From temporal network data to the dynamics of social relationships

Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indee...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 288; no. 1959; pp. 1 - 9
Main Authors Gelardi, Valeria, Le Bail, Didier, Barrat, Alain, Claidiere, Nicolas
Format Journal Article
LanguageEnglish
Published England Royal Society 29.09.2021
Royal Society, The
The Royal Society
Subjects
Online AccessGet full text
ISSN0962-8452
1471-2954
1471-2954
DOI10.1098/rspb.2021.1164

Cover

Loading…
Abstract Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates’ datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.
AbstractList Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data, i.e., a stream of interactions between individuals, to a representation of the social group?s evolution, remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates? data sets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.
Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group's evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates' datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group's evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates' datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.
Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates’ datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.
Author Barrat, Alain
Gelardi, Valeria
Le Bail, Didier
Claidiere, Nicolas
Author_xml – sequence: 1
  givenname: Valeria
  surname: Gelardi
  fullname: Gelardi, Valeria
– sequence: 2
  givenname: Didier
  surname: Le Bail
  fullname: Le Bail, Didier
– sequence: 3
  givenname: Alain
  surname: Barrat
  fullname: Barrat, Alain
– sequence: 4
  givenname: Nicolas
  surname: Claidiere
  fullname: Claidiere, Nicolas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34583581$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03357923$$DView record in HAL
BookMark eNp1kjtv2zAUhYnAReI81m4tNKaDHD5EUVwKpEFSFzCQJTtB0lc1XUlUSTpF_n2oOAlaA50IkN85PLjnnqLZ4AdA6CPBC4JlcxXiaBYUU7IgpK6O0JxUgpRU8mqG5ljWtGwqTk_QaYxbjLHkDT9GJ6ziDeMNmaNvd8H3RYJ-9EF3xQDpjw-_irVOuki-SBso1k-D7p2NhW-L6K3LWIBOJ-eHuHFjPEcfWt1FuHg9z9DD3e3DzbJc3X__cXO9Ki3nPJVSckOFEeu20USbVghsa80NiBqM0ECpxRagNVAxziUYbWpbYwBpZEtqdoa-7m3HnelhbWFIObEag-t1eFJeO_Xvy-A26qd_VE0lJGM8G3zZG2wOZMvrlZrucKaEpOyRZPby9bPgf-8gJtW7aKHr9AB-FxXlQgiWg7KMfv4717vz24wzUO0BG3yMAVplXXoZX47pOkWwmqpUU5VqqlJNVWbZ4kD25vxfwae9YBuTD-80FXkNGkrZM8EWrHY
CitedBy_id crossref_primary_10_1063_5_0070170
crossref_primary_10_3389_fphy_2023_1239257
crossref_primary_10_1103_PhysRevE_107_024301
crossref_primary_10_1088_1751_8121_ad7b8e
crossref_primary_10_1016_j_jairtraman_2023_102504
crossref_primary_10_1103_PhysRevE_109_014126
crossref_primary_10_1016_j_trip_2024_101235
crossref_primary_10_1088_1402_4896_ad295f
crossref_primary_10_1038_s41567_022_01634_8
crossref_primary_10_1140_epjds_s13688_023_00381_x
crossref_primary_10_3390_informatics12010008
crossref_primary_10_1038_s42005_023_01517_1
crossref_primary_10_1093_comnet_cnab031
crossref_primary_10_3390_systems11020082
crossref_primary_10_1016_j_chaos_2022_112507
Cites_doi 10.1038/s41467-018-08160-3
10.1098/rspa.2019.0737
10.1103/PhysRevE.92.052813
10.1111/eth.13205
10.1371/journal.pone.0153690
10.1098/rsif.2015.0279
10.1103/PhysRevE.64.046132
10.1038/s41598-020-69464-3
10.1086/225469
10.1142/S0219477507003933
10.1038/srep00469
10.1140/epjb/e2015-60481-x
10.1145/1830252.1830269
10.1098/rspa.2020.0446
10.1371/journal.pone.0023176
10.1140/epjb/e2015-60657-4
10.1140/epjds4
10.1371/journal.pone.0011596
10.1007/978-3-319-77332-2_1
10.1073/pnas.0405728101
10.1073/pnas.1420068112
10.1017/CBO9780511815478
10.1371/journal.pone.0107878
10.1126/science.1145463
10.1103/PhysRevE.103.022304
10.1007/978-3-642-36461-7_9
10.1016/j.physrep.2012.03.001
10.1140/epjb/e2015-60106-6
10.1016/j.anbehav.2019.09.011
10.1073/pnas.1009094108
10.1126/science.1116869
10.1007/s00265-010-0986-0
10.1140/epjds/s13688-020-00256-5
10.1088/1742-5468/2011/11/P11005
10.1038/srep39713
10.1126/science.3538419
10.1038/s41598-021-84337-z
10.1163/156853999501522
10.1073/pnas.1307941110
10.1111/j.1469-185X.2009.00080.x
10.1103/PhysRevLett.92.228701
10.1016/j.anbehav.2008.11.021
10.1073/pnas.1308540110
10.1103/PhysRevE.83.025102
10.1140/epjds/s13688-017-0127-3
10.1371/journal.pcbi.1003142
10.1186/1741-7015-9-87
10.1016/j.anbehav.2015.09.020
10.2307/2800384
10.1145/3269206.3271767
10.1098/rsif.2012.0223
10.1038/s41598-018-37534-2
10.1002/ajp.20949
10.1073/pnas.0610245104
10.3389/fphy.2015.00073
10.1371/journal.pone.0095978
ContentType Journal Article
Copyright 2021 The Author(s)
Distributed under a Creative Commons Attribution 4.0 International License
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOI 10.1098/rspb.2021.1164
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Physics
DocumentTitleAlternate From temporal network data to the dynamics of social relationships
EISSN 1471-2954
EndPage 9
ExternalDocumentID PMC8479335
oai_HAL_hal_03357923v1
34583581
10_1098_rspb_2021_1164
27096822
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: DATAREDUX (ANR-19-CE46-0008)
– fundername: ;
  grantid: KAKENKHI Grant Number JP 20H04288
GroupedDBID ---
-~X
0R~
29P
2WC
36Y
4.4
5RE
85S
AACGO
AANCE
ABPLY
ABTLG
ACIWK
ACNCT
ACPRK
ACQIA
ADBBV
ADIYS
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BTFSW
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
JLS
JSG
JST
KQ8
MRS
O9-
OK1
RPM
TR2
W8F
~02
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c555t-995b27b7df8a1abf770c6a5be76eb7ae22c0ceefbe43559ebab6c60ee9b9f163
ISSN 0962-8452
1471-2954
IngestDate Thu Aug 21 18:39:14 EDT 2025
Fri May 09 12:18:45 EDT 2025
Fri Jul 11 08:49:59 EDT 2025
Thu Apr 03 06:58:28 EDT 2025
Tue Jul 01 02:07:12 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Thu May 29 08:50:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1959
Keywords primate behaviour
temporal networks
social relationships
social evolution
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555t-995b27b7df8a1abf770c6a5be76eb7ae22c0ceefbe43559ebab6c60ee9b9f163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5628902.
ORCID 0000-0001-6541-2012
0000-0002-4472-6597
0000-0001-8683-269X
OpenAccessLink https://hal.science/hal-03357923
PMID 34583581
PQID 2577734353
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479335
hal_primary_oai_HAL_hal_03357923v1
proquest_miscellaneous_2577734353
pubmed_primary_34583581
crossref_citationtrail_10_1098_rspb_2021_1164
crossref_primary_10_1098_rspb_2021_1164
jstor_primary_27096822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAlternate Proc Biol Sci
PublicationYear 2021
Publisher Royal Society
Royal Society, The
The Royal Society
Publisher_xml – name: Royal Society
– name: Royal Society, The
– name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_32_2
e_1_3_6_53_2
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_59_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_55_2
e_1_3_6_15_2
e_1_3_6_36_2
Elo AE (e_1_3_6_47_2) 1978
e_1_3_6_57_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_10_2
e_1_3_6_50_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
References_xml – ident: e_1_3_6_24_2
  doi: 10.1038/s41467-018-08160-3
– ident: e_1_3_6_59_2
  doi: 10.1098/rspa.2019.0737
– ident: e_1_3_6_31_2
  doi: 10.1103/PhysRevE.92.052813
– ident: e_1_3_6_46_2
  doi: 10.1111/eth.13205
– ident: e_1_3_6_49_2
  doi: 10.1371/journal.pone.0153690
– ident: e_1_3_6_14_2
  doi: 10.1098/rsif.2015.0279
– ident: e_1_3_6_38_2
  doi: 10.1103/PhysRevE.64.046132
– ident: e_1_3_6_27_2
  doi: 10.1038/s41598-020-69464-3
– ident: e_1_3_6_2_2
  doi: 10.1086/225469
– ident: e_1_3_6_39_2
  doi: 10.1142/S0219477507003933
– ident: e_1_3_6_52_2
  doi: 10.1038/srep00469
– ident: e_1_3_6_53_2
  doi: 10.1140/epjb/e2015-60481-x
– ident: e_1_3_6_28_2
  doi: 10.1145/1830252.1830269
– volume-title: The rating of chessplayers, past and present
  year: 1978
  ident: e_1_3_6_47_2
– ident: e_1_3_6_44_2
  doi: 10.1098/rspa.2020.0446
– ident: e_1_3_6_48_2
  doi: 10.1371/journal.pone.0023176
– ident: e_1_3_6_16_2
  doi: 10.1140/epjb/e2015-60657-4
– ident: e_1_3_6_29_2
  doi: 10.1140/epjds4
– ident: e_1_3_6_11_2
  doi: 10.1371/journal.pone.0011596
– ident: e_1_3_6_55_2
  doi: 10.1007/978-3-319-77332-2_1
– ident: e_1_3_6_6_2
  doi: 10.1073/pnas.0405728101
– ident: e_1_3_6_56_2
  doi: 10.1073/pnas.1420068112
– ident: e_1_3_6_4_2
  doi: 10.1017/CBO9780511815478
– ident: e_1_3_6_18_2
  doi: 10.1371/journal.pone.0107878
– ident: e_1_3_6_40_2
  doi: 10.1126/science.1145463
– ident: e_1_3_6_37_2
  doi: 10.1103/PhysRevE.103.022304
– ident: e_1_3_6_10_2
  doi: 10.1007/978-3-642-36461-7_9
– ident: e_1_3_6_15_2
  doi: 10.1016/j.physrep.2012.03.001
– ident: e_1_3_6_33_2
  doi: 10.1140/epjb/e2015-60106-6
– ident: e_1_3_6_19_2
  doi: 10.1016/j.anbehav.2019.09.011
– ident: e_1_3_6_12_2
  doi: 10.1073/pnas.1009094108
– ident: e_1_3_6_7_2
  doi: 10.1126/science.1116869
– ident: e_1_3_6_42_2
  doi: 10.1007/s00265-010-0986-0
– ident: e_1_3_6_22_2
  doi: 10.1140/epjds/s13688-020-00256-5
– ident: e_1_3_6_23_2
  doi: 10.1088/1742-5468/2011/11/P11005
– ident: e_1_3_6_34_2
  doi: 10.1038/srep39713
– ident: e_1_3_6_43_2
  doi: 10.1126/science.3538419
– ident: e_1_3_6_36_2
– ident: e_1_3_6_58_2
  doi: 10.1038/s41598-021-84337-z
– ident: e_1_3_6_54_2
  doi: 10.1163/156853999501522
– ident: e_1_3_6_26_2
  doi: 10.1073/pnas.1307941110
– ident: e_1_3_6_45_2
  doi: 10.1111/j.1469-185X.2009.00080.x
– ident: e_1_3_6_57_2
  doi: 10.1103/PhysRevLett.92.228701
– ident: e_1_3_6_41_2
  doi: 10.1016/j.anbehav.2008.11.021
– ident: e_1_3_6_17_2
  doi: 10.1073/pnas.1308540110
– ident: e_1_3_6_9_2
  doi: 10.1103/PhysRevE.83.025102
– ident: e_1_3_6_21_2
  doi: 10.1140/epjds/s13688-017-0127-3
– ident: e_1_3_6_32_2
  doi: 10.1371/journal.pcbi.1003142
– ident: e_1_3_6_50_2
  doi: 10.1186/1741-7015-9-87
– ident: e_1_3_6_51_2
  doi: 10.1016/j.anbehav.2015.09.020
– ident: e_1_3_6_3_2
  doi: 10.2307/2800384
– ident: e_1_3_6_25_2
  doi: 10.1145/3269206.3271767
– ident: e_1_3_6_30_2
  doi: 10.1098/rsif.2012.0223
– ident: e_1_3_6_35_2
  doi: 10.1038/s41598-018-37534-2
– ident: e_1_3_6_5_2
  doi: 10.1002/ajp.20949
– ident: e_1_3_6_8_2
  doi: 10.1073/pnas.0610245104
– ident: e_1_3_6_20_2
  doi: 10.3389/fphy.2015.00073
– ident: e_1_3_6_13_2
  doi: 10.1371/journal.pone.0095978
SSID ssj0009585
Score 2.518168
Snippet Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Behaviour
Condensed Matter
Interpersonal Relations
Physics
Social Networking
Statistical Mechanics
Title From temporal network data to the dynamics of social relationships
URI https://www.jstor.org/stable/27096822
https://www.ncbi.nlm.nih.gov/pubmed/34583581
https://www.proquest.com/docview/2577734353
https://hal.science/hal-03357923
https://pubmed.ncbi.nlm.nih.gov/PMC8479335
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6ISReEBsMyi8ZhASoSkmcOk4e18GoECAeirS3yE4cNdKUVk07afwF_NncxY6bTJ0EvESV61qO7-vd5fL5MyFvlB8XScG5J0MdeRMdTLxYhfjCVTIVsCgPmlL2t-_R7OfkywW_GAx-d1hL240aZ7_27iv5H6tCG9gVd8n-g2XdoNAAn8G-cAULw_WvbHze7A0x4lKXo8owukdI-mxTytwcON_wNWx5fN3S3xblqu7mpj9cLKtb5oApLlhm53g0bdBQOn9pw6dLyz_D0AC4hjsLgccwmC3fZzSVptz8sczLHSV4KteAQbPVRpYOqWcoXQndtEOr7BUoWIBsCrZzg72ZduuPEbjiiZGvHWvjfSFSevjiseueWRx3cZhYAXHjb4NO4E72RgQ_wV0O63qlxjg5CBFGNf2GyjYTMCFIlg7IHQYPHKyt-zj55uZwVzdpJ_8Zf-gP3UtvDhZIrjU8131PMDeJuJ3MZv6A3LePJPTU4OuIDHR1TO4aM18fkyPr_mv6zmqUv39Ipgg92kKPWuhRhB7dLClgh7bQo8uCGujRHvQekfn5p_nZzLPHcXgZ53zjJQlXTCiRF7EMpCqE8LNIcqVFpJWQmrHMB5gWSkMKzhOtpIqyyNc6UUkBaf8JOayWlX5CaCz9IM-gP7iJCR78Irj0cxQAKzJoyYbEaxcxzaxUPZ6YcpkaykSc4qKnuOgpLvqQvHX9V0ak5daer8EmrhNqq89Ov6bY5ochRzHNq2BIThqTuW4tOIbkVWvDFLwwvlqTlV5u6xQCnxAh3Hc4JI-NTd2vQ6Qm8BiGFT1r92bR_6YqF43Se4x175A_vW1Cz8i93T_uOTncrLf6BSTJG_Wywe8fHqC_OA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+temporal+network+data+to+the+dynamics+of+social+relationships&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Gelardi%2C+Valeria&rft.au=Le+Bail%2C+Didier&rft.au=Barrat%2C+Alain&rft.au=Claidiere%2C+Nicolas&rft.date=2021-09-29&rft.pub=Royal+Society&rft.issn=0962-8452&rft.eissn=1471-2954&rft.volume=288&rft.issue=1959&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1098%2Frspb.2021.1164&rft.externalDocID=27096822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon