Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration
Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to e...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5882 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.11.2020
Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-19404-6 |
Cover
Abstract | Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.
Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations. |
---|---|
AbstractList | Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.
Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations. Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system. Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system. Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here, the authors introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high performance selective separations. |
ArticleNumber | 5882 |
Author | Khashab, Niveen M. Chisca, Stefan Moosa, Basem A. Zhang, Gengwu Huang, Tiefan Hoang, Phuong Liu, Jiangtao AlYami, Mram Nunes, Suzana P. |
Author_xml | – sequence: 1 givenname: Tiefan surname: Huang fullname: Huang, Tiefan organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology – sequence: 2 givenname: Basem A. surname: Moosa fullname: Moosa, Basem A. organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Phuong surname: Hoang fullname: Hoang, Phuong organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Jiangtao orcidid: 0000-0002-4569-7169 surname: Liu fullname: Liu, Jiangtao organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Stefan surname: Chisca fullname: Chisca, Stefan organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Gengwu surname: Zhang fullname: Zhang, Gengwu organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Mram surname: AlYami fullname: AlYami, Mram organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Niveen M. orcidid: 0000-0003-2728-0666 surname: Khashab fullname: Khashab, Niveen M. email: niveen.khashab@kaust.edu.sa organization: Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Suzana P. orcidid: 0000-0002-3669-138X surname: Nunes fullname: Nunes, Suzana P. email: suzana.nunes@kaust.edu.sa organization: Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) |
BookMark | eNp9kbtuHCEUhlHkKL7EL5BqSjcTc4dpIlmWk1hylCZp0iCGgV1WDKxhZqV9e7M7lmWnMA3ocL7_XP5zcBJTtAB8QfArgkReF4ooFy3EsEUdhbTlH8AZhhS1SGBy8up9Ci5L2cB6SIckpZ_AKSEYSsHIGfj3KwVr5qBz2LfblNNcmjlMWU9rH5vRjn3W0ZbGpdys_Wod9k2xlZj8zjYpr3T0pikp7Gycmqhjcv5I-xQ_g49Oh2Ivn-8L8Pf73Z_bn-3D7x_3tzcPrWGMTe2AmbBacIEdhaaDnWPOIQYlldIRLQhjEg8MDdS5vieD4_AQ5EJIZDAX5ALcL7pD0hu1zX7Uea-S9uoYqE0qnSdvglVCW2ho76RkiA4dlz1HsHcDR5RaBFnV-rZobed-tIOpU2Ud3oi-_Yl-rVZpp2r_lEpUBa6eBXJ6nG2Z1OiLsSHULdbdKkw5pofpDql4STU5lZKteymDoDp4rBaPVfVYHT1WvELyP8j46bju2o4P76NkQUutE1c2q02ac6zWvEc9AZGUvZE |
CitedBy_id | crossref_primary_10_1002_cplu_202100473 crossref_primary_10_1002_cssc_202100335 crossref_primary_10_1016_j_memsci_2023_121835 crossref_primary_10_1021_jacs_4c11709 crossref_primary_10_1039_D1TA09192A crossref_primary_10_1039_D4SC04793A crossref_primary_10_1038_s41467_024_46071_8 crossref_primary_10_1016_j_cej_2022_138057 crossref_primary_10_1016_j_memsci_2021_120189 crossref_primary_10_1016_j_memsci_2022_120583 crossref_primary_10_1016_j_memsci_2024_123216 crossref_primary_10_1016_j_memsci_2022_120466 crossref_primary_10_2139_ssrn_4065620 crossref_primary_10_1038_s41467_024_46809_4 crossref_primary_10_1002_anie_202318362 crossref_primary_10_1016_j_memsci_2023_122371 crossref_primary_10_1016_j_desal_2024_117927 crossref_primary_10_1021_acs_chemmater_1c02143 crossref_primary_10_1016_j_watres_2022_118888 crossref_primary_10_1002_adfm_202406430 crossref_primary_10_1016_j_seppur_2023_126008 crossref_primary_10_1039_D1OB02410H crossref_primary_10_1016_j_fbio_2024_104713 crossref_primary_10_1126_sciadv_adp6666 crossref_primary_10_1021_acs_nanolett_4c02483 crossref_primary_10_1002_ange_202302809 crossref_primary_10_1016_j_memsci_2024_122879 crossref_primary_10_1039_D3CS00506B crossref_primary_10_1002_anie_202421661 crossref_primary_10_1016_j_memsci_2022_120731 crossref_primary_10_1002_ange_202405891 crossref_primary_10_1016_j_jece_2024_112569 crossref_primary_10_1016_j_seppur_2023_125282 crossref_primary_10_1016_j_seppur_2024_128534 crossref_primary_10_1039_D2OB01226J crossref_primary_10_1126_sciadv_ado7687 crossref_primary_10_1002_anie_202212816 crossref_primary_10_1016_j_bioorg_2023_106806 crossref_primary_10_1039_D2RA01491B crossref_primary_10_1016_j_cherd_2022_10_006 crossref_primary_10_1016_j_seppur_2022_121985 crossref_primary_10_1021_acsami_1c07584 crossref_primary_10_1038_s41893_024_01371_1 crossref_primary_10_1002_ange_202212816 crossref_primary_10_1007_s10008_025_06229_w crossref_primary_10_1126_science_adh2404 crossref_primary_10_1016_j_psep_2022_10_072 crossref_primary_10_1016_j_memsci_2021_120127 crossref_primary_10_1002_ange_202421661 crossref_primary_10_1016_j_advmem_2025_100131 crossref_primary_10_1038_s44286_024_00096_4 crossref_primary_10_1002_chem_202402932 crossref_primary_10_1016_j_memsci_2022_121020 crossref_primary_10_1016_j_memsci_2023_122197 crossref_primary_10_1016_j_memsci_2022_120290 crossref_primary_10_1016_j_memsci_2023_121540 crossref_primary_10_1039_D3TA04108E crossref_primary_10_1002_anie_202416050 crossref_primary_10_1016_j_memsci_2024_123240 crossref_primary_10_1039_D1TA10858A crossref_primary_10_1007_s10118_023_3012_5 crossref_primary_10_1016_j_micromeso_2024_113006 crossref_primary_10_1016_j_seppur_2024_129976 crossref_primary_10_1016_j_aca_2021_338331 crossref_primary_10_1038_s41467_024_47083_0 crossref_primary_10_1016_j_seppur_2021_120369 crossref_primary_10_1002_adma_202410720 crossref_primary_10_1016_j_cej_2023_142880 crossref_primary_10_1016_j_cherd_2022_10_026 crossref_primary_10_1002_adma_202404164 crossref_primary_10_1016_j_cej_2024_153260 crossref_primary_10_1016_j_memsci_2024_123227 crossref_primary_10_1016_j_matdes_2023_111809 crossref_primary_10_1016_j_memsci_2024_123354 crossref_primary_10_1002_anie_202212596 crossref_primary_10_1016_j_memsci_2024_123110 crossref_primary_10_3390_polym15092020 crossref_primary_10_1016_j_desal_2022_116300 crossref_primary_10_1021_acsami_1c25175 crossref_primary_10_1016_j_desal_2024_117834 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_1016_j_cjche_2024_06_032 crossref_primary_10_1002_ange_202416050 crossref_primary_10_1016_j_polymer_2024_127813 crossref_primary_10_1039_D2CC06562B crossref_primary_10_1002_anie_202405891 crossref_primary_10_1016_j_memsci_2024_122605 crossref_primary_10_1016_j_memsci_2024_122841 crossref_primary_10_1002_anie_202302809 crossref_primary_10_1016_j_memsci_2022_120268 crossref_primary_10_1126_science_abm7686 crossref_primary_10_1002_ange_202212596 crossref_primary_10_1016_j_memsci_2022_121081 crossref_primary_10_3390_membranes13080719 crossref_primary_10_1002_adfm_202313026 crossref_primary_10_1016_j_isci_2023_107290 crossref_primary_10_1016_j_seppur_2024_127539 crossref_primary_10_1021_acsami_4c19244 crossref_primary_10_1016_j_desal_2024_118151 crossref_primary_10_1038_s41586_022_05032_1 crossref_primary_10_1038_s41467_022_35681_9 crossref_primary_10_1021_jacs_3c02815 crossref_primary_10_1021_acs_jafc_3c00388 crossref_primary_10_1016_j_cej_2025_159244 crossref_primary_10_1016_j_seppur_2024_128298 crossref_primary_10_1055_a_1470_6050 crossref_primary_10_1039_D3MH01571H crossref_primary_10_1021_acsomega_1c01966 crossref_primary_10_1038_s41467_024_51548_7 crossref_primary_10_1016_j_memsci_2022_120765 crossref_primary_10_1016_j_memsci_2024_123436 crossref_primary_10_1002_adfm_202417383 crossref_primary_10_1016_j_memsci_2022_121334 crossref_primary_10_1016_j_memsci_2024_123443 crossref_primary_10_1016_j_heliyon_2024_e24330 crossref_primary_10_1126_sciadv_abm5899 crossref_primary_10_1021_acsami_3c08061 crossref_primary_10_1021_acs_iecr_3c03097 crossref_primary_10_1002_aenm_202300779 crossref_primary_10_1016_j_seppur_2024_127755 crossref_primary_10_1039_D4CC02669A crossref_primary_10_1039_D4GC06334A crossref_primary_10_1016_j_desal_2024_117362 crossref_primary_10_1002_admi_202201206 crossref_primary_10_1016_j_memsci_2023_121868 crossref_primary_10_1016_j_seppur_2022_122492 crossref_primary_10_1002_ejoc_202100892 crossref_primary_10_1016_j_memsci_2022_121205 crossref_primary_10_1016_j_inoche_2022_109526 crossref_primary_10_1016_j_memsci_2024_122613 crossref_primary_10_1126_sciadv_adr9260 crossref_primary_10_1002_slct_202304343 crossref_primary_10_1016_j_jhazmat_2023_132151 crossref_primary_10_1016_j_memsci_2025_124025 crossref_primary_10_1039_D3GC01996A crossref_primary_10_1002_smll_202409139 crossref_primary_10_1016_j_memsci_2024_122463 crossref_primary_10_1016_j_memsci_2024_123035 crossref_primary_10_1016_j_seppur_2024_126493 crossref_primary_10_1021_acsami_3c17579 crossref_primary_10_1016_j_polymer_2023_126393 crossref_primary_10_2139_ssrn_4183291 crossref_primary_10_1002_ange_202318362 crossref_primary_10_1016_j_memsci_2021_119354 crossref_primary_10_1016_j_psep_2024_07_090 crossref_primary_10_1038_s41467_023_38728_7 crossref_primary_10_1016_j_gee_2024_02_007 crossref_primary_10_1039_D2TA01546C crossref_primary_10_1021_acsami_4c00857 |
Cites_doi | 10.1016/j.memsci.2019.117227 10.1002/adma.201606641 10.1039/C9SC03088C 10.1038/nchem.873 10.1002/anie.201611927 10.1016/j.progpolymsci.2016.06.004 10.1021/jacs.8b08788 10.1002/smll.201601253 10.1002/adma.201705973 10.1002/anie.201206339 10.3390/w10070859 10.1002/adfm.201906797 10.1016/j.memsci.2019.117641 10.1016/j.tetasy.2007.10.024 10.1038/nmat5025 10.1021/cr500006j 10.1016/j.memsci.2019.117432 10.1016/j.carbpol.2019.114970 10.1002/anie.201712816 10.1016/j.tsf.2007.11.103 10.1039/C7CS00185A 10.1016/j.coche.2015.01.009 10.1038/nature16185 10.1038/natrevmats.2016.78 10.1038/nmat4638 10.1126/science.aaa5058 10.1002/adma.201802401 10.1021/cm300552k 10.1021/jacs.8b08770 10.1016/j.desal.2008.04.004 10.1039/C9CS00322C 10.1016/j.memsci.2019.117761 10.1016/j.memsci.2016.01.024 10.1021/acsmaterialslett.9b00272 10.1126/science.aab0530 10.1038/s41467-019-13993-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1038/s41467-020-19404-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_7ae0c4bf88514d968b610bfd6144e105 PMC7674481 10_1038_s41467_020_19404_6 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7X8 PJZUB PPXIY PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c555t-d257ea7672f40c909f5ff1508488f3a735582d51d4ffbb3df60a73567781c2673 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:30 EDT 2025 Thu Aug 21 18:32:55 EDT 2025 Fri Sep 05 06:51:34 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 04:09:08 EDT 2025 Fri Feb 21 02:40:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-d257ea7672f40c909f5ff1508488f3a735582d51d4ffbb3df60a73567781c2673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4569-7169 0000-0002-3669-138X 0000-0003-2728-0666 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-19404-6 |
PMID | 33208753 |
PQID | 2462415081 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7ae0c4bf88514d968b610bfd6144e105 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674481 proquest_miscellaneous_2462415081 crossref_primary_10_1038_s41467_020_19404_6 crossref_citationtrail_10_1038_s41467_020_19404_6 springer_journals_10_1038_s41467_020_19404_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-18 |
PublicationDateYYYYMMDD | 2020-11-18 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Huang, Puspasari, Nunes, Peinemann (CR30) 2020; 30 Gonzalez-Perez, Persson, Lipnizki (CR22) 2018; 10 Cheng (CR17) 2018; 30 Alsbaiee (CR28) 2016; 529 Marchetti, Jimenez Solomon, Szekely, Livingston (CR1) 2014; 114 Hermans, Mariën, Van Goethem, Vankelecom (CR2) 2015; 8 Campbell (CR15) 2016; 503 Yang (CR35) 2017; 16 Xu, Shen, Xu, Dong (CR26) 2019; 588 Jiang, Karan, Livingston (CR33) 2018; 30 Holst, Trewin, Cooper (CR18) 2010; 2 Park, Kamcev, Robeson, Elimelech, Freeman (CR3) 2017; 356 Schofield, Bain, Badyal (CR27) 2012; 24 Tanaka, Fukuda, Fujiwara (CR36) 2007; 18 Zhang, Wu, Ma, Wang, Xu (CR4) 2019; 48 Kazemabad, Verliefde, Cornelissen, D’Haese (CR19) 2020; 595 Karan, Jiang, Livingston (CR8) 2015; 348 Villalobos, Huang, Peinemann (CR29) 2017; 29 Bushell (CR21) 2013; 52 Wang (CR25) 2019; 222 Chaix (CR31) 2018; 140 Nunes (CR6) 2020; 598 Zhu (CR9) 2016; 12 Corcos (CR16) 2019; 1 Shinde (CR14) 2018; 140 Zhang, Shi, Wang, Xiao, Wang (CR10) 2019; 10 Denny, Moreton, Benz, Cohen (CR5) 2016; 1 Barankova, Tan, Villalobos, Litwiller, Peinemann (CR12) 2017; 56 Fan, Gu, Meng, Knebel, Caro (CR13) 2018; 57 Li, Japip, Chung (CR24) 2020; 11 Tang, Kwon, Leckie (CR32) 2009; 242 Liu, Nalluri, Stoddart (CR34) 2017; 46 Raaijmakers, Benes (CR11) 2016; 63 Ren (CR20) 2020; 597 Tieke, El-Hashani, Toutianoush, Fendt (CR23) 2008; 516 Jimenez-Solomon, Song, Jelfs, Munoz-Ibanez, Livingston (CR7) 2016; 15 AF Bushell (19404_CR21) 2013; 52 K Tanaka (19404_CR36) 2007; 18 L Ren (19404_CR20) 2020; 597 HB Park (19404_CR3) 2017; 356 S Hermans (19404_CR2) 2015; 8 JR Holst (19404_CR18) 2010; 2 S Karan (19404_CR8) 2015; 348 Q Yang (19404_CR35) 2017; 16 A Alsbaiee (19404_CR28) 2016; 529 LF Villalobos (19404_CR29) 2017; 29 B Li (19404_CR24) 2020; 11 A Gonzalez-Perez (19404_CR22) 2018; 10 MS Denny (19404_CR5) 2016; 1 H Fan (19404_CR13) 2018; 57 Z Jiang (19404_CR33) 2018; 30 Y Zhu (19404_CR9) 2016; 12 MJ Raaijmakers (19404_CR11) 2016; 63 P Marchetti (19404_CR1) 2014; 114 T Huang (19404_CR30) 2020; 30 A Chaix (19404_CR31) 2018; 140 AR Corcos (19404_CR16) 2019; 1 C Zhang (19404_CR4) 2019; 48 Z Wang (19404_CR25) 2019; 222 M Kazemabad (19404_CR19) 2020; 595 B Tieke (19404_CR23) 2008; 516 E Barankova (19404_CR12) 2017; 56 Z Liu (19404_CR34) 2017; 46 DB Shinde (19404_CR14) 2018; 140 CY Tang (19404_CR32) 2009; 242 W Schofield (19404_CR27) 2012; 24 Y Cheng (19404_CR17) 2018; 30 MF Jimenez-Solomon (19404_CR7) 2016; 15 J Campbell (19404_CR15) 2016; 503 Z Zhang (19404_CR10) 2019; 10 S-J Xu (19404_CR26) 2019; 588 SP Nunes (19404_CR6) 2020; 598 |
References_xml | – volume: 588 start-page: 117227 year: 2019 ident: CR26 article-title: Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117227 – volume: 29 start-page: 1606641 year: 2017 ident: CR29 article-title: Cyclodextrin films with fast solvent transport and shape‐selective permeability publication-title: Adv. Mater. doi: 10.1002/adma.201606641 – volume: 10 start-page: 9077 year: 2019 end-page: 9083 ident: CR10 article-title: Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy publication-title: Chem. Sci. doi: 10.1039/C9SC03088C – volume: 2 start-page: 915 year: 2010 end-page: 920 ident: CR18 article-title: Porous organic molecules publication-title: Nat. Chem. doi: 10.1038/nchem.873 – volume: 56 start-page: 2965 year: 2017 end-page: 2968 ident: CR12 article-title: A metal chelating porous polymeric support: the missing link for a defect‐free metal–organic framework composite membrane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201611927 – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR24 article-title: Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis publication-title: Nat. Commun. – volume: 63 start-page: 86 year: 2016 end-page: 142 ident: CR11 article-title: Current trends in interfacial polymerization chemistry publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.06.004 – volume: 140 start-page: 14342 year: 2018 end-page: 14349 ident: CR14 article-title: Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08788 – volume: 12 start-page: 5034 year: 2016 end-page: 5041 ident: CR9 article-title: Single‐walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high‐flux and high‐rejection desalination publication-title: Small doi: 10.1002/smll.201601253 – volume: 30 start-page: 1705973 year: 2018 ident: CR33 article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis publication-title: Adv. Mater. doi: 10.1002/adma.201705973 – volume: 52 start-page: 1253 year: 2013 end-page: 1256 ident: CR21 article-title: Nanoporous organic polymer/cage composite membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206339 – volume: 10 start-page: 859 year: 2018 ident: CR22 article-title: Functional channel membranes for drinking water production publication-title: Water doi: 10.3390/w10070859 – volume: 30 start-page: 1906797 year: 2020 ident: CR30 article-title: Ultrathin 2D‐layered cyclodextrin membranes for high‐performance organic solvent nanofiltration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906797 – volume: 597 start-page: 117641 year: 2020 ident: CR20 article-title: Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117641 – volume: 18 start-page: 2657 year: 2007 end-page: 2661 ident: CR36 article-title: Trianglamine as a new chiral shift reagent for secondary alcohols publication-title: Tetrahedron Asymmetry doi: 10.1016/j.tetasy.2007.10.024 – volume: 16 start-page: 1198 year: 2017 end-page: 1202 ident: CR35 article-title: Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation publication-title: Nat. Mater. doi: 10.1038/nmat5025 – volume: 114 start-page: 10735 year: 2014 end-page: 10806 ident: CR1 article-title: Molecular separation with organic solvent nanofiltration: a critical review publication-title: Chem. Rev. doi: 10.1021/cr500006j – volume: 595 start-page: 117432 year: 2020 ident: CR19 article-title: Crown ether containing polyelectrolyte multilayer membranes for lithium recovery publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117432 – volume: 222 start-page: 114970 year: 2019 ident: CR25 article-title: Macroporous membranes doped with micro-mesoporous β-cyclodextrin polymers for ultrafast removal of organic micropollutants from water publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.114970 – volume: 57 start-page: 4083 year: 2018 end-page: 4087 ident: CR13 article-title: High‐flux membranes based on the covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712816 – volume: 516 start-page: 8814 year: 2008 end-page: 8820 ident: CR23 article-title: Multilayered films based on macrocyclic polyamines, calixarenes and cyclodextrins and transport properties of the corresponding membranes publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.11.103 – volume: 46 start-page: 2459 year: 2017 end-page: 2478 ident: CR34 article-title: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00185A – volume: 8 start-page: 45 year: 2015 end-page: 54 ident: CR2 article-title: Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2015.01.009 – volume: 529 start-page: 190 year: 2016 end-page: 194 ident: CR28 article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer publication-title: Nature doi: 10.1038/nature16185 – volume: 1 start-page: 1 year: 2016 end-page: 17 ident: CR5 article-title: Metal–organic frameworks for membrane-based separations publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.78 – volume: 15 start-page: 760 year: 2016 end-page: 767 ident: CR7 article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization publication-title: Nat. Mater. doi: 10.1038/nmat4638 – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: CR8 article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 30 start-page: 1802401 year: 2018 ident: CR17 article-title: Advanced porous materials in mixed matrix membranes publication-title: Adv. Mater. doi: 10.1002/adma.201802401 – volume: 24 start-page: 1645 year: 2012 end-page: 1653 ident: CR27 article-title: Cyclodextrin-functionalized hierarchical porous architectures for high-throughput capture and release of organic pollutants from wastewater publication-title: Chem. Mater. doi: 10.1021/cm300552k – volume: 140 start-page: 14571 year: 2018 end-page: 14575 ident: CR31 article-title: Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08770 – volume: 242 start-page: 168 year: 2009 end-page: 182 ident: CR32 article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers publication-title: Desalination doi: 10.1016/j.desal.2008.04.004 – volume: 48 start-page: 3811 year: 2019 end-page: 3841 ident: CR4 article-title: Ultrathin metal/covalent–organic framework membranes towards ultimate separation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00322C – volume: 598 start-page: 117761 year: 2020 ident: CR6 article-title: Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes publication-title: J. Membr. Sci doi: 10.1016/j.memsci.2019.117761 – volume: 503 start-page: 166 year: 2016 end-page: 176 ident: CR15 article-title: Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.01.024 – volume: 1 start-page: 440 year: 2019 end-page: 446 ident: CR16 article-title: Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00272 – volume: 356 start-page: eaab0530 year: 2017 ident: CR3 article-title: Maximizing the right stuff: The trade-off between membrane permeability and selectivity publication-title: Science doi: 10.1126/science.aab0530 – volume: 11 start-page: 1 year: 2020 ident: 19404_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 1 start-page: 1 year: 2016 ident: 19404_CR5 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.78 – volume: 12 start-page: 5034 year: 2016 ident: 19404_CR9 publication-title: Small doi: 10.1002/smll.201601253 – volume: 588 start-page: 117227 year: 2019 ident: 19404_CR26 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117227 – volume: 503 start-page: 166 year: 2016 ident: 19404_CR15 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.01.024 – volume: 18 start-page: 2657 year: 2007 ident: 19404_CR36 publication-title: Tetrahedron Asymmetry doi: 10.1016/j.tetasy.2007.10.024 – volume: 529 start-page: 190 year: 2016 ident: 19404_CR28 publication-title: Nature doi: 10.1038/nature16185 – volume: 56 start-page: 2965 year: 2017 ident: 19404_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201611927 – volume: 48 start-page: 3811 year: 2019 ident: 19404_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00322C – volume: 8 start-page: 45 year: 2015 ident: 19404_CR2 publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2015.01.009 – volume: 356 start-page: eaab0530 year: 2017 ident: 19404_CR3 publication-title: Science doi: 10.1126/science.aab0530 – volume: 15 start-page: 760 year: 2016 ident: 19404_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4638 – volume: 2 start-page: 915 year: 2010 ident: 19404_CR18 publication-title: Nat. Chem. doi: 10.1038/nchem.873 – volume: 57 start-page: 4083 year: 2018 ident: 19404_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712816 – volume: 52 start-page: 1253 year: 2013 ident: 19404_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206339 – volume: 222 start-page: 114970 year: 2019 ident: 19404_CR25 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2019.114970 – volume: 595 start-page: 117432 year: 2020 ident: 19404_CR19 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117432 – volume: 46 start-page: 2459 year: 2017 ident: 19404_CR34 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00185A – volume: 114 start-page: 10735 year: 2014 ident: 19404_CR1 publication-title: Chem. Rev. doi: 10.1021/cr500006j – volume: 598 start-page: 117761 year: 2020 ident: 19404_CR6 publication-title: J. Membr. Sci doi: 10.1016/j.memsci.2019.117761 – volume: 597 start-page: 117641 year: 2020 ident: 19404_CR20 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117641 – volume: 10 start-page: 859 year: 2018 ident: 19404_CR22 publication-title: Water doi: 10.3390/w10070859 – volume: 10 start-page: 9077 year: 2019 ident: 19404_CR10 publication-title: Chem. Sci. doi: 10.1039/C9SC03088C – volume: 140 start-page: 14571 year: 2018 ident: 19404_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08770 – volume: 242 start-page: 168 year: 2009 ident: 19404_CR32 publication-title: Desalination doi: 10.1016/j.desal.2008.04.004 – volume: 16 start-page: 1198 year: 2017 ident: 19404_CR35 publication-title: Nat. Mater. doi: 10.1038/nmat5025 – volume: 63 start-page: 86 year: 2016 ident: 19404_CR11 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.06.004 – volume: 516 start-page: 8814 year: 2008 ident: 19404_CR23 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.11.103 – volume: 1 start-page: 440 year: 2019 ident: 19404_CR16 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00272 – volume: 30 start-page: 1705973 year: 2018 ident: 19404_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201705973 – volume: 24 start-page: 1645 year: 2012 ident: 19404_CR27 publication-title: Chem. Mater. doi: 10.1021/cm300552k – volume: 30 start-page: 1802401 year: 2018 ident: 19404_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201802401 – volume: 348 start-page: 1347 year: 2015 ident: 19404_CR8 publication-title: Science doi: 10.1126/science.aaa5058 – volume: 29 start-page: 1606641 year: 2017 ident: 19404_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201606641 – volume: 140 start-page: 14342 year: 2018 ident: 19404_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08788 – volume: 30 start-page: 1906797 year: 2020 ident: 19404_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906797 |
SSID | ssj0000391844 |
Score | 2.6416953 |
Snippet | Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to... Engineering thin membranes for molecular separation with well tailored nanoporosity and which can withstand harsh conditions is still a big challenge. Here,... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5882 |
SubjectTerms | 140/146 147/135 147/28 147/3 639/301/357/551 639/301/923/1028 639/638/298/923/1028 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9Em3L1TorRWR5LFsHdvSEArpqYHQi7AeQwIbt3Q3h_33nZG9Ic4hvfRqS9gazYy-QdL3CfHedohg7KBy44oCmzoVTUKVE_ho0VExxxeFT76741P4dtae3ZD64jNhEz3wZLjDbig6QcSeoAFk7_pIC37EzIVMMRN7qfb6RjFVc3DjqXSB-ZaMbvrDDdScwNUS1e0alFusRJWwf4Eyb5-RvLVRWtefo0fi4Qwc5afphx-Le2V8Iu5PUpK7p-LnyV7ndr1ThKmpoJdXa6aePb8Y5WW5pKqYspokjCqZoni9k5sqgUPZTk7STkmSH_LxRzkOIyt5z4y6z8Tp0dcfX47VrJugUtu2W5UpDMvQuc4i6OS1xxaRed8pWLEZOmZUt7k1GRBjbDI6zQ-ZSs4k67rmuTgYf43lhZDoy9B6zB5iBJPR922ErF2EYm22zUqYvQ1DmknFWdtiHermdtOHye6B7B6q3YNbiQ_XfX5PlBp3tv7MU3Pdkumw6wMyTZidJPzLSVbi3X5iA4UP74mQzWkmggXHGIaA0Up0ixlffHH5Zrw4r0TcTIQE3PPj3jfCnAE2d4zo5f8Y0SvxwFZfNsr0r8XB9s9VeUPwaBvf1kj4C73ADTk priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDYFeSts0dPtChdxSEVsey_ZxWxrCQnppAyEXYb1IYOOW7uaw_74zsr3gEAK9yhK25yF9I42-AThWVYyYq1b6QgeJylXS5i5K77CxKmoK5vii8MUPfX6Jy6vyag_UeBcmJe0nSss0TY_ZYadrTC7NwQ6F3RlK_Qz2a1r-1Az2F4vlz-VuZ4U5z2vE4YZMVtSPDJ6sQomsf4IwH-ZHPjgkTWvP2Ut4MYBGseg_8xXshe41HPRlJLeHcH0x1rhdbSXhaQrmxf2KaWdvbjtxF-4oIqYZTRA-FUxPvNqKdSp_QzOd6Ms6OUE2yKmPoms7ruI9sOm-gcuz77--ncuhZoJ0ZVlupCcXDG2lKxUxc03WxDJG5nwnR41FWzGbuvJl7jFGawsfdcaNTCOXO6Wr4ghm3e8uvAURm9CWTfQNWou5j01dWvSZthiU8qqYQz7K0LiBUJzrWqxMOtguatPL3ZDcTZK70XM42Y3509NpPNn7K6tm15OpsFMDicYMpmGqNmQObawJO6JvdG0JEdroOdINhB7n8HlUrCHX4fMQkjlpwijUjF8IFM2hmmh88sbpk-72JpFwMwkS8sgvo22YwfvXT_zRu__r_h6eq2S1uczrDzDb_L0PHwkEbeynwer_AZGnBCI priority: 102 providerName: Springer Nature |
Title | Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration |
URI | https://link.springer.com/article/10.1038/s41467-020-19404-6 https://www.proquest.com/docview/2462415081 https://pubmed.ncbi.nlm.nih.gov/PMC7674481 https://doaj.org/article/7ae0c4bf88514d968b610bfd6144e105 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD70wmAvY1eWXYIGe9u02bIs2Q9jpKFZCaSMbYGwF2FZEi243taksPz7nSPbhZRS2IsNsoTROTrS91nWdwDeCh2CTEXFXaY8l6LW3KZ14K6WpRVBIZmjg8KLU3WylPNVvtqDId1Rb8D1rdSO8kktL5sPf_9sP2PAf-qOjBcf1zKGOxEhpOSJ5GofDnFlUkTGFj3cjzNzViKhkf3Zmdub7qxPUcZ_B3ve_HPyxvZpXJVmD-FBDyfZpPP_I9jz7WO41yWY3D6Bn4sh-22z5dhJpPnsqiFB2rPzll34C-TKONcxRK6MhIubLVvHxDg4B7Iu4VPNcHTST5GsrVrK793r7D6F5ez4x_SE99kUeJ3n-YY7DE5faaVFkEldJmXIQyA1eAzhkFWadNaFy1MnQ7A2c0ElVEgCc2ktlM6ewUH7q_XPgYXSV3kZXCmtlakLZZFb6RJlpRfCiWwE6WBDU_dS45TxojFxyzsrTGd3g3Y30e5GjeDddZvfndDGnbWPyDXXNUkkOxagaUwfc0ZXPqmlDQWiSulKVVjEijY44sAeceUI3gyONRhUtFOCNkdPGCEVIRuESyPQOx7feePuk_b8LMpzkzySpJbvh7FhhmF9R49e_F_1l3BfxFGb8rR4BQebyyv_GuHRxo5hX680XovZlzEcTibz73O8Hx2ffv2GpVM1HccPD-MYG_8A-KITMQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDaW5lD7p9hUVemtFbXks28dtadhss7k0gdCLsCyJBDZu6G4O--87I9sLDiXQqyxhex7SN9LoG4CPqggBU1VLl2kvUTWFtGkTpGuwsipoCub4ovDyVM_PcXGRX-yBGu7CxKT9SGkZp-khO-zLGqNLc7BDYXeCUj-AfcLaOU5gfzZb_FzsdlaY87xE7G_IJFn5j8GjVSiS9Y8Q5t38yDuHpHHtOXoCj3vQKGbdZz6FPd8-g4ddGcntc_i1HGrcrraS8DQF8-J2xbSzl1etuPbXFBHTjCYInwqmJ15txTqWv6GZTnRlnRpBNsipj6KtW67i3bPpvoDzo-9n3-ayr5kgmzzPN9KRC_q60IUKmDRVUoU8BOZ8J0cNWV0wm7pyeeowBGszF3TCjUwjlzZKF9lLmLS_W_8KRKh8nVfBVWgtpi5UZW7RJdqiV8qpbArpIEPT9ITiXNdiZeLBdlaaTu6G5G6i3I2ewqfdmJuOTuPe3l9ZNbueTIUdG0g0pjcNU9Q-adCGkrAjukqXlhChDY4jXU_ocQofBsUach0-DyGZkyaMQs34hUDRFIqRxkdvHD9pry4jCTeTICGP_DzYhum9f33PH73-v-6H8Gh-tjwxJ8enP97AgYoWnMq0fAuTzZ9b_44A0ca-7z3gL_J4BxE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKxAXxFNsW8BI3MCQOBMnPm5bVmWhFRJUqrhY8UuttA0Vuz3sv2fGSVZKhSpxdew85uVvYvsbxt7JKkbIZSN8oYIA6SphcxeFd6CtjAqTOToofHKqjs9gfl6ebzE1nIVJm_YTpWUK08PusE9LSC5NyQ6m3RkI9fHax3tsp65Ao33vTKfzH_PN3xXiPa8B-lMyWVH_4wajmSgR9o9Q5u09krcWStP8M3vMHvXAkU-7V33CtkL7lN3vSkmun7FfJ0Od28VaIKbGhJ7fLIh69uKy5VfhCrNijGocMSoniuLFmi9TCRyMdrwr7eQ42iFtf-Rt01Il755R9zk7m33-eXgs-roJwpVluRIe3TA0lapkhMzpTMcyRuJ9R2eNRVMRo7r0Ze4hRmsLH1VGjUQllzupquIF225_t-El41GHptTRa7AWch91XVrwmbIQpPSymLB8kKFxPak41bZYmLS4XdSmk7tBuZskd6Mm7P1mzHVHqXFn7wNSzaYn0WGnBhSN6c3DVE3IHNhYI34Er1VtERXa6CnbDYggJ-ztoFiD7kNrIihz1ISRoAjDIDCasGqk8dETx1fay4tExE1ESEAjPwy2YfoIsLzji3b_r_sb9uD70cx8-3L6dY89lMmAc5HX-2x79ecmvEJMtLKvewf4C8FdCCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly-porous+ultrathin+membranes+for+highly+selective+organic+solvent+nanofiltration&rft.jtitle=Nature+communications&rft.au=Huang%2C+Tiefan&rft.au=Moosa%2C+Basem+A.&rft.au=Hoang%2C+Phuong&rft.au=Liu%2C+Jiangtao&rft.date=2020-11-18&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19404-6&rft.externalDocID=10_1038_s41467_020_19404_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |