Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 44; no. 5; pp. 1426 - 1432
Main Authors VELTHOVEN, Cindy T. J. Van, SHELDON, R. Ann, KAVELAARS, Annemieke, DERUGIN, Nikita, VEXLER, Zinaida S, WILLEMEN, Hanneke L. D. M, MAAS, Mirjam, HEIJNEN, Cobi J, FERRIERO, Donna M
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.
AbstractList BACKGROUND AND PURPOSEBrain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. METHODSWe performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. RESULTSIntranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. CONCLUSIONSIntranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.
Background and Purpose— Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. Methods— We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. Results— Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF–treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF–treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF–treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. Conclusions— Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.
Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulating repair processes. We investigated whether MSC treatment improves recovery after neonatal stroke and whether MSC overexpressing brain-derived neurotrophic factor (MSC-BDNF) further enhances recovery. We performed 1.5-hour transient middle cerebral artery occlusion in 10-day-old rats. Three days after reperfusion, pups with evidence of injury by diffusion-weighted MRI were treated intranasally with MSC, MSC-BDNF, or vehicle. To determine the effect of MSC treatment, brain damage, sensorimotor function, and cerebral cell proliferation were analyzed. Intranasal delivery of MSC- and MSC-BDNF significantly reduced infarct size and gray matter loss in comparison with vehicle-treated rats without any significant difference between MSC- and MSC-BDNF-treatment. Treatment with MSC-BDNF significantly reduced white matter loss with no significant difference between MSC- and MSC-BDNF-treatment. Motor deficits were also improved by MSC treatment when compared with vehicle-treated rats. MSC-BDNF-treatment resulted in an additional significant improvement of motor deficits 14 days after middle cerebral artery occlusion, but there was no significant difference between MSC or MSC-BDNF 28 days after middle cerebral artery occlusion. Furthermore, treatment with either MSC or MSC-BDNF induced long-lasting cell proliferation in the ischemic hemisphere. Intranasal administration of MSC after neonatal stroke is a promising therapy for treatment of neonatal stroke. In this experimental paradigm, MSC- and BNDF-hypersecreting MSC are equally effective in reducing ischemic brain damage.
Author KAVELAARS, Annemieke
DERUGIN, Nikita
MAAS, Mirjam
HEIJNEN, Cobi J
FERRIERO, Donna M
SHELDON, R. Ann
VEXLER, Zinaida S
VELTHOVEN, Cindy T. J. Van
WILLEMEN, Hanneke L. D. M
AuthorAffiliation 2 Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
3 Department of Symptom Research, University of Texas, MD Anderson Cancer Centre, Houston, TX, USA
1 Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, the Netherlands
AuthorAffiliation_xml – name: 2 Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
– name: 1 Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, the Netherlands
– name: 3 Department of Symptom Research, University of Texas, MD Anderson Cancer Centre, Houston, TX, USA
Author_xml – sequence: 1
  givenname: Cindy T. J. Van
  surname: VELTHOVEN
  fullname: VELTHOVEN, Cindy T. J. Van
  organization: Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
– sequence: 2
  givenname: R. Ann
  surname: SHELDON
  fullname: SHELDON, R. Ann
  organization: Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
– sequence: 3
  givenname: Annemieke
  surname: KAVELAARS
  fullname: KAVELAARS, Annemieke
  organization: Department of Symptom Research, University of Texas, MD Anderson Cancer Centre, Houston, TX, United States
– sequence: 4
  givenname: Nikita
  surname: DERUGIN
  fullname: DERUGIN, Nikita
  organization: Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
– sequence: 5
  givenname: Zinaida S
  surname: VEXLER
  fullname: VEXLER, Zinaida S
  organization: Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
– sequence: 6
  givenname: Hanneke L. D. M
  surname: WILLEMEN
  fullname: WILLEMEN, Hanneke L. D. M
  organization: Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
– sequence: 7
  givenname: Mirjam
  surname: MAAS
  fullname: MAAS, Mirjam
  organization: Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
– sequence: 8
  givenname: Cobi J
  surname: HEIJNEN
  fullname: HEIJNEN, Cobi J
  organization: Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, Netherlands
– sequence: 9
  givenname: Donna M
  surname: FERRIERO
  fullname: FERRIERO, Donna M
  organization: Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27321628$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23539530$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9vEzEQxS1URNPCN0BoL0hctvh_1hekJSq0olCJhLM1cWbJll07tb1I-fa4JBQ4Wc_-zfPMvDNy4oNHQl4yesGYZm9TjuEHwhaKZBeUUsH1EzJjistaat6ckFm5MzWXxpySs5TuCsNFo56RUy6UMErQGVl-xoTebfcjDNUy41gtcBiqVQSfdgP4DLkPvmpzRj9BxlS9j9D76trfTXFftV3GWH3B4CH_Nnjo6Tl52sGQ8MXxPCffPlyuFlf1ze3H60V7UzulVK411-iocs5w46CBTaea9Zw2Dd9IMEIopnWnRVeUYwbXHQdHJQXYrOcdIohz8u7gu5vWI24c-hxhsLvYjxD3NkBv_3_x_dZ-Dz-t0EZKIYrBm6NBDPcTpmzHPrkyP3gMU7JMSKVY08xVQeUBdTGkFLF7_IZR-5CHXa6-3n66bK_aIpk95FHKXv3b4mPRnwAK8PoIQHIwdGXvrk9_ubngrIQpfgGbTJl2
CODEN SJCCA7
CitedBy_id crossref_primary_10_3233_JAD_170057
crossref_primary_10_3390_ijms21114051
crossref_primary_10_1007_s00216_013_7526_5
crossref_primary_10_1038_jcbfm_2014_41
crossref_primary_10_3390_ijms222111395
crossref_primary_10_1016_j_neuropharm_2016_03_052
crossref_primary_10_1038_s41390_018_0142_5
crossref_primary_10_1007_s12975_016_0482_6
crossref_primary_10_1016_j_spen_2019_08_009
crossref_primary_10_3389_fphys_2019_00540
crossref_primary_10_4103_1673_5374_310942
crossref_primary_10_1016_j_clineuro_2018_07_013
crossref_primary_10_1002_sctm_21_0243
crossref_primary_10_1016_j_nbd_2016_02_011
crossref_primary_10_2174_1574888X15666200628141314
crossref_primary_10_1016_j_bbi_2022_10_017
crossref_primary_10_1080_08820139_2020_1801720
crossref_primary_10_1021_acs_bioconjchem_2c00305
crossref_primary_10_1002_cbf_3957
crossref_primary_10_1038_s41390_019_0425_5
crossref_primary_10_3389_fvets_2022_958724
crossref_primary_10_3389_fcell_2020_00737
crossref_primary_10_1155_2018_9652897
crossref_primary_10_1186_scrt546
crossref_primary_10_5966_sctm_2015_0372
crossref_primary_10_1038_mt_2013_260
crossref_primary_10_1038_srep18587
crossref_primary_10_1007_s12035_015_9107_4
crossref_primary_10_1007_s12015_013_9492_x
crossref_primary_10_3390_ijms241914434
crossref_primary_10_1016_j_jcyt_2020_06_002
crossref_primary_10_1111_jnc_15267
crossref_primary_10_1016_j_bioactmat_2022_11_007
crossref_primary_10_1016_j_expneurol_2018_07_006
crossref_primary_10_1016_j_nbd_2018_10_006
crossref_primary_10_1016_j_jcyt_2019_04_055
crossref_primary_10_1016_S1474_4422_22_00142_9
crossref_primary_10_1002_glia_23939
crossref_primary_10_1016_j_expneurol_2024_114701
crossref_primary_10_1089_scd_2014_0076
crossref_primary_10_3390_ijms22063142
crossref_primary_10_5853_jos_2019_03048
crossref_primary_10_3389_fneur_2020_601286
crossref_primary_10_1038_s41598_017_10406_x
crossref_primary_10_3727_096368915X686887
crossref_primary_10_3390_ph13020031
crossref_primary_10_4252_wjsc_v15_i4_196
crossref_primary_10_1016_j_pneurobio_2013_11_007
crossref_primary_10_1186_s13287_020_1582_5
crossref_primary_10_1002_stem_1802
crossref_primary_10_3233_NPM_200477
crossref_primary_10_1016_j_mri_2021_03_008
crossref_primary_10_1016_j_bbrc_2018_05_086
crossref_primary_10_1186_s41232_016_0032_3
crossref_primary_10_1016_j_nbd_2016_04_006
crossref_primary_10_1016_j_pediatrneurol_2015_01_016
crossref_primary_10_1016_j_intimp_2020_106463
crossref_primary_10_3171_2014_10_SPINE14690
crossref_primary_10_2147_IJN_S278687
crossref_primary_10_1007_s10571_021_01145_9
crossref_primary_10_1089_hum_2020_319
crossref_primary_10_1093_stcltm_szac005
crossref_primary_10_1016_j_drudis_2022_103371
crossref_primary_10_1038_cddis_2017_184
crossref_primary_10_3390_cancers13051169
crossref_primary_10_1016_j_semperi_2023_151730
crossref_primary_10_3389_fbioe_2020_00043
crossref_primary_10_1186_s12868_018_0418_z
crossref_primary_10_1016_j_neuroscience_2014_01_018
crossref_primary_10_1002_elsc_201800015
crossref_primary_10_1186_s11671_021_03540_z
crossref_primary_10_1002_brb3_526
crossref_primary_10_1093_eurheartj_eht183
crossref_primary_10_1007_s40291_020_00491_6
crossref_primary_10_3727_096368916X692861
crossref_primary_10_3389_fnins_2024_1383941
crossref_primary_10_1038_pr_2017_243
crossref_primary_10_1038_s41572_022_00337_x
crossref_primary_10_1038_pr_2017_249
crossref_primary_10_1038_s41598_019_42182_1
crossref_primary_10_1159_000444905
crossref_primary_10_18632_oncotarget_16778
crossref_primary_10_1016_j_bbi_2016_11_011
crossref_primary_10_1016_j_neurop_2021_07_004
crossref_primary_10_1111_zph_12138
crossref_primary_10_1007_s00192_022_05439_4
crossref_primary_10_1002_sctm_19_0174
crossref_primary_10_1093_brain_awac393
crossref_primary_10_1016_j_brainresbull_2020_09_018
crossref_primary_10_1002_sctm_18_0284
crossref_primary_10_1016_j_yexcr_2023_113734
crossref_primary_10_1016_j_braindev_2023_09_001
crossref_primary_10_1016_j_semperi_2024_151929
crossref_primary_10_1016_j_brainres_2014_07_016
crossref_primary_10_1016_j_brainres_2013_07_037
crossref_primary_10_1002_jnr_24548
crossref_primary_10_1080_17425247_2019_1645116
crossref_primary_10_1038_pr_2017_233
crossref_primary_10_1155_2020_8822579
crossref_primary_10_3389_fneur_2022_1000777
crossref_primary_10_1111_apha_13674
crossref_primary_10_1016_j_imlet_2015_08_007
crossref_primary_10_1053_j_semperi_2015_12_002
crossref_primary_10_1161_STROKEAHA_120_031191
crossref_primary_10_1259_bjr_20150806
crossref_primary_10_14348_molcells_2014_0010
crossref_primary_10_1017_S1047951122002633
crossref_primary_10_3390_ijms20153747
crossref_primary_10_3727_096368915X686201
crossref_primary_10_1016_j_neuropharm_2015_06_008
crossref_primary_10_1186_s12974_019_1571_8
crossref_primary_10_1002_adfm_201900603
crossref_primary_10_1111_cns_13378
crossref_primary_10_1016_j_jns_2015_03_014
crossref_primary_10_18632_oncotarget_22155
crossref_primary_10_3390_brainsci5020165
crossref_primary_10_3892_mmr_2014_2805
crossref_primary_10_1016_j_pediatrneurol_2019_02_016
crossref_primary_10_1016_S2352_4642_18_30173_1
crossref_primary_10_1039_D3LC00379E
crossref_primary_10_1177_0963689717728936
crossref_primary_10_1177_0963689718795424
crossref_primary_10_1016_j_actbio_2014_11_027
crossref_primary_10_1016_j_bcp_2021_114461
crossref_primary_10_1016_j_jcyt_2021_03_005
crossref_primary_10_1161_STROKEAHA_123_043399
crossref_primary_10_1016_j_addr_2019_10_005
crossref_primary_10_1007_s12975_022_01111_7
crossref_primary_10_2174_1574888X17666220425102154
crossref_primary_10_1016_j_jcyt_2015_07_019
crossref_primary_10_3390_cells10081992
crossref_primary_10_7874_jao_2018_00115
crossref_primary_10_2174_1570159X20666220222144744
crossref_primary_10_3390_neurolint15030057
crossref_primary_10_1007_s13311_021_01076_9
crossref_primary_10_3389_fneur_2020_568814
crossref_primary_10_3389_fnins_2014_00359
crossref_primary_10_3390_ijms21113807
crossref_primary_10_1002_jnr_23954
crossref_primary_10_1007_s10753_024_02005_6
crossref_primary_10_4103_1673_5374_208547
crossref_primary_10_1016_j_jcyt_2020_01_009
crossref_primary_10_3389_fneur_2018_00133
crossref_primary_10_1515_revneuro_2021_0163
crossref_primary_10_1038_s41390_022_02208_3
crossref_primary_10_1016_j_clp_2013_09_002
Cites_doi 10.1073/pnas.0803670105
10.1161/strokeaha.106.477331
10.1038/nrn3379
10.1016/j.bbi.2009.10.017
10.1111/j.1440-1789.2007.00792.x
10.1038/pr.2012.71
10.1159/000232558
10.1161/strokeaha.108.531806
10.1016/j.bbrc.2005.05.055
10.1002/ana.21068
10.1056/NEJMra041996
10.1016/S0168-0102(98)00096-0
10.1203/PDR.0b013e31821d0d00
10.1016/S0022-510X(01)00557-3
10.1523/JNEUROSCI.2102-11.2011
10.3727/096368908787236576
10.1016/j.neuron.2011.05.001
10.1016/j.bbi.2011.03.021
10.1159/000046140
10.1016/S1474-4422(09)70061-4
10.1016/0896-6273(93)90311-E
10.1016/j.bbi.2009.09.008
10.1371/journal.pone.0051253
10.1016/j.neuroscience.2010.10.054
10.1523/JNEUROSCI.1835-10.2010
10.1016/j.pediatrneurol.2008.09.018
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1161/strokeaha.111.000326
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
EndPage 1432
ExternalDocumentID 10_1161_STROKEAHA_111_000326
23539530
27321628
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS35902
– fundername: NINDS NIH HHS
  grantid: P50 NS035902
– fundername: NINDS NIH HHS
  grantid: R01 NS076726
– fundername: NINDS NIH HHS
  grantid: R01 NS044025
– fundername: NINDS NIH HHS
  grantid: R01 NS033997
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: P50 NS035902 || NS
GroupedDBID ---
.3C
.55
.GJ
.XZ
.Z2
01R
08R
0R~
123
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
A9M
AAAXR
AAGIX
AAHPQ
AAJCS
AAMOA
AAMTA
AAPBV
AAQKA
AAQQT
AARTV
AASOK
AAXQO
AAYEP
AAYJJ
ABASU
ABBUW
ABDIG
ABFLS
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACWDW
ACWRI
ACXNZ
ADBBV
ADFPA
ADGIM
ADNKB
AE3
AE6
AEBDS
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHRYX
AHVBC
AIJEX
AJIOK
AJNYG
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AWKKM
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FL-
FW0
GQDEL
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
IPNFZ
IQODW
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OJAPA
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQEST
PQQKQ
R58
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
TWZ
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YFH
YHZ
YQJ
YYP
ZA5
ZB8
ZGI
ZZMQN
AAAAV
AAIQE
AASCR
AAUEB
ABJNI
ABVCZ
ACILI
ACXJB
ADGGA
ADHPY
AEETU
AFEXH
AFSOK
AHOMT
AHQNM
AINUH
AJNWD
AJZMW
AMNEI
AOHHW
CGR
CUY
CVF
ECM
EEVPB
EIF
ERAAH
FCALG
GNXGY
HLJTE
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c555t-626ec05cc929ca8adf58b70882d4a9335166f63fd4ac19ebf2ac040aadb7feea3
ISSN 0039-2499
IngestDate Tue Sep 17 21:22:13 EDT 2024
Fri Aug 16 08:26:59 EDT 2024
Fri Aug 23 01:48:42 EDT 2024
Sat Sep 28 07:51:04 EDT 2024
Fri Nov 25 13:52:52 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
neonatal stroke
postnatal
Stroke
Nervous system diseases
Brain stem
Cardiovascular disease
Cerebral disorder
Vascular disease
cell transplantation
Newborn
cerebral ischemia
mesenchymal stem cells
Central nervous system disease
Brain ischemia
Cerebrovascular disease
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555t-626ec05cc929ca8adf58b70882d4a9335166f63fd4ac19ebf2ac040aadb7feea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.111.000326
PMID 23539530
PQID 1345518875
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3694433
proquest_miscellaneous_1345518875
crossref_primary_10_1161_STROKEAHA_111_000326
pubmed_primary_23539530
pascalfrancis_primary_27321628
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2013
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References 20631189 - J Neurosci. 2010 Jul 14;30(28):9603-11
8439409 - Neuron. 1993 Feb;10(2):201-12
19375666 - Lancet Neurol. 2009 May;8(5):491-500
21034794 - Neuroscience. 2011 Jan 13;172:398-405
21609825 - Neuron. 2011 May 26;70(4):687-702
23254191 - Nat Rev Neurosci. 2013 Jan;14(1):7-23
21473911 - Brain Behav Immun. 2011 Oct;25(7):1342-8
22669296 - Pediatr Res. 2012 Sep;72(3):277-84
17286251 - Ann Neurol. 2007 Mar;61(3):199-208
21900578 - J Neurosci. 2011 Sep 7;31(36):12992-3001
9950062 - Neurosci Res. 1998 Dec;32(4):349-53
11535233 - J Neurol Sci. 2001 Aug 15;189(1-2):49-57
19766183 - Brain Behav Immun. 2010 Jul;24(5):812-21
19218034 - Pediatr Neurol. 2009 Mar;40(3):205-14
19672069 - Dev Neurosci. 2009;31(5):403-11
20639794 - Pediatr Res. 2010 Nov;68(5):419-22
17899689 - Neuropathology. 2007 Aug;27(4):355-63
15525724 - N Engl J Med. 2004 Nov 4;351(19):1985-95
19164786 - Stroke. 2009 Apr;40(4):1490-5
11598317 - Dev Neurosci. 2001;23(3):180-5
19883750 - Brain Behav Immun. 2010 Mar;24(3):387-93
15922299 - Biochem Biophys Res Commun. 2005 Jul 15;332(4):1101-6
18794523 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14638-43
23300948 - PLoS One. 2013;8(1):e51253
19181205 - Cell Transplant. 2008;17(10-11):1103-13
21659957 - Pediatr Res. 2011 Jul;70(1):3-9
17510456 - Stroke. 2007 Jul;38(7):2165-72
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_10_2
e_1_3_3_6_2
van Velthoven CT (e_1_3_3_11_2) 2010; 68
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_17_2
  doi: 10.1073/pnas.0803670105
– ident: e_1_3_3_24_2
  doi: 10.1161/strokeaha.106.477331
– ident: e_1_3_3_26_2
  doi: 10.1038/nrn3379
– volume: 68
  start-page: 419
  year: 2010
  ident: e_1_3_3_11_2
  article-title: Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage.
  publication-title: Pediatr Res
  contributor:
    fullname: van Velthoven CT
– ident: e_1_3_3_5_2
  doi: 10.1016/j.bbi.2009.10.017
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1440-1789.2007.00792.x
– ident: e_1_3_3_16_2
  doi: 10.1038/pr.2012.71
– ident: e_1_3_3_22_2
  doi: 10.1159/000232558
– ident: e_1_3_3_25_2
  doi: 10.1161/strokeaha.108.531806
– ident: e_1_3_3_9_2
  doi: 10.1016/j.bbrc.2005.05.055
– ident: e_1_3_3_20_2
  doi: 10.1002/ana.21068
– ident: e_1_3_3_2_2
  doi: 10.1056/NEJMra041996
– ident: e_1_3_3_10_2
  doi: 10.1016/S0168-0102(98)00096-0
– ident: e_1_3_3_27_2
  doi: 10.1203/PDR.0b013e31821d0d00
– ident: e_1_3_3_4_2
  doi: 10.1016/S0022-510X(01)00557-3
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.2102-11.2011
– ident: e_1_3_3_15_2
  doi: 10.3727/096368908787236576
– ident: e_1_3_3_28_2
  doi: 10.1016/j.neuron.2011.05.001
– ident: e_1_3_3_6_2
  doi: 10.1016/j.bbi.2011.03.021
– ident: e_1_3_3_18_2
  doi: 10.1159/000046140
– ident: e_1_3_3_14_2
  doi: 10.1016/S1474-4422(09)70061-4
– ident: e_1_3_3_19_2
  doi: 10.1016/0896-6273(93)90311-E
– ident: e_1_3_3_12_2
  doi: 10.1016/j.bbi.2009.09.008
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0051253
– ident: e_1_3_3_23_2
  doi: 10.1016/j.neuroscience.2010.10.054
– ident: e_1_3_3_8_2
  doi: 10.1523/JNEUROSCI.1835-10.2010
– ident: e_1_3_3_3_2
  doi: 10.1016/j.pediatrneurol.2008.09.018
SSID ssj0002385
Score 2.5344825
Snippet Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been...
Background and Purpose— Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal...
BACKGROUND AND PURPOSEBrain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1426
SubjectTerms Animals
Biological and medical sciences
Brain - pathology
Brain-Derived Neurotrophic Factor - therapeutic use
Cell Proliferation
Disease Models, Animal
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Infarction, Middle Cerebral Artery - drug therapy
Infarction, Middle Cerebral Artery - pathology
Infarction, Middle Cerebral Artery - therapy
Medical sciences
Mesenchymal Stem Cell Transplantation - methods
Nerve Fibers, Myelinated - pathology
Nervous system (semeiology, syndromes)
Neurology
Neurons - metabolism
Rats
Rats, Sprague-Dawley
Stroke - pathology
Stroke - therapy
Vascular diseases and vascular malformations of the nervous system
Title Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke
URI https://www.ncbi.nlm.nih.gov/pubmed/23539530
https://search.proquest.com/docview/1345518875
https://pubmed.ncbi.nlm.nih.gov/PMC3694433
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSAgJTfymAyYj8VZl1HWcNI_VGKqYOsTaob1FtuuspW1aremk8ddzZ7tNMooEvESt4ziy7_PlzvZ9R8gHBXOGCRUGCc94EIJBG3SyLAxa4N8KAxZ-pDE4uX8W9S7CL5fistzRtdElhTrSP3fGlfyPVKEM5IpRsv8g2W2jUAC_Qb5wBQnD9a9k3MfQIT2-ndugDzNv4jI8Zn3IV8uZzP1BQmTQzNdoUzYVJoRoTvIfMJI-PXhucP3cRY0sprWDQQNbYqmckrhVWTPAmKfvZlaMFzdOax2DZ3_bHFb2mMZm5tOEnDe7ebnVL2_MTEqXlw3KzXxipltsfTLX6ytHanA2mU4KWV2TYJUTgEfG69F2GGDYa1XROqJHDyhR0ZosdFHzv6vzCNW5678cS9TvSDjJ69VBKMu5FXGbC54Iv9FTp9He3LpPHrTjRKCffvqtJJYHy0X4yEp46cddr0TeaN9IzYh5vJQrmE-ZS4Syy1O5e-C2YsEMn5B973rQrsPRU3LP5M_Iw74_XPGcDCpwoggninCid-BESzhRCyfq4EQtnOgGTtT17QW5-HwyPO4FPudGoIUQRQD-rdEtoTWYzVp25CgTHRWjHzYKZcK5YFGURTyDf5olRmVtqeE7IOVIxZkxkr8ke_kiN68JFSOwXTuJbnWgBuNGRkpnUTJSSoJPwliDBJtBTJeOWiW1LmnE0sHw_OvpSbfXRQ81dePfIIe1kd4-BBZ4mwHWGuT9ZuhTUJI4RhJ6vV6ljIeWeTAWDfLKiaJ82su0QeKakLYVkIC9fiefjC0RO4-SMOT84I9tviGPyunxluwV12vzDozYQh1a-P0CeVCg1Q
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesenchymal+stem+cell+transplantation+attenuates+brain+injury+after+neonatal+stroke&rft.jtitle=Stroke+%281970%29&rft.au=van+Velthoven%2C+Cindy+T+J&rft.au=Sheldon%2C+R+Ann&rft.au=Kavelaars%2C+Annemieke&rft.au=Derugin%2C+Nikita&rft.date=2013-05-01&rft.eissn=1524-4628&rft.volume=44&rft.issue=5&rft.spage=1426&rft_id=info:doi/10.1161%2Fstrokeaha.111.000326&rft_id=info%3Apmid%2F23539530&rft.externalDocID=23539530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon