An improved Yolov5s based on transformer backbone network for detection and classification of bronchoalveolar lavage cells

Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differ...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 21; pp. 2985 - 3001
Main Authors Wu, Puzhen, Weng, Han, Luo, Wenting, Zhan, Yi, Xiong, Lixia, Zhang, Hongyan, Yan, Hai
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2023
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model. [Display omitted]
AbstractList Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model.
Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model. The two-stage process of our framework (a) Training of the model: Our optimized Yolov5s model, which focuses on the detection of cells in a given image, is trained with annotated bronchoalveolar lavage fluid cells. (b) Use of the model: By using our optimized Yolov5s model, the cells detected in BALF and their corresponding probabilities can be obtained. ga1
Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model. [Display omitted]
Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model.Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used as a complement to lung biopsy pathology. BALF cells can be confused with each other due to the similarity of their characteristics and differences in the way sections are handled or viewed. This poses a great challenge for cell detection. In this paper, An Improved Yolov5s Based on Transformer Backbone Network for Detection and Classification of BALF Cells is proposed, focusing on the detection of four types of cells in BALF: macrophages, lymphocytes, neutrophils and eosinophils. The network is mainly based on the Yolov5s network and uses Swin Transformer V2 technology in the backbone network to improve cell detection accuracy by obtaining global information; the C3Ghost module (a variant of the Convolutional Neural Network architecture) is used in the neck network to reduce the number of parameters during feature channel fusion and to improve feature expression performance. In addition, embedding intersection over union Loss (EIoU_Loss) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher accuracy of the algorithm. The experiments showed that our model could achieve mAP of 81.29% and Recall of 80.47%. Compared to the original Yolov5s, the mAP has improved by 3.3% and Recall by 3.67%. We also compared it with Yolov7 and the newly launched Yolov8s. mAP improved by 0.02% and 2.36% over Yolov7 and Yolov8s respectively, while the FPS of our model was higher than both of them, achieving a balance of efficiency and accuracy, further demonstrating the superiority of our model.
Author Zhang, Hongyan
Yan, Hai
Zhan, Yi
Wu, Puzhen
Luo, Wenting
Xiong, Lixia
Weng, Han
Author_xml – sequence: 1
  givenname: Puzhen
  orcidid: 0000-0003-1510-215X
  surname: Wu
  fullname: Wu, Puzhen
  organization: The Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Han
  surname: Weng
  fullname: Weng, Han
  organization: Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Wenting
  surname: Luo
  fullname: Luo, Wenting
  organization: Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
– sequence: 4
  givenname: Yi
  surname: Zhan
  fullname: Zhan, Yi
  organization: Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China
– sequence: 5
  givenname: Lixia
  orcidid: 0000-0003-3769-2496
  surname: Xiong
  fullname: Xiong, Lixia
  organization: Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
– sequence: 6
  givenname: Hongyan
  orcidid: 0000-0002-9283-9190
  surname: Zhang
  fullname: Zhang, Hongyan
  email: ndyfy00672@ncu.edu.cn
  organization: Department of Burn, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang 330066, China
– sequence: 7
  givenname: Hai
  orcidid: 0000-0003-0660-7228
  surname: Yan
  fullname: Yan, Hai
  email: yhai@bjut.edu.cn
  organization: The Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37249972$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuFDEQHKEgEkJ-gAPykcsO7dc8JCQURTwiReICB06Wx-7ZeOO1F3t2Ivh6vLsJSjgEX2y3q0rl7npZHYUYsKpeU6gp0ObdqjZ5WNUMGK9B1gDds-qEAdAF8BaOHpyPq7OcV1BWR5uew4vqmLdM9H3LTqrf54G49SbFGS35EX2cZSaDzuUWA5mSDnmMaY2pFM3NUDyQgNNtTDek1InFCc3kClQHS4zXObvRGb0vxZEMKQZzHbWfMXqdiNezXiIx6H1-VT0ftc94drefVt8_ffx28WVx9fXz5cX51cJIKacFcmi5ZVpQY0fb4Ng2omGyY5xZAVYIMzIJlgqph4GPui1_Y20PEqi0vRn4aXV50LVRr9QmubVOv1TUTu0LMS2VTpMzHpXhDdM9BeTMCEp13yAzw4C8GzQToyxaHw5am-2wRmswlBb5R6KPX4K7Vss4KwoMetH1ReHtnUKKP7eYJ7V2edcPHTBus-JU8k7QRsB_oawrmk0jRVegbx76-mvoftAF0B0AJsWcE47KuGk_pmLT-eJP7WKlVmoXK7WLlQKpSmYKlf1DvVd_kvT-QMIy2dlhUtk4DAatSyUxpfXuKfofGv_ntQ
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116453
crossref_primary_10_1007_s10278_024_01315_3
crossref_primary_10_1016_j_compbiomed_2024_109616
crossref_primary_10_1109_ACCESS_2024_3362636
Cites_doi 10.1186/s12890-017-0412-8
10.1007/978-3-319-46448-0_2
10.3791/55398-v
10.1183/09031936.00069509
10.1016/j.eswa.2020.113211
10.1016/j.eswa.2022.116873
10.1164/rccm.2106012
10.1109/CVPR42600.2020.00165
10.1378/chest.07-1948
10.1016/j.patcog.2022.108890
10.3389/fphar.2019.01499
10.1109/CVPR52688.2022.01170
10.1002/jcp.30553
10.1109/ICPR.2006.479
10.1183/09031936.93.06091276
10.1109/CVPR52729.2023.00721
10.1016/j.neucom.2022.07.042
10.1186/s40560-020-00469-w
10.1016/S0009-8981(01)00664-7
10.1371/journal.pone.0097346
10.1155/2020/6648574
10.1186/s13054-018-2300-x
10.1016/j.ijmedinf.2021.104638
10.1109/TPAMI.2016.2577031
10.1007/978-3-030-01264-9_8
10.1186/s13148-021-01163-w
10.1002/cyto.b.20020
10.4187/respcare.03032
10.1109/ICME.2017.8019550
10.3389/fmicb.2020.599756
10.1183/09031936.04.00101303
10.3390/e22060657
10.1038/s43856-022-00107-6
10.1186/s40560-021-00536-w
10.1128/JCM.01521-17
10.1109/ICMEW.2017.8026312
10.21037/jtd-20-651
10.1378/chest.10-1521
10.3389/fonc.2021.792024
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright 2023 The Author(s)
2023 The Author(s).
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: 2023 The Author(s).
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2023.05.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 3001
ExternalDocumentID oai_doaj_org_article_c362a910e32c411a96e2cbbe38ba24f5
PMC10209489
37249972
10_1016_j_csbj_2023_05_008
S2001037023001897
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c555t-e3073d2a41cdfd6ef7646258232d40d44cf250d145abb3fa772427905015d9cb3
IEDL.DBID DOA
ISSN 2001-0370
IngestDate Wed Aug 27 01:31:37 EDT 2025
Thu Aug 21 18:37:38 EDT 2025
Fri Jul 11 06:35:42 EDT 2025
Thu Jul 10 17:49:21 EDT 2025
Mon Jul 21 05:43:19 EDT 2025
Tue Jul 01 03:43:02 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Sat Dec 21 16:00:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Bronchoalveolar lavage cells
Transformer
Convolutional neural network
Cell detection
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-e3073d2a41cdfd6ef7646258232d40d44cf250d145abb3fa772427905015d9cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1510-215X
0000-0003-0660-7228
0000-0002-9283-9190
0000-0003-3769-2496
OpenAccessLink https://doaj.org/article/c362a910e32c411a96e2cbbe38ba24f5
PMID 37249972
PQID 2820966548
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_c362a910e32c411a96e2cbbe38ba24f5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10209489
proquest_miscellaneous_3153841640
proquest_miscellaneous_2820966548
pubmed_primary_37249972
crossref_citationtrail_10_1016_j_csbj_2023_05_008
crossref_primary_10_1016_j_csbj_2023_05_008
elsevier_sciencedirect_doi_10_1016_j_csbj_2023_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational and structural biotechnology journal
PublicationTitleAlternate Comput Struct Biotechnol J
PublicationYear 2023
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Smith, Kang, Kirby (bib13) 2018; 56
Ning, C., Zhou, H., Song, Y., & Tang, J. (2017). Inception single shot MultiBox detector for object detection. Paper presented at the 549–554.
Trisolini, Cancellieri, Tinelli, Paioli, Scudeller, Casadei (bib16) 2011; 139
Kinder, Brown, Schwarz, Ix, Kervitsky, King (bib52) 2008; 133
Delgado-Ortet, Molina, Alférez, Rodellar, Merino (bib19) 2020; 22
Costabel, Guzman, Bonella, Oshimo (bib9) 2007; Vol. 28
Kalidhindi, Ambhore, Bhallamudi, Loganathan, Sathish (bib49) 2020; 10
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,. & et al. (2020). An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & et al. (2016;2015;). SSD: Single shot MultiBox detector. In B. Leibe, J. Matas, N. Sebe & M. Welling (Eds.), Computer vision - eccv 2016, pt i (pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978–3-319–46448-0_2.
Couetil, Thompson (bib1) 2020; 36
Kyo, Hosokawa, Ohshimo, Kida, Tanabe, Shime (bib10) 2020; 8
Hirasawa, Nakada, Shimazui, Abe, Isaka, Sakayori (bib53) 2021; 9
Choi, Hong, Hong, Kim, Huh, Sung (bib55) 2014; 9
Banik, Saha, Kim (bib17) 2020; 149
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,. & et al. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Drent, van Velzen-Blad, Diamant, Wagenaar, Hoogsteden, van den Bosch (bib7) 1993; 6
van Hoecke, Job, Saelens, Roose (bib6) 2017; 2017
Peng, Zhao, Gu, Wang, Wu, Cheng (bib22) 2022; Volume 131
Silver, Clements (bib8) 2003; 1
.
Zhang, Ren, Zhang, Jia, Wang, Tan (bib35) 2022; 506
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., & IEEE. (2016). You only look once: Unified, real-time object detection. Paper presented at the, 2016- 779–788.
Ren, He, Girshick, Sun (bib42) 2017; 39
Wang, C.Y., Bochkovskiy, A., & Liao, H.Y.M. (2022). Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696.
Zheng, Wang, Ren, Liu, Ye, Hu (bib34) 2021
Peng, Gu, Ye, Cheng, Wang (bib24) 2022; Volume 198
Takei, Arita, Kumagai, Ito, Noyama, Tokioka (bib54) 2017; 17
Zhang, Chen, Chen, Zhou, Sheng, Xu (bib14) 2014; 59
Hodge, Hodge, Holmes, Reynolds (bib12) 2004; 61B
Tao, Cai, Fu, Song, Xie, Wang (bib21) 2022; 157
Liu, Lin, Cao, Hu, Wei, Zhang (bib31) 2021
Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R., & IEEE. (2017). A closer look: Small object detection in faster R-CNN. Paper presented at the 421–426.
Liu, Yan, Tong, Liu, Zhang (bib5) 2022; 237
Li, Yao, Pan, Mei (bib41) 2022
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., , & et al. (2017). Attention is all you need.
Tayebi, Mu, Dehkharghanian, Ross, Sur, Foley (bib18) 2022; 2
Neubeck, A., & Van Gool, L. (2006, August). Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 3, pp. 850–855). IEEE.
Zhou, Wu, Xu, Zhang, Fan, Huang (bib11) 2020
Fang, Mei, Fan, Zhu, Yang, Zhang (bib45) 2020; 11
Ma, Cui, Lin (bib48) 2001; 313
Davidson, Ha, Schwarz, Chan (bib50) 2020; 12
Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., & et al. (2022). Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12009–12019).
Bouros, Wells, Nicholson, Colby, Polychronopoulos, Pantelidis (bib51) 2002; 165
Midulla, Nenna (bib47) 2010; Vol. 38
Meyer, Raghu (bib2) 2011; 38
Yu, Liu, Zhang, Shen, Li, Lu (bib15) 2019; 23
Bibi, Sikandar, Ud Din, Almogren, Ali (bib20) 2020; 2020
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1580–1589).
CVAT.ai Corporation. (2023). Computer Vision Annotation Tool (CVAT) (v2.4.3). Zenodo.
Welker, Jorres, Costabel, Magnussen (bib3) 2004; 24
Li, Ye, Yang, Yang, Jin, Zhu (bib46) 2021; 13
Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). Yolox: Exceeding Yolo series in 2021. arXiv preprint arXiv:2107.08430.
Midulla, Nenna (bib4) 2010
Ma, N., Zhang, X., Zheng, H., & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Ferrari, M. Hebert, C. Sminchisescu & Y. Weiss (Eds.), Computer vision - eccv 2018, pt xiv (pp. 122–138). Springer International Publishing.
Lam, Zhang, Zhang, Li, Sun, Liu (bib23) 2022; 11
Welker (10.1016/j.csbj.2023.05.008_bib3) 2004; 24
Smith (10.1016/j.csbj.2023.05.008_bib13) 2018; 56
Liu (10.1016/j.csbj.2023.05.008_bib5) 2022; 237
Midulla (10.1016/j.csbj.2023.05.008_bib47) 2010; Vol. 38
Bouros (10.1016/j.csbj.2023.05.008_bib51) 2002; 165
Meyer (10.1016/j.csbj.2023.05.008_bib2) 2011; 38
Tao (10.1016/j.csbj.2023.05.008_bib21) 2022; 157
10.1016/j.csbj.2023.05.008_bib44
Couetil (10.1016/j.csbj.2023.05.008_bib1) 2020; 36
10.1016/j.csbj.2023.05.008_bib40
10.1016/j.csbj.2023.05.008_bib43
Zhang (10.1016/j.csbj.2023.05.008_bib14) 2014; 59
Yu (10.1016/j.csbj.2023.05.008_bib15) 2019; 23
Davidson (10.1016/j.csbj.2023.05.008_bib50) 2020; 12
Tayebi (10.1016/j.csbj.2023.05.008_bib18) 2022; 2
Zheng (10.1016/j.csbj.2023.05.008_bib34) 2021
Kalidhindi (10.1016/j.csbj.2023.05.008_bib49) 2020; 10
Li (10.1016/j.csbj.2023.05.008_bib41) 2022
Midulla (10.1016/j.csbj.2023.05.008_bib4) 2010
Liu (10.1016/j.csbj.2023.05.008_bib31) 2021
Fang (10.1016/j.csbj.2023.05.008_bib45) 2020; 11
Drent (10.1016/j.csbj.2023.05.008_bib7) 1993; 6
Banik (10.1016/j.csbj.2023.05.008_bib17) 2020; 149
10.1016/j.csbj.2023.05.008_bib33
Trisolini (10.1016/j.csbj.2023.05.008_bib16) 2011; 139
10.1016/j.csbj.2023.05.008_bib36
Delgado-Ortet (10.1016/j.csbj.2023.05.008_bib19) 2020; 22
10.1016/j.csbj.2023.05.008_bib30
10.1016/j.csbj.2023.05.008_bib32
Peng (10.1016/j.csbj.2023.05.008_bib22) 2022; Volume 131
Bibi (10.1016/j.csbj.2023.05.008_bib20) 2020; 2020
Hirasawa (10.1016/j.csbj.2023.05.008_bib53) 2021; 9
Zhang (10.1016/j.csbj.2023.05.008_bib35) 2022; 506
10.1016/j.csbj.2023.05.008_bib38
10.1016/j.csbj.2023.05.008_bib37
Peng (10.1016/j.csbj.2023.05.008_bib24) 2022; Volume 198
10.1016/j.csbj.2023.05.008_bib39
Ren (10.1016/j.csbj.2023.05.008_bib42) 2017; 39
Kinder (10.1016/j.csbj.2023.05.008_bib52) 2008; 133
Choi (10.1016/j.csbj.2023.05.008_bib55) 2014; 9
Li (10.1016/j.csbj.2023.05.008_bib46) 2021; 13
Zhou (10.1016/j.csbj.2023.05.008_bib11) 2020
Takei (10.1016/j.csbj.2023.05.008_bib54) 2017; 17
10.1016/j.csbj.2023.05.008_bib25
Costabel (10.1016/j.csbj.2023.05.008_bib9) 2007; Vol. 28
van Hoecke (10.1016/j.csbj.2023.05.008_bib6) 2017; 2017
Kyo (10.1016/j.csbj.2023.05.008_bib10) 2020; 8
10.1016/j.csbj.2023.05.008_bib27
10.1016/j.csbj.2023.05.008_bib26
10.1016/j.csbj.2023.05.008_bib29
10.1016/j.csbj.2023.05.008_bib28
Lam (10.1016/j.csbj.2023.05.008_bib23) 2022; 11
Ma (10.1016/j.csbj.2023.05.008_bib48) 2001; 313
Hodge (10.1016/j.csbj.2023.05.008_bib12) 2004; 61B
Silver (10.1016/j.csbj.2023.05.008_bib8) 2003; 1
References_xml – volume: Vol. 38
  start-page: 30
  year: 2010
  end-page: 41
  ident: bib47
  article-title: Bronchoalveolar lavage: indications and applications
  publication-title: Paediatric Bronchoscopy
– start-page: 10012
  year: 2021
  end-page: 10022
  ident: bib31
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
  publication-title: Proc IEEE/CVF Int Conf Comput Vis
– volume: 11
  year: 2020
  ident: bib45
  article-title: Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients
  publication-title: Front Microbiol
– volume: 133
  start-page: 226
  year: 2008
  end-page: 232
  ident: bib52
  article-title: Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis
  publication-title: Chest
– start-page: 30
  year: 2010
  end-page: 41
  ident: bib4
  article-title: Bronchoalveolar lavage: indications and applications
  publication-title: Paediatric Bronchoscopy
– volume: 13
  year: 2021
  ident: bib46
  article-title: Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids
  publication-title: Clin Epigenet
– volume: 59
  start-page: 1433
  year: 2014
  end-page: 1439
  ident: bib14
  article-title: Effects of bronchoalveolar lavage on refractory Mycoplasma pneumoniae pneumonia
  publication-title: Respir Care
– year: 2022
  ident: bib41
  article-title: Contextual transformer networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 10
  year: 2020
  ident: bib49
  article-title: Role of estrogen receptors alpha and beta in a murine model of asthma: Exacerbated airway hyperresponsiveness and remodeling in ER beta knockout mice
  publication-title: Front Pharmacol
– volume: 165
  start-page: 1581
  year: 2002
  end-page: 1586
  ident: bib51
  article-title: Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome
  publication-title: Am J Respir Crit Care Med
– reference: Wang, C.Y., Bochkovskiy, A., & Liao, H.Y.M. (2022). Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696.
– volume: 506
  start-page: 146
  year: 2022
  end-page: 157
  ident: bib35
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
– volume: 22
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib19
  article-title: A deep learning approach for segmentation of red blood cell images and malaria detection
  publication-title: Entropy
– volume: 9
  year: 2021
  ident: bib53
  article-title: Prognostic value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure: a retrospective cohort study
  publication-title: J Intensive Care
– volume: 24
  start-page: 1000
  year: 2004
  end-page: 1006
  ident: bib3
  article-title: Predictive value of BAL cell differentials in the diagnosis of interstitial lung diseases
  publication-title: Eur Respir J
– volume: 61B
  start-page: 27
  year: 2004
  end-page: 34
  ident: bib12
  article-title: Flow cytometric characterization of cell populations in bronchoalveolar lavage and bronchial brushings from patients with chronic obstructive pulmonary disease
  publication-title: Cytom Part B, Clin Cytom
– volume: 2020
  year: 2020
  ident: bib20
  article-title: IoMT-based automated detection and classification of leukemia using deep learning
  publication-title: J Healthc Eng
– reference: Ning, C., Zhou, H., Song, Y., & Tang, J. (2017). Inception single shot MultiBox detector for object detection. Paper presented at the 549–554.
– volume: Volume 131
  year: 2022
  ident: bib22
  article-title: H-ProMed: ultrasound image segmentation based on the evolutionary neural network and an improved principal curve
  publication-title: Pattern Recognit
– reference: Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). Yolox: Exceeding Yolo series in 2021. arXiv preprint arXiv:2107.08430.
– reference: Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R., & IEEE. (2017). A closer look: Small object detection in faster R-CNN. Paper presented at the 421–426.
– reference: Ma, N., Zhang, X., Zheng, H., & Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Ferrari, M. Hebert, C. Sminchisescu & Y. Weiss (Eds.), Computer vision - eccv 2018, pt xiv (pp. 122–138). Springer International Publishing.
– volume: 2
  year: 2022
  ident: bib18
  article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types
  publication-title: Commun Med
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,. & et al. (2017). Attention is all you need. Advances in neural information processing systems, 30.
– volume: Volume 198
  year: 2022
  ident: bib24
  article-title: A-LugSeg: automatic and explainability-guided multi-site lung detection in chest X-ray images
  publication-title: Expert Syst Appl
– volume: 313
  start-page: 133
  year: 2001
  end-page: 138
  ident: bib48
  article-title: Improved immnunophenotyping of lymphocytes in bronchoalveolar lavage fluid (BALF) by flow cytometry
  publication-title: Clin Chim Acta
– year: 2021
  ident: bib34
  article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation
  publication-title: IEEE Trans Cybern
– volume: 11
  year: 2022
  ident: bib23
  article-title: Multi-organ omics-based prediction for adaptive radiation therapy eligibility in nasopharyngeal carcinoma patients undergoing concurrent chemoradiotherapy
  publication-title: Front Oncol
– volume: 38
  start-page: 761
  year: 2011
  end-page: 769
  ident: bib2
  article-title: Bronchoalveolar lavage for the evaluation of interstitial lung disease: Is it clinically useful?
  publication-title: Eur Respir J
– volume: 2017
  year: 2017
  ident: bib6
  article-title: Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration
  publication-title: J Vis Exp
– volume: 9
  year: 2014
  ident: bib55
  article-title: Usefulness of cellular analysis of bronchoalveolar lavage fluid for predicting the etiology of pneumonia in critically ill patients
  publication-title: PLoS One
– volume: 8
  year: 2020
  ident: bib10
  article-title: Prognosis of pathogen-proven acute respiratory distress syndrome diagnosed from a protocol that includes bronchoalveolar lavage: A retrospective observational study
  publication-title: J Intensive Care
– volume: 56
  year: 2018
  ident: bib13
  article-title: Automated interpretation of blood culture gram stains by use of a deep convolutional neural network
  publication-title: J Clin Microbiol
– volume: 17
  year: 2017
  ident: bib54
  article-title: Impact of lymphocyte differential count>15% in BALF on the mortality of patients with acute exacerbation of chronic fibrosing idiopathic interstitial pneumonia
  publication-title: BMC Pulm Med
– volume: 12
  start-page: 4991
  year: 2020
  end-page: 5019
  ident: bib50
  article-title: Bronchoalveolar lavage as a diagnostic procedure: A review of known cellular and molecular findings in various lung diseases
  publication-title: J Thorac Dis
– volume: 6
  start-page: 1276
  year: 1993
  end-page: 1281
  ident: bib7
  article-title: Bronchoalveolar lavage in extrinsic allergic alveolitis: effect of time elapsed since antigen exposure
  publication-title: Eur Respir J
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., & IEEE. (2016). You only look once: Unified, real-time object detection. Paper presented at the, 2016- 779–788.
– volume: 23
  start-page: 23
  year: 2019
  ident: bib15
  article-title: Bronchoalveolar lavage fluid dilution in ICU patients: what we should know and what we should do
  publication-title: Crit Care
– volume: 157
  year: 2022
  ident: bib21
  article-title: Automated interpretation and analysis of bronchoalveolar lavage fluid
  publication-title: Int J Med Inform
– reference: Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1580–1589).
– volume: Vol. 28
  start-page: 514
  year: 2007
  end-page: 524
  ident: bib9
  article-title: Bronchoalveolar lavage in other interstitial lung diseases
  publication-title: Seminars in Respiratory and Critical Care Medicine
– reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,. & et al. (2020). An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
– reference: CVAT.ai Corporation. (2023). Computer Vision Annotation Tool (CVAT) (v2.4.3). Zenodo.
– volume: 149
  year: 2020
  ident: bib17
  article-title: An automatic nucleus segmentation and CNN model based classification method of white blood cell
  publication-title: Expert Syst Appl
– reference: Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., & et al. (2022). Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12009–12019).
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., , & et al. (2017). Attention is all you need.
– year: 2020
  ident: bib11
  article-title: Chinese expert consensus on cytomorphological testing of bronchoalveolar lavage fluid (2020)
  publication-title: J Mod Lab Med
– reference: .
– volume: 36
  start-page: 87
  year: 2020
  end-page: 103
  ident: bib1
  article-title: Airway diagnostics: bronchoalveolar lavage, tracheal wash, and pleural fluid. The Veterinary clinics of North America
  publication-title: Equine Pract
– reference: Neubeck, A., & Van Gool, L. (2006, August). Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 3, pp. 850–855). IEEE.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib42
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 1
  start-page: 3
  year: 2003
  end-page: 11
  ident: bib8
  article-title: Interstitial lung disease in systemic sclerosis: optimizing evaluation and management
  publication-title: Scleroderma Care Res
– volume: 139
  start-page: 395
  year: 2011
  end-page: 401
  ident: bib16
  article-title: Rapid on-site evaluation of transbronchial aspirates in the diagnosis of hilar and mediastinal adenopathy: a randomized trial
  publication-title: Chest
– reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., & et al. (2016;2015;). SSD: Single shot MultiBox detector. In B. Leibe, J. Matas, N. Sebe & M. Welling (Eds.), Computer vision - eccv 2016, pt i (pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978–3-319–46448-0_2.
– volume: 237
  start-page: 161
  year: 2022
  end-page: 168
  ident: bib5
  article-title: The role of exosomes from BALF in lung disease
  publication-title: J Cell Physiol
– volume: 36
  start-page: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib1
  article-title: Airway diagnostics: bronchoalveolar lavage, tracheal wash, and pleural fluid. The Veterinary clinics of North America
  publication-title: Equine Pract
– volume: Vol. 38
  start-page: 30
  year: 2010
  ident: 10.1016/j.csbj.2023.05.008_bib47
  article-title: Bronchoalveolar lavage: indications and applications
– volume: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.csbj.2023.05.008_bib54
  article-title: Impact of lymphocyte differential count>15% in BALF on the mortality of patients with acute exacerbation of chronic fibrosing idiopathic interstitial pneumonia
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-017-0412-8
– ident: 10.1016/j.csbj.2023.05.008_bib29
– ident: 10.1016/j.csbj.2023.05.008_bib44
  doi: 10.1007/978-3-319-46448-0_2
– volume: 2017
  issue: 123
  year: 2017
  ident: 10.1016/j.csbj.2023.05.008_bib6
  article-title: Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration
  publication-title: J Vis Exp
  doi: 10.3791/55398-v
– start-page: 30
  year: 2010
  ident: 10.1016/j.csbj.2023.05.008_bib4
  article-title: Bronchoalveolar lavage: indications and applications
– volume: 38
  start-page: 761
  issue: 4
  year: 2011
  ident: 10.1016/j.csbj.2023.05.008_bib2
  article-title: Bronchoalveolar lavage for the evaluation of interstitial lung disease: Is it clinically useful?
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00069509
– volume: 149
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib17
  article-title: An automatic nucleus segmentation and CNN model based classification method of white blood cell
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113211
– volume: Volume 198
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib24
  article-title: A-LugSeg: automatic and explainability-guided multi-site lung detection in chest X-ray images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116873
– volume: 1
  start-page: 3
  year: 2003
  ident: 10.1016/j.csbj.2023.05.008_bib8
  article-title: Interstitial lung disease in systemic sclerosis: optimizing evaluation and management
  publication-title: Scleroderma Care Res
– volume: 165
  start-page: 1581
  issue: 12
  year: 2002
  ident: 10.1016/j.csbj.2023.05.008_bib51
  article-title: Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.2106012
– volume: Vol. 28
  start-page: 514
  year: 2007
  ident: 10.1016/j.csbj.2023.05.008_bib9
  article-title: Bronchoalveolar lavage in other interstitial lung diseases
– ident: 10.1016/j.csbj.2023.05.008_bib33
  doi: 10.1109/CVPR42600.2020.00165
– volume: 133
  start-page: 226
  issue: 1
  year: 2008
  ident: 10.1016/j.csbj.2023.05.008_bib52
  article-title: Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis
  publication-title: Chest
  doi: 10.1378/chest.07-1948
– volume: Volume 131
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib22
  article-title: H-ProMed: ultrasound image segmentation based on the evolutionary neural network and an improved principal curve
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108890
– volume: 10
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib49
  article-title: Role of estrogen receptors alpha and beta in a murine model of asthma: Exacerbated airway hyperresponsiveness and remodeling in ER beta knockout mice
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.01499
– ident: 10.1016/j.csbj.2023.05.008_bib32
  doi: 10.1109/CVPR52688.2022.01170
– volume: 237
  start-page: 161
  issue: 1
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib5
  article-title: The role of exosomes from BALF in lung disease
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.30553
– ident: 10.1016/j.csbj.2023.05.008_bib38
  doi: 10.1109/ICPR.2006.479
– volume: 6
  start-page: 1276
  issue: 9
  year: 1993
  ident: 10.1016/j.csbj.2023.05.008_bib7
  article-title: Bronchoalveolar lavage in extrinsic allergic alveolitis: effect of time elapsed since antigen exposure
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.06091276
– ident: 10.1016/j.csbj.2023.05.008_bib37
  doi: 10.1109/CVPR52729.2023.00721
– ident: 10.1016/j.csbj.2023.05.008_bib28
– start-page: 10012
  year: 2021
  ident: 10.1016/j.csbj.2023.05.008_bib31
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
  publication-title: Proc IEEE/CVF Int Conf Comput Vis
– volume: 506
  start-page: 146
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib35
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– volume: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib10
  article-title: Prognosis of pathogen-proven acute respiratory distress syndrome diagnosed from a protocol that includes bronchoalveolar lavage: A retrospective observational study
  publication-title: J Intensive Care
  doi: 10.1186/s40560-020-00469-w
– volume: 313
  start-page: 133
  issue: 1
  year: 2001
  ident: 10.1016/j.csbj.2023.05.008_bib48
  article-title: Improved immnunophenotyping of lymphocytes in bronchoalveolar lavage fluid (BALF) by flow cytometry
  publication-title: Clin Chim Acta
  doi: 10.1016/S0009-8981(01)00664-7
– volume: 9
  issue: 5
  year: 2014
  ident: 10.1016/j.csbj.2023.05.008_bib55
  article-title: Usefulness of cellular analysis of bronchoalveolar lavage fluid for predicting the etiology of pneumonia in critically ill patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097346
– volume: 2020
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib20
  article-title: IoMT-based automated detection and classification of leukemia using deep learning
  publication-title: J Healthc Eng
  doi: 10.1155/2020/6648574
– ident: 10.1016/j.csbj.2023.05.008_bib30
– volume: 23
  start-page: 23
  issue: 1
  year: 2019
  ident: 10.1016/j.csbj.2023.05.008_bib15
  article-title: Bronchoalveolar lavage fluid dilution in ICU patients: what we should know and what we should do
  publication-title: Crit Care
  doi: 10.1186/s13054-018-2300-x
– volume: 157
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib21
  article-title: Automated interpretation and analysis of bronchoalveolar lavage fluid
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2021.104638
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.csbj.2023.05.008_bib42
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 10.1016/j.csbj.2023.05.008_bib40
  doi: 10.1007/978-3-030-01264-9_8
– volume: 13
  issue: 1
  year: 2021
  ident: 10.1016/j.csbj.2023.05.008_bib46
  article-title: Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids
  publication-title: Clin Epigenet
  doi: 10.1186/s13148-021-01163-w
– ident: 10.1016/j.csbj.2023.05.008_bib27
– volume: 61B
  start-page: 27
  issue: 1
  year: 2004
  ident: 10.1016/j.csbj.2023.05.008_bib12
  article-title: Flow cytometric characterization of cell populations in bronchoalveolar lavage and bronchial brushings from patients with chronic obstructive pulmonary disease
  publication-title: Cytom Part B, Clin Cytom
  doi: 10.1002/cyto.b.20020
– volume: 59
  start-page: 1433
  issue: 9
  year: 2014
  ident: 10.1016/j.csbj.2023.05.008_bib14
  article-title: Effects of bronchoalveolar lavage on refractory Mycoplasma pneumoniae pneumonia
  publication-title: Respir Care
  doi: 10.4187/respcare.03032
– ident: 10.1016/j.csbj.2023.05.008_bib43
  doi: 10.1109/ICME.2017.8019550
– volume: 11
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib45
  article-title: Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.599756
– volume: 24
  start-page: 1000
  issue: 6
  year: 2004
  ident: 10.1016/j.csbj.2023.05.008_bib3
  article-title: Predictive value of BAL cell differentials in the diagnosis of interstitial lung diseases
  publication-title: Eur Respir J
  doi: 10.1183/09031936.04.00101303
– volume: 22
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib19
  article-title: A deep learning approach for segmentation of red blood cell images and malaria detection
  publication-title: Entropy
  doi: 10.3390/e22060657
– volume: 2
  issue: 1
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib18
  article-title: Automated bone marrow cytology using deep learning to generate a histogram of cell types
  publication-title: Commun Med
  doi: 10.1038/s43856-022-00107-6
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.csbj.2023.05.008_bib53
  article-title: Prognostic value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure: a retrospective cohort study
  publication-title: J Intensive Care
  doi: 10.1186/s40560-021-00536-w
– volume: 56
  issue: 3
  year: 2018
  ident: 10.1016/j.csbj.2023.05.008_bib13
  article-title: Automated interpretation of blood culture gram stains by use of a deep convolutional neural network
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01521-17
– ident: 10.1016/j.csbj.2023.05.008_bib39
  doi: 10.1109/ICMEW.2017.8026312
– volume: 12
  start-page: 4991
  issue: 9
  year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib50
  article-title: Bronchoalveolar lavage as a diagnostic procedure: A review of known cellular and molecular findings in various lung diseases
  publication-title: J Thorac Dis
  doi: 10.21037/jtd-20-651
– ident: 10.1016/j.csbj.2023.05.008_bib26
– year: 2020
  ident: 10.1016/j.csbj.2023.05.008_bib11
  article-title: Chinese expert consensus on cytomorphological testing of bronchoalveolar lavage fluid (2020)
  publication-title: J Mod Lab Med
– year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib41
  article-title: Contextual transformer networks for visual recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 139
  start-page: 395
  issue: 2
  year: 2011
  ident: 10.1016/j.csbj.2023.05.008_bib16
  article-title: Rapid on-site evaluation of transbronchial aspirates in the diagnosis of hilar and mediastinal adenopathy: a randomized trial
  publication-title: Chest
  doi: 10.1378/chest.10-1521
– year: 2021
  ident: 10.1016/j.csbj.2023.05.008_bib34
  article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation
  publication-title: IEEE Trans Cybern
– ident: 10.1016/j.csbj.2023.05.008_bib36
– volume: 11
  year: 2022
  ident: 10.1016/j.csbj.2023.05.008_bib23
  article-title: Multi-organ omics-based prediction for adaptive radiation therapy eligibility in nasopharyngeal carcinoma patients undergoing concurrent chemoradiotherapy
  publication-title: Front Oncol
  doi: 10.3389/fonc.2021.792024
– ident: 10.1016/j.csbj.2023.05.008_bib25
  doi: 10.1109/CVPR.2016.91
SSID ssj0000816930
Score 2.3165956
Snippet Biological tissue information of the lung, such as cells and proteins, can be obtained from bronchoalveolar lavage fluid (BALF), through which it can be used...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2985
SubjectTerms algorithms
biopsy
biotechnology
Bronchoalveolar lavage cells
Cell detection
Convolutional neural network
Deep learning
eosinophils
lungs
macrophages
neck
neural networks
neutrophils
Transformer
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoED4k14yUjcUKpNbGedA0IFUVVI5cRK5WT5MYFtVw4k6Yr21zOTx9KF0hNXx9mN5-H5Jhl_w9iruSjxSiHSEqNHKktXptrnOrUqg4CIQlWKDgoffSoOF_LjsTreYVO7o1GA7ZWpHfWTWjSrvZ8_zt-iw7_5XavlW3eyR43AexZOOvt7AyPTnBz1aIT7_c6siXpkNp6dufrWrfjU0_hvham_Yeif1ZSXwtPBHXZ7xJV8fzCEu2wH4j126xLb4H12sR_5sn-HAIF_wU1vrVpOUSzwOvJuQrDQ4KA_dXUEHocicY7jPEDXl21FbmPgnlA3lRn1muV1xV1TRxSnXa2BZMpXdo17FacvA-0Dtjj48Pn9YTq2Xki9UqpLgVw_5FZmPlShgGpeSMyUNOKvIGdBSl8hdgqZVNY5UVnE6DInri9EF6H0TjxkuxGf8zHDp1MA4LTV9NFQgBYIGUIOiEuEtxISlk0CN37kJaf2GCszFaCdGFKSISWZmTKopIS93tzzfWDluHb2O9LjZiYxavcDdfPVjA5qPEZyi9gJRO5lltmygNw7B0I7m8tKJUxNVmBGcDKADvyp5bV__nIyGYOeS0K3Eeqz1mCyi_ljgSnjv-cICkiImeUsYY8GM9ssQ6DM6dhzwvSWAW6tc_tKXH7rGcQRVWJar8sn_0MyT9lNWu_wXuoZ2-2aM3iOSK1zL3r3-wXH1D-B
  priority: 102
  providerName: Scholars Portal
Title An improved Yolov5s based on transformer backbone network for detection and classification of bronchoalveolar lavage cells
URI https://dx.doi.org/10.1016/j.csbj.2023.05.008
https://www.ncbi.nlm.nih.gov/pubmed/37249972
https://www.proquest.com/docview/2820966548
https://www.proquest.com/docview/3153841640
https://pubmed.ncbi.nlm.nih.gov/PMC10209489
https://doaj.org/article/c362a910e32c411a96e2cbbe38ba24f5
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucABlXd4VEbihgKb2E6d44KoKqpyQFSUk-XHRGy7ctBuuof-emacZJUFUS5ccnC8G3tm7PkmGX_D2OtDUeOdSuQ1eo9c1q7OtS91blUBARGFahQdFD79XB2fyU_n6nxS6otywnp64F5w7zzusBZ9GojSy6KwdQWldw6EdraUTWIvRZ83CabSHqyJZGQ2nJLpE7r82l28pWrhiaqT6klOPFEi7N9xSH8Czt_zJieO6Gif3RsQJJ_3I7_PbkF8wO5OeAUfsut55Iv0tgAC_47b20atOfmrwNvIuxGrwgob_aVrI_DYp4NzbOcBupSgFbmNgXvC15RQlHTI24a7VRtx17TLDVBgzJd2g7sSp28A60fs7Ojj1w_H-VBkIfdKqS4HWuShtLLwoQkVNIeVxJhII9IKchak9A2ipFBIZZ0TjUU0Lkti9UIcEWrvxGO2F3GcTxmOTgGA01bT50EBWiA4CCUgAhHeSshYMQrc-IGBnAphLM2YanZhSEmGlGRmyqCSMvZm-5ufPf_Gjb3fkx63PYk7OzWgRZnBosy_LCpjarQCM8CQHl7gXy1ufPir0WQMrlESuo3QXq0NhrUYKVYYHP69jyDXg-hYzjL2pDez7TQEypwOOGdM7xjgzjx378TFj8QVjvgRA3hdP_sfknnO7tB8-zdQL9het7qCl4jJOnfAbs9Pvnw7OUjLEK-nUv8Cyjo5wQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Yolov5s+based+on+transformer+backbone+network+for+detection+and+classification+of+bronchoalveolar+lavage+cells&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Puzhen+Wu&rft.au=Han+Weng&rft.au=Wenting+Luo&rft.au=Yi+Zhan&rft.date=2023-01-01&rft.pub=Elsevier&rft.eissn=2001-0370&rft.volume=21&rft.spage=2985&rft.epage=3001&rft_id=info:doi/10.1016%2Fj.csbj.2023.05.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c362a910e32c411a96e2cbbe38ba24f5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon