Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore

We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus LIMNOHABITANS: The two strains, designated B4 and D5, were isolated concurrently from a...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 76; no. 5; pp. 1406 - 1416
Main Authors Šimek, Karel, Kasalický, Vojtěch, Horňák, Karel, Hahn, Martin W, Weinbauer, Markus G
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.03.2010
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus LIMNOHABITANS: The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.
AbstractList We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains. [PUBLICATION ABSTRACT]
We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.
We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans . The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.
We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.
AUTHORS' CORRECTIONS ( vol. 76 , p. 3762 ) Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
Author Horňák, Karel
Weinbauer, Markus G
Šimek, Karel
Hahn, Martin W
Kasalický, Vojtěch
AuthorAffiliation Biology Centre of the Academy of Sciences of the Czech Republic, Hydrobiological Institute, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic, 1 Faculty of Sciences, University of South Bohemia, CZ-37005 České Budějovice, Czech Republic, 2 Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee Austria, 3 Marine Microbial Ecology and Biogeochemistry Group, Laboratoire d'Océanographie de Villefranche (LOV), UMR 7093 CNRS, BP 28, 06234 Villefranche-sur-Mer, France 4
AuthorAffiliation_xml – name: Biology Centre of the Academy of Sciences of the Czech Republic, Hydrobiological Institute, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic, 1 Faculty of Sciences, University of South Bohemia, CZ-37005 České Budějovice, Czech Republic, 2 Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee Austria, 3 Marine Microbial Ecology and Biogeochemistry Group, Laboratoire d'Océanographie de Villefranche (LOV), UMR 7093 CNRS, BP 28, 06234 Villefranche-sur-Mer, France 4
Author_xml – sequence: 1
  fullname: Šimek, Karel
– sequence: 2
  fullname: Kasalický, Vojtěch
– sequence: 3
  fullname: Horňák, Karel
– sequence: 4
  fullname: Hahn, Martin W
– sequence: 5
  fullname: Weinbauer, Markus G
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22487663$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20038688$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01663323$$DView record in HAL
BookMark eNp9ks9v0zAUxy00xLrCjTMEJEBIzfCP2LEvSKUabFKBQxlXy03sxlNiFzvZ4M4fjkM7flSC05Pe-3zf7xNw5LzTADxE8BQhzF_Nz96fQkxRmUNxB0wQFDynhLAjMIFQiBzjAh6DkxivIIQFZPweOMYQEs44n4Dv8xh1jNZtsg-2anS20lsVVG-9y1Tnk3vh9Vcb-5FY2s75Rq1tr1zMVn1QNtm-CX7YNNmF63VQ1SiN2Y3tm0wlcbfVve19mGWfbRhSrVmmXJ1CbxKqg732Qd8Hd41qo36wt1Nw-fbs0-I8X358d7GYL_OKUtrn3BRE1ISJAmFGOeEI16gokdA1L4u1wSWHhq6NxrxGCNbCEM7XZa3W0CDDDJmC17u822Hd6brSLo3Qym2wnQrfpFdW_h1xtpEbfy0xJ5iUZUrwcpegOZCdz5dy9EHEGEnsNUrsi32x4L8MOvays7HSbauc9kOUJSGUIEF4Ip__lywYLUgJaQKfHoBXfggurUxiSAUTlOEEPfpzyF9t3t48Ac_2gIqVak1QrrLxN4cLXo5TTAHecVXwMQZtZJUOP553PHwrEZTjA8r0gPLnA0ookmh2ILrN-w_8yX6hdtPc2KClip1UupMlk1Si9K-JebxjjPJSbULq9XKFISIQccgLTMgPdPrv0Q
CODEN AEMIDF
CitedBy_id crossref_primary_10_1099_ijs_0_013292_0
crossref_primary_10_3354_ame01796
crossref_primary_10_1111_j_1462_2920_2012_02719_x
crossref_primary_10_1111_1574_6941_12388
crossref_primary_10_1099_ijs_0_018952_0
crossref_primary_10_1111_j_1462_2920_2010_02387_x
crossref_primary_10_1111_j_1574_6941_2011_01268_x
crossref_primary_10_1111_j_1574_6941_2012_01372_x
crossref_primary_10_1111_1462_2920_12529
crossref_primary_10_1128_AEM_01530_17
crossref_primary_10_1111_1462_2920_12427
crossref_primary_10_1128_AEM_00140_20
crossref_primary_10_1128_JB_01481_12
crossref_primary_10_1007_s00343_016_5277_9
crossref_primary_10_1128_AEM_05107_11
crossref_primary_10_1371_journal_pone_0051576
crossref_primary_10_1111_1462_2920_12077
crossref_primary_10_1111_1462_2920_12074
crossref_primary_10_1111_1758_2229_12260
crossref_primary_10_1371_journal_pone_0058209
crossref_primary_10_1111_j_1462_2920_2010_02396_x
crossref_primary_10_1080_10889868_2019_1639611
crossref_primary_10_3389_fmicb_2015_01519
crossref_primary_10_1111_j_1462_2920_2011_02635_x
crossref_primary_10_1111_j_1574_6941_2012_01463_x
crossref_primary_10_7554_eLife_81692
Cites_doi 10.1128/AEM.64.5.1910-1918.1998
10.1038/ismej.2008.15
10.1007/s00248-001-0012-1
10.3354/ame028141
10.4319/lo.2006.51.6.2527
10.1128/AEM.69.5.2928-2935.2003
10.1128/AEM.70.3.1506-1513.2004
10.1016/j.femsre.2003.08.001
10.1111/j.1462-2920.2004.00607.x
10.1128/aem.62.6.1991-1997.1996
10.1128/AEM.71.12.8201-8206.2005
10.1128/AEM.68.6.3094-3101.2002
10.3354/ame041115
10.1111/j.1462-2920.2007.01334.x
10.1128/AEM.02203-09
10.1038/nrmicro1180
10.3354/ame018001
10.1128/AEM.71.2.766-773.2005
10.1016/j.femsec.2004.12.001
10.1128/AEM.71.5.2381-2390.2005
10.1111/j.1574-6941.2001.tb00794.x
10.3354/ame039205
10.1128/AEM.69.9.5248-5254.2003
10.3354/ame033001
10.1127/1863-9135/2007/0170-0125
10.1016/j.mimet.2004.02.004
10.1126/science.1118052
10.1038/21119
10.1111/j.1462-2920.2006.01200.x
10.1128/AEM.70.8.4831-4839.2004
10.3989/scimar.2000.64n2197
10.1111/j.1462-2920.2008.01807.x
10.1111/j.1461-0248.2005.00768.x
10.1128/AEM.02935-05
10.1111/j.1462-2920.2008.01628.x
10.1038/nrmicro1750
10.3354/ame01210
10.4319/lo.1999.44.7.1634
10.1128/aem.63.3.867-873.1997
10.1111/j.1462-2920.2006.01053.x
10.1126/science.1157890
10.1111/j.1462-2920.2006.01201.x
10.1111/j.1462-2920.2004.00657.x
10.1128/AEM.65.1.25-35.1999
10.1128/AEM.67.6.2723-2733.2001
10.3354/ame01190
10.1128/AEM.00794-07
10.3354/ame013019
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Microbiology Mar 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2010, American Society for Microbiology 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Microbiology Mar 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2010, American Society for Microbiology 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
1XC
5PM
DOI 10.1128/AEM.02517-09
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

CrossRef

AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Oceanography
EISSN 1098-5336
EndPage 1416
ExternalDocumentID PMC2832377
oai_HAL_hal_01663323v1
1972956941
20038688
22487663
10_1128_AEM_02517_09
aem_76_5_1406
US201301808423
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
ADXHL
AENEX
AFFNX
AFRAH
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
FBQ
GX1
H13
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XJT
YV5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAYXX
CITATION
IQODW
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
1XC
UMC
5PM
ID FETCH-LOGICAL-c555t-8f439d3694126583812d14719ed874bf2780f5bfe28d110d9f388b7dab0f1f6f3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 17:59:31 EDT 2025
Fri May 09 12:28:06 EDT 2025
Fri Jul 11 15:12:31 EDT 2025
Fri Jul 11 10:25:21 EDT 2025
Mon Jun 30 08:57:00 EDT 2025
Thu Apr 03 06:55:42 EDT 2025
Mon Jul 21 09:16:55 EDT 2025
Tue Jul 01 02:19:11 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Wed May 18 15:29:04 EDT 2016
Sun Jun 08 08:28:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Virus
Interaction
Separation
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555t-8f439d3694126583812d14719ed874bf2780f5bfe28d110d9f388b7dab0f1f6f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC2832377
ORCID 0000-0002-7697-5571
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2832377
PMID 20038688
PQID 205969562
PQPubID 42251
PageCount 11
ParticipantIDs pascalfrancis_primary_22487663
fao_agris_US201301808423
proquest_miscellaneous_46543705
proquest_miscellaneous_733531938
pubmed_primary_20038688
highwire_asm_aem_76_5_1406
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2832377
proquest_journals_205969562
crossref_citationtrail_10_1128_AEM_02517_09
hal_primary_oai_HAL_hal_01663323v1
crossref_primary_10_1128_AEM_02517_09
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2010
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
(e_1_3_2_45_2) 1993
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
15691929 - Appl Environ Microbiol. 2005 Feb;71(2):766-73
11295449 - FEMS Microbiol Ecol. 2001 Apr;35(2):113-121
18430016 - Environ Microbiol. 2008 Aug;10(8):2074-86
12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101
16913921 - Environ Microbiol. 2006 Sep;8(9):1613-24
10376593 - Nature. 1999 Jun 10;399(6736):541-8
17298376 - Environ Microbiol. 2007 Mar;9(3):777-88
16329920 - FEMS Microbiol Ecol. 2005 May 1;52(3):351-63
12024264 - Microb Ecol. 2001 Oct;42(3):395-406
11375187 - Appl Environ Microbiol. 2001 Jun;67(6):2723-33
15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81
15186345 - Environ Microbiol. 2004 Jul;6(7):669-77
19671731 - Int J Syst Evol Microbiol. 2010 Jun;60(Pt 6):1358-65
18273065 - ISME J. 2008 May;2(5):498-509
9572971 - Appl Environ Microbiol. 1998 May 1;64(5):1910-8
16820462 - Appl Environ Microbiol. 2006 Jul;72(7):4704-12
16332803 - Appl Environ Microbiol. 2005 Dec;71(12):8201-6
18497299 - Science. 2008 May 23;320(5879):1081-5
15006772 - Appl Environ Microbiol. 2004 Mar;70(3):1506-13
15870325 - Appl Environ Microbiol. 2005 May;71(5):2381-90
Appl Environ Microbiol. 2010 Jun;76(11):3762
12957910 - Appl Environ Microbiol. 2003 Sep;69(9):5248-54
17827330 - Appl Environ Microbiol. 2007 Nov;73(22):7169-76
9872755 - Appl Environ Microbiol. 1999 Jan;65(1):25-35
17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12
16556835 - Science. 2006 Mar 24;311(5768):1737-40
17298377 - Environ Microbiol. 2007 Mar;9(3):789-800
15560821 - Environ Microbiol. 2004 Dec;6(12):1228-43
17686018 - Environ Microbiol. 2007 Sep;9(9):2200-10
15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46
19948856 - Appl Environ Microbiol. 2010 Feb;76(3):631-9
15294821 - Appl Environ Microbiol. 2004 Aug;70(8):4831-9
12732568 - Appl Environ Microbiol. 2003 May;69(5):2928-35
15134885 - J Microbiol Methods. 2004 Jun;57(3):379-90
16535553 - Appl Environ Microbiol. 1997 Mar;63(3):867-73
16535334 - Appl Environ Microbiol. 1996 Jun;62(6):1991-7
19040452 - Environ Microbiol. 2009 Apr;11(4):867-76
References_xml – ident: e_1_3_2_10_2
  doi: 10.1128/AEM.64.5.1910-1918.1998
– ident: e_1_3_2_34_2
  doi: 10.1038/ismej.2008.15
– ident: e_1_3_2_23_2
  doi: 10.1007/s00248-001-0012-1
– ident: e_1_3_2_51_2
  doi: 10.3354/ame028141
– ident: e_1_3_2_12_2
– ident: e_1_3_2_29_2
  doi: 10.4319/lo.2006.51.6.2527
– ident: e_1_3_2_37_2
  doi: 10.1128/AEM.69.5.2928-2935.2003
– ident: e_1_3_2_4_2
  doi: 10.1128/AEM.70.3.1506-1513.2004
– ident: e_1_3_2_49_2
  doi: 10.1016/j.femsre.2003.08.001
– ident: e_1_3_2_8_2
  doi: 10.1111/j.1462-2920.2004.00607.x
– ident: e_1_3_2_24_2
  doi: 10.1128/aem.62.6.1991-1997.1996
– ident: e_1_3_2_22_2
  doi: 10.1128/AEM.71.12.8201-8206.2005
– ident: e_1_3_2_31_2
  doi: 10.1128/AEM.68.6.3094-3101.2002
– ident: e_1_3_2_44_2
  doi: 10.3354/ame041115
– ident: e_1_3_2_30_2
  doi: 10.1111/j.1462-2920.2007.01334.x
– ident: e_1_3_2_40_2
  doi: 10.1128/AEM.02203-09
– ident: e_1_3_2_32_2
  doi: 10.1038/nrmicro1180
– ident: e_1_3_2_28_2
  doi: 10.3354/ame018001
– ident: e_1_3_2_14_2
  doi: 10.1128/AEM.71.2.766-773.2005
– ident: e_1_3_2_20_2
  doi: 10.1016/j.femsec.2004.12.001
– start-page: 121
  year: 1993
  ident: e_1_3_2_45_2
  publication-title: Handbook of methods in aquatic microbial ecology
– ident: e_1_3_2_38_2
  doi: 10.1128/AEM.71.5.2381-2390.2005
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1574-6941.2001.tb00794.x
– ident: e_1_3_2_3_2
  doi: 10.3354/ame039205
– ident: e_1_3_2_9_2
  doi: 10.1128/AEM.69.9.5248-5254.2003
– ident: e_1_3_2_25_2
  doi: 10.3354/ame033001
– ident: e_1_3_2_18_2
  doi: 10.1127/1863-9135/2007/0170-0125
– ident: e_1_3_2_15_2
  doi: 10.1016/j.mimet.2004.02.004
– ident: e_1_3_2_21_2
  doi: 10.1126/science.1118052
– ident: e_1_3_2_6_2
  doi: 10.1038/21119
– ident: e_1_3_2_50_2
  doi: 10.1111/j.1462-2920.2006.01200.x
– ident: e_1_3_2_19_2
  doi: 10.1128/AEM.70.8.4831-4839.2004
– ident: e_1_3_2_7_2
  doi: 10.3989/scimar.2000.64n2197
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1462-2920.2008.01807.x
– ident: e_1_3_2_48_2
  doi: 10.1111/j.1461-0248.2005.00768.x
– ident: e_1_3_2_36_2
  doi: 10.1128/AEM.02935-05
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1462-2920.2008.01628.x
– ident: e_1_3_2_46_2
  doi: 10.1038/nrmicro1750
– ident: e_1_3_2_16_2
  doi: 10.3354/ame01210
– ident: e_1_3_2_41_2
  doi: 10.4319/lo.1999.44.7.1634
– ident: e_1_3_2_33_2
  doi: 10.1128/aem.63.3.867-873.1997
– ident: e_1_3_2_39_2
  doi: 10.1111/j.1462-2920.2006.01053.x
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1157890
– ident: e_1_3_2_43_2
  doi: 10.1111/j.1462-2920.2006.01201.x
– ident: e_1_3_2_5_2
  doi: 10.1111/j.1462-2920.2004.00657.x
– ident: e_1_3_2_13_2
  doi: 10.1128/AEM.65.1.25-35.1999
– ident: e_1_3_2_42_2
  doi: 10.1128/AEM.67.6.2723-2733.2001
– ident: e_1_3_2_26_2
  doi: 10.3354/ame01190
– ident: e_1_3_2_27_2
  doi: 10.1128/AEM.00794-07
– ident: e_1_3_2_47_2
  doi: 10.3354/ame013019
– reference: 17298376 - Environ Microbiol. 2007 Mar;9(3):777-88
– reference: 17686018 - Environ Microbiol. 2007 Sep;9(9):2200-10
– reference: 12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101
– reference: 18430016 - Environ Microbiol. 2008 Aug;10(8):2074-86
– reference: 15560821 - Environ Microbiol. 2004 Dec;6(12):1228-43
– reference: 11375187 - Appl Environ Microbiol. 2001 Jun;67(6):2723-33
– reference: 12024264 - Microb Ecol. 2001 Oct;42(3):395-406
– reference: 15953930 - Nat Rev Microbiol. 2005 Jul;3(7):537-46
– reference: 11295449 - FEMS Microbiol Ecol. 2001 Apr;35(2):113-121
– reference: 19671731 - Int J Syst Evol Microbiol. 2010 Jun;60(Pt 6):1358-65
– reference: - Appl Environ Microbiol. 2010 Jun;76(11):3762
– reference: 15186345 - Environ Microbiol. 2004 Jul;6(7):669-77
– reference: 17298377 - Environ Microbiol. 2007 Mar;9(3):789-800
– reference: 19948856 - Appl Environ Microbiol. 2010 Feb;76(3):631-9
– reference: 17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12
– reference: 10376593 - Nature. 1999 Jun 10;399(6736):541-8
– reference: 16535553 - Appl Environ Microbiol. 1997 Mar;63(3):867-73
– reference: 15870325 - Appl Environ Microbiol. 2005 May;71(5):2381-90
– reference: 16535334 - Appl Environ Microbiol. 1996 Jun;62(6):1991-7
– reference: 12732568 - Appl Environ Microbiol. 2003 May;69(5):2928-35
– reference: 16329920 - FEMS Microbiol Ecol. 2005 May 1;52(3):351-63
– reference: 15691929 - Appl Environ Microbiol. 2005 Feb;71(2):766-73
– reference: 17827330 - Appl Environ Microbiol. 2007 Nov;73(22):7169-76
– reference: 16913921 - Environ Microbiol. 2006 Sep;8(9):1613-24
– reference: 9872755 - Appl Environ Microbiol. 1999 Jan;65(1):25-35
– reference: 9572971 - Appl Environ Microbiol. 1998 May 1;64(5):1910-8
– reference: 15294821 - Appl Environ Microbiol. 2004 Aug;70(8):4831-9
– reference: 15134885 - J Microbiol Methods. 2004 Jun;57(3):379-90
– reference: 18497299 - Science. 2008 May 23;320(5879):1081-5
– reference: 19040452 - Environ Microbiol. 2009 Apr;11(4):867-76
– reference: 16332803 - Appl Environ Microbiol. 2005 Dec;71(12):8201-6
– reference: 16556835 - Science. 2006 Mar 24;311(5768):1737-40
– reference: 15006772 - Appl Environ Microbiol. 2004 Mar;70(3):1506-13
– reference: 18273065 - ISME J. 2008 May;2(5):498-509
– reference: 16820462 - Appl Environ Microbiol. 2006 Jul;72(7):4704-12
– reference: 12957910 - Appl Environ Microbiol. 2003 Sep;69(9):5248-54
– reference: 15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81
SSID ssj0004068
Score 2.143089
Snippet We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the...
AUTHORS' CORRECTIONS ( vol. 76 , p. 3762 ) Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike...
SourceID pubmedcentral
hal
proquest
pubmed
pascalfrancis
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1406
SubjectTerms Bacteria
Bacteriophages - growth & development
Biological and medical sciences
biomass
Coculture Techniques
Comamonadaceae - genetics
Comamonadaceae - growth & development
Comamonadaceae - virology
Cytophagaceae - growth & development
Earth Sciences
Ecosystem
Eukaryota - growth & development
Flectobacillus
Fresh Water - microbiology
Fundamental and applied biological sciences. Psychology
Gene expression
Grazing
Microbial Ecology
Microbiology
Mortality
niches
nucleotide sequences
Oceanography
population dynamics
predators
Ribonucleic acid
ribosomal RNA
RNA
Sciences of the Universe
strain differences
Viruses
Title Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore
URI http://aem.asm.org/content/76/5/1406.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20038688
https://www.proquest.com/docview/205969562
https://www.proquest.com/docview/46543705
https://www.proquest.com/docview/733531938
https://hal.science/hal-01663323
https://pubmed.ncbi.nlm.nih.gov/PMC2832377
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIOCMqjaaFYCE5tShInjnMMVdGWdheJtqicrGQT0yK6Qc1uJTjzB_lHzNhxNulDPC7RbuK8NF88Hvv7Zgh5mYBfEZkfugX4OzfMGXOTcFy4SZShjLNgpc62PxzxwWH47ig6Wlj41WEtzab55vjHlbqS_7Eq7AO7okr2HyzbXhR2wG-wL2zBwrD9KxubFVsM9kfI6IQP32TyRoaxLiK0VWGmy2mjZJpUmJUbRoM1LkZnSI6xZXr0xKDROFi9m-4qUINmAvqPJ2ez2vQpOr_r-huT5_m8OuuxieywFht1VHQoUjmZJ31qJ3Z2htu7VpTWkj120_10b2dr95O-cfVlqpfzxbiduh68_zBKL583SAejRoAE72y4g3ZKA1fjWY8eYtequsTV4cVnbDr0JHFxVNLt0E1BmQa4Uad3hmCSdzy9HxqZ52UvEqAyIt0ebuqMbq6XzL2lZQhccKIttREeBhwMZzfIzQAil8BOIFmprseFTYyKz221GIF43b1fb5R0Q2UVbI-RqdtmsUYSb1bDd6xMAZarIqSLRN_OyOngPrnXhDw0Nfh9QBbKyRK5ZYqgfl8it602vl4idzvpMR-Sny2-qcY3neObanzTOb5pD9-0wTdt8E27-KaIb5rROb43aIPuDQqwhUMdbD8ih2-3D7YGblM1xB1HUTR1hYIxdsFQoB1wJAX4QeHDECwpCxGHuQpi4akoV2UgChj7FoliQuRxkeWe8hVX7DFZnFSTcplQVWRchIpDex4mcQ7_Sqy3yiOmhOLcIevWSnLcpNTH1_sqdWgdCAk2ldqm0ksc8qpt_c2kkrmm3TIYXGafwcvLw_0AuQW-8AQEPg55AShoz8bU8IN0T-I-CN04YwE79x2yYkEis_pUZuWpjLmMJMLfIWs92LTXsrh1yKrFkWy6uloGWKQrgVDJIc_bo-CHcHExm5TVrJaYl5HFXuQQek2LmDF0-Ew45ImB5fzmSFDgAo7EPcD23rR_ZHJyrJPhY6k1Fscrf3qvVXJn3tU8JYvTs1n5DOKJab6mv9DfKEchRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Niche+Separation+among+Coexisting+Limnohabitans+Strains+through+Interactions+with+a+Competitor%2C+Viruses%2C+and+a+Bacterivore&rft.jtitle=Applied+and+environmental+microbiology&rft.au=SIMEK%2C+Karel&rft.au=KASALICKY%2C+Vojt%C3%A8ch&rft.au=HORNAK%2C+Karel&rft.au=HAHN%2C+Martin+W&rft.date=2010-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.volume=76&rft.issue=5&rft.spage=1406&rft.epage=1416&rft_id=info:doi/10.1128%2FAEM.02517-09&rft.externalDBID=n%2Fa&rft.externalDocID=22487663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon