGSBZ6LN-7
We thank the National Natural Science Foundation of China (grant numbers 2123006, 21403232, 2137222 , and 21203197) for financial support. SHG=second‐harmonic generation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25630286
PQID 1662639195
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_1701100266
proquest_miscellaneous_1662639195
pubmed_primary_25630286
crossref_primary_10_1002_anie_201412344
crossref_citationtrail_10_1002_anie_201412344
wiley_primary_10_1002_anie_201412344_ANIE201412344
istex_primary_ark_67375_WNG_GGSBZ6LN_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 16, 2015
PublicationDateYYYYMMDD 2015-03-16
PublicationDate_xml – month: 03
  year: 2015
  text: March 16, 2015
  day: 16
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Chem. Commun. 2010, 46, 3955-3957
T. S. Ortner, K. Wurst, L. Perfler, M. Tribus, H. Huppertz, J. Solid State Chem. 2015, 221, 66-72
C. T. Chen, G. Z. Liu, Annu. Rev. Mater. Sci. 1986, 16, 203-243.
C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616-621.
H. Huang, J. Yao, Z. Lin, X. Wang, R. He, W. Yao, N. Zhai, C. Chen, Angew. Chem. Int. Ed. 2011, 50, 9141-9144
W. J. Yao, H. W. Huang, J. Y. Yao, T. Xu, X. X. Jiang, Z. S. Lin, C. T. Chen, Inorg. Chem. 2013, 52, 6136-6141.
R. K. Li, P. Chen, Inorg. Chem. 2010, 49, 1561-1565.
Z.-T. Yu, Z. Shi, Y.-S. Jiang, H.-M. Yuan, J.-S. Chen, Chem. Mater. 2002, 14, 1314-1318.
Angew. Chem. 2012, 124, 4940-4943.
C. D. McMillen, J. W. Kolis, Inorg. Chem. 2011, 50, 6809-6813
L. Y. Li, G. B. Li, Y. X. Wang, F. H. Liao, J. H. Lin, Chem. Mater. 2005, 17, 4174-4180.
S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, S. K. Filatov, Chem. Rev. 2013, 113, 6459-6535.
G.-H. Zou, L. Huang, N. Ye, C. S. Lin, W.-D. Cheng, H. Huang, J. Am. Chem. Soc. 2013, 135, 18560-18566.
L.-Z. Wu, L. Cheng, J.-N. Shen, G.-Y. Yang, CrystEngComm 2013, 15, 4483-4488.
W. L. Zhang, W. D. Cheng, H. Zhang, L. Geng, C. S. Lin, Z. Z. He, J. Am. Chem. Soc. 2010, 132, 1508-1509.
O. V. Yakubovich, I. V. Perevoznikova, O. V. Dimitrova, V. S. Urusov, Dokl. Phys. 2002, 47, 791-797.
H.-R. Tian, W.-H. Wang, Y.-E. Gao, T.-T. Deng, J.-Y. Wang, Y.-L. Feng, J.-W. Cheng, Inorg. Chem. 2013, 52, 6242-6244.
C. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, L. H. Yu, Nature 1995, 373, 322-324
L. Y. Li, X. L. Jin, G. B. Li, Y. X. Wang, F. H. Liao, G. Q. Yao,, J. H. Lin, Chem. Mater. 2003, 15, 2253-2260
H. Y. Chang, S. H. Kim, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2009, 131, 6865-6873.
K. M. Ok, E. O. Chi, P. S. Halasyamani, Chem. Soc. Rev. 2006, 35, 710-717.
R. H. Cong, T. Yang, F. H. Liao, Y. X. Wang, Z. S. Lin, J. H. Lin, Mater. Res. Bull. 2012, 47, 2573-2578.
R. Mu, Q. Fu, L. Jin, L. Yu, G. Fang, D. Tan, X. Bao, Angew. Chem. Int. Ed. 2012, 51, 4856-4859
H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764-7765
J. Zhao, R. K. Li, Inorg. Chem. 2012, 51, 4568-4571
Angew. Chem. 2011, 123, 9307-9310.
S. Wang, E. M. Villa, J. Diwu, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Inorg. Chem. 2011, 50, 2527-2533.
H. Y. Li, H. P. Wu, X. Su, H. W. Yu, S. L. Pan, Z. H. Yang, Y. Lu, J. Han, K. R. Poeppelmeier, J. Mater. Chem. C 2014, 2, 1704-1710
H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. L. Hou, X. Su, Q. Jing, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2014, 136, 1264-1267.
B.-C. Zhao, W. Sun, W.-J. Ren, Y.-X. Huang, Z. Li, Y. Pan, J.-X. Mi, J. Solid State Chem. 2013, 206, 91-98.
L. X. Chang, L. Wang, X. Su, S. L. Pang, R. Hailili, H. W. Yu, Z. H. Yang, Inorg. Chem. 2014, 53, 3320-3325.
J.-L. Song, C.-L. Hu, X. Xu, F. Kong, J.-G. Mao, Inorg. Chem. 2013, 52, 8979-8986.
D. Stetten Jr, Anal. Chem. 1951, 23, 1177-1179.
S.-C. Wang, N. Ye, J. Am. Chem. Soc. 2011, 133, 11458-11461
H. W. Yu, S. L. Pan, H. P. Wu, W. W. Zhao, F. F. Zhang, H. Y. Liab, Z. H. Yang, J. Mater. Chem. 2012, 22, 2105-2110.
H. Wu, S. L. Pan, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2013, 135, 4215-4218
Y. Z. Huang, L. M. Wu, X. T. Wu, L. H. Li, L. Chen, Y. F. Zhang, J. Am. Chem. Soc. 2010, 132, 12788-12789.
2002; 14
2006; 35
1989; 6
2015; 221
2013; 206
1986; 16
1951; 23
2003; 15
2009; 131
1995; 373
2014; 136
2011; 133
2012; 51
2002; 47
2010; 49
2013; 15
2010; 46
2014; 2
2012 2012; 51 124
2013; 52
2011; 50
2010; 132
2013; 113
2013; 135
2011 2011; 50 123
2012; 47
2003; 125
2005; 17
2012; 22
2014; 53
e_1_2_3_19_2
e_1_2_3_1_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_3
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_7_3
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_30_2
e_1_2_3_32_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_26_2
e_1_2_3_27_2
e_1_2_3_28_2
e_1_2_3_29_2
e_1_2_3_22_2
e_1_2_3_23_2
e_1_2_3_44_2
e_1_2_3_24_2
e_1_2_3_25_2
e_1_2_3_41_2
e_1_2_3_40_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_21_2
e_1_2_3_42_2
References_xml – reference: H. W. Yu, S. L. Pan, H. P. Wu, W. W. Zhao, F. F. Zhang, H. Y. Liab, Z. H. Yang, J. Mater. Chem. 2012, 22, 2105-2110.
– reference: S. V. Krivovichev, O. Mentré, O. I. Siidra, M. Colmont, S. K. Filatov, Chem. Rev. 2013, 113, 6459-6535.
– reference: Z.-T. Yu, Z. Shi, Y.-S. Jiang, H.-M. Yuan, J.-S. Chen, Chem. Mater. 2002, 14, 1314-1318.
– reference: W. J. Yao, H. W. Huang, J. Y. Yao, T. Xu, X. X. Jiang, Z. S. Lin, C. T. Chen, Inorg. Chem. 2013, 52, 6136-6141.
– reference: C. T. Chen, G. Z. Liu, Annu. Rev. Mater. Sci. 1986, 16, 203-243.
– reference: H. S. Ra, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2003, 125, 7764-7765;
– reference: C. D. McMillen, J. W. Kolis, Inorg. Chem. 2011, 50, 6809-6813;
– reference: S. Wang, E. M. Villa, J. Diwu, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Inorg. Chem. 2011, 50, 2527-2533.
– reference: Y. Z. Huang, L. M. Wu, X. T. Wu, L. H. Li, L. Chen, Y. F. Zhang, J. Am. Chem. Soc. 2010, 132, 12788-12789.
– reference: L.-Z. Wu, L. Cheng, J.-N. Shen, G.-Y. Yang, CrystEngComm 2013, 15, 4483-4488.
– reference: Angew. Chem. 2012, 124, 4940-4943.
– reference: H. Y. Chang, S. H. Kim, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2009, 131, 6865-6873.
– reference: R. H. Cong, T. Yang, F. H. Liao, Y. X. Wang, Z. S. Lin, J. H. Lin, Mater. Res. Bull. 2012, 47, 2573-2578.
– reference: S. Wang, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Chem. Commun. 2010, 46, 3955-3957;
– reference: H. Huang, J. Yao, Z. Lin, X. Wang, R. He, W. Yao, N. Zhai, C. Chen, Angew. Chem. Int. Ed. 2011, 50, 9141-9144;
– reference: R. K. Li, P. Chen, Inorg. Chem. 2010, 49, 1561-1565.
– reference: Angew. Chem. 2011, 123, 9307-9310.
– reference: W. L. Zhang, W. D. Cheng, H. Zhang, L. Geng, C. S. Lin, Z. Z. He, J. Am. Chem. Soc. 2010, 132, 1508-1509.
– reference: L. Y. Li, G. B. Li, Y. X. Wang, F. H. Liao, J. H. Lin, Chem. Mater. 2005, 17, 4174-4180.
– reference: H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. L. Hou, X. Su, Q. Jing, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2014, 136, 1264-1267.
– reference: K. M. Ok, E. O. Chi, P. S. Halasyamani, Chem. Soc. Rev. 2006, 35, 710-717.
– reference: J. Zhao, R. K. Li, Inorg. Chem. 2012, 51, 4568-4571;
– reference: H. Y. Li, H. P. Wu, X. Su, H. W. Yu, S. L. Pan, Z. H. Yang, Y. Lu, J. Han, K. R. Poeppelmeier, J. Mater. Chem. C 2014, 2, 1704-1710;
– reference: L. X. Chang, L. Wang, X. Su, S. L. Pang, R. Hailili, H. W. Yu, Z. H. Yang, Inorg. Chem. 2014, 53, 3320-3325.
– reference: T. S. Ortner, K. Wurst, L. Perfler, M. Tribus, H. Huppertz, J. Solid State Chem. 2015, 221, 66-72;
– reference: L. Y. Li, X. L. Jin, G. B. Li, Y. X. Wang, F. H. Liao, G. Q. Yao,, J. H. Lin, Chem. Mater. 2003, 15, 2253-2260;
– reference: G.-H. Zou, L. Huang, N. Ye, C. S. Lin, W.-D. Cheng, H. Huang, J. Am. Chem. Soc. 2013, 135, 18560-18566.
– reference: H.-R. Tian, W.-H. Wang, Y.-E. Gao, T.-T. Deng, J.-Y. Wang, Y.-L. Feng, J.-W. Cheng, Inorg. Chem. 2013, 52, 6242-6244.
– reference: S.-C. Wang, N. Ye, J. Am. Chem. Soc. 2011, 133, 11458-11461;
– reference: C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616-621.
– reference: R. Mu, Q. Fu, L. Jin, L. Yu, G. Fang, D. Tan, X. Bao, Angew. Chem. Int. Ed. 2012, 51, 4856-4859;
– reference: C. T. Chen, Y. B. Wang, B. C. Wu, K. C. Wu, W. L. Zeng, L. H. Yu, Nature 1995, 373, 322-324;
– reference: H. Wu, S. L. Pan, K. R. Poeppelmeier, J. M. Rondinelli, J. Am. Chem. Soc. 2013, 135, 4215-4218;
– reference: D. Stetten Jr, Anal. Chem. 1951, 23, 1177-1179.
– reference: J.-L. Song, C.-L. Hu, X. Xu, F. Kong, J.-G. Mao, Inorg. Chem. 2013, 52, 8979-8986.
– reference: B.-C. Zhao, W. Sun, W.-J. Ren, Y.-X. Huang, Z. Li, Y. Pan, J.-X. Mi, J. Solid State Chem. 2013, 206, 91-98.
– reference: O. V. Yakubovich, I. V. Perevoznikova, O. V. Dimitrova, V. S. Urusov, Dokl. Phys. 2002, 47, 791-797.
– volume: 135
  start-page: 4215
  year: 2013
  end-page: 4218
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1314
  year: 2002
  end-page: 1318
  publication-title: Chem. Mater.
– volume: 16
  start-page: 203
  year: 1986
  end-page: 243
  publication-title: Annu. Rev. Mater. Sci.
– volume: 51
  start-page: 4568
  year: 2012
  end-page: 4571
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 2527
  year: 2011
  end-page: 2533
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 1561
  year: 2010
  end-page: 1565
  publication-title: Inorg. Chem.
– volume: 23
  start-page: 1177
  year: 1951
  end-page: 1179
  publication-title: Anal. Chem.
– volume: 22
  start-page: 2105
  year: 2012
  end-page: 2110
  publication-title: J. Mater. Chem.
– volume: 131
  start-page: 6865
  year: 2009
  end-page: 6873
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1704
  year: 2014
  end-page: 1710
  publication-title: J. Mater. Chem. C
– volume: 51 124
  start-page: 4856 4940
  year: 2012 2012
  end-page: 4859 4943
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 1264
  year: 2014
  end-page: 1267
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 4483
  year: 2013
  end-page: 4488
  publication-title: CrystEngComm
– volume: 133
  start-page: 11458
  year: 2011
  end-page: 11461
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 18560
  year: 2013
  end-page: 18566
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 9141 9307
  year: 2011 2011
  end-page: 9144 9310
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 1508
  year: 2010
  end-page: 1509
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 3320
  year: 2014
  end-page: 3325
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 4174
  year: 2005
  end-page: 4180
  publication-title: Chem. Mater.
– volume: 47
  start-page: 2573
  year: 2012
  end-page: 2578
  publication-title: Mater. Res. Bull.
– volume: 15
  start-page: 2253
  year: 2003
  end-page: 2260
  publication-title: Chem. Mater.
– volume: 373
  start-page: 322
  year: 1995
  end-page: 324
  publication-title: Nature
– volume: 6
  start-page: 616
  year: 1989
  end-page: 621
  publication-title: J. Opt. Soc. Am. B
– volume: 50
  start-page: 6809
  year: 2011
  end-page: 6813
  publication-title: Inorg. Chem.
– volume: 206
  start-page: 91
  year: 2013
  end-page: 98
  publication-title: J. Solid State Chem.
– volume: 52
  start-page: 6136
  year: 2013
  end-page: 6141
  publication-title: Inorg. Chem.
– volume: 132
  start-page: 12788
  year: 2010
  end-page: 12789
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8979
  year: 2013
  end-page: 8986
  publication-title: Inorg. Chem.
– volume: 221
  start-page: 66
  year: 2015
  end-page: 72
  publication-title: J. Solid State Chem.
– volume: 47
  start-page: 791
  year: 2002
  end-page: 797
  publication-title: Dokl. Phys.
– volume: 113
  start-page: 6459
  year: 2013
  end-page: 6535
  publication-title: Chem. Rev.
– volume: 35
  start-page: 710
  year: 2006
  end-page: 717
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 6242
  year: 2013
  end-page: 6244
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 3955
  year: 2010
  end-page: 3957
  publication-title: Chem. Commun.
– volume: 125
  start-page: 7764
  year: 2003
  end-page: 7765
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_26_2
  doi: 10.1021/ac60056a039
– ident: e_1_2_3_38_2
  doi: 10.1039/c3ce40327k
– ident: e_1_2_3_15_2
  doi: 10.1021/ja204179g
– ident: e_1_2_3_17_2
  doi: 10.1021/ic400515m
– ident: e_1_2_3_36_2
– ident: e_1_2_3_31_2
  doi: 10.1039/c002588g
– ident: e_1_2_3_43_2
  doi: 10.1021/cm050215d
– ident: e_1_2_3_42_2
  doi: 10.1039/C1JM14590H
– ident: e_1_2_3_1_2
  doi: 10.1039/b511119f
– ident: e_1_2_3_9_2
  doi: 10.1038/373322a0
– ident: e_1_2_3_14_2
– ident: e_1_2_3_7_2
  doi: 10.1002/anie.201103960
– ident: e_1_2_3_3_2
  doi: 10.1002/anie.201200413
– ident: e_1_2_3_41_2
  doi: 10.1039/c3tc32002b
– ident: e_1_2_3_44_2
  doi: 10.1021/ic402404a
– ident: e_1_2_3_39_2
  doi: 10.1021/ic400752y
– ident: e_1_2_3_8_2
– ident: e_1_2_3_33_2
– ident: e_1_2_3_25_2
  doi: 10.1021/ic901698b
– ident: e_1_2_3_32_2
  doi: 10.1016/j.jssc.2013.07.032
– ident: e_1_2_3_19_2
– ident: e_1_2_3_20_2
  doi: 10.1021/ic2008705
– ident: e_1_2_3_30_2
  doi: 10.1021/cm030004d
– ident: e_1_2_3_5_2
  doi: 10.1021/ja400500m
– ident: e_1_2_3_22_2
  doi: 10.1021/ja9015099
– ident: e_1_2_3_34_2
  doi: 10.1016/j.jssc.2014.09.016
– ident: e_1_2_3_40_2
– ident: e_1_2_3_13_2
  doi: 10.1021/ja106066k
– ident: e_1_2_3_23_2
– ident: e_1_2_3_3_3
  doi: 10.1002/ange.201200413
– ident: e_1_2_3_7_3
  doi: 10.1002/ange.201103960
– ident: e_1_2_3_10_2
  doi: 10.1146/annurev.ms.16.080186.001223
– ident: e_1_2_3_11_2
  doi: 10.1364/JOSAB.6.000616
– ident: e_1_2_3_6_2
  doi: 10.1021/ja4117389
– ident: e_1_2_3_28_2
  doi: 10.1021/ic401175r
– ident: e_1_2_3_2_2
  doi: 10.1021/cr3004696
– ident: e_1_2_3_16_2
  doi: 10.1021/ja408982d
– ident: e_1_2_3_24_2
  doi: 10.1021/ic3005135
– ident: e_1_2_3_21_2
  doi: 10.1021/ja035314b
– ident: e_1_2_3_12_2
  doi: 10.1021/ja9091209
– ident: e_1_2_3_37_2
  doi: 10.1021/cm010387k
– ident: e_1_2_3_35_2
  doi: 10.1134/1.1526424
– ident: e_1_2_3_18_2
  doi: 10.1016/j.materresbull.2012.04.145
– ident: e_1_2_3_27_2
  doi: 10.1021/ic102356d
– ident: e_1_2_3_4_2
– ident: e_1_2_3_29_2
SSID ssj0028806
Score 2.5824456
Snippet A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction...
A new SHG material, namely, Pb 2 (BO 3 )(NO 3 ), which contains parallel π‐conjugated nitrate and borate anions, was obtained through a facile hydrothermal...
A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction...
A new SHG material, namely, Pb sub(2)(BO sub(3))(NO sub(3)), which contains parallel pi -conjugated nitrate and borate anions, was obtained through a facile...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3679
SubjectTerms Anions
Borates
density functional calculations
Honeycomb
Hydrothermal reactions
hydrothermal synthesis
Interlayers
lone-pair cations
Nitrates
Phosphates
Potassium
second-harmonic generation
Title A Facile Synthetic Route to a New SHG Material with Two Types of Parallel π-Conjugated Planar Triangular Units
URI https://api.istex.fr/ark:/67375/WNG-GGSBZ6LN-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201412344
https://www.ncbi.nlm.nih.gov/pubmed/25630286
https://www.proquest.com/docview/1662639195
https://www.proquest.com/docview/1701100266
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQuIAbGL8rA3SQEFxlS2I7cS67am1BUCHaiYkby3YdJDYl0Kbi52qPsDfjHXgSzkmaQBE_EtzFynHi2Mf2Z-fzdxh7aJxIbeLnQZrbMBDYykGWmjAgbXZpk9A7W7MtJsn4SDw9lsc_nOJv9CG6DTfqGfV4TR3c2OX-d9FQOoFN1CyBY68gQVAibBEqetnpR8XonM3xIs4DikLfqjaG8f5m9o1Z6SJV8MdfQc5NBFtPQcOrzLSFb5gnJ3uryu65zz_pOv7P122zK2t8Cv3Goa6xC764zi4N2rBwN9j7PgyNw2fC9FOB6BHtgGhFHqoSDOCgCdPxCJ6bqvZtoI1emH0ogVa8SyhzeGEWFMDlFL6cfT07H5TF2xXt5c2BAiiZBcwwX_GG6LFAiHh5kx0ND2eDcbCO2xA4KRMRSBE5y1ViPJZdKZFnkUszXIoqaXgeSTvnaRw7FVrjFFc-UZkX1uQIRW2EnsJvsa2iLPwOg5yW74jZwthkIrI8y7n3oXKYnCvPVY8FbbtptxY1p9gap7qRY441VaTuKrLHHnf27xo5j99aPqrdoDMzixMiwaVSv5qM9Gg0PXidPJvotMcetH6isSnof4spfLla6ighqZ8syuQfbNJatA9hUo_dbpyse2NM2m2xwjtx7Sp_KbHuT54cdqk7_5Jpl13Ga0kcuyi5y7aqxcrfQ9BV2ft1x_oG-OEhaQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg97BceLOU5yAhOGU3ie3EOZZq2y50I0S7AnGxbNdBYlcJtKl4nPYn8M_4D_wSPE4TVMRDgqOTceLYY_ubyfgbQh4qw1Kd2HmQFjoMmBvlIEtVGCA3O9dJaI320RZ5Mj5mT1_xNpoQz8I0_BCdww1nhl-vcYKjQ3r_B2soHsHG2CzmFl_GzpNtTOvtraoXHYNU7NSzOWBEaYB56FvexjDe36y_sS9tYxd__BXo3MSwfhMaXiK6bX4Te3Kyt6r1nvn8E7Pjf33fZXJxDVGh3-jUFXLOllfJzqDNDHeNvO_DUBn3UJh-Kh2AdHKAkUUW6goUuHUTpuMRHKnaqzegrxdmHypAo3cJVQHP1QJzuJzC17NvZ18GVfl2he68OWAOJbWAmatXvsEIWUBQvLxOjocHs8E4WKduCAznCQs4i4ymIlHWtV0IVmSRSTNnjQquaBFxPadpHBsRamUEFTYRmWVaFQ6N6sgpC71BtsqqtDcJFGjBO9gWxipjkaZZQa0NhXHFubBU9EjQDpw0a15zTK9xKhtG5lhiR8quI3vkcSf_rmH0-K3kI68HnZhanGAcXMrly3wkR6Ppk9fJJJdpjzxoFUW6ocBfLqq01WopowTZfrIo43-QST1vn0NKPbLbaFn3xhjp22Lh7sReV_7SYtnPDw-60q1_qXSf7IxnRxM5Ocyf3SYX3HWOIXdRcods1YuVveswWK3v-Vn2HQiGJYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZbtQwFLWglYAX9mVYjYTgKW3iLc7jMO3MFEpUMVNR8WLZjlOprZIykxHLUz-BP-Mf-BJ8k0lgEIsEj06uE8c-to-d63MReqIti41wWRDnJgyYb-UgiXUYgDY7NyJ01tTeFqkY77MXB_zgh1P8jT5Et-EGPaMer6GDn2b55nfRUDiBDa5ZzI-9jJ1H60yEEnC99boTkCIenc35IkoDCEPfyjaGZHM1_8q0tA41_OFXnHOVwtZz0PAK0m3pG9eT441FZTbsp5-EHf_n866iy0uCivsNoq6hc664ji4O2rhwN9C7Ph5q65-JJx8LTx-9HQa_IoerEmvsR008GY_wK13V4Maw04un70sMS945LnO8p2cQweUEfzn7evZ5UBZHC9jMyzBEUNIzPPX5ikPwj8VAiec30f5wezoYB8vADYHlXLCAs8gaKoV2vuxSsjyJbJz4tajkmuYRNxmNCbEyNNpKKp2QiWNG556LmshDhd5Ca0VZuDsI57B-96QtJDphkaFJTp0LpfXJTDoqeyho203Zpao5BNc4UY0eM1FQkaqryB561tmfNnoev7V8WsOgM9OzY_CCi7l6k47UaDR5_lbspiruocctTpRvCvjhogtXLuYqEqD1k0QJ_4NNXKv2eZ7UQ7cbkHVvJCDeRqS_Q2qo_KXEqp_ubHepu_-S6RG6sLc1VLs76ct76JK_zMHfLhL30Vo1W7gHnoBV5mHdx74BjYEkPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Synthetic+Route+to+a+New+SHG+Material+with+Two+Types+of+Parallel+pi+-Conjugated+Planar+Triangular+Units&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Song%2C+Jun-Ling&rft.au=Hu%2C+Chun-Li&rft.au=Xu%2C+Xiang&rft.au=Kong%2C+Fang&rft.date=2015-03-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=12&rft.spage=3679&rft.epage=3682&rft_id=info:doi/10.1002%2Fanie.201412344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon