From temporal network data to the dynamics of social relationships
Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indee...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 288; no. 1959; pp. 1 - 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society
29.09.2021
Royal Society, The The Royal Society |
Subjects | |
Online Access | Get full text |
ISSN | 0962-8452 1471-2954 1471-2954 |
DOI | 10.1098/rspb.2021.1164 |
Cover
Loading…
Abstract | Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates’ datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution. |
---|---|
AbstractList | Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data, i.e., a stream of interactions between individuals, to a representation of the social group?s evolution, remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates? data sets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution. Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group's evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates' datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution.Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group's evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates' datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution. Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal network data (i.e. a stream of interactions between individuals) to a representation of the social group’s evolution remains a challenge. Indeed, the temporal network at any specific time contains only the interactions taking place at that time and aggregating on successive time-windows also has important limitations. Here, we present a new framework to study the dynamic evolution of social networks based on the idea that social relationships are interdependent: as the time we can invest in social relationships is limited, reinforcing a relationship with someone is done at the expense of our relationships with others. We implement this interdependence in a parsimonious two-parameter model and apply it to several human and non-human primates’ datasets to demonstrate that this model detects even small and short perturbations of the networks that cannot be detected using the standard technique of successive aggregated networks. Our model solves a long-standing problem by providing a simple and natural way to describe the dynamic evolution of social networks, with far-reaching consequences for the study of social networks and social evolution. |
Author | Barrat, Alain Gelardi, Valeria Le Bail, Didier Claidiere, Nicolas |
Author_xml | – sequence: 1 givenname: Valeria surname: Gelardi fullname: Gelardi, Valeria – sequence: 2 givenname: Didier surname: Le Bail fullname: Le Bail, Didier – sequence: 3 givenname: Alain surname: Barrat fullname: Barrat, Alain – sequence: 4 givenname: Nicolas surname: Claidiere fullname: Claidiere, Nicolas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34583581$$D View this record in MEDLINE/PubMed https://hal.science/hal-03357923$$DView record in HAL |
BookMark | eNp1kjtv2zAUhYnAReI81m4tNKaDHD5EUVwKpEFSFzCQJTtB0lc1XUlUSTpF_n2oOAlaA50IkN85PLjnnqLZ4AdA6CPBC4JlcxXiaBYUU7IgpK6O0JxUgpRU8mqG5ljWtGwqTk_QaYxbjLHkDT9GJ6ziDeMNmaNvd8H3RYJ-9EF3xQDpjw-_irVOuki-SBso1k-D7p2NhW-L6K3LWIBOJ-eHuHFjPEcfWt1FuHg9z9DD3e3DzbJc3X__cXO9Ki3nPJVSckOFEeu20USbVghsa80NiBqM0ECpxRagNVAxziUYbWpbYwBpZEtqdoa-7m3HnelhbWFIObEag-t1eFJeO_Xvy-A26qd_VE0lJGM8G3zZG2wOZMvrlZrucKaEpOyRZPby9bPgf-8gJtW7aKHr9AB-FxXlQgiWg7KMfv4717vz24wzUO0BG3yMAVplXXoZX47pOkWwmqpUU5VqqlJNVWbZ4kD25vxfwae9YBuTD-80FXkNGkrZM8EWrHY |
CitedBy_id | crossref_primary_10_1063_5_0070170 crossref_primary_10_3389_fphy_2023_1239257 crossref_primary_10_1103_PhysRevE_107_024301 crossref_primary_10_1088_1751_8121_ad7b8e crossref_primary_10_1016_j_jairtraman_2023_102504 crossref_primary_10_1103_PhysRevE_109_014126 crossref_primary_10_1016_j_trip_2024_101235 crossref_primary_10_1088_1402_4896_ad295f crossref_primary_10_1038_s41567_022_01634_8 crossref_primary_10_1140_epjds_s13688_023_00381_x crossref_primary_10_3390_informatics12010008 crossref_primary_10_1038_s42005_023_01517_1 crossref_primary_10_1093_comnet_cnab031 crossref_primary_10_3390_systems11020082 crossref_primary_10_1016_j_chaos_2022_112507 |
Cites_doi | 10.1038/s41467-018-08160-3 10.1098/rspa.2019.0737 10.1103/PhysRevE.92.052813 10.1111/eth.13205 10.1371/journal.pone.0153690 10.1098/rsif.2015.0279 10.1103/PhysRevE.64.046132 10.1038/s41598-020-69464-3 10.1086/225469 10.1142/S0219477507003933 10.1038/srep00469 10.1140/epjb/e2015-60481-x 10.1145/1830252.1830269 10.1098/rspa.2020.0446 10.1371/journal.pone.0023176 10.1140/epjb/e2015-60657-4 10.1140/epjds4 10.1371/journal.pone.0011596 10.1007/978-3-319-77332-2_1 10.1073/pnas.0405728101 10.1073/pnas.1420068112 10.1017/CBO9780511815478 10.1371/journal.pone.0107878 10.1126/science.1145463 10.1103/PhysRevE.103.022304 10.1007/978-3-642-36461-7_9 10.1016/j.physrep.2012.03.001 10.1140/epjb/e2015-60106-6 10.1016/j.anbehav.2019.09.011 10.1073/pnas.1009094108 10.1126/science.1116869 10.1007/s00265-010-0986-0 10.1140/epjds/s13688-020-00256-5 10.1088/1742-5468/2011/11/P11005 10.1038/srep39713 10.1126/science.3538419 10.1038/s41598-021-84337-z 10.1163/156853999501522 10.1073/pnas.1307941110 10.1111/j.1469-185X.2009.00080.x 10.1103/PhysRevLett.92.228701 10.1016/j.anbehav.2008.11.021 10.1073/pnas.1308540110 10.1103/PhysRevE.83.025102 10.1140/epjds/s13688-017-0127-3 10.1371/journal.pcbi.1003142 10.1186/1741-7015-9-87 10.1016/j.anbehav.2015.09.020 10.2307/2800384 10.1145/3269206.3271767 10.1098/rsif.2012.0223 10.1038/s41598-018-37534-2 10.1002/ajp.20949 10.1073/pnas.0610245104 10.3389/fphy.2015.00073 10.1371/journal.pone.0095978 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Distributed under a Creative Commons Attribution 4.0 International License 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
DOI | 10.1098/rspb.2021.1164 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Physics |
DocumentTitleAlternate | From temporal network data to the dynamics of social relationships |
EISSN | 1471-2954 |
EndPage | 9 |
ExternalDocumentID | PMC8479335 oai_HAL_hal_03357923v1 34583581 10_1098_rspb_2021_1164 27096822 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: DATAREDUX (ANR-19-CE46-0008) – fundername: ; grantid: KAKENKHI Grant Number JP 20H04288 |
GroupedDBID | --- -~X 0R~ 29P 2WC 36Y 4.4 5RE 85S AACGO AANCE ABPLY ABTLG ACIWK ACNCT ACPRK ACQIA ADBBV ADIYS AFRAH ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS BAWUL BTFSW CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ JLS JSG JST KQ8 MRS O9- OK1 RPM TR2 W8F ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c555t-995b27b7df8a1abf770c6a5be76eb7ae22c0ceefbe43559ebab6c60ee9b9f163 |
ISSN | 0962-8452 1471-2954 |
IngestDate | Thu Aug 21 18:39:14 EDT 2025 Fri May 09 12:18:45 EDT 2025 Fri Jul 11 08:49:59 EDT 2025 Thu Apr 03 06:58:28 EDT 2025 Tue Jul 01 02:07:12 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Thu May 29 08:50:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1959 |
Keywords | primate behaviour temporal networks social relationships social evolution |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c555t-995b27b7df8a1abf770c6a5be76eb7ae22c0ceefbe43559ebab6c60ee9b9f163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5628902. |
ORCID | 0000-0001-6541-2012 0000-0002-4472-6597 0000-0001-8683-269X |
OpenAccessLink | https://hal.science/hal-03357923 |
PMID | 34583581 |
PQID | 2577734353 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479335 hal_primary_oai_HAL_hal_03357923v1 proquest_miscellaneous_2577734353 pubmed_primary_34583581 crossref_citationtrail_10_1098_rspb_2021_1164 crossref_primary_10_1098_rspb_2021_1164 jstor_primary_27096822 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-29 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Proceedings of the Royal Society. B, Biological sciences |
PublicationTitleAlternate | Proc Biol Sci |
PublicationYear | 2021 |
Publisher | Royal Society Royal Society, The The Royal Society |
Publisher_xml | – name: Royal Society – name: Royal Society, The – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 Elo AE (e_1_3_6_47_2) 1978 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 |
References_xml | – ident: e_1_3_6_24_2 doi: 10.1038/s41467-018-08160-3 – ident: e_1_3_6_59_2 doi: 10.1098/rspa.2019.0737 – ident: e_1_3_6_31_2 doi: 10.1103/PhysRevE.92.052813 – ident: e_1_3_6_46_2 doi: 10.1111/eth.13205 – ident: e_1_3_6_49_2 doi: 10.1371/journal.pone.0153690 – ident: e_1_3_6_14_2 doi: 10.1098/rsif.2015.0279 – ident: e_1_3_6_38_2 doi: 10.1103/PhysRevE.64.046132 – ident: e_1_3_6_27_2 doi: 10.1038/s41598-020-69464-3 – ident: e_1_3_6_2_2 doi: 10.1086/225469 – ident: e_1_3_6_39_2 doi: 10.1142/S0219477507003933 – ident: e_1_3_6_52_2 doi: 10.1038/srep00469 – ident: e_1_3_6_53_2 doi: 10.1140/epjb/e2015-60481-x – ident: e_1_3_6_28_2 doi: 10.1145/1830252.1830269 – volume-title: The rating of chessplayers, past and present year: 1978 ident: e_1_3_6_47_2 – ident: e_1_3_6_44_2 doi: 10.1098/rspa.2020.0446 – ident: e_1_3_6_48_2 doi: 10.1371/journal.pone.0023176 – ident: e_1_3_6_16_2 doi: 10.1140/epjb/e2015-60657-4 – ident: e_1_3_6_29_2 doi: 10.1140/epjds4 – ident: e_1_3_6_11_2 doi: 10.1371/journal.pone.0011596 – ident: e_1_3_6_55_2 doi: 10.1007/978-3-319-77332-2_1 – ident: e_1_3_6_6_2 doi: 10.1073/pnas.0405728101 – ident: e_1_3_6_56_2 doi: 10.1073/pnas.1420068112 – ident: e_1_3_6_4_2 doi: 10.1017/CBO9780511815478 – ident: e_1_3_6_18_2 doi: 10.1371/journal.pone.0107878 – ident: e_1_3_6_40_2 doi: 10.1126/science.1145463 – ident: e_1_3_6_37_2 doi: 10.1103/PhysRevE.103.022304 – ident: e_1_3_6_10_2 doi: 10.1007/978-3-642-36461-7_9 – ident: e_1_3_6_15_2 doi: 10.1016/j.physrep.2012.03.001 – ident: e_1_3_6_33_2 doi: 10.1140/epjb/e2015-60106-6 – ident: e_1_3_6_19_2 doi: 10.1016/j.anbehav.2019.09.011 – ident: e_1_3_6_12_2 doi: 10.1073/pnas.1009094108 – ident: e_1_3_6_7_2 doi: 10.1126/science.1116869 – ident: e_1_3_6_42_2 doi: 10.1007/s00265-010-0986-0 – ident: e_1_3_6_22_2 doi: 10.1140/epjds/s13688-020-00256-5 – ident: e_1_3_6_23_2 doi: 10.1088/1742-5468/2011/11/P11005 – ident: e_1_3_6_34_2 doi: 10.1038/srep39713 – ident: e_1_3_6_43_2 doi: 10.1126/science.3538419 – ident: e_1_3_6_36_2 – ident: e_1_3_6_58_2 doi: 10.1038/s41598-021-84337-z – ident: e_1_3_6_54_2 doi: 10.1163/156853999501522 – ident: e_1_3_6_26_2 doi: 10.1073/pnas.1307941110 – ident: e_1_3_6_45_2 doi: 10.1111/j.1469-185X.2009.00080.x – ident: e_1_3_6_57_2 doi: 10.1103/PhysRevLett.92.228701 – ident: e_1_3_6_41_2 doi: 10.1016/j.anbehav.2008.11.021 – ident: e_1_3_6_17_2 doi: 10.1073/pnas.1308540110 – ident: e_1_3_6_9_2 doi: 10.1103/PhysRevE.83.025102 – ident: e_1_3_6_21_2 doi: 10.1140/epjds/s13688-017-0127-3 – ident: e_1_3_6_32_2 doi: 10.1371/journal.pcbi.1003142 – ident: e_1_3_6_50_2 doi: 10.1186/1741-7015-9-87 – ident: e_1_3_6_51_2 doi: 10.1016/j.anbehav.2015.09.020 – ident: e_1_3_6_3_2 doi: 10.2307/2800384 – ident: e_1_3_6_25_2 doi: 10.1145/3269206.3271767 – ident: e_1_3_6_30_2 doi: 10.1098/rsif.2012.0223 – ident: e_1_3_6_35_2 doi: 10.1038/s41598-018-37534-2 – ident: e_1_3_6_5_2 doi: 10.1002/ajp.20949 – ident: e_1_3_6_8_2 doi: 10.1073/pnas.0610245104 – ident: e_1_3_6_20_2 doi: 10.3389/fphy.2015.00073 – ident: e_1_3_6_13_2 doi: 10.1371/journal.pone.0095978 |
SSID | ssj0009585 |
Score | 2.518168 |
Snippet | Networks are well-established representations of social systems, and temporal networks are widely used to study their dynamics. However, going from temporal... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Behaviour Condensed Matter Interpersonal Relations Physics Social Networking Statistical Mechanics |
Title | From temporal network data to the dynamics of social relationships |
URI | https://www.jstor.org/stable/27096822 https://www.ncbi.nlm.nih.gov/pubmed/34583581 https://www.proquest.com/docview/2577734353 https://hal.science/hal-03357923 https://pubmed.ncbi.nlm.nih.gov/PMC8479335 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6ISReEBsMyi8ZhASoSkmcOk4e18GoECAeirS3yE4cNdKUVk07afwF_NncxY6bTJ0EvESV61qO7-vd5fL5MyFvlB8XScG5J0MdeRMdTLxYhfjCVTIVsCgPmlL2t-_R7OfkywW_GAx-d1hL240aZ7_27iv5H6tCG9gVd8n-g2XdoNAAn8G-cAULw_WvbHze7A0x4lKXo8owukdI-mxTytwcON_wNWx5fN3S3xblqu7mpj9cLKtb5oApLlhm53g0bdBQOn9pw6dLyz_D0AC4hjsLgccwmC3fZzSVptz8sczLHSV4KteAQbPVRpYOqWcoXQndtEOr7BUoWIBsCrZzg72ZduuPEbjiiZGvHWvjfSFSevjiseueWRx3cZhYAXHjb4NO4E72RgQ_wV0O63qlxjg5CBFGNf2GyjYTMCFIlg7IHQYPHKyt-zj55uZwVzdpJ_8Zf-gP3UtvDhZIrjU8131PMDeJuJ3MZv6A3LePJPTU4OuIDHR1TO4aM18fkyPr_mv6zmqUv39Ipgg92kKPWuhRhB7dLClgh7bQo8uCGujRHvQekfn5p_nZzLPHcXgZ53zjJQlXTCiRF7EMpCqE8LNIcqVFpJWQmrHMB5gWSkMKzhOtpIqyyNc6UUkBaf8JOayWlX5CaCz9IM-gP7iJCR78Irj0cxQAKzJoyYbEaxcxzaxUPZ6YcpkaykSc4qKnuOgpLvqQvHX9V0ak5daer8EmrhNqq89Ov6bY5ochRzHNq2BIThqTuW4tOIbkVWvDFLwwvlqTlV5u6xQCnxAh3Hc4JI-NTd2vQ6Qm8BiGFT1r92bR_6YqF43Se4x175A_vW1Cz8i93T_uOTncrLf6BSTJG_Wywe8fHqC_OA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+temporal+network+data+to+the+dynamics+of+social+relationships&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Gelardi%2C+Valeria&rft.au=Le+Bail%2C+Didier&rft.au=Barrat%2C+Alain&rft.au=Claidiere%2C+Nicolas&rft.date=2021-09-29&rft.pub=Royal+Society&rft.issn=0962-8452&rft.eissn=1471-2954&rft.volume=288&rft.issue=1959&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1098%2Frspb.2021.1164&rft.externalDocID=27096822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon |