Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model
In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of...
Saved in:
Published in | Nonlinear dynamics Vol. 101; no. 3; pp. 1621 - 1634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number
R
0
is derived. When
R
0
<
1
, the disease-free equilibrium point is unique and locally asymptotically stable. When
R
0
>
1
, the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak. |
---|---|
AbstractList | In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number
is derived. When
, the disease-free equilibrium point is unique and locally asymptotically stable. When
, the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak. In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak. In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}$$\end{document} R 0 is derived. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}<1$$\end{document} R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}>1$$\end{document} R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak. In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak. |
Author | Lu, Zhenzhen Xu, Conghui Chen, YangQuan Yu, Yongguang |
Author_xml | – sequence: 1 givenname: Conghui surname: Xu fullname: Xu, Conghui organization: Department of Mathematics ,School of Science, Beijing Jiaotong University – sequence: 2 givenname: Yongguang surname: Yu fullname: Yu, Yongguang organization: Department of Mathematics ,School of Science, Beijing Jiaotong University – sequence: 3 givenname: YangQuan orcidid: 0000-0002-7422-5988 surname: Chen fullname: Chen, YangQuan email: ychen53@ucmerced.edu organization: Mechatronics, Embedded Systems and Automation Lab, University of California, Merced – sequence: 4 givenname: Zhenzhen surname: Lu fullname: Lu, Zhenzhen organization: Department of Mathematics ,School of Science, Beijing Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32952299$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtLHDEUDsVSV9s_0IeSx77E5jKZzLwUZNW6IAheim8hk5xZIzPJNpktbH99s64V7YNPB875bpzvAO2FGAChz4weMUrVt8wYVYxQTgmVbVUT8Q7NmFSC8Lq920Mz2vKK0Jbe7aODnB8opYLT5gPaF7yVnLftDA1nMYE1ecImmGGTfcaxx9M9YFh5B6O3GU8Jgtuu55c_FyeEtdiHR8jt9THuNtjgJQRIZvB_wOE-GTv5WNRITA4Svj5dXOExOhg-ove9GTJ8epqH6Obs9GZ-Ti4ufyzmxxfESiknonrFmXJcWto5JmQnWVVVXWMlk7Ji0kJJLIwAo3rWu4YJ6FhfS-GarqqVOETfd7KrdTeCsxCmEk6vkh9N2uhovH59Cf5eL-NvrapG8bouAl-fBFL8tYY86dFnC8NgAsR11rzEqWkl1Nbry0uvZ5N_Hy4AvgPYFHNO0D9DGNXbGvWuRl1q1I81alFIzX8k6yez_WrJ64e3qWJHzcUnLCHph7hOpY38FusvluSxcA |
CitedBy_id | crossref_primary_10_1007_s11071_021_06811_7 crossref_primary_10_1002_asjc_3178 crossref_primary_10_1155_2022_5163609 crossref_primary_10_1209_0295_5075_ac5fd0 crossref_primary_10_1109_TNSE_2023_3347641 crossref_primary_10_3390_axioms11090446 crossref_primary_10_1016_j_padiff_2024_100663 crossref_primary_10_1016_j_isatra_2022_01_008 crossref_primary_10_1016_j_cnsns_2023_107511 crossref_primary_10_1088_1402_4896_ad4692 crossref_primary_10_1007_s41478_024_00836_y crossref_primary_10_1216_jie_2023_35_487 crossref_primary_10_1007_s41060_021_00295_9 crossref_primary_10_12677_AAM_2021_106196 crossref_primary_10_1007_s11071_021_06867_5 crossref_primary_10_1063_5_0099450 crossref_primary_10_1016_j_arcontrol_2021_09_003 crossref_primary_10_1080_24754269_2021_1872131 crossref_primary_10_1016_j_cjph_2024_03_001 crossref_primary_10_1142_S1793524522501303 crossref_primary_10_1007_s11071_021_07121_8 crossref_primary_10_1007_s42979_024_03317_y crossref_primary_10_1007_s11071_022_07267_z crossref_primary_10_1038_s41598_021_93545_6 crossref_primary_10_1007_s12190_024_02237_7 crossref_primary_10_1016_j_spasta_2021_100538 crossref_primary_10_1016_j_isatra_2021_04_006 crossref_primary_10_1080_17455030_2023_2186713 crossref_primary_10_3934_mbe_2022507 crossref_primary_10_1002_sres_2897 crossref_primary_10_1016_j_isatra_2022_12_006 crossref_primary_10_1080_10236198_2023_2211168 crossref_primary_10_1016_j_mex_2023_102045 crossref_primary_10_1007_s11071_023_08838_4 crossref_primary_10_3390_covid2120129 crossref_primary_10_3390_fractalfract5030120 crossref_primary_10_3934_math_2024181 crossref_primary_10_1080_03081079_2023_2223755 crossref_primary_10_51537_chaos_1320492 crossref_primary_10_1016_j_chaos_2023_114015 crossref_primary_10_1038_s41598_021_95617_z crossref_primary_10_1016_j_eswa_2021_115710 crossref_primary_10_1007_s12190_023_01877_5 crossref_primary_10_31801_cfsuasmas_1258454 crossref_primary_10_3934_mbe_2023577 crossref_primary_10_1002_mma_9313 crossref_primary_10_1007_s13369_021_06419_4 crossref_primary_10_1080_00219592_2024_2313318 crossref_primary_10_1016_j_chaos_2020_110632 crossref_primary_10_1016_j_rinp_2021_104067 crossref_primary_10_1007_s11071_022_07244_6 crossref_primary_10_1016_j_chaos_2023_113805 |
Cites_doi | 10.1016/j.cnsns.2018.04.019 10.1016/j.nahs.2012.08.001 10.1007/s00009-013-0281-1 10.1016/j.aml.2018.04.015 10.1016/j.physa.2007.01.010 10.1016/j.ijid.2020.01.050 10.1016/j.ijid.2020.02.058 10.1016/j.automatica.2009.04.003 10.1007/978-3-642-14574-2 10.1016/j.aml.2018.12.010 10.1016/j.neucom.2014.12.031 10.21037/jtd.2020.02.64 10.1016/S0378-4371(98)00550-0 10.1007/s15010-020-01401-y 10.1016/j.aml.2020.106303 10.1007/s11071-012-0475-2 10.1023/A:1016592219341 10.1016/j.nonrwa.2007.08.009 10.20944/preprints202004.0140.v1. 10.1101/2020.02.16.20023465 10.1101/2020.04.25.20079806 10.1016/j.amc.2017.02.003 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s11071-020-05946-3 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1634 |
ExternalDocumentID | PMC7487266 32952299 10_1007_s11071_020_05946_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant 61772063 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Beijing Municipality (CN) grantid: Z180005 – fundername: ; grantid: Grant 61772063 – fundername: ; grantid: Z180005 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c555t-7f7217d25c0bd135b51444b8c5155415ceeca3a3ea7f1fd813eb1f653d8b4673 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Thu Aug 21 14:35:24 EDT 2025 Fri Jul 11 09:17:21 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 01:52:05 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Fri Feb 21 02:32:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | COVID-19 Epidemic Fractional order Peak prediction Generalized SEIR model |
Language | English |
License | Springer Nature B.V. 2020. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-7f7217d25c0bd135b51444b8c5155415ceeca3a3ea7f1fd813eb1f653d8b4673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7422-5988 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7487266 |
PMID | 32952299 |
PQID | 2444604377 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487266 proquest_miscellaneous_2444604377 pubmed_primary_32952299 crossref_primary_10_1007_s11071_020_05946_3 crossref_citationtrail_10_1007_s11071_020_05946_3 springer_journals_10_1007_s11071_020_05946_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationTitleAlternate | Nonlinear Dyn |
PublicationYear | 2020 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | West (CR14) 2015 Zhao, Lin, Ran, Musa, Yang, Wang, Lou, Gao, Yang, He, Wang (CR10) 2020; 92 Li, Chen, Podlubny (CR16) 2009; 45 Ricardo (CR2) 2018; 84 CR13 Yang, Xu (CR3) 2020; 105 Jalilian, Jalilian (CR24) 2013; 10 CR11 CR31 Ahmed, Elgazzar (CR26) 2007; 379 Bhalekar, Gejji (CR29) 2011; 1 Podlubny (CR15) 1999 CR4 Sun, Zhang, Baleanu, Chen, Chen (CR12) 2018; 59 Zhang, Huo, Xiang, Xiang, Meng (CR19) 2013; 8 Diethelm, Ford, Freed (CR30) 2002; 29 CR6 CR5 Cheng, Shan (CR7) 2020 CR8 Rocca, West (CR27) 1999; 265 Hu, Liu, Wang (CR28) 2008; 9 Diethelm (CR17) 2010 Cai, Kang, Wang (CR20) 2017; 305 Wang, Yu, Wen, Zhang, Yu (CR25) 2015; 154 Lin, Zhao, Gao, Luo, Yang, Musa, Wang, Cai, Wang, Yang, He (CR1) 2020; 93 Yang, Zeng, Wang, Wong, Liang, Zanin, Liu, Cao, Gao, Mai, Liang, Liu, Li, Li, Ye, Guan, Yang, Li, Luo, Xie, Liu, Wang, Zhang, Wang, Zhong, He (CR9) 2020; 12 Kuniya (CR18) 2019; 92 Almeida (CR22) 2018; 84 Diethelm (CR21) 2013; 71 Yang, Xu (CR23) 2020; 105 K Diethelm (5946_CR17) 2010 E Ahmed (5946_CR26) 2007; 379 S Zhao (5946_CR10) 2020; 92 5946_CR6 I Podlubny (5946_CR15) 1999 5946_CR4 T Kuniya (5946_CR18) 2019; 92 XB Zhang (5946_CR19) 2013; 8 5946_CR5 ZJ Cheng (5946_CR7) 2020 5946_CR8 Y Yang (5946_CR3) 2020; 105 Y Yang (5946_CR23) 2020; 105 5946_CR31 K Diethelm (5946_CR30) 2002; 29 Y Jalilian (5946_CR24) 2013; 10 QY Lin (5946_CR1) 2020; 93 5946_CR13 5946_CR11 A Rocca (5946_CR27) 1999; 265 Z Hu (5946_CR28) 2008; 9 Y Li (5946_CR16) 2009; 45 K Diethelm (5946_CR21) 2013; 71 ZF Yang (5946_CR9) 2020; 12 H Wang (5946_CR25) 2015; 154 Y Cai (5946_CR20) 2017; 305 R Almeida (5946_CR22) 2018; 84 HG Sun (5946_CR12) 2018; 59 S Bhalekar (5946_CR29) 2011; 1 A Ricardo (5946_CR2) 2018; 84 BJ West (5946_CR14) 2015 |
References_xml | – volume: 59 start-page: 213 issue: 5 year: 2018 end-page: 231 ident: CR12 article-title: A new collection of real world applications of fractional calculus in science and engineering publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.04.019 – year: 2015 ident: CR14 publication-title: Fractional Calculus View of Complexity: Tomorrow’s Science – volume: 8 start-page: 13 year: 2013 end-page: 21 ident: CR19 article-title: An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2012.08.001 – volume: 10 start-page: 1731 issue: 4 year: 2013 end-page: 1747 ident: CR24 article-title: Existence of solution for delay fractional differential equations publication-title: Mediterr. J. Math. doi: 10.1007/s00009-013-0281-1 – volume: 84 start-page: 56 year: 2018 end-page: 62 ident: CR2 article-title: Analysis of a fractional SEIR model with treatment publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.04.015 – ident: CR4 – volume: 305 start-page: 221 year: 2017 end-page: 240 ident: CR20 article-title: A stochastic SIRS epidemic model with nonlinear incidence rate publication-title: Appl. Math. Comput. – volume: 379 start-page: 607 issue: 2 year: 2007 end-page: 614 ident: CR26 article-title: On fractional order differential equations model for nonlocal epidemics publication-title: Physica A doi: 10.1016/j.physa.2007.01.010 – volume: 92 start-page: 214 year: 2020 end-page: 217 ident: CR10 article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.01.050 – volume: 93 start-page: 211 year: 2020 end-page: 216 ident: CR1 article-title: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.02.058 – ident: CR6 – volume: 45 start-page: 1965 issue: 8 year: 2009 end-page: 1969 ident: CR16 article-title: Mittag–Leffler stability of fractional order nonlinear dynamic systems publication-title: Automatica doi: 10.1016/j.automatica.2009.04.003 – year: 2010 ident: CR17 publication-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type doi: 10.1007/978-3-642-14574-2 – volume: 1 start-page: 1 issue: 5 year: 2011 end-page: 9 ident: CR29 article-title: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order publication-title: J. Fract. Calc. Appl. – ident: CR8 – volume: 92 start-page: 22 year: 2019 end-page: 28 ident: CR18 article-title: Hopf bifurcation in an age-structured SIR epidemic model publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.12.010 – volume: 154 start-page: 15 year: 2015 end-page: 23 ident: CR25 article-title: Global stability analysis of fractional-order Hopfield neural networks with time delay publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.031 – volume: 12 start-page: 165 issue: 2 year: 2020 end-page: 174 ident: CR9 article-title: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2020.02.64 – volume: 265 start-page: 535 issue: 3–4 year: 1999 end-page: 546 ident: CR27 article-title: Fractional calculus and the evolution of fractal phenomena publication-title: Physica A doi: 10.1016/S0378-4371(98)00550-0 – year: 2020 ident: CR7 article-title: 2019”Cnovel coronavirus: where we are and what we know publication-title: Infection doi: 10.1007/s15010-020-01401-y – ident: CR31 – ident: CR13 – ident: CR11 – volume: 105 start-page: 106303 year: 2020 ident: CR3 article-title: Stability of a fractional order SEIR model with general incidence publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106303 – ident: CR5 – volume: 71 start-page: 613 year: 2013 end-page: 619 ident: CR21 article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0475-2 – volume: 84 start-page: 56 year: 2018 end-page: 62 ident: CR22 article-title: Analysis of a fractional SEIR model with treatment publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.04.015 – year: 1999 ident: CR15 publication-title: Fractional Differential Equations – volume: 29 start-page: 3 year: 2002 end-page: 22 ident: CR30 article-title: A predictor–corrector approach for the numerical solution of fractional differential equations publication-title: Nonlinear Dyn. doi: 10.1023/A:1016592219341 – volume: 9 start-page: 2302 issue: 5 year: 2008 end-page: 2312 ident: CR28 article-title: Backward bifurcation of an epidemic model with standard incidence rate and treatment rate publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2007.08.009 – volume: 105 start-page: 106303 year: 2020 ident: CR23 article-title: Stability of a fractional order SEIR model with general incidence publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106303 – volume: 379 start-page: 607 issue: 2 year: 2007 ident: 5946_CR26 publication-title: Physica A doi: 10.1016/j.physa.2007.01.010 – volume: 92 start-page: 214 year: 2020 ident: 5946_CR10 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.01.050 – volume: 29 start-page: 3 year: 2002 ident: 5946_CR30 publication-title: Nonlinear Dyn. doi: 10.1023/A:1016592219341 – ident: 5946_CR5 doi: 10.20944/preprints202004.0140.v1. – volume-title: Fractional Calculus View of Complexity: Tomorrow’s Science year: 2015 ident: 5946_CR14 – volume: 10 start-page: 1731 issue: 4 year: 2013 ident: 5946_CR24 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-013-0281-1 – ident: 5946_CR11 doi: 10.1101/2020.02.16.20023465 – volume: 59 start-page: 213 issue: 5 year: 2018 ident: 5946_CR12 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.04.019 – volume: 105 start-page: 106303 year: 2020 ident: 5946_CR3 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106303 – ident: 5946_CR8 doi: 10.1101/2020.04.25.20079806 – volume: 305 start-page: 221 year: 2017 ident: 5946_CR20 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.02.003 – volume-title: Fractional Differential Equations year: 1999 ident: 5946_CR15 – volume: 9 start-page: 2302 issue: 5 year: 2008 ident: 5946_CR28 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2007.08.009 – ident: 5946_CR31 – ident: 5946_CR6 – year: 2020 ident: 5946_CR7 publication-title: Infection doi: 10.1007/s15010-020-01401-y – volume: 71 start-page: 613 year: 2013 ident: 5946_CR21 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0475-2 – volume-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type year: 2010 ident: 5946_CR17 doi: 10.1007/978-3-642-14574-2 – volume: 12 start-page: 165 issue: 2 year: 2020 ident: 5946_CR9 publication-title: J. Thorac. Dis. doi: 10.21037/jtd.2020.02.64 – volume: 84 start-page: 56 year: 2018 ident: 5946_CR22 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.04.015 – volume: 92 start-page: 22 year: 2019 ident: 5946_CR18 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.12.010 – volume: 154 start-page: 15 year: 2015 ident: 5946_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.031 – ident: 5946_CR13 – volume: 1 start-page: 1 issue: 5 year: 2011 ident: 5946_CR29 publication-title: J. Fract. Calc. Appl. – volume: 265 start-page: 535 issue: 3–4 year: 1999 ident: 5946_CR27 publication-title: Physica A doi: 10.1016/S0378-4371(98)00550-0 – ident: 5946_CR4 doi: 10.1101/2020.02.16.20023465 – volume: 45 start-page: 1965 issue: 8 year: 2009 ident: 5946_CR16 publication-title: Automatica doi: 10.1016/j.automatica.2009.04.003 – volume: 8 start-page: 13 year: 2013 ident: 5946_CR19 publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2012.08.001 – volume: 105 start-page: 106303 year: 2020 ident: 5946_CR23 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106303 – volume: 93 start-page: 211 year: 2020 ident: 5946_CR1 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.02.058 – volume: 84 start-page: 56 year: 2018 ident: 5946_CR2 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.04.015 |
SSID | ssj0003208 |
Score | 2.5196495 |
Snippet | In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1621 |
SubjectTerms | Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Mechanical Engineering Original Paper Vibration |
Title | Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model |
URI | https://link.springer.com/article/10.1007/s11071-020-05946-3 https://www.ncbi.nlm.nih.gov/pubmed/32952299 https://www.proquest.com/docview/2444604377 https://pubmed.ncbi.nlm.nih.gov/PMC7487266 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4a5QUexgaDdZfKSLyBpSa2c3nsuhbYxEVAUfcU2Y6zVarSiYQH9ut37DhlHRPSniIlJ4mVz_b5TuzzHYADFjCTSyNpX-uccq41xV6iqUTnLnIu0kjaROGz8-hkwr9MxdQnhVXtbvd2SdLN1I_JbhipYOgb2sXblEeUrcG6sLE79uJJOFjOvyx0dej6GFnYvxBTnyrz72esuqMnHPPpVsm_1kudGxq_gpeeP5JBA_hreGHKbdjyXJL4kVptw-YfQoM7MLcVOLWsaiK9CAlZFAS5HzFNhVhdkdrujrWnhxe3p59pkJJZ6Uwm1wOiHogk3xuJ6tkvfFNx12REyDl16p3kenR6RVxdnTdwMx7dDE-or7NAtRCipnGBYWCch0L3VR4woZBEca4Sbcu_oINHP6olk8zIuAiKPEF4VVBEguWJwnmW7UKnXJTmLZAkjiOJpEoWinHkogphV9og3jKQGIl2IWi_dqa9BrkthTHPHtWTLUIZIpQ5hDLWhcPlPT8bBY5nrfdbEDMcKHb1Q5ZmcV9lyGN4ZJWc4i7sNaAun8fCFHloiu2LV-BeGlgR7tUr5eyHE-OOMeJDktOFo7ZjZH4WqJ5p5rv_M38PG6HrtHbj4Qfo1Hf35iOSoVr1YC0ZH_dgfXD87esIj59G55dXPTcifgNeAwON |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHvqCwLaVG4gaWNrGdx3HVh3ZLWyS6i_Zm2Y7TrrTKoiY9lF_P2HG2LEWVek0cx8pne76JZ74B-MwiZgtlFe0bU1DOjaE4SwxVaNxFwUWeKJcofH6RDCf8dCqmISms7qLduyNJv1PfJ7uhp4Kub-wOb3OeUPYcXiAZyFwg1yQeLPdfFvs6dH30LNxfiGlIlfl_H6vm6AHHfBgq-c95qTdDJ5uwHvgjGbSAb8EzW23DRuCSJKzUehte_yU0-AbmrgKnUXVDVBAhIYuSIPcjtq0Qa2rSuOhYd_nw-8_REY1yMqt8k8nlgOg7oshVK1E9-41vKm_ajAg1p169k1wej34QX1fnLYxPjseHQxrqLFAjhGhoWqIbmBaxMH1dRExoJFGc68y48i9o4NGOGsUUsyoto7LIEF4dlYlgRaZxn2U7sFYtKvseSJamiUJSpUrNOHJRjbBrYxFvFSn0RHsQdV9bmqBB7kphzOW9erJDSCJC0iMkWQ--LJ_51SpwPNr6UweixIXiTj9UZRe3tUQewxOn5JT24F0L6rI_FufIQ3McX7oC97KBE-FevVPNrr0Yd4oeH5KcHnztJoYMu0D9yDB3n9b8AF4Ox-dn8mx08W0PXsV-ArsgxA-w1tzc2n0kRo3-6NfBH3R0Amw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7xQ5rgYeP3ymB4Em9g0cR20jxWQEUHY9OgqG-W7ThbpSqtmvAAfz1nJy0UJqS9Jo5j5Tv7vot93wEcsoDZVFlFm8aklHNjKFqJoQqdu0i5SCLlEoV_XEcXPf69L_ovsvj9affplmSV0-BUmvLyZJxmJ8-Jbxi1YBgcuo3chEeULcIyLseBs-te2J6txSz0NemaGGW4PxL9Om3m333Mu6Y3fPPtsclXe6feJXXW4GPNJUm7An8dFmy-AZ9qXknqWVtswOoL0cFNGLpqnEYVJVG1IAkZZQR5ILFVtVhTkNKdlHWXT3_edc9okJBB7pv0btpEPxBF_lRy1YNHfFM2qbIj1JB6JU9yc979TXyNnS247Zzfnl7QuuYCNUKIksYZhoRxGgrT1GnAhEZCxbluGVcKBp09-lSjmGJWxVmQpS2EWgdZJFja0rjmsm1Yyke5_QykFceRQoKlMs048lKNJqCNRexVoDAqbUAw_drS1HrkrizGUD4rKTuEJCIkPUKSNeBo9sy4UuN4t_W3KYgSJ43bCVG5Hd0XEjkNj5yqU9yAnQrUWX8sTJCTJji-eA7uWQMnyD1_Jx_89cLcMUZ_SHgacDw1DFmvCMU7w9z9v-YH8OHXWUdeda8vv8BK6O3XnUfcg6Vycm_3kSOV-qufBk9BqAao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+analysis+of+the+epidemics+trend+of+COVID-19+in+the+USA+by+a+generalized+fractional-order+SEIR+model&rft.jtitle=Nonlinear+dynamics&rft.au=Xu%2C+Conghui&rft.au=Yu%2C+Yongguang&rft.au=Chen%2C+YangQuan&rft.au=Lu%2C+Zhenzhen&rft.date=2020-08-01&rft.issn=0924-090X&rft.volume=101&rft.issue=3&rft.spage=1621&rft_id=info:doi/10.1007%2Fs11071-020-05946-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |