Mechanical fault diagnosis of high voltage circuit breaker using multimodal data fusion

A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the convenience and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It is very important to ensure the circuit breaker...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2248
Main Authors Li, Tianhui, Xia, Yanwei, Pang, Xianhai, Zhu, Jihong, Fan, Hui, Zhen, Li, Gu, Chaomin, Dong, Chi, Lu, Shijie
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 26.08.2024
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the convenience and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It is very important to ensure the circuit breaker conducts in a normal state. According to real statistics when HVCB works, most defects and faults in high voltage circuit breakers is caused by mechanical faults such as contact fault, mechanism seizure, bolt loosening, spring fatigue and so on. In this study, vibration sensors were placed at four different locations in the HVCB system to detect four common mechanical faults using vibration signal. In our approach, a convolutional attention network (CANet) was introduced to extract features and determine which mechanical faults occur within a fixed period of time. The results indicate that the mechanical fault diagnosis accuracy rate is up to 94.2%, surpassing traditional methods that rely solely on vibration signals from a single location.
AbstractList A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the convenience and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It is very important to ensure the circuit breaker conducts in a normal state. According to real statistics when HVCB works, most defects and faults in high voltage circuit breakers is caused by mechanical faults such as contact fault, mechanism seizure, bolt loosening, spring fatigue and so on. In this study, vibration sensors were placed at four different locations in the HVCB system to detect four common mechanical faults using vibration signal. In our approach, a convolutional attention network (CANet) was introduced to extract features and determine which mechanical faults occur within a fixed period of time. The results indicate that the mechanical fault diagnosis accuracy rate is up to 94.2%, surpassing traditional methods that rely solely on vibration signals from a single location.A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the convenience and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It is very important to ensure the circuit breaker conducts in a normal state. According to real statistics when HVCB works, most defects and faults in high voltage circuit breakers is caused by mechanical faults such as contact fault, mechanism seizure, bolt loosening, spring fatigue and so on. In this study, vibration sensors were placed at four different locations in the HVCB system to detect four common mechanical faults using vibration signal. In our approach, a convolutional attention network (CANet) was introduced to extract features and determine which mechanical faults occur within a fixed period of time. The results indicate that the mechanical fault diagnosis accuracy rate is up to 94.2%, surpassing traditional methods that rely solely on vibration signals from a single location.
A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the convenience and efficiency of mechanical structures, ignoring the aspect of their fault diagnosis. It is very important to ensure the circuit breaker conducts in a normal state. According to real statistics when HVCB works, most defects and faults in high voltage circuit breakers is caused by mechanical faults such as contact fault, mechanism seizure, bolt loosening, spring fatigue and so on. In this study, vibration sensors were placed at four different locations in the HVCB system to detect four common mechanical faults using vibration signal. In our approach, a convolutional attention network (CANet) was introduced to extract features and determine which mechanical faults occur within a fixed period of time. The results indicate that the mechanical fault diagnosis accuracy rate is up to 94.2%, surpassing traditional methods that rely solely on vibration signals from a single location.
ArticleNumber e2248
Audience Academic
Author Dong, Chi
Pang, Xianhai
Lu, Shijie
Zhen, Li
Li, Tianhui
Gu, Chaomin
Zhu, Jihong
Xia, Yanwei
Fan, Hui
Author_xml – sequence: 1
  givenname: Tianhui
  surname: Li
  fullname: Li, Tianhui
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
– sequence: 2
  givenname: Yanwei
  surname: Xia
  fullname: Xia, Yanwei
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
– sequence: 3
  givenname: Xianhai
  surname: Pang
  fullname: Pang, Xianhai
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
– sequence: 4
  givenname: Jihong
  surname: Zhu
  fullname: Zhu, Jihong
  organization: Nanjing Hz Electric Co., Ltd., Nanjing, China
– sequence: 5
  givenname: Hui
  surname: Fan
  fullname: Fan, Hui
  organization: State Grid Hebei Electric Power Supply Co., Ltd., Shijiazhuang, China
– sequence: 6
  givenname: Li
  surname: Zhen
  fullname: Zhen, Li
  organization: State Grid Hebei Electric Power Supply Co., Ltd., Shijiazhuang, China
– sequence: 7
  givenname: Chaomin
  surname: Gu
  fullname: Gu, Chaomin
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
– sequence: 8
  givenname: Chi
  surname: Dong
  fullname: Dong, Chi
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
– sequence: 9
  givenname: Shijie
  surname: Lu
  fullname: Lu, Shijie
  organization: State Grid Hebei Electric Power Research Institute, Shijiazhuang, China, State Grid Hebei Energy Technology Service Co., Ltd., Shijiazhuang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39314717$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAURiNUREvpki2KxAYWGezEsZMVqiqgIxUh8RBL68aPjIckHmyngn_PnU5bNQjshaPrc09s-XuaHU1-Mln2nJKVEFS82RkTtoWKq7JkzaPspKwEL-q2LY8efB9nZzFuCSG0pjjaJ9lx1VaUoeAk-_7RqA1MTsGQW5iHlGsH_eSji7m3-cb1m_zaDwl6kysX1OxS3gUDP0zI5-imPh-xyY1eo0BDgtxi2U_PsscWhmjObtfT7Nv7d18vLourTx_WF-dXharrOhVt3WhSakqJ5R2nrWqJ7ggXwHGnFlYz2wCvO1pyxrWoGmCiEzWzwgKSrDrN1gev9rCVu-BGCL-lBydvCj70EkJyajCSsgb_0FplgDBRqpZ1e33JqTC0ox263h5cu7kbjVZmSgGGhXS5M7mN7P21pJTRltccDa9uDcH_nE1McnRRmWGAyfg5yoqSRnCGb4foywPaA57NTdajUu1xed7QShBWlXvh6h8UTm1GpzAM1mF90fB60YBMMr9SD3OMcv3l85J98fC-9xe9SwcCxQFQwccYjL1HKJH7AMqbAEoV5T6AyFd_8colSBgHPLUb_tP1B0mB3wM
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126544
Cites_doi 10.1109/TIA.2023.3274099
10.1007/978-981-19-6135-9_22
10.3390/s23167201
10.3390/e22040478
10.1016/j.egyr.2022.11.118
10.3390/app14104036
10.1109/TIM.2023.3309387
10.1016/j.egyr.2023.04.341
10.1016/j.isatra.2020.10.018
10.1016/j.egyr.2022.12.130
10.1016/j.measurement.2022.110894
10.1007/s00202-023-02045-5
10.3390/app14083183
10.1007/s40747-023-01025-3
10.1109/TPWRD.2023.3278708
10.1016/j.epsr.2023.109224
10.1109/TIA.2022.3159617
10.1016/j.measurement.2022.111527
ContentType Journal Article
Copyright 2024 Li et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Li et al. 2024 Li et al.
Copyright_xml – notice: 2024 Li et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Li et al. 2024 Li et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2248
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_1486199fcea0472c94bd4f82617e1b1b
PMC11419656
A813704326
39314717
10_7717_peerj_cs_2248
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62371253 and 52278119
– fundername: State Grid Hebei Electric Power Co., Ltd. Technology Project Funding
  grantid: kj2022-062
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
H13
M0N
NPM
PMFND
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c555t-958d02d110f6b619c90db067a695857fd4f8a65b12646d738a47b754f7fa0db43
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:24:11 EDT 2025
Thu Aug 21 18:31:00 EDT 2025
Fri Jul 11 06:18:03 EDT 2025
Tue Jun 17 22:02:12 EDT 2025
Tue Jun 10 21:01:07 EDT 2025
Fri Jun 27 05:26:37 EDT 2025
Thu Jan 02 22:37:01 EST 2025
Thu Apr 24 23:10:30 EDT 2025
Tue Jul 01 04:11:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fault diagnosis
Artificial intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Li et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-958d02d110f6b619c90db067a695857fd4f8a65b12646d738a47b754f7fa0db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1486199fcea0472c94bd4f82617e1b1b
PMID 39314717
PQID 3108764771
PQPubID 23479
PageCount e2248
ParticipantIDs doaj_primary_oai_doaj_org_article_1486199fcea0472c94bd4f82617e1b1b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11419656
proquest_miscellaneous_3108764771
gale_infotracmisc_A813704326
gale_infotracacademiconefile_A813704326
gale_incontextgauss_ISR_A813704326
pubmed_primary_39314717
crossref_primary_10_7717_peerj_cs_2248
crossref_citationtrail_10_7717_peerj_cs_2248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Yan (10.7717/peerj-cs.2248/ref-15) 2023; 72
Li (10.7717/peerj-cs.2248/ref-5) 2023; 9
Xu (10.7717/peerj-cs.2248/ref-14) 2024; 14
Yang (10.7717/peerj-cs.2248/ref-16) 2023; 9
Xu (10.7717/peerj-cs.2248/ref-13) 2022
Zhuang (10.7717/peerj-cs.2248/ref-21) 2022
Zheng (10.7717/peerj-cs.2248/ref-20) 2023; 218
Cao (10.7717/peerj-cs.2248/ref-1) 2023; 23
Zhang (10.7717/peerj-cs.2248/ref-18) 2023; 9
Chen (10.7717/peerj-cs.2248/ref-2) 2021; 109
Sui (10.7717/peerj-cs.2248/ref-8) 2024; 14
Zhang (10.7717/peerj-cs.2248/ref-19) 2022; 192
Li (10.7717/peerj-cs.2248/ref-4) 2022; 1638
Wu (10.7717/peerj-cs.2248/ref-12) 2022
Wang (10.7717/peerj-cs.2248/ref-10) 2023; 59
Qi (10.7717/peerj-cs.2248/ref-7) 2020; 22
Tahvilzadeh (10.7717/peerj-cs.2248/ref-9) 2023; 38
Chen (10.7717/peerj-cs.2248/ref-3) 2023; 9
Liu (10.7717/peerj-cs.2248/ref-6) 2024; 106
Wang (10.7717/peerj-cs.2248/ref-11) 2022; 58
Ye (10.7717/peerj-cs.2248/ref-17) 2022; 199
References_xml – volume: 59
  start-page: 4942
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-10
  article-title: A novel hybrid transfer learning approach for small-sample high-voltage circuit breaker fault diagnosis on-site
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/TIA.2023.3274099
– year: 2022
  ident: 10.7717/peerj-cs.2248/ref-12
  article-title: Timesnet: temporal 2d-variation modeling for general time series analysis
– volume: 1638
  start-page: 287
  year: 2022
  ident: 10.7717/peerj-cs.2248/ref-4
  article-title: Multi-layer integrated extreme learning machine for mechanical fault diagnosis of high-voltage circuit breaker
  doi: 10.1007/978-981-19-6135-9_22
– volume: 23
  start-page: 7201
  issue: 16
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-1
  article-title: A mechanical defect localization and identification method for high-voltage circuit breakers based on the segmentation of vibration signals and extraction of chaotic features
  publication-title: Sensors
  doi: 10.3390/s23167201
– start-page: 268
  year: 2022
  ident: 10.7717/peerj-cs.2248/ref-21
  article-title: Deep learning based approach for high voltage circuit breaker mechanical fault diagnosis
– volume: 22
  start-page: 478
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.2248/ref-7
  article-title: Mechanical fault diagnosis of a high voltage circuit breaker based on high-efficiency time-domain feature extraction with entropy features
  publication-title: Entropy
  doi: 10.3390/e22040478
– year: 2022
  ident: 10.7717/peerj-cs.2248/ref-13
  article-title: Anomaly transformer: time series anomaly detection with association discrepancy
– volume: 9
  start-page: 954
  issue: 07
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-18
  article-title: Principal component analysis (PCA) based sparrow search algorithm (SSA) for optimal learning vector quantized (LVQ) neural network for mechanical fault diagnosis of high voltage circuit breakers
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.11.118
– volume: 14
  start-page: 4036
  issue: 10
  year: 2024
  ident: 10.7717/peerj-cs.2248/ref-8
  article-title: Mechanical fault diagnosis of high-voltage circuit breakers with dynamic multi-attention graph convolutional networks based on adaptive graph construction
  publication-title: Applied Sciences
  doi: 10.3390/app14104036
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-15
  article-title: Few-shot mechanical fault diagnosis for a high-voltage circuit breaker via a transformer-convolutional neural network and metric meta-learning
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2023.3309387
– volume: 9
  start-page: 628
  issue: 07
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-16
  article-title: Fault diagnosis of WOA-SVM high voltage circuit breaker based on PCA Principal Component Analysis
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2023.04.341
– volume: 109
  start-page: 368
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.2248/ref-2
  article-title: Intelligent fault diagnosis of high-voltage circuit breakers using triangular global alignment kernel extreme learning machine
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2020.10.018
– volume: 9
  start-page: 286
  issue: 17
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-3
  article-title: ANFIS based sound vibration combined fault diagnosis of high voltage circuit breaker (HVCB)
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.12.130
– volume: 192
  start-page: 110894
  issue: 7
  year: 2022
  ident: 10.7717/peerj-cs.2248/ref-19
  article-title: Fault diagnosis of high voltage circuit breaker based on multi-sensor information fusion with training weights
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110894
– volume: 106
  start-page: 1093
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2248/ref-6
  article-title: Mechanical defect diagnosis of high voltage circuit breakers based on the combination of stroke curve and current signal
  publication-title: Electrical Engineering
  doi: 10.1007/s00202-023-02045-5
– volume: 14
  start-page: 3183
  issue: 8
  year: 2024
  ident: 10.7717/peerj-cs.2248/ref-14
  article-title: Intelligent mechanical fault diagnosis method for high-voltage circuit breakers based on grey wolf optimization and multi-grained cascade forest algorithms
  publication-title: Applied Sciences
  doi: 10.3390/app14083183
– volume: 9
  start-page: 5991
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-5
  article-title: Robust fault diagnosis of a high-voltage circuit breaker via an ensemble echo state network with evidence fusion
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-023-01025-3
– volume: 38
  start-page: 3356
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-9
  article-title: Model-aided approach for intelligent fault detection system for SF 6 high-voltage circuit breaker with spring operating mechanism
  publication-title: IEEE Transactions on Power Delivery
  doi: 10.1109/TPWRD.2023.3278708
– volume: 218
  start-page: 109224
  issue: 99
  year: 2023
  ident: 10.7717/peerj-cs.2248/ref-20
  article-title: Prediction method of mechanical state of high-voltage circuit breakers based on LSTM-SVM
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2023.109224
– volume: 58
  start-page: 3353
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2248/ref-11
  article-title: Few-shot transfer learning with attention mechanism for high-voltage circuit breaker fault diagnosis
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/TIA.2022.3159617
– volume: 199
  start-page: 111527
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2248/ref-17
  article-title: A novel U-Net and capsule network for few-shot high-voltage circuit breaker mechanical fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111527
SSID ssj0001511119
Score 2.2802916
Snippet A high voltage circuit breaker (HVCB) plays a crucial role in current smart power system. However, the current research on HVCB mainly focuses on the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2248
SubjectTerms Algorithms and Analysis of Algorithms
Artificial Intelligence
Deep learning
Fault diagnosis
Neural Networks
Seizures (Medicine)
Sensors
Title Mechanical fault diagnosis of high voltage circuit breaker using multimodal data fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/39314717
https://www.proquest.com/docview/3108764771
https://pubmed.ncbi.nlm.nih.gov/PMC11419656
https://doaj.org/article/1486199fcea0472c94bd4f82617e1b1b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BuXDhGxooK4MQXAhNNvFHji3qUpBaoUJFb5bt2GWhJNUm-f_MJNnVRghx4RqPovhlPPPGGj8DvHI-KEcKAN5L2q1KXFx46eK5TEubZA6zOp0dPjkVx-f5pwt-sXXVF_WEDfLAA3D7SNeR4xfBeUPChq7IbZkHRULiPrWppeiLOW-rmBrOB1MoKAZRTYkly_6196sfsWveYc5SkyTUa_X_GZG3UtK0XXIr_yzuwZ2ROLKD4YPvww1fPYC760sZ2LhGH8K3E0-HeQl7Fkx31bJy6KZbNqwOjOSJGYakFuMIc8uV65Ytw7LY_MSXUBP8Jet7DH_VJb6A-kdZ6GhH7RGcL46-vj-Ox9sTYsc5b-OCqzKZl5jeg7AIoSsSRF9II3CEy0AoGsFtipRIlDJTJpdW8jzIYNAyzx7DTlVXfhdY4ZUwmecuGCQAQarUGKXKkChvjTUygrdrOLUbpcXphosrjSUGoa979LVrNKEfweuN-fWgqfE3w0P6NxsjksLuH6CD6NFB9L8cJIKX9Gc1iV1U1E1zabqm0R-_nOkDlWaSNAlFBG9Go1DjlzszHk7A-ZM-1sRyb2KJq9FNhl-sHUjTELWwVb7uGo08GjNPjrOM4MngUJuJZUWWIktAINXE1SYzn45Uy--9GDjWsyQKKZ7-D6yewe05kjbaM5-LPdhpV51_jqSrtTO4qRYfZnDr8Oj089msX22_AVtPL7E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+fault+diagnosis+of+high+voltage+circuit+breaker+using+multimodal+data+fusion&rft.jtitle=PeerJ.+Computer+science&rft.au=Li%2C+Tianhui&rft.au=Xia%2C+Yanwei&rft.au=Pang%2C+Xianhai&rft.au=Zhu%2C+Jihong&rft.date=2024-08-26&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2248&rft_id=info:doi/10.7717%2Fpeerj-cs.2248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon