Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration

Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to e...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 5882 - 10
Main Authors Huang, Tiefan, Moosa, Basem A., Hoang, Phuong, Liu, Jiangtao, Chisca, Stefan, Zhang, Gengwu, AlYami, Mram, Khashab, Niveen M., Nunes, Suzana P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.11.2020
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-020-19404-6

Cover

Abstract Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system. Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations.
AbstractList Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system. Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations.
Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.
Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.
Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations.
ArticleNumber 5882
Author Khashab, Niveen M.
Chisca, Stefan
Moosa, Basem A.
Zhang, Gengwu
Huang, Tiefan
Hoang, Phuong
Liu, Jiangtao
AlYami, Mram
Nunes, Suzana P.
Author_xml – sequence: 1
  givenname: Tiefan
  surname: Huang
  fullname: Huang, Tiefan
  organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology
– sequence: 2
  givenname: Basem A.
  surname: Moosa
  fullname: Moosa, Basem A.
  organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Phuong
  surname: Hoang
  fullname: Hoang, Phuong
  organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Jiangtao
  orcidid: 0000-0002-4569-7169
  surname: Liu
  fullname: Liu, Jiangtao
  organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Stefan
  surname: Chisca
  fullname: Chisca, Stefan
  organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Gengwu
  surname: Zhang
  fullname: Zhang, Gengwu
  organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Mram
  surname: AlYami
  fullname: AlYami, Mram
  organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Niveen M.
  orcidid: 0000-0003-2728-0666
  surname: Khashab
  fullname: Khashab, Niveen M.
  email: niveen.khashab@kaust.edu.sa
  organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Suzana P.
  orcidid: 0000-0002-3669-138X
  surname: Nunes
  fullname: Nunes, Suzana P.
  email: suzana.nunes@kaust.edu.sa
  organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST)
BookMark eNp9kbtuHCEUhlHkKL7EL5BqSjcTc4dpIlmWk1hylCZp0iCGgV1WDKxhZqV9e7M7lmWnMA3ocL7_XP5zcBJTtAB8QfArgkReF4ooFy3EsEUdhbTlH8AZhhS1SGBy8up9Ci5L2cB6SIckpZ_AKSEYSsHIGfj3KwVr5qBz2LfblNNcmjlMWU9rH5vRjn3W0ZbGpdys_Wod9k2xlZj8zjYpr3T0pikp7Gycmqhjcv5I-xQ_g49Oh2Ivn-8L8Pf73Z_bn-3D7x_3tzcPrWGMTe2AmbBacIEdhaaDnWPOIQYlldIRLQhjEg8MDdS5vieD4_AQ5EJIZDAX5ALcL7pD0hu1zX7Uea-S9uoYqE0qnSdvglVCW2ho76RkiA4dlz1HsHcDR5RaBFnV-rZobed-tIOpU2Ud3oi-_Yl-rVZpp2r_lEpUBa6eBXJ6nG2Z1OiLsSHULdbdKkw5pofpDql4STU5lZKteymDoDp4rBaPVfVYHT1WvELyP8j46bju2o4P76NkQUutE1c2q02ac6zWvEc9AZGUvZE
CitedBy_id crossref_primary_10_1002_cplu_202100473
crossref_primary_10_1002_cssc_202100335
crossref_primary_10_1016_j_memsci_2023_121835
crossref_primary_10_1021_jacs_4c11709
crossref_primary_10_1039_D1TA09192A
crossref_primary_10_1039_D4SC04793A
crossref_primary_10_1038_s41467_024_46071_8
crossref_primary_10_1016_j_cej_2022_138057
crossref_primary_10_1016_j_memsci_2021_120189
crossref_primary_10_1016_j_memsci_2022_120583
crossref_primary_10_1016_j_memsci_2024_123216
crossref_primary_10_1016_j_memsci_2022_120466
crossref_primary_10_2139_ssrn_4065620
crossref_primary_10_1038_s41467_024_46809_4
crossref_primary_10_1002_anie_202318362
crossref_primary_10_1016_j_memsci_2023_122371
crossref_primary_10_1016_j_desal_2024_117927
crossref_primary_10_1021_acs_chemmater_1c02143
crossref_primary_10_1016_j_watres_2022_118888
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_1016_j_seppur_2023_126008
crossref_primary_10_1039_D1OB02410H
crossref_primary_10_1016_j_fbio_2024_104713
crossref_primary_10_1126_sciadv_adp6666
crossref_primary_10_1021_acs_nanolett_4c02483
crossref_primary_10_1002_ange_202302809
crossref_primary_10_1016_j_memsci_2024_122879
crossref_primary_10_1039_D3CS00506B
crossref_primary_10_1002_anie_202421661
crossref_primary_10_1016_j_memsci_2022_120731
crossref_primary_10_1002_ange_202405891
crossref_primary_10_1016_j_jece_2024_112569
crossref_primary_10_1016_j_seppur_2023_125282
crossref_primary_10_1016_j_seppur_2024_128534
crossref_primary_10_1039_D2OB01226J
crossref_primary_10_1126_sciadv_ado7687
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1016_j_bioorg_2023_106806
crossref_primary_10_1039_D2RA01491B
crossref_primary_10_1016_j_cherd_2022_10_006
crossref_primary_10_1016_j_seppur_2022_121985
crossref_primary_10_1021_acsami_1c07584
crossref_primary_10_1038_s41893_024_01371_1
crossref_primary_10_1002_ange_202212816
crossref_primary_10_1007_s10008_025_06229_w
crossref_primary_10_1126_science_adh2404
crossref_primary_10_1016_j_psep_2022_10_072
crossref_primary_10_1016_j_memsci_2021_120127
crossref_primary_10_1002_ange_202421661
crossref_primary_10_1016_j_advmem_2025_100131
crossref_primary_10_1038_s44286_024_00096_4
crossref_primary_10_1002_chem_202402932
crossref_primary_10_1016_j_memsci_2022_121020
crossref_primary_10_1016_j_memsci_2023_122197
crossref_primary_10_1016_j_memsci_2022_120290
crossref_primary_10_1016_j_memsci_2023_121540
crossref_primary_10_1039_D3TA04108E
crossref_primary_10_1002_anie_202416050
crossref_primary_10_1016_j_memsci_2024_123240
crossref_primary_10_1039_D1TA10858A
crossref_primary_10_1007_s10118_023_3012_5
crossref_primary_10_1016_j_micromeso_2024_113006
crossref_primary_10_1016_j_seppur_2024_129976
crossref_primary_10_1016_j_aca_2021_338331
crossref_primary_10_1038_s41467_024_47083_0
crossref_primary_10_1016_j_seppur_2021_120369
crossref_primary_10_1002_adma_202410720
crossref_primary_10_1016_j_cej_2023_142880
crossref_primary_10_1016_j_cherd_2022_10_026
crossref_primary_10_1002_adma_202404164
crossref_primary_10_1016_j_cej_2024_153260
crossref_primary_10_1016_j_memsci_2024_123227
crossref_primary_10_1016_j_matdes_2023_111809
crossref_primary_10_1016_j_memsci_2024_123354
crossref_primary_10_1002_anie_202212596
crossref_primary_10_1016_j_memsci_2024_123110
crossref_primary_10_3390_polym15092020
crossref_primary_10_1016_j_desal_2022_116300
crossref_primary_10_1021_acsami_1c25175
crossref_primary_10_1016_j_desal_2024_117834
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1016_j_cjche_2024_06_032
crossref_primary_10_1002_ange_202416050
crossref_primary_10_1016_j_polymer_2024_127813
crossref_primary_10_1039_D2CC06562B
crossref_primary_10_1002_anie_202405891
crossref_primary_10_1016_j_memsci_2024_122605
crossref_primary_10_1016_j_memsci_2024_122841
crossref_primary_10_1002_anie_202302809
crossref_primary_10_1016_j_memsci_2022_120268
crossref_primary_10_1126_science_abm7686
crossref_primary_10_1002_ange_202212596
crossref_primary_10_1016_j_memsci_2022_121081
crossref_primary_10_3390_membranes13080719
crossref_primary_10_1002_adfm_202313026
crossref_primary_10_1016_j_isci_2023_107290
crossref_primary_10_1016_j_seppur_2024_127539
crossref_primary_10_1021_acsami_4c19244
crossref_primary_10_1016_j_desal_2024_118151
crossref_primary_10_1038_s41586_022_05032_1
crossref_primary_10_1038_s41467_022_35681_9
crossref_primary_10_1021_jacs_3c02815
crossref_primary_10_1021_acs_jafc_3c00388
crossref_primary_10_1016_j_cej_2025_159244
crossref_primary_10_1016_j_seppur_2024_128298
crossref_primary_10_1055_a_1470_6050
crossref_primary_10_1039_D3MH01571H
crossref_primary_10_1021_acsomega_1c01966
crossref_primary_10_1038_s41467_024_51548_7
crossref_primary_10_1016_j_memsci_2022_120765
crossref_primary_10_1016_j_memsci_2024_123436
crossref_primary_10_1002_adfm_202417383
crossref_primary_10_1016_j_memsci_2022_121334
crossref_primary_10_1016_j_memsci_2024_123443
crossref_primary_10_1016_j_heliyon_2024_e24330
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1021_acsami_3c08061
crossref_primary_10_1021_acs_iecr_3c03097
crossref_primary_10_1002_aenm_202300779
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1039_D4CC02669A
crossref_primary_10_1039_D4GC06334A
crossref_primary_10_1016_j_desal_2024_117362
crossref_primary_10_1002_admi_202201206
crossref_primary_10_1016_j_memsci_2023_121868
crossref_primary_10_1016_j_seppur_2022_122492
crossref_primary_10_1002_ejoc_202100892
crossref_primary_10_1016_j_memsci_2022_121205
crossref_primary_10_1016_j_inoche_2022_109526
crossref_primary_10_1016_j_memsci_2024_122613
crossref_primary_10_1126_sciadv_adr9260
crossref_primary_10_1002_slct_202304343
crossref_primary_10_1016_j_jhazmat_2023_132151
crossref_primary_10_1016_j_memsci_2025_124025
crossref_primary_10_1039_D3GC01996A
crossref_primary_10_1002_smll_202409139
crossref_primary_10_1016_j_memsci_2024_122463
crossref_primary_10_1016_j_memsci_2024_123035
crossref_primary_10_1016_j_seppur_2024_126493
crossref_primary_10_1021_acsami_3c17579
crossref_primary_10_1016_j_polymer_2023_126393
crossref_primary_10_2139_ssrn_4183291
crossref_primary_10_1002_ange_202318362
crossref_primary_10_1016_j_memsci_2021_119354
crossref_primary_10_1016_j_psep_2024_07_090
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1016_j_gee_2024_02_007
crossref_primary_10_1039_D2TA01546C
crossref_primary_10_1021_acsami_4c00857
Cites_doi 10.1016/j.memsci.2019.117227
10.1002/adma.201606641
10.1039/C9SC03088C
10.1038/nchem.873
10.1002/anie.201611927
10.1016/j.progpolymsci.2016.06.004
10.1021/jacs.8b08788
10.1002/smll.201601253
10.1002/adma.201705973
10.1002/anie.201206339
10.3390/w10070859
10.1002/adfm.201906797
10.1016/j.memsci.2019.117641
10.1016/j.tetasy.2007.10.024
10.1038/nmat5025
10.1021/cr500006j
10.1016/j.memsci.2019.117432
10.1016/j.carbpol.2019.114970
10.1002/anie.201712816
10.1016/j.tsf.2007.11.103
10.1039/C7CS00185A
10.1016/j.coche.2015.01.009
10.1038/nature16185
10.1038/natrevmats.2016.78
10.1038/nmat4638
10.1126/science.aaa5058
10.1002/adma.201802401
10.1021/cm300552k
10.1021/jacs.8b08770
10.1016/j.desal.2008.04.004
10.1039/C9CS00322C
10.1016/j.memsci.2019.117761
10.1016/j.memsci.2016.01.024
10.1021/acsmaterialslett.9b00272
10.1126/science.aab0530
10.1038/s41467-019-13993-7
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1038/s41467-020-19404-6
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_7ae0c4bf88514d968b610bfd6144e105
PMC7674481
10_1038_s41467_020_19404_6
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c555t-d257ea7672f40c909f5ff1508488f3a735582d51d4ffbb3df60a73567781c2673
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:30 EDT 2025
Thu Aug 21 18:32:55 EDT 2025
Fri Sep 05 06:51:34 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 04:09:08 EDT 2025
Fri Feb 21 02:40:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-d257ea7672f40c909f5ff1508488f3a735582d51d4ffbb3df60a73567781c2673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4569-7169
0000-0002-3669-138X
0000-0003-2728-0666
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-19404-6
PMID 33208753
PQID 2462415081
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7ae0c4bf88514d968b610bfd6144e105
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674481
proquest_miscellaneous_2462415081
crossref_primary_10_1038_s41467_020_19404_6
crossref_citationtrail_10_1038_s41467_020_19404_6
springer_journals_10_1038_s41467_020_19404_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-18
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Huang, Puspasari, Nunes, Peinemann (CR30) 2020; 30
Gonzalez-Perez, Persson, Lipnizki (CR22) 2018; 10
Cheng (CR17) 2018; 30
Alsbaiee (CR28) 2016; 529
Marchetti, Jimenez Solomon, Szekely, Livingston (CR1) 2014; 114
Hermans, Mariën, Van Goethem, Vankelecom (CR2) 2015; 8
Campbell (CR15) 2016; 503
Yang (CR35) 2017; 16
Xu, Shen, Xu, Dong (CR26) 2019; 588
Jiang, Karan, Livingston (CR33) 2018; 30
Holst, Trewin, Cooper (CR18) 2010; 2
Park, Kamcev, Robeson, Elimelech, Freeman (CR3) 2017; 356
Schofield, Bain, Badyal (CR27) 2012; 24
Tanaka, Fukuda, Fujiwara (CR36) 2007; 18
Zhang, Wu, Ma, Wang, Xu (CR4) 2019; 48
Kazemabad, Verliefde, Cornelissen, D’Haese (CR19) 2020; 595
Karan, Jiang, Livingston (CR8) 2015; 348
Villalobos, Huang, Peinemann (CR29) 2017; 29
Bushell (CR21) 2013; 52
Wang (CR25) 2019; 222
Chaix (CR31) 2018; 140
Nunes (CR6) 2020; 598
Zhu (CR9) 2016; 12
Corcos (CR16) 2019; 1
Shinde (CR14) 2018; 140
Zhang, Shi, Wang, Xiao, Wang (CR10) 2019; 10
Denny, Moreton, Benz, Cohen (CR5) 2016; 1
Barankova, Tan, Villalobos, Litwiller, Peinemann (CR12) 2017; 56
Fan, Gu, Meng, Knebel, Caro (CR13) 2018; 57
Li, Japip, Chung (CR24) 2020; 11
Tang, Kwon, Leckie (CR32) 2009; 242
Liu, Nalluri, Stoddart (CR34) 2017; 46
Raaijmakers, Benes (CR11) 2016; 63
Ren (CR20) 2020; 597
Tieke, El-Hashani, Toutianoush, Fendt (CR23) 2008; 516
Jimenez-Solomon, Song, Jelfs, Munoz-Ibanez, Livingston (CR7) 2016; 15
AF Bushell (19404_CR21) 2013; 52
K Tanaka (19404_CR36) 2007; 18
L Ren (19404_CR20) 2020; 597
HB Park (19404_CR3) 2017; 356
S Hermans (19404_CR2) 2015; 8
JR Holst (19404_CR18) 2010; 2
S Karan (19404_CR8) 2015; 348
Q Yang (19404_CR35) 2017; 16
A Alsbaiee (19404_CR28) 2016; 529
LF Villalobos (19404_CR29) 2017; 29
B Li (19404_CR24) 2020; 11
A Gonzalez-Perez (19404_CR22) 2018; 10
MS Denny (19404_CR5) 2016; 1
H Fan (19404_CR13) 2018; 57
Z Jiang (19404_CR33) 2018; 30
Y Zhu (19404_CR9) 2016; 12
MJ Raaijmakers (19404_CR11) 2016; 63
P Marchetti (19404_CR1) 2014; 114
T Huang (19404_CR30) 2020; 30
A Chaix (19404_CR31) 2018; 140
AR Corcos (19404_CR16) 2019; 1
C Zhang (19404_CR4) 2019; 48
Z Wang (19404_CR25) 2019; 222
M Kazemabad (19404_CR19) 2020; 595
B Tieke (19404_CR23) 2008; 516
E Barankova (19404_CR12) 2017; 56
Z Liu (19404_CR34) 2017; 46
DB Shinde (19404_CR14) 2018; 140
CY Tang (19404_CR32) 2009; 242
W Schofield (19404_CR27) 2012; 24
Y Cheng (19404_CR17) 2018; 30
MF Jimenez-Solomon (19404_CR7) 2016; 15
J Campbell (19404_CR15) 2016; 503
Z Zhang (19404_CR10) 2019; 10
S-J Xu (19404_CR26) 2019; 588
SP Nunes (19404_CR6) 2020; 598
References_xml – volume: 588
  start-page: 117227
  year: 2019
  ident: CR26
  article-title: Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117227
– volume: 29
  start-page: 1606641
  year: 2017
  ident: CR29
  article-title: Cyclodextrin films with fast solvent transport and shape‐selective permeability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606641
– volume: 10
  start-page: 9077
  year: 2019
  end-page: 9083
  ident: CR10
  article-title: Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03088C
– volume: 2
  start-page: 915
  year: 2010
  end-page: 920
  ident: CR18
  article-title: Porous organic molecules
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.873
– volume: 56
  start-page: 2965
  year: 2017
  end-page: 2968
  ident: CR12
  article-title: A metal chelating porous polymeric support: the missing link for a defect‐free metal–organic framework composite membrane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201611927
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR24
  article-title: Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis
  publication-title: Nat. Commun.
– volume: 63
  start-page: 86
  year: 2016
  end-page: 142
  ident: CR11
  article-title: Current trends in interfacial polymerization chemistry
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.06.004
– volume: 140
  start-page: 14342
  year: 2018
  end-page: 14349
  ident: CR14
  article-title: Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08788
– volume: 12
  start-page: 5034
  year: 2016
  end-page: 5041
  ident: CR9
  article-title: Single‐walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high‐flux and high‐rejection desalination
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 30
  start-page: 1705973
  year: 2018
  ident: CR33
  article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705973
– volume: 52
  start-page: 1253
  year: 2013
  end-page: 1256
  ident: CR21
  article-title: Nanoporous organic polymer/cage composite membranes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206339
– volume: 10
  start-page: 859
  year: 2018
  ident: CR22
  article-title: Functional channel membranes for drinking water production
  publication-title: Water
  doi: 10.3390/w10070859
– volume: 30
  start-page: 1906797
  year: 2020
  ident: CR30
  article-title: Ultrathin 2D‐layered cyclodextrin membranes for high‐performance organic solvent nanofiltration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906797
– volume: 597
  start-page: 117641
  year: 2020
  ident: CR20
  article-title: Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117641
– volume: 18
  start-page: 2657
  year: 2007
  end-page: 2661
  ident: CR36
  article-title: Trianglamine as a new chiral shift reagent for secondary alcohols
  publication-title: Tetrahedron Asymmetry
  doi: 10.1016/j.tetasy.2007.10.024
– volume: 16
  start-page: 1198
  year: 2017
  end-page: 1202
  ident: CR35
  article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– volume: 114
  start-page: 10735
  year: 2014
  end-page: 10806
  ident: CR1
  article-title: Molecular separation with organic solvent nanofiltration: a critical review
  publication-title: Chem. Rev.
  doi: 10.1021/cr500006j
– volume: 595
  start-page: 117432
  year: 2020
  ident: CR19
  article-title: Crown ether containing polyelectrolyte multilayer membranes for lithium recovery
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117432
– volume: 222
  start-page: 114970
  year: 2019
  ident: CR25
  article-title: Macroporous membranes doped with micro-mesoporous β-cyclodextrin polymers for ultrafast removal of organic micropollutants from water
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.114970
– volume: 57
  start-page: 4083
  year: 2018
  end-page: 4087
  ident: CR13
  article-title: High‐flux membranes based on the covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712816
– volume: 516
  start-page: 8814
  year: 2008
  end-page: 8820
  ident: CR23
  article-title: Multilayered films based on macrocyclic polyamines, calixarenes and cyclodextrins and transport properties of the corresponding membranes
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.11.103
– volume: 46
  start-page: 2459
  year: 2017
  end-page: 2478
  ident: CR34
  article-title: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00185A
– volume: 8
  start-page: 45
  year: 2015
  end-page: 54
  ident: CR2
  article-title: Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2015.01.009
– volume: 529
  start-page: 190
  year: 2016
  end-page: 194
  ident: CR28
  article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
  publication-title: Nature
  doi: 10.1038/nature16185
– volume: 1
  start-page: 1
  year: 2016
  end-page: 17
  ident: CR5
  article-title: Metal–organic frameworks for membrane-based separations
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.78
– volume: 15
  start-page: 760
  year: 2016
  end-page: 767
  ident: CR7
  article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4638
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: CR8
  article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 30
  start-page: 1802401
  year: 2018
  ident: CR17
  article-title: Advanced porous materials in mixed matrix membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802401
– volume: 24
  start-page: 1645
  year: 2012
  end-page: 1653
  ident: CR27
  article-title: Cyclodextrin-functionalized hierarchical porous architectures for high-throughput capture and release of organic pollutants from wastewater
  publication-title: Chem. Mater.
  doi: 10.1021/cm300552k
– volume: 140
  start-page: 14571
  year: 2018
  end-page: 14575
  ident: CR31
  article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08770
– volume: 242
  start-page: 168
  year: 2009
  end-page: 182
  ident: CR32
  article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.04.004
– volume: 48
  start-page: 3811
  year: 2019
  end-page: 3841
  ident: CR4
  article-title: Ultrathin metal/covalent–organic framework membranes towards ultimate separation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00322C
– volume: 598
  start-page: 117761
  year: 2020
  ident: CR6
  article-title: Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes
  publication-title: J. Membr. Sci
  doi: 10.1016/j.memsci.2019.117761
– volume: 503
  start-page: 166
  year: 2016
  end-page: 176
  ident: CR15
  article-title: Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.01.024
– volume: 1
  start-page: 440
  year: 2019
  end-page: 446
  ident: CR16
  article-title: Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00272
– volume: 356
  start-page: eaab0530
  year: 2017
  ident: CR3
  article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 11
  start-page: 1
  year: 2020
  ident: 19404_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 1
  start-page: 1
  year: 2016
  ident: 19404_CR5
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.78
– volume: 12
  start-page: 5034
  year: 2016
  ident: 19404_CR9
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 588
  start-page: 117227
  year: 2019
  ident: 19404_CR26
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117227
– volume: 503
  start-page: 166
  year: 2016
  ident: 19404_CR15
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.01.024
– volume: 18
  start-page: 2657
  year: 2007
  ident: 19404_CR36
  publication-title: Tetrahedron Asymmetry
  doi: 10.1016/j.tetasy.2007.10.024
– volume: 529
  start-page: 190
  year: 2016
  ident: 19404_CR28
  publication-title: Nature
  doi: 10.1038/nature16185
– volume: 56
  start-page: 2965
  year: 2017
  ident: 19404_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201611927
– volume: 48
  start-page: 3811
  year: 2019
  ident: 19404_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00322C
– volume: 8
  start-page: 45
  year: 2015
  ident: 19404_CR2
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2015.01.009
– volume: 356
  start-page: eaab0530
  year: 2017
  ident: 19404_CR3
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 15
  start-page: 760
  year: 2016
  ident: 19404_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4638
– volume: 2
  start-page: 915
  year: 2010
  ident: 19404_CR18
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.873
– volume: 57
  start-page: 4083
  year: 2018
  ident: 19404_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712816
– volume: 52
  start-page: 1253
  year: 2013
  ident: 19404_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206339
– volume: 222
  start-page: 114970
  year: 2019
  ident: 19404_CR25
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2019.114970
– volume: 595
  start-page: 117432
  year: 2020
  ident: 19404_CR19
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117432
– volume: 46
  start-page: 2459
  year: 2017
  ident: 19404_CR34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00185A
– volume: 114
  start-page: 10735
  year: 2014
  ident: 19404_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500006j
– volume: 598
  start-page: 117761
  year: 2020
  ident: 19404_CR6
  publication-title: J. Membr. Sci
  doi: 10.1016/j.memsci.2019.117761
– volume: 597
  start-page: 117641
  year: 2020
  ident: 19404_CR20
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117641
– volume: 10
  start-page: 859
  year: 2018
  ident: 19404_CR22
  publication-title: Water
  doi: 10.3390/w10070859
– volume: 10
  start-page: 9077
  year: 2019
  ident: 19404_CR10
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03088C
– volume: 140
  start-page: 14571
  year: 2018
  ident: 19404_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08770
– volume: 242
  start-page: 168
  year: 2009
  ident: 19404_CR32
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.04.004
– volume: 16
  start-page: 1198
  year: 2017
  ident: 19404_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– volume: 63
  start-page: 86
  year: 2016
  ident: 19404_CR11
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.06.004
– volume: 516
  start-page: 8814
  year: 2008
  ident: 19404_CR23
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.11.103
– volume: 1
  start-page: 440
  year: 2019
  ident: 19404_CR16
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00272
– volume: 30
  start-page: 1705973
  year: 2018
  ident: 19404_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705973
– volume: 24
  start-page: 1645
  year: 2012
  ident: 19404_CR27
  publication-title: Chem. Mater.
  doi: 10.1021/cm300552k
– volume: 30
  start-page: 1802401
  year: 2018
  ident: 19404_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802401
– volume: 348
  start-page: 1347
  year: 2015
  ident: 19404_CR8
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 29
  start-page: 1606641
  year: 2017
  ident: 19404_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606641
– volume: 140
  start-page: 14342
  year: 2018
  ident: 19404_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08788
– volume: 30
  start-page: 1906797
  year: 2020
  ident: 19404_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906797
SSID ssj0000391844
Score 2.6416953
Snippet Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to...
Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here,...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5882
SubjectTerms 140/146
147/135
147/28
147/3
639/301/357/551
639/301/923/1028
639/638/298/923/1028
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9Em3L1TorRWR5LFsHdvSEArpqYHQi7AeQwIbt3Q3h_33nZG9Ic4hvfRqS9gazYy-QdL3CfHedohg7KBy44oCmzoVTUKVE_ho0VExxxeFT76741P4dtae3ZD64jNhEz3wZLjDbig6QcSeoAFk7_pIC37EzIVMMRN7qfb6RjFVc3DjqXSB-ZaMbvrDDdScwNUS1e0alFusRJWwf4Eyb5-RvLVRWtefo0fi4Qwc5afphx-Le2V8Iu5PUpK7p-LnyV7ndr1ThKmpoJdXa6aePb8Y5WW5pKqYspokjCqZoni9k5sqgUPZTk7STkmSH_LxRzkOIyt5z4y6z8Tp0dcfX47VrJugUtu2W5UpDMvQuc4i6OS1xxaRed8pWLEZOmZUt7k1GRBjbDI6zQ-ZSs4k67rmuTgYf43lhZDoy9B6zB5iBJPR922ErF2EYm22zUqYvQ1DmknFWdtiHermdtOHye6B7B6q3YNbiQ_XfX5PlBp3tv7MU3Pdkumw6wMyTZidJPzLSVbi3X5iA4UP74mQzWkmggXHGIaA0Up0ixlffHH5Zrw4r0TcTIQE3PPj3jfCnAE2d4zo5f8Y0SvxwFZfNsr0r8XB9s9VeUPwaBvf1kj4C73ADTk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDYFeSts0dPtChdxSEVsey_ZxWxrCQnppAyEXYb1IYOOW7uaw_74zsr3gEAK9yhK25yF9I42-AThWVYyYq1b6QgeJylXS5i5K77CxKmoK5vii8MUPfX6Jy6vyag_UeBcmJe0nSss0TY_ZYadrTC7NwQ6F3RlK_Qz2a1r-1Az2F4vlz-VuZ4U5z2vE4YZMVtSPDJ6sQomsf4IwH-ZHPjgkTWvP2Ut4MYBGseg_8xXshe41HPRlJLeHcH0x1rhdbSXhaQrmxf2KaWdvbjtxF-4oIqYZTRA-FUxPvNqKdSp_QzOd6Ms6OUE2yKmPoms7ruI9sOm-gcuz77--ncuhZoJ0ZVlupCcXDG2lKxUxc03WxDJG5nwnR41FWzGbuvJl7jFGawsfdcaNTCOXO6Wr4ghm3e8uvAURm9CWTfQNWou5j01dWvSZthiU8qqYQz7K0LiBUJzrWqxMOtguatPL3ZDcTZK70XM42Y3509NpPNn7K6tm15OpsFMDicYMpmGqNmQObawJO6JvdG0JEdroOdINhB7n8HlUrCHX4fMQkjlpwijUjF8IFM2hmmh88sbpk-72JpFwMwkS8sgvo22YwfvXT_zRu__r_h6eq2S1uczrDzDb_L0PHwkEbeynwer_AZGnBCI
  priority: 102
  providerName: Springer Nature
Title Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration
URI https://link.springer.com/article/10.1038/s41467-020-19404-6
https://www.proquest.com/docview/2462415081
https://pubmed.ncbi.nlm.nih.gov/PMC7674481
https://doaj.org/article/7ae0c4bf88514d968b610bfd6144e105
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD70wmAvY1eWXYIGe9u02bIs2Q9jpKFZCaSMbYGwF2FZEi243taksPz7nSPbhZRS2IsNsoTROTrS91nWdwDeCh2CTEXFXaY8l6LW3KZ14K6WpRVBIZmjg8KLU3WylPNVvtqDId1Rb8D1rdSO8kktL5sPf_9sP2PAf-qOjBcf1zKGOxEhpOSJ5GofDnFlUkTGFj3cjzNzViKhkf3Zmdub7qxPUcZ_B3ve_HPyxvZpXJVmD-FBDyfZpPP_I9jz7WO41yWY3D6Bn4sh-22z5dhJpPnsqiFB2rPzll34C-TKONcxRK6MhIubLVvHxDg4B7Iu4VPNcHTST5GsrVrK793r7D6F5ez4x_SE99kUeJ3n-YY7DE5faaVFkEldJmXIQyA1eAzhkFWadNaFy1MnQ7A2c0ElVEgCc2ktlM6ewUH7q_XPgYXSV3kZXCmtlakLZZFb6RJlpRfCiWwE6WBDU_dS45TxojFxyzsrTGd3g3Y30e5GjeDddZvfndDGnbWPyDXXNUkkOxagaUwfc0ZXPqmlDQWiSulKVVjEijY44sAeceUI3gyONRhUtFOCNkdPGCEVIRuESyPQOx7feePuk_b8LMpzkzySpJbvh7FhhmF9R49e_F_1l3BfxFGb8rR4BQebyyv_GuHRxo5hX680XovZlzEcTibz73O8Hx2ffv2GpVM1HccPD-MYG_8A-KITMQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDaW5lD7p9hUVemtFbXks28dtadhss7k0gdCLsCyJBDZu6G4O--87I9sLDiXQqyxhex7SN9LoG4CPqggBU1VLl2kvUTWFtGkTpGuwsipoCub4ovDyVM_PcXGRX-yBGu7CxKT9SGkZp-khO-zLGqNLc7BDYXeCUj-AfcLaOU5gfzZb_FzsdlaY87xE7G_IJFn5j8GjVSiS9Y8Q5t38yDuHpHHtOXoCj3vQKGbdZz6FPd8-g4ddGcntc_i1HGrcrraS8DQF8-J2xbSzl1etuPbXFBHTjCYInwqmJ15txTqWv6GZTnRlnRpBNsipj6KtW67i3bPpvoDzo-9n3-ayr5kgmzzPN9KRC_q60IUKmDRVUoU8BOZ8J0cNWV0wm7pyeeowBGszF3TCjUwjlzZKF9lLmLS_W_8KRKh8nVfBVWgtpi5UZW7RJdqiV8qpbArpIEPT9ITiXNdiZeLBdlaaTu6G5G6i3I2ewqfdmJuOTuPe3l9ZNbueTIUdG0g0pjcNU9Q-adCGkrAjukqXlhChDY4jXU_ocQofBsUach0-DyGZkyaMQs34hUDRFIqRxkdvHD9pry4jCTeTICGP_DzYhum9f33PH73-v-6H8Gh-tjwxJ8enP97AgYoWnMq0fAuTzZ9b_44A0ca-7z3gL_J4BxE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKxAXxFNsW8BI3MCQOBMnPm5bVmWhFRJUqrhY8UuttA0Vuz3sv2fGSVZKhSpxdew85uVvYvsbxt7JKkbIZSN8oYIA6SphcxeFd6CtjAqTOToofHKqjs9gfl6ebzE1nIVJm_YTpWUK08PusE9LSC5NyQ6m3RkI9fHax3tsp65Ao33vTKfzH_PN3xXiPa8B-lMyWVH_4wajmSgR9o9Q5u09krcWStP8M3vMHvXAkU-7V33CtkL7lN3vSkmun7FfJ0Od28VaIKbGhJ7fLIh69uKy5VfhCrNijGocMSoniuLFmi9TCRyMdrwr7eQ42iFtf-Rt01Il755R9zk7m33-eXgs-roJwpVluRIe3TA0lapkhMzpTMcyRuJ9R2eNRVMRo7r0Ze4hRmsLH1VGjUQllzupquIF225_t-El41GHptTRa7AWch91XVrwmbIQpPSymLB8kKFxPak41bZYmLS4XdSmk7tBuZskd6Mm7P1mzHVHqXFn7wNSzaYn0WGnBhSN6c3DVE3IHNhYI34Er1VtERXa6CnbDYggJ-ztoFiD7kNrIihz1ISRoAjDIDCasGqk8dETx1fay4tExE1ESEAjPwy2YfoIsLzji3b_r_sb9uD70cx8-3L6dY89lMmAc5HX-2x79ecmvEJMtLKvewf4C8FdCCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly-porous+ultrathin+membranes+for+highly+selective+organic+solvent+nanofiltration&rft.jtitle=Nature+communications&rft.au=Huang%2C+Tiefan&rft.au=Moosa%2C+Basem+A.&rft.au=Hoang%2C+Phuong&rft.au=Liu%2C+Jiangtao&rft.date=2020-11-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19404-6&rft.externalDocID=10_1038_s41467_020_19404_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon