DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans
DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcript...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 29; pp. 11965 - 11970 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.07.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1109631108 |
Cover
Loading…
Abstract | DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction. |
---|---|
AbstractList | DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction. DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction.DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction. DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction. DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we report that DNA methylation in the human fungal pathogen Candida albicans is primarily localized within structural genes and modulates transcriptional activity. Major repeat sequences and multigene families are largely free of DNA methylation. Among the genes subject to DNA methylation are those associated with dimorphic transition between yeast and hyphal forms, switching between white and opaque cells, and iron metabolism. Transcriptionally repressed methylated loci showed increased frequency of C-to-T transitions during asexual growth, an evolutionarily stable pattern of repression associated mutation that could bring about genetic alterations under changing environmental or host conditions. Dynamic differential DNA methylation of structural genes may be one factor contributing to morphological plasticity that is cued by nutrition and host interaction. [PUBLICATION ABSTRACT] |
Author | Carbon, John Baum, Mary Mishra, Prashant K |
Author_xml | – sequence: 1 fullname: Mishra, Prashant K – sequence: 2 fullname: Baum, Mary – sequence: 3 fullname: Carbon, John |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21730141$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFMycg4gKXtGMnju0LUrUtH1IFB-iFi-U4zq5XWTvY3kr773G6Sxd6KBd7pHnm452ZE3TkvDMIvcRwhoFV56NT8QxjEE2VX_4EzbKNy6YWcIRmAISVvCb1MTqJcQUAgnJ4ho4JZhXgGs_Qz8uvF8XapOV2UMl6VwSz2GTTxGJcGufTdjRlZ0bjOuNSkYJyUQc7TqwaCqWTvbVpW1hXzJXrbKcKNbRWZ-w5etqrIZoX-_8U3Xy8-jH_XF5_-_RlfnFdakppKjVTRrAeN0ZwCj0jnFCGeW6bQd82LSjTka5XCrNWUFxxoUF30GFS9YAFqU7Rh13ecdOuTadzn0ENcgx2rcJWemXlvx5nl3Lhb2WVJyCaOid4t08Q_K-NiUmubdRmGJQzfhOlgLrmoiHNf0nOOBUNJSyT7x8lMcdsklhP5d8-QFd-E_J07_I1FQcyiXz9t8h7dX82mYHzHaCDjzGY_h7BIKdbkdOtyMOt5Aj6IELbdHcEeUp2eCSu2LcyOQ5VuCQic1l_Rl7tkFVMPhyaZYJxUU1q3uz8vfJSLYKN8uY7AdzAtFGgvPoNwcjgqg |
CitedBy_id | crossref_primary_10_1534_genetics_119_302179 crossref_primary_10_1042_BJ20140844 crossref_primary_10_7554_eLife_81002 crossref_primary_10_3389_fmicb_2020_616922 crossref_primary_10_1016_j_cois_2014_04_001 crossref_primary_10_1186_1471_2164_12_638 crossref_primary_10_1016_j_funbio_2017_01_002 crossref_primary_10_1111_mmi_12561 crossref_primary_10_1146_annurev_cellbio_092910_154129 crossref_primary_10_3390_toxins11020119 crossref_primary_10_1016_j_bbrc_2014_01_123 crossref_primary_10_1371_journal_pone_0146064 crossref_primary_10_1111_evo_12348 crossref_primary_10_1080_21655979_2021_2014387 crossref_primary_10_1038_s44259_024_00040_9 crossref_primary_10_1534_g3_117_300388 crossref_primary_10_1016_j_wneu_2012_06_010 crossref_primary_10_1093_femsre_fuz018 crossref_primary_10_1371_journal_pgen_1008086 crossref_primary_10_1146_annurev_micro_102215_095757 crossref_primary_10_1038_s41385_022_00536_5 crossref_primary_10_1016_j_soilbio_2025_109712 crossref_primary_10_1371_journal_ppat_1003007 crossref_primary_10_1007_s13562_022_00801_5 crossref_primary_10_1089_omi_2015_0185 crossref_primary_10_1186_s13059_014_0411_5 crossref_primary_10_3390_genes10110855 crossref_primary_10_1128_mbio_00799_22 crossref_primary_10_3389_fgene_2023_1085631 crossref_primary_10_1016_j_tplants_2012_04_005 crossref_primary_10_1016_j_jbiotec_2020_07_019 crossref_primary_10_1016_j_mimet_2013_04_007 crossref_primary_10_1016_j_actbio_2023_08_037 crossref_primary_10_1007_s00294_023_01263_5 crossref_primary_10_1080_15592294_2018_1564426 crossref_primary_10_3389_fpls_2018_00103 crossref_primary_10_3390_pathogens7010011 crossref_primary_10_1111_brv_12429 crossref_primary_10_1002_ptr_6222 crossref_primary_10_3389_fcimb_2018_00185 crossref_primary_10_3390_jof7080659 crossref_primary_10_1016_j_funbio_2015_08_017 crossref_primary_10_3389_fgene_2018_00166 crossref_primary_10_3390_microorganisms8020296 crossref_primary_10_3390_pathogens10111463 crossref_primary_10_1016_j_fgb_2013_04_003 crossref_primary_10_1007_s00294_019_00997_5 crossref_primary_10_3389_ffunb_2020_614633 crossref_primary_10_3390_microorganisms9091798 crossref_primary_10_1093_femspd_ftw082 crossref_primary_10_15698_mic2024_08_833 crossref_primary_10_1016_j_pbiomolbio_2015_02_009 crossref_primary_10_1371_journal_pone_0053638 crossref_primary_10_1534_g3_120_401340 crossref_primary_10_1007_s00253_017_8197_5 crossref_primary_10_1007_s12038_021_00215_w crossref_primary_10_1094_MPMI_01_13_0003_R crossref_primary_10_1038_s41467_021_24580_0 crossref_primary_10_1016_j_mimet_2013_09_010 crossref_primary_10_3390_ijms23063034 crossref_primary_10_1186_s43141_021_00191_6 crossref_primary_10_3389_fmicb_2018_01026 |
Cites_doi | 10.1016/j.biopsych.2008.11.028 10.1101/gad.11.18.2383 10.1038/nature02886 10.1126/science.1186366 10.1038/ng0394-236 10.1242/dev.00995 10.1111/j.1365-2958.2008.06277.x 10.1038/nature01564 10.1093/nar/22.15.2990 10.1101/gr.086231.108 10.1073/pnas.0605138103 10.1371/journal.pbio.1000506 10.1016/j.yhbeh.2010.05.005 10.1093/genetics/153.2.653 10.1186/gb-2007-8-4-r52 10.1128/IAI.69.12.7197-7204.2001 10.1128/MMBR.00009-06 10.1038/467146a 10.1128/jb.169.9.4393-4395.1987 10.1038/ng1929 10.1093/emboj/20.15.4309 10.1128/jb.176.13.3851-3858.1994 10.1091/mbc.e04-02-0144 10.1007/s00438-007-0263-8 10.1038/nature09165 10.1093/nar/20.19.5085 10.1126/science.7505062 10.1101/gr.10.2.174 10.1016/j.gie.2009.01.038 10.1038/nrg2719 10.1126/science.293.5532.1070 10.1073/pnas.0606958103 10.1073/pnas.182427299 10.1111/j.1365-2958.2004.04214.x 10.1186/1471-2148-7-72 10.1080/00275514.1971.12019080 10.1038/nature08064 10.1126/science.1194554 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jul 19, 2011 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jul 19, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1109631108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11970 |
ExternalDocumentID | PMC3141964 2404920941 21730141 10_1073_pnas_1109631108 108_29_11965 27978932 US201600192058 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA011034 – fundername: NCI NIH HHS grantid: CA-11034 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c555t-c7ae97f16e9850f7282571884270fb6b0aed2dfaa17b951389c0cd0d123f01923 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:12:41 EDT 2025 Fri Jul 11 02:24:40 EDT 2025 Sun Aug 24 03:52:24 EDT 2025 Fri Jul 11 16:33:13 EDT 2025 Mon Jun 30 08:37:14 EDT 2025 Thu Apr 03 07:07:39 EDT 2025 Tue Jul 01 00:47:13 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Nov 11 00:29:38 EST 2020 Thu May 29 08:40:42 EDT 2025 Wed Dec 27 18:57:49 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c555t-c7ae97f16e9850f7282571884270fb6b0aed2dfaa17b951389c0cd0d123f01923 |
Notes | http://dx.doi.org/10.1073/pnas.1109631108 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Contributed by John Carbon, June 14, 2011 (sent for review January 24, 2011) 1Present address: National Cancer Institute, Bethesda, MD 20889. Author contributions: P.K.M., M.B., and J.C. designed research; P.K.M. performed research; P.K.M., M.B., and J.C. analyzed data; and P.K.M., M.B., and J.C. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/108/29/11965.full.pdf |
PMID | 21730141 |
PQID | 878638022 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_878638022 proquest_miscellaneous_904489626 proquest_miscellaneous_878596527 fao_agris_US201600192058 proquest_miscellaneous_1817842744 pubmed_primary_21730141 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3141964 crossref_primary_10_1073_pnas_1109631108 pnas_primary_108_29_11965 jstor_primary_27978932 crossref_citationtrail_10_1073_pnas_1109631108 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-19 |
PublicationDateYYYYMMDD | 2011-07-19 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Law JA (e_1_3_4_6_2) 2010; 11 Russell PJ (e_1_3_4_5_2) 1987; 169 Maunakea AK (e_1_3_4_11_2) 2010; 466 Selker EU (e_1_3_4_9_2) 2003; 422 Baum M (e_1_3_4_17_2) 2006; 103 van het Hoog M (e_1_3_4_22_2) 2007; 8 Lan CY (e_1_3_4_2_2) 2004; 53 Rountree MR (e_1_3_4_10_2) 1997; 11 Goodwin TJ (e_1_3_4_21_2) 2000; 10 Mishra PK (e_1_3_4_19_2) 2007; 278 Foss HM (e_1_3_4_13_2) 1993; 262 Meehan RR (e_1_3_4_23_2) 1992; 20 Lenz P (e_1_3_4_1_2) 2009; 70 Prendergast JG (e_1_3_4_40_2) 2007; 7 Sado T (e_1_3_4_37_2) 2004; 131 Butler G (e_1_3_4_15_2) 2009; 459 Harcus D (e_1_3_4_25_2) 2004; 15 Low DA (e_1_3_4_36_2) 2001; 69 Lynch M (e_1_3_4_28_2) 1990; 7 Zemach A (e_1_3_4_12_2) 2010; 328 Zordan RE (e_1_3_4_4_2) 2006; 103 Buchen L (e_1_3_4_38_2) 2010; 467 Kouzminova E (e_1_3_4_32_2) 2001; 20 Lyko F (e_1_3_4_33_2) 2010; 8 Zilberman D (e_1_3_4_8_2) 2007; 39 Weissman Z (e_1_3_4_27_2) 2008; 69 Martienssen RA (e_1_3_4_7_2) 2001; 293 Chibana H (e_1_3_4_20_2) 1994; 176 Lewis ZA (e_1_3_4_26_2) 2009; 19 Storck R (e_1_3_4_14_2) 1971; 63 Roth TL (e_1_3_4_34_2) 2009; 65 Janbon G (e_1_3_4_29_2) 1999; 153 Roth TL (e_1_3_4_35_2) 2011; 59 Cross SH (e_1_3_4_16_2) 1994; 6 Clark SJ (e_1_3_4_18_2) 1994; 22 Mitrovich QM (e_1_3_4_24_2) 2010; 330 Biswas S (e_1_3_4_3_2) 2007; 71 Selker EU (e_1_3_4_31_2) 2002; 99 Bourc'his D (e_1_3_4_30_2) 2004; 431 Pfeifer GP (e_1_3_4_39_2) 2006; 301 19150054 - Biol Psychiatry. 2009 May 1;65(9):760-9 11483533 - EMBO J. 2001 Aug 1;20(15):4309-23 20483357 - Horm Behav. 2011 Mar;59(3):315-20 10673276 - Genome Res. 2000 Feb;10(2):174-91 8021166 - J Bacteriol. 1994 Jul;176(13):3851-8 3305486 - J Bacteriol. 1987 Sep;169(9):4393-5 17128275 - Nat Genet. 2007 Jan;39(1):61-9 16570852 - Curr Top Microbiol Immunol. 2006;301:259-81 20395474 - Science. 2010 May 14;328(5980):916-9 9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95 11498574 - Science. 2001 Aug 10;293(5532):1070-4 20613842 - Nature. 2010 Jul 8;466(7303):253-7 10511546 - Genetics. 1999 Oct;153(2):653-64 8012384 - Nat Genet. 1994 Mar;6(3):236-44 21072239 - PLoS Biol. 2010;8(11):e1000506 15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69 16899543 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12807-12 11705888 - Infect Immun. 2001 Dec;69(12):7197-204 19465905 - Nature. 2009 Jun 4;459(7247):657-62 1408825 - Nucleic Acids Res. 1992 Oct 11;20(19):5085-92 12712205 - Nature. 2003 Apr 24;422(6934):893-7 12189210 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16485-90 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 1974693 - Mol Biol Evol. 1990 Jul;7(4):377-94 19092133 - Genome Res. 2009 Mar;19(3):427-37 20829771 - Nature. 2010 Sep 9;467(7312):146-8 17419877 - Genome Biol. 2007;8(4):R52 17001001 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14877-82 17554048 - Microbiol Mol Biol Rev. 2007 Jun;71(2):348-76 17588175 - Mol Genet Genomics. 2007 Oct;278(4):455-65 8065911 - Nucleic Acids Res. 1994 Aug 11;22(15):2990-7 17490477 - BMC Evol Biol. 2007;7:72 15318244 - Nature. 2004 Sep 2;431(7004):96-9 19555935 - Gastrointest Endosc. 2009 Sep;70(3):480-7 15269278 - Mol Biol Cell. 2004 Oct;15(10):4490-9 7505062 - Science. 1993 Dec 10;262(5140):1737-41 21051641 - Science. 2010 Nov 5;330(6005):838-41 18466294 - Mol Microbiol. 2008 Jul;69(1):201-17 14973270 - Development. 2004 Mar;131(5):975-82 |
References_xml | – volume: 65 start-page: 760 year: 2009 ident: e_1_3_4_34_2 article-title: Lasting epigenetic influence of early-life adversity on the BDNF gene publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2008.11.028 – volume: 11 start-page: 2383 year: 1997 ident: e_1_3_4_10_2 article-title: DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa publication-title: Genes Dev doi: 10.1101/gad.11.18.2383 – volume: 431 start-page: 96 year: 2004 ident: e_1_3_4_30_2 article-title: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L publication-title: Nature doi: 10.1038/nature02886 – volume: 328 start-page: 916 year: 2010 ident: e_1_3_4_12_2 article-title: Genome-wide evolutionary analysis of eukaryotic DNA methylation publication-title: Science doi: 10.1126/science.1186366 – volume: 6 start-page: 236 year: 1994 ident: e_1_3_4_16_2 article-title: Purification of CpG islands using a methylated DNA binding column publication-title: Nat Genet doi: 10.1038/ng0394-236 – volume: 131 start-page: 975 year: 2004 ident: e_1_3_4_37_2 article-title: De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation publication-title: Development doi: 10.1242/dev.00995 – volume: 69 start-page: 201 year: 2008 ident: e_1_3_4_27_2 article-title: An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06277.x – volume: 422 start-page: 893 year: 2003 ident: e_1_3_4_9_2 article-title: The methylated component of the Neurospora crassa genome publication-title: Nature doi: 10.1038/nature01564 – volume: 22 start-page: 2990 year: 1994 ident: e_1_3_4_18_2 article-title: High sensitivity mapping of methylated cytosines publication-title: Nucleic Acids Res doi: 10.1093/nar/22.15.2990 – volume: 19 start-page: 427 year: 2009 ident: e_1_3_4_26_2 article-title: Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa publication-title: Genome Res doi: 10.1101/gr.086231.108 – volume: 103 start-page: 12807 year: 2006 ident: e_1_3_4_4_2 article-title: Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605138103 – volume: 7 start-page: 377 year: 1990 ident: e_1_3_4_28_2 article-title: The analysis of population survey data on DNA sequence variation publication-title: Mol Biol Evol – volume: 8 start-page: e1000506 year: 2010 ident: e_1_3_4_33_2 article-title: The honey bee epigenomes: Differential methylation of brain DNA in queens and workers publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000506 – volume: 59 start-page: 315 year: 2011 ident: e_1_3_4_35_2 article-title: Epigenetic marking of the BDNF gene by early-life adverse experiences publication-title: Horm Behav doi: 10.1016/j.yhbeh.2010.05.005 – volume: 153 start-page: 653 year: 1999 ident: e_1_3_4_29_2 article-title: Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate publication-title: Genetics doi: 10.1093/genetics/153.2.653 – volume: 8 start-page: R52 year: 2007 ident: e_1_3_4_22_2 article-title: Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes publication-title: Genome Biol doi: 10.1186/gb-2007-8-4-r52 – volume: 69 start-page: 7197 year: 2001 ident: e_1_3_4_36_2 article-title: Roles of DNA adenine methylation in regulating bacterial gene expression and virulence publication-title: Infect Immun doi: 10.1128/IAI.69.12.7197-7204.2001 – volume: 71 start-page: 348 year: 2007 ident: e_1_3_4_3_2 article-title: Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00009-06 – volume: 467 start-page: 146 year: 2010 ident: e_1_3_4_38_2 article-title: Neuroscience: In their nurture publication-title: Nature doi: 10.1038/467146a – volume: 169 start-page: 4393 year: 1987 ident: e_1_3_4_5_2 article-title: Different levels of DNA methylation in yeast and mycelial forms of Candida albicans publication-title: J Bacteriol doi: 10.1128/jb.169.9.4393-4395.1987 – volume: 301 start-page: 259 year: 2006 ident: e_1_3_4_39_2 article-title: Mutagenesis at methylated CpG sequences publication-title: Curr Top Microbiol Immunol – volume: 39 start-page: 61 year: 2007 ident: e_1_3_4_8_2 article-title: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription publication-title: Nat Genet doi: 10.1038/ng1929 – volume: 20 start-page: 4309 year: 2001 ident: e_1_3_4_32_2 article-title: dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora publication-title: EMBO J doi: 10.1093/emboj/20.15.4309 – volume: 176 start-page: 3851 year: 1994 ident: e_1_3_4_20_2 article-title: Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of Candida albicans publication-title: J Bacteriol doi: 10.1128/jb.176.13.3851-3858.1994 – volume: 15 start-page: 4490 year: 2004 ident: e_1_3_4_25_2 article-title: Transcription profiling of cyclic AMP signaling in Candida albicans publication-title: Mol Biol Cell doi: 10.1091/mbc.e04-02-0144 – volume: 278 start-page: 455 year: 2007 ident: e_1_3_4_19_2 article-title: Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity publication-title: Mol Genet Genomics doi: 10.1007/s00438-007-0263-8 – volume: 466 start-page: 253 year: 2010 ident: e_1_3_4_11_2 article-title: Conserved role of intragenic DNA methylation in regulating alternative promoters publication-title: Nature doi: 10.1038/nature09165 – volume: 20 start-page: 5085 year: 1992 ident: e_1_3_4_23_2 article-title: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA publication-title: Nucleic Acids Res doi: 10.1093/nar/20.19.5085 – volume: 262 start-page: 1737 year: 1993 ident: e_1_3_4_13_2 article-title: Abnormal chromosome behavior in Neurospora mutants defective in DNA methylation publication-title: Science doi: 10.1126/science.7505062 – volume: 10 start-page: 174 year: 2000 ident: e_1_3_4_21_2 article-title: Multiple LTR-retrotransposon families in the asexual yeast Candida albicans publication-title: Genome Res doi: 10.1101/gr.10.2.174 – volume: 70 start-page: 480 year: 2009 ident: e_1_3_4_1_2 article-title: Prevalence, associations, and trends of biliary-tract candidiasis: A prospective observational study publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2009.01.038 – volume: 11 start-page: 204 year: 2010 ident: e_1_3_4_6_2 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat Rev Genet doi: 10.1038/nrg2719 – volume: 293 start-page: 1070 year: 2001 ident: e_1_3_4_7_2 article-title: DNA methylation and epigenetic inheritance in plants and filamentous fungi publication-title: Science doi: 10.1126/science.293.5532.1070 – volume: 103 start-page: 14877 year: 2006 ident: e_1_3_4_17_2 article-title: Formation of functional centromeric chromatin is specified epigenetically in Candida albicans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0606958103 – volume: 99 start-page: 16485 year: 2002 ident: e_1_3_4_31_2 article-title: Induction and maintenance of nonsymmetrical DNA methylation in Neurospora publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.182427299 – volume: 53 start-page: 1451 year: 2004 ident: e_1_3_4_2_2 article-title: Regulatory networks affected by iron availability in Candida albicans publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04214.x – volume: 7 start-page: 72 year: 2007 ident: e_1_3_4_40_2 article-title: Chromatin structure and evolution in the human genome publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-72 – volume: 63 start-page: 38 year: 1971 ident: e_1_3_4_14_2 article-title: The nucleotide composition of deoxyribonucleic acid of some species of hymenochaetaceae and polyporaceae publication-title: Mycologia doi: 10.1080/00275514.1971.12019080 – volume: 459 start-page: 657 year: 2009 ident: e_1_3_4_15_2 article-title: Evolution of pathogenicity and sexual reproduction in eight Candida genomes publication-title: Nature doi: 10.1038/nature08064 – volume: 330 start-page: 838 year: 2010 ident: e_1_3_4_24_2 article-title: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss publication-title: Science doi: 10.1126/science.1194554 – reference: 16570852 - Curr Top Microbiol Immunol. 2006;301:259-81 – reference: 17001001 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14877-82 – reference: 21072239 - PLoS Biol. 2010;8(11):e1000506 – reference: 11705888 - Infect Immun. 2001 Dec;69(12):7197-204 – reference: 8021166 - J Bacteriol. 1994 Jul;176(13):3851-8 – reference: 11498574 - Science. 2001 Aug 10;293(5532):1070-4 – reference: 19465905 - Nature. 2009 Jun 4;459(7247):657-62 – reference: 1974693 - Mol Biol Evol. 1990 Jul;7(4):377-94 – reference: 19092133 - Genome Res. 2009 Mar;19(3):427-37 – reference: 19150054 - Biol Psychiatry. 2009 May 1;65(9):760-9 – reference: 19555935 - Gastrointest Endosc. 2009 Sep;70(3):480-7 – reference: 14973270 - Development. 2004 Mar;131(5):975-82 – reference: 1408825 - Nucleic Acids Res. 1992 Oct 11;20(19):5085-92 – reference: 17419877 - Genome Biol. 2007;8(4):R52 – reference: 15269278 - Mol Biol Cell. 2004 Oct;15(10):4490-9 – reference: 17128275 - Nat Genet. 2007 Jan;39(1):61-9 – reference: 18466294 - Mol Microbiol. 2008 Jul;69(1):201-17 – reference: 12712205 - Nature. 2003 Apr 24;422(6934):893-7 – reference: 7505062 - Science. 1993 Dec 10;262(5140):1737-41 – reference: 20483357 - Horm Behav. 2011 Mar;59(3):315-20 – reference: 15387822 - Mol Microbiol. 2004 Sep;53(5):1451-69 – reference: 10511546 - Genetics. 1999 Oct;153(2):653-64 – reference: 8012384 - Nat Genet. 1994 Mar;6(3):236-44 – reference: 16899543 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12807-12 – reference: 8065911 - Nucleic Acids Res. 1994 Aug 11;22(15):2990-7 – reference: 12189210 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16485-90 – reference: 15318244 - Nature. 2004 Sep 2;431(7004):96-9 – reference: 20613842 - Nature. 2010 Jul 8;466(7303):253-7 – reference: 20829771 - Nature. 2010 Sep 9;467(7312):146-8 – reference: 17588175 - Mol Genet Genomics. 2007 Oct;278(4):455-65 – reference: 20395474 - Science. 2010 May 14;328(5980):916-9 – reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 – reference: 17554048 - Microbiol Mol Biol Rev. 2007 Jun;71(2):348-76 – reference: 21051641 - Science. 2010 Nov 5;330(6005):838-41 – reference: 11483533 - EMBO J. 2001 Aug 1;20(15):4309-23 – reference: 10673276 - Genome Res. 2000 Feb;10(2):174-91 – reference: 3305486 - J Bacteriol. 1987 Sep;169(9):4393-5 – reference: 9308966 - Genes Dev. 1997 Sep 15;11(18):2383-95 – reference: 17490477 - BMC Evol Biol. 2007;7:72 |
SSID | ssj0009580 |
Score | 2.311055 |
Snippet | DNA methylation is a common epigenetic signaling mechanism associated with silencing of repeated DNA and transcriptional regulation in eukaryotes. Here we... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11965 |
SubjectTerms | animal pathogenic fungi Base Sequence Biological Sciences Blotting, Northern Blotting, Southern Candida albicans Candida albicans - genetics Deoxyribonucleic acid DNA DNA methylation DNA Methylation - genetics DNA Primers - genetics Environmental changes Epigenesis, Genetic - genetics Epigenetics eukaryotic cells Evolution Gene Expression Regulation, Fungal - genetics Gene regulation Genes Genes, Fungal - genetics Genetic mutation Genomes Genomics Genotype & phenotype hyphae Iron Iron - metabolism iron absorption loci Metabolism Methylation Molecular Sequence Data multigene family Mutation Mutation - genetics Nematodes Nutrition Pathogens Phenotype Plasticity Repeated DNA sequences Repression Sequence Analysis, DNA Sequencing Species Specificity structural genes Transcription transcription (genetics) Yeasts |
Title | DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans |
URI | https://www.jstor.org/stable/27978932 http://www.pnas.org/content/108/29/11965.abstract https://www.ncbi.nlm.nih.gov/pubmed/21730141 https://www.proquest.com/docview/878638022 https://www.proquest.com/docview/1817842744 https://www.proquest.com/docview/878596527 https://www.proquest.com/docview/904489626 https://pubmed.ncbi.nlm.nih.gov/PMC3141964 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYGCAj8TBUpSSpYzuP1fgxgVpNYpUqXiLHSdZKKEVN-wB_x_7g3cVxklatNHiJqsa5pr7Ld2fn7jtC3udBGkSSe64_ZMxlOs1dpbLI9RQLc3BRYRphgfN4wq-m7NssnPV6d52spc06Gei_e-tK_ker8B3oFatk_0GzjVD4Aj6DfuEIGobjg3T8aTKqWkD_MQlt_ZVpLJ-VfczcWuL2qmu73K6xG0TRgARSBOi6cwQW_mF1S6owWxlxsezGrNeNjyttRsHEbiGO2oKUGiXKvtu_nrTtjceLcl71MkJqpHIOiux_H7T7p6bN8li12ciXapWYVIAmTThtt1mFW2OfrRIA78dMffQgM-AKsYnLmWkP2qCvJztmVu9-GDD1ke2w45nxjae3F_YBp7BXcaHKikGVD30rdotge8fxNemI1Yt4MYxRQNwKOCKPAlh8INx_nfkdKmdpCpvqf2gJo8Tw484dbMU6R7la2qRXZNKFoftWNbvJuZ1o5-YpeVIvU-jI2NwJ6WXFM3JiVUwvarbyD8_JTzBC2jFC2hgh3WOEdMcIqTVCuihobYTUGuELMv3y-ebyyq0bdrg6DMO1qwU85iL3eRbJ0MsF1kVD7AOTJLw84YmnsjRIc6V8kUBkD7Gy9nTqpRA95dVS45QcF8siOyM05YHMueLaTzlLEi1BEEyqBKkAKEI7ZGCnNtY1mz02VfkVH1CmQy6aC34bIpfDQ89AV7G6BTcbT38ESMKIt-eFcOq0UmAjIhCRgJA_cIhTSWlFyziI4sqEHXJu1RzX6FHGUkhwfRBBO-RdcxagHd_XqSJbbuCOpC9w7hhzCD0wBsSE8BOBODwk8hiTEQ-4Q14a02rv3kcHz3yHiC2jawYg-fz2mWIxr0joh3BZxNmrh0_rOXncIsVrcrxebbI3ENGvk7fVA3YPbrHzNw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+methylation+regulates+phenotype-dependent+transcriptional+activity+in+Candida+albicans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mishra%2C+Prashant+K.&rft.au=Baum%2C+Mary&rft.au=Carbon%2C+John&rft.date=2011-07-19&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=29&rft.spage=11965&rft.epage=11970&rft_id=info:doi/10.1073%2Fpnas.1109631108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1109631108 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F29.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F29.cover.gif |