Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model

In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 101; no. 3; pp. 1621 - 1634
Main Authors Xu, Conghui, Yu, Yongguang, Chen, YangQuan, Lu, Zhenzhen
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.
AbstractList In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number is derived. When , the disease-free equilibrium point is unique and locally asymptotically stable. When , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.
In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.
In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}$$\end{document} R 0 is derived. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}<1$$\end{document} R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{ R }}_{0}>1$$\end{document} R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.
In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed, infectious, quarantined, recovered and insusceptible individuals and has a basic guiding significance for the prediction of the possible outbreak of infectious diseases like the coronavirus disease in 2019 (COVID-19) and other insect diseases in the future. Firstly, some qualitative properties of the model are analyzed. The basic reproduction number R 0 is derived. When R 0 < 1 , the disease-free equilibrium point is unique and locally asymptotically stable. When R 0 > 1 , the endemic equilibrium point is also unique. Furthermore, some conditions are established to ensure the local asymptotic stability of disease-free and endemic equilibrium points. The trend of COVID-19 spread in the USA is predicted. Considering the influence of the individual behavior and government mitigation measurement, a modified SEIQRP model is proposed, defined as SEIQRPD model, which is divided the population into susceptible, exposed, infectious, quarantined, recovered, insusceptible and dead individuals. According to the real data of the USA, it is found that our improved model has a better prediction ability for the epidemic trend in the next two weeks. Hence, the epidemic trend of the USA in the next two weeks is investigated, and the peak of isolated cases is predicted. The modified SEIQRP model successfully capture the development process of COVID-19, which provides an important reference for understanding the trend of the outbreak.
Author Lu, Zhenzhen
Xu, Conghui
Chen, YangQuan
Yu, Yongguang
Author_xml – sequence: 1
  givenname: Conghui
  surname: Xu
  fullname: Xu, Conghui
  organization: Department of Mathematics ,School of Science, Beijing Jiaotong University
– sequence: 2
  givenname: Yongguang
  surname: Yu
  fullname: Yu, Yongguang
  organization: Department of Mathematics ,School of Science, Beijing Jiaotong University
– sequence: 3
  givenname: YangQuan
  orcidid: 0000-0002-7422-5988
  surname: Chen
  fullname: Chen, YangQuan
  email: ychen53@ucmerced.edu
  organization: Mechatronics, Embedded Systems and Automation Lab, University of California, Merced
– sequence: 4
  givenname: Zhenzhen
  surname: Lu
  fullname: Lu, Zhenzhen
  organization: Department of Mathematics ,School of Science, Beijing Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32952299$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLHDEUDsVSV9s_0IeSx77E5jKZzLwUZNW6IAheim8hk5xZIzPJNpktbH99s64V7YNPB875bpzvAO2FGAChz4weMUrVt8wYVYxQTgmVbVUT8Q7NmFSC8Lq920Mz2vKK0Jbe7aODnB8opYLT5gPaF7yVnLftDA1nMYE1ecImmGGTfcaxx9M9YFh5B6O3GU8Jgtuu55c_FyeEtdiHR8jt9THuNtjgJQRIZvB_wOE-GTv5WNRITA4Svj5dXOExOhg-ove9GTJ8epqH6Obs9GZ-Ti4ufyzmxxfESiknonrFmXJcWto5JmQnWVVVXWMlk7Ji0kJJLIwAo3rWu4YJ6FhfS-GarqqVOETfd7KrdTeCsxCmEk6vkh9N2uhovH59Cf5eL-NvrapG8bouAl-fBFL8tYY86dFnC8NgAsR11rzEqWkl1Nbry0uvZ5N_Hy4AvgPYFHNO0D9DGNXbGvWuRl1q1I81alFIzX8k6yez_WrJ64e3qWJHzcUnLCHph7hOpY38FusvluSxcA
CitedBy_id crossref_primary_10_1007_s11071_021_06811_7
crossref_primary_10_1002_asjc_3178
crossref_primary_10_1155_2022_5163609
crossref_primary_10_1209_0295_5075_ac5fd0
crossref_primary_10_1109_TNSE_2023_3347641
crossref_primary_10_3390_axioms11090446
crossref_primary_10_1016_j_padiff_2024_100663
crossref_primary_10_1016_j_isatra_2022_01_008
crossref_primary_10_1016_j_cnsns_2023_107511
crossref_primary_10_1088_1402_4896_ad4692
crossref_primary_10_1007_s41478_024_00836_y
crossref_primary_10_1216_jie_2023_35_487
crossref_primary_10_1007_s41060_021_00295_9
crossref_primary_10_12677_AAM_2021_106196
crossref_primary_10_1007_s11071_021_06867_5
crossref_primary_10_1063_5_0099450
crossref_primary_10_1016_j_arcontrol_2021_09_003
crossref_primary_10_1080_24754269_2021_1872131
crossref_primary_10_1016_j_cjph_2024_03_001
crossref_primary_10_1142_S1793524522501303
crossref_primary_10_1007_s11071_021_07121_8
crossref_primary_10_1007_s42979_024_03317_y
crossref_primary_10_1007_s11071_022_07267_z
crossref_primary_10_1038_s41598_021_93545_6
crossref_primary_10_1007_s12190_024_02237_7
crossref_primary_10_1016_j_spasta_2021_100538
crossref_primary_10_1016_j_isatra_2021_04_006
crossref_primary_10_1080_17455030_2023_2186713
crossref_primary_10_3934_mbe_2022507
crossref_primary_10_1002_sres_2897
crossref_primary_10_1016_j_isatra_2022_12_006
crossref_primary_10_1080_10236198_2023_2211168
crossref_primary_10_1016_j_mex_2023_102045
crossref_primary_10_1007_s11071_023_08838_4
crossref_primary_10_3390_covid2120129
crossref_primary_10_3390_fractalfract5030120
crossref_primary_10_3934_math_2024181
crossref_primary_10_1080_03081079_2023_2223755
crossref_primary_10_51537_chaos_1320492
crossref_primary_10_1016_j_chaos_2023_114015
crossref_primary_10_1038_s41598_021_95617_z
crossref_primary_10_1016_j_eswa_2021_115710
crossref_primary_10_1007_s12190_023_01877_5
crossref_primary_10_31801_cfsuasmas_1258454
crossref_primary_10_3934_mbe_2023577
crossref_primary_10_1002_mma_9313
crossref_primary_10_1007_s13369_021_06419_4
crossref_primary_10_1080_00219592_2024_2313318
crossref_primary_10_1016_j_chaos_2020_110632
crossref_primary_10_1016_j_rinp_2021_104067
crossref_primary_10_1007_s11071_022_07244_6
crossref_primary_10_1016_j_chaos_2023_113805
Cites_doi 10.1016/j.cnsns.2018.04.019
10.1016/j.nahs.2012.08.001
10.1007/s00009-013-0281-1
10.1016/j.aml.2018.04.015
10.1016/j.physa.2007.01.010
10.1016/j.ijid.2020.01.050
10.1016/j.ijid.2020.02.058
10.1016/j.automatica.2009.04.003
10.1007/978-3-642-14574-2
10.1016/j.aml.2018.12.010
10.1016/j.neucom.2014.12.031
10.21037/jtd.2020.02.64
10.1016/S0378-4371(98)00550-0
10.1007/s15010-020-01401-y
10.1016/j.aml.2020.106303
10.1007/s11071-012-0475-2
10.1023/A:1016592219341
10.1016/j.nonrwa.2007.08.009
10.20944/preprints202004.0140.v1.
10.1101/2020.02.16.20023465
10.1101/2020.04.25.20079806
10.1016/j.amc.2017.02.003
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s11071-020-05946-3
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1634
ExternalDocumentID PMC7487266
32952299
10_1007_s11071_020_05946_3
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant 61772063
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Beijing Municipality (CN)
  grantid: Z180005
– fundername: ;
  grantid: Grant 61772063
– fundername: ;
  grantid: Z180005
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c555t-7f7217d25c0bd135b51444b8c5155415ceeca3a3ea7f1fd813eb1f653d8b4673
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Thu Aug 21 14:35:24 EDT 2025
Fri Jul 11 09:17:21 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 01:52:05 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Fri Feb 21 02:32:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords COVID-19
Epidemic
Fractional order
Peak prediction
Generalized SEIR model
Language English
License Springer Nature B.V. 2020.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-7f7217d25c0bd135b51444b8c5155415ceeca3a3ea7f1fd813eb1f653d8b4673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7422-5988
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7487266
PMID 32952299
PQID 2444604377
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7487266
proquest_miscellaneous_2444604377
pubmed_primary_32952299
crossref_primary_10_1007_s11071_020_05946_3
crossref_citationtrail_10_1007_s11071_020_05946_3
springer_journals_10_1007_s11071_020_05946_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationTitleAlternate Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References West (CR14) 2015
Zhao, Lin, Ran, Musa, Yang, Wang, Lou, Gao, Yang, He, Wang (CR10) 2020; 92
Li, Chen, Podlubny (CR16) 2009; 45
Ricardo (CR2) 2018; 84
CR13
Yang, Xu (CR3) 2020; 105
Jalilian, Jalilian (CR24) 2013; 10
CR11
CR31
Ahmed, Elgazzar (CR26) 2007; 379
Bhalekar, Gejji (CR29) 2011; 1
Podlubny (CR15) 1999
CR4
Sun, Zhang, Baleanu, Chen, Chen (CR12) 2018; 59
Zhang, Huo, Xiang, Xiang, Meng (CR19) 2013; 8
Diethelm, Ford, Freed (CR30) 2002; 29
CR6
CR5
Cheng, Shan (CR7) 2020
CR8
Rocca, West (CR27) 1999; 265
Hu, Liu, Wang (CR28) 2008; 9
Diethelm (CR17) 2010
Cai, Kang, Wang (CR20) 2017; 305
Wang, Yu, Wen, Zhang, Yu (CR25) 2015; 154
Lin, Zhao, Gao, Luo, Yang, Musa, Wang, Cai, Wang, Yang, He (CR1) 2020; 93
Yang, Zeng, Wang, Wong, Liang, Zanin, Liu, Cao, Gao, Mai, Liang, Liu, Li, Li, Ye, Guan, Yang, Li, Luo, Xie, Liu, Wang, Zhang, Wang, Zhong, He (CR9) 2020; 12
Kuniya (CR18) 2019; 92
Almeida (CR22) 2018; 84
Diethelm (CR21) 2013; 71
Yang, Xu (CR23) 2020; 105
K Diethelm (5946_CR17) 2010
E Ahmed (5946_CR26) 2007; 379
S Zhao (5946_CR10) 2020; 92
5946_CR6
I Podlubny (5946_CR15) 1999
5946_CR4
T Kuniya (5946_CR18) 2019; 92
XB Zhang (5946_CR19) 2013; 8
5946_CR5
ZJ Cheng (5946_CR7) 2020
5946_CR8
Y Yang (5946_CR3) 2020; 105
Y Yang (5946_CR23) 2020; 105
5946_CR31
K Diethelm (5946_CR30) 2002; 29
Y Jalilian (5946_CR24) 2013; 10
QY Lin (5946_CR1) 2020; 93
5946_CR13
5946_CR11
A Rocca (5946_CR27) 1999; 265
Z Hu (5946_CR28) 2008; 9
Y Li (5946_CR16) 2009; 45
K Diethelm (5946_CR21) 2013; 71
ZF Yang (5946_CR9) 2020; 12
H Wang (5946_CR25) 2015; 154
Y Cai (5946_CR20) 2017; 305
R Almeida (5946_CR22) 2018; 84
HG Sun (5946_CR12) 2018; 59
S Bhalekar (5946_CR29) 2011; 1
A Ricardo (5946_CR2) 2018; 84
BJ West (5946_CR14) 2015
References_xml – volume: 59
  start-page: 213
  issue: 5
  year: 2018
  end-page: 231
  ident: CR12
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– year: 2015
  ident: CR14
  publication-title: Fractional Calculus View of Complexity: Tomorrow’s Science
– volume: 8
  start-page: 13
  year: 2013
  end-page: 21
  ident: CR19
  article-title: An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2012.08.001
– volume: 10
  start-page: 1731
  issue: 4
  year: 2013
  end-page: 1747
  ident: CR24
  article-title: Existence of solution for delay fractional differential equations
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-013-0281-1
– volume: 84
  start-page: 56
  year: 2018
  end-page: 62
  ident: CR2
  article-title: Analysis of a fractional SEIR model with treatment
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.04.015
– ident: CR4
– volume: 305
  start-page: 221
  year: 2017
  end-page: 240
  ident: CR20
  article-title: A stochastic SIRS epidemic model with nonlinear incidence rate
  publication-title: Appl. Math. Comput.
– volume: 379
  start-page: 607
  issue: 2
  year: 2007
  end-page: 614
  ident: CR26
  article-title: On fractional order differential equations model for nonlocal epidemics
  publication-title: Physica A
  doi: 10.1016/j.physa.2007.01.010
– volume: 92
  start-page: 214
  year: 2020
  end-page: 217
  ident: CR10
  article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.01.050
– volume: 93
  start-page: 211
  year: 2020
  end-page: 216
  ident: CR1
  article-title: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.02.058
– ident: CR6
– volume: 45
  start-page: 1965
  issue: 8
  year: 2009
  end-page: 1969
  ident: CR16
  article-title: Mittag–Leffler stability of fractional order nonlinear dynamic systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.003
– year: 2010
  ident: CR17
  publication-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
  doi: 10.1007/978-3-642-14574-2
– volume: 1
  start-page: 1
  issue: 5
  year: 2011
  end-page: 9
  ident: CR29
  article-title: A predictor–corrector scheme for solving nonlinear delay differential equations of fractional order
  publication-title: J. Fract. Calc. Appl.
– ident: CR8
– volume: 92
  start-page: 22
  year: 2019
  end-page: 28
  ident: CR18
  article-title: Hopf bifurcation in an age-structured SIR epidemic model
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.12.010
– volume: 154
  start-page: 15
  year: 2015
  end-page: 23
  ident: CR25
  article-title: Global stability analysis of fractional-order Hopfield neural networks with time delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.031
– volume: 12
  start-page: 165
  issue: 2
  year: 2020
  end-page: 174
  ident: CR9
  article-title: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2020.02.64
– volume: 265
  start-page: 535
  issue: 3–4
  year: 1999
  end-page: 546
  ident: CR27
  article-title: Fractional calculus and the evolution of fractal phenomena
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00550-0
– year: 2020
  ident: CR7
  article-title: 2019”Cnovel coronavirus: where we are and what we know
  publication-title: Infection
  doi: 10.1007/s15010-020-01401-y
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 105
  start-page: 106303
  year: 2020
  ident: CR3
  article-title: Stability of a fractional order SEIR model with general incidence
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106303
– ident: CR5
– volume: 71
  start-page: 613
  year: 2013
  end-page: 619
  ident: CR21
  article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0475-2
– volume: 84
  start-page: 56
  year: 2018
  end-page: 62
  ident: CR22
  article-title: Analysis of a fractional SEIR model with treatment
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.04.015
– year: 1999
  ident: CR15
  publication-title: Fractional Differential Equations
– volume: 29
  start-page: 3
  year: 2002
  end-page: 22
  ident: CR30
  article-title: A predictor–corrector approach for the numerical solution of fractional differential equations
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016592219341
– volume: 9
  start-page: 2302
  issue: 5
  year: 2008
  end-page: 2312
  ident: CR28
  article-title: Backward bifurcation of an epidemic model with standard incidence rate and treatment rate
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2007.08.009
– volume: 105
  start-page: 106303
  year: 2020
  ident: CR23
  article-title: Stability of a fractional order SEIR model with general incidence
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106303
– volume: 379
  start-page: 607
  issue: 2
  year: 2007
  ident: 5946_CR26
  publication-title: Physica A
  doi: 10.1016/j.physa.2007.01.010
– volume: 92
  start-page: 214
  year: 2020
  ident: 5946_CR10
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.01.050
– volume: 29
  start-page: 3
  year: 2002
  ident: 5946_CR30
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016592219341
– ident: 5946_CR5
  doi: 10.20944/preprints202004.0140.v1.
– volume-title: Fractional Calculus View of Complexity: Tomorrow’s Science
  year: 2015
  ident: 5946_CR14
– volume: 10
  start-page: 1731
  issue: 4
  year: 2013
  ident: 5946_CR24
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-013-0281-1
– ident: 5946_CR11
  doi: 10.1101/2020.02.16.20023465
– volume: 59
  start-page: 213
  issue: 5
  year: 2018
  ident: 5946_CR12
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 105
  start-page: 106303
  year: 2020
  ident: 5946_CR3
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106303
– ident: 5946_CR8
  doi: 10.1101/2020.04.25.20079806
– volume: 305
  start-page: 221
  year: 2017
  ident: 5946_CR20
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.02.003
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 5946_CR15
– volume: 9
  start-page: 2302
  issue: 5
  year: 2008
  ident: 5946_CR28
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2007.08.009
– ident: 5946_CR31
– ident: 5946_CR6
– year: 2020
  ident: 5946_CR7
  publication-title: Infection
  doi: 10.1007/s15010-020-01401-y
– volume: 71
  start-page: 613
  year: 2013
  ident: 5946_CR21
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0475-2
– volume-title: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
  year: 2010
  ident: 5946_CR17
  doi: 10.1007/978-3-642-14574-2
– volume: 12
  start-page: 165
  issue: 2
  year: 2020
  ident: 5946_CR9
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd.2020.02.64
– volume: 84
  start-page: 56
  year: 2018
  ident: 5946_CR22
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.04.015
– volume: 92
  start-page: 22
  year: 2019
  ident: 5946_CR18
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.12.010
– volume: 154
  start-page: 15
  year: 2015
  ident: 5946_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.031
– ident: 5946_CR13
– volume: 1
  start-page: 1
  issue: 5
  year: 2011
  ident: 5946_CR29
  publication-title: J. Fract. Calc. Appl.
– volume: 265
  start-page: 535
  issue: 3–4
  year: 1999
  ident: 5946_CR27
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00550-0
– ident: 5946_CR4
  doi: 10.1101/2020.02.16.20023465
– volume: 45
  start-page: 1965
  issue: 8
  year: 2009
  ident: 5946_CR16
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.04.003
– volume: 8
  start-page: 13
  year: 2013
  ident: 5946_CR19
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2012.08.001
– volume: 105
  start-page: 106303
  year: 2020
  ident: 5946_CR23
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106303
– volume: 93
  start-page: 211
  year: 2020
  ident: 5946_CR1
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.02.058
– volume: 84
  start-page: 56
  year: 2018
  ident: 5946_CR2
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.04.015
SSID ssj0003208
Score 2.5196495
Snippet In this paper, a generalized fractional-order SEIR model is proposed, denoted by SEIQRP model, which divided the population into susceptible, exposed,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1621
SubjectTerms Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Mechanical Engineering
Original Paper
Vibration
Title Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model
URI https://link.springer.com/article/10.1007/s11071-020-05946-3
https://www.ncbi.nlm.nih.gov/pubmed/32952299
https://www.proquest.com/docview/2444604377
https://pubmed.ncbi.nlm.nih.gov/PMC7487266
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4a5QUexgaDdZfKSLyBpSa2c3nsuhbYxEVAUfcU2Y6zVarSiYQH9ut37DhlHRPSniIlJ4mVz_b5TuzzHYADFjCTSyNpX-uccq41xV6iqUTnLnIu0kjaROGz8-hkwr9MxdQnhVXtbvd2SdLN1I_JbhipYOgb2sXblEeUrcG6sLE79uJJOFjOvyx0dej6GFnYvxBTnyrz72esuqMnHPPpVsm_1kudGxq_gpeeP5JBA_hreGHKbdjyXJL4kVptw-YfQoM7MLcVOLWsaiK9CAlZFAS5HzFNhVhdkdrujrWnhxe3p59pkJJZ6Uwm1wOiHogk3xuJ6tkvfFNx12REyDl16p3kenR6RVxdnTdwMx7dDE-or7NAtRCipnGBYWCch0L3VR4woZBEca4Sbcu_oINHP6olk8zIuAiKPEF4VVBEguWJwnmW7UKnXJTmLZAkjiOJpEoWinHkogphV9og3jKQGIl2IWi_dqa9BrkthTHPHtWTLUIZIpQ5hDLWhcPlPT8bBY5nrfdbEDMcKHb1Q5ZmcV9lyGN4ZJWc4i7sNaAun8fCFHloiu2LV-BeGlgR7tUr5eyHE-OOMeJDktOFo7ZjZH4WqJ5p5rv_M38PG6HrtHbj4Qfo1Hf35iOSoVr1YC0ZH_dgfXD87esIj59G55dXPTcifgNeAwON
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQCHvqCwLaVG4gaWNrGdx3HVh3ZLWyS6i_Zm2Y7TrrTKoiY9lF_P2HG2LEWVek0cx8pne76JZ74B-MwiZgtlFe0bU1DOjaE4SwxVaNxFwUWeKJcofH6RDCf8dCqmISms7qLduyNJv1PfJ7uhp4Kub-wOb3OeUPYcXiAZyFwg1yQeLPdfFvs6dH30LNxfiGlIlfl_H6vm6AHHfBgq-c95qTdDJ5uwHvgjGbSAb8EzW23DRuCSJKzUehte_yU0-AbmrgKnUXVDVBAhIYuSIPcjtq0Qa2rSuOhYd_nw-8_REY1yMqt8k8nlgOg7oshVK1E9-41vKm_ajAg1p169k1wej34QX1fnLYxPjseHQxrqLFAjhGhoWqIbmBaxMH1dRExoJFGc68y48i9o4NGOGsUUsyoto7LIEF4dlYlgRaZxn2U7sFYtKvseSJamiUJSpUrNOHJRjbBrYxFvFSn0RHsQdV9bmqBB7kphzOW9erJDSCJC0iMkWQ--LJ_51SpwPNr6UweixIXiTj9UZRe3tUQewxOn5JT24F0L6rI_FufIQ3McX7oC97KBE-FevVPNrr0Yd4oeH5KcHnztJoYMu0D9yDB3n9b8AF4Ox-dn8mx08W0PXsV-ArsgxA-w1tzc2n0kRo3-6NfBH3R0Amw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7xQ5rgYeP3ymB4Em9g0cR20jxWQEUHY9OgqG-W7ThbpSqtmvAAfz1nJy0UJqS9Jo5j5Tv7vot93wEcsoDZVFlFm8aklHNjKFqJoQqdu0i5SCLlEoV_XEcXPf69L_ovsvj9affplmSV0-BUmvLyZJxmJ8-Jbxi1YBgcuo3chEeULcIyLseBs-te2J6txSz0NemaGGW4PxL9Om3m333Mu6Y3fPPtsclXe6feJXXW4GPNJUm7An8dFmy-AZ9qXknqWVtswOoL0cFNGLpqnEYVJVG1IAkZZQR5ILFVtVhTkNKdlHWXT3_edc9okJBB7pv0btpEPxBF_lRy1YNHfFM2qbIj1JB6JU9yc979TXyNnS247Zzfnl7QuuYCNUKIksYZhoRxGgrT1GnAhEZCxbluGVcKBp09-lSjmGJWxVmQpS2EWgdZJFja0rjmsm1Yyke5_QykFceRQoKlMs048lKNJqCNRexVoDAqbUAw_drS1HrkrizGUD4rKTuEJCIkPUKSNeBo9sy4UuN4t_W3KYgSJ43bCVG5Hd0XEjkNj5yqU9yAnQrUWX8sTJCTJji-eA7uWQMnyD1_Jx_89cLcMUZ_SHgacDw1DFmvCMU7w9z9v-YH8OHXWUdeda8vv8BK6O3XnUfcg6Vycm_3kSOV-qufBk9BqAao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+analysis+of+the+epidemics+trend+of+COVID-19+in+the+USA+by+a+generalized+fractional-order+SEIR+model&rft.jtitle=Nonlinear+dynamics&rft.au=Xu%2C+Conghui&rft.au=Yu%2C+Yongguang&rft.au=Chen%2C+YangQuan&rft.au=Lu%2C+Zhenzhen&rft.date=2020-08-01&rft.issn=0924-090X&rft.volume=101&rft.issue=3&rft.spage=1621&rft_id=info:doi/10.1007%2Fs11071-020-05946-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon