Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: Application to the modeling of their aggregation kinetics
[Display omitted] •The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius correspo...
Saved in:
Published in | Journal of colloid and interface science Vol. 406; pp. 75 - 85 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.09.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius corresponds to that of primary particles.•The aggregation kinetics of TiO2 NPs can be predicted successfully by the DLVO theory.
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately. |
---|---|
AbstractList | [Display omitted]
•The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius corresponds to that of primary particles.•The aggregation kinetics of TiO2 NPs can be predicted successfully by the DLVO theory.
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately. Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately. Titanium dioxide nanoparticles (TiO₂ NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO₂ NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO₂ NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO₂ NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO₂ NPs if the double layer interaction energy is estimated accurately. Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately. |
Author | Leroy, Philippe Ollivier, Patrick Azaroual, Mohamed Sameut Bouhaik, Izzeddine Mercury, Lionel |
Author_xml | – sequence: 1 givenname: Izzeddine surname: Sameut Bouhaik fullname: Sameut Bouhaik, Izzeddine organization: BRGM, ISTO UMR 7327, 45060 Orléans, France – sequence: 2 givenname: Philippe surname: Leroy fullname: Leroy, Philippe email: p.leroy@brgm.fr organization: BRGM, ISTO UMR 7327, 45060 Orléans, France – sequence: 3 givenname: Patrick surname: Ollivier fullname: Ollivier, Patrick organization: BRGM, ISTO UMR 7327, 45060 Orléans, France – sequence: 4 givenname: Mohamed surname: Azaroual fullname: Azaroual, Mohamed organization: BRGM, ISTO UMR 7327, 45060 Orléans, France – sequence: 5 givenname: Lionel surname: Mercury fullname: Mercury, Lionel organization: Université d’Orléans, ISTO UMR 7327, 45071 Orléans, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27595176$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23806415$$D View this record in MEDLINE/PubMed https://insu.hal.science/insu-00832278$$DView record in HAL |
BookMark | eNqNksFu1DAQhi1URLcLL8ABckFCSLuM4zhOEJdVBbTSSj3Qnq1Zx9l6ydrBdlYqb8Eb4zRbkDgUTh7L3_977PnPyIl1VhPyksKSAi3f75Y7ZcIyB8qWwJfAiidkRqHmC0GBnZAZQE4XtajFKTkLYQdAKef1M3KaswrKgvIZ-Xlp227QVunMtVkYfIupVM42g4rmYOJd5mwWb3WGfY9e25j90BGz3sVUG-xG2bW5yjOL1iUiGtXp8CFb9X1nFEYzyt29w941ujN2O0rS3vgMt1uvtxP0zVidxOE5edpiF_SL4zonN58_XZ9fLNZXXy7PV-uF4pzHBW9Fi2XLKVLW1oViOq90QTWrVXobReRCcJbzCtmmoeMnVKwQvGo2jHKxKdicvJt8b7GTvTd79HfSoZEXq7U0NgwSoGJ5LqoDTfDbCe69-z7oEOXeBKW7Dq12Q5C0AgZ1XVb_gXLKipqKovg3WgCwus6T-Zy8OqLDZq-b3w0_TDIBb44ABoVd69GmcPzhBK85FWXiqolT3oXgdSuVifcTiB5NJynIMVxyJ8dwyTFcErhM4UrS_C_pg_ujoteTqEUncevT8c3XBJQAICoBY0cfJ0KnaR-M9jIoMyayMV6rKBtnHrvgF86q8GA |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1007_s00340_014_5831_0 crossref_primary_10_3390_ma8115437 crossref_primary_10_1177_0954008314555522 crossref_primary_10_1016_j_jconhyd_2015_06_007 crossref_primary_10_1016_j_solener_2024_112553 crossref_primary_10_1088_0957_4484_27_44_445702 crossref_primary_10_1016_j_jcis_2015_02_051 crossref_primary_10_1021_acs_langmuir_4c04456 crossref_primary_10_3390_polym15132804 crossref_primary_10_1016_j_talanta_2019_06_062 crossref_primary_10_1007_s10404_018_2167_9 crossref_primary_10_1016_j_heliyon_2019_e01308 crossref_primary_10_1016_j_jwpe_2019_01_009 crossref_primary_10_1016_j_jes_2021_09_041 crossref_primary_10_1016_j_porgcoat_2015_04_002 crossref_primary_10_1016_j_eti_2021_102053 crossref_primary_10_1016_j_ijpharm_2017_06_006 crossref_primary_10_1021_cm504406a crossref_primary_10_1021_la403615w crossref_primary_10_1016_j_jhazmat_2018_07_035 crossref_primary_10_1016_j_cemconcomp_2019_103397 crossref_primary_10_1016_j_colsurfa_2018_09_006 crossref_primary_10_1016_j_jcis_2020_05_022 crossref_primary_10_1016_j_jpowsour_2014_06_057 crossref_primary_10_1021_acs_energyfuels_6b00051 crossref_primary_10_3389_fbioe_2024_1367405 crossref_primary_10_3390_ijms17040576 crossref_primary_10_1007_s10337_017_3347_6 crossref_primary_10_1016_j_colsurfa_2021_126610 crossref_primary_10_1016_j_colsurfa_2015_08_044 crossref_primary_10_1016_j_envpol_2016_03_011 crossref_primary_10_1021_acs_jpcc_9b11371 crossref_primary_10_1039_C8RA04300K crossref_primary_10_1007_s13369_022_06976_2 crossref_primary_10_1002_cplu_201300426 crossref_primary_10_1007_s11051_016_3501_3 crossref_primary_10_1016_j_ensm_2019_11_008 crossref_primary_10_1021_acs_langmuir_1c02056 crossref_primary_10_1016_j_jenvman_2020_110740 crossref_primary_10_1016_j_ceramint_2018_10_123 crossref_primary_10_1016_j_jcp_2024_113439 crossref_primary_10_1007_s11164_017_2862_2 crossref_primary_10_1021_acs_est_2c05237 crossref_primary_10_1016_j_actbio_2020_11_018 crossref_primary_10_1016_j_ijpharm_2015_09_021 crossref_primary_10_1016_j_jhazmat_2024_133769 crossref_primary_10_1016_j_jcis_2016_01_075 crossref_primary_10_3390_math9233089 |
Cites_doi | 10.1021/es1000819 10.1038/379219a0 10.1098/rspa.1931.0133 10.1007/BF00653221 10.1190/1.1441215 10.1016/S0927-7757(97)00266-5 10.1029/98GL00296 10.1016/j.jcis.2011.06.085 10.1021/la991154z 10.1006/jcis.1999.6294 10.1016/0021-9797(71)90245-1 10.1080/10473289.2005.10464656 10.1021/es0352303 10.1016/0021-9797(72)90253-6 10.1006/jcis.1996.0238 10.1021/cr00033a004 10.1029/2000JB900043 10.1021/ja00078a029 10.1017/S0033583501003687 10.1016/S0001-8686(97)00003-1 10.1021/es100598h 10.1021/la061774h 10.1016/j.watres.2009.06.005 10.1021/es203623z 10.1021/la00073a016 10.1103/PhysRevB.55.1757 10.1016/0021-9797(75)90081-8 10.1016/j.jcis.2011.01.016 10.1016/j.ces.2004.06.050 10.1021/la960074h 10.1039/tf9666201638 10.1016/j.envpol.2007.06.006 10.1021/es060847g 10.1016/j.minpro.2005.07.001 10.1016/j.cis.2008.04.003 10.1103/PhysRevLett.75.1851 10.1016/0166-6622(92)80111-E 10.1006/jcis.1997.4813 10.1016/j.jcis.2006.05.008 10.1016/S0031-8914(37)80203-7 10.1016/j.jcis.2007.04.038 10.1021/es035354f 10.1016/S0920-5861(99)00107-8 10.14356/kona.2006008 10.1021/es062726m 10.1039/tf9484401021 10.1021/es802628n 10.1006/jcis.1996.0478 10.1006/jcis.2002.8476 10.1016/j.jcis.2006.09.038 10.1006/jcis.1994.1212 10.1006/jcis.1997.5076 10.2134/jeq2009.0462 10.1021/la00096a023 10.1016/0021-9797(70)90228-6 10.1006/jcis.1994.1419 10.1021/la000806c 10.1039/tf9403500154 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SR 7U5 8FD JG9 L7M 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.jcis.2013.05.034 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Ceramic Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1095-7103 |
EndPage | 85 |
ExternalDocumentID | oai_HAL_insu_00832278v1 23806415 27595176 10_1016_j_jcis_2013_05_034 US201600078706 S0021979713004736 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK ABPIF ABPTK ACNNM ADFGL ADMUD AFFNX AI. ASPBG AVWKF AZFZN BBWZM CAG COF D-I EJD FBQ FEDTE FGOYB G-2 G8K HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW VH1 WUQ XFK ZGI ZXP AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7QQ 7SR 7U5 8FD JG9 L7M 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c555t-5f7fa6f51a13f94c3e28e41e39c8061aa57753258a3bd19797834758db3157b43 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Wed Jul 16 07:51:44 EDT 2025 Fri Jul 11 13:54:18 EDT 2025 Fri Jul 11 05:08:39 EDT 2025 Mon Jul 21 10:12:14 EDT 2025 Mon Jul 21 05:50:00 EDT 2025 Wed Apr 02 07:15:12 EDT 2025 Tue Jul 01 01:18:13 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Wed Dec 27 19:18:23 EST 2023 Fri Feb 23 02:28:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extended Stern model Nanoparticle Zeta potential Surface conductivity Linear superposition approximation Stability ratio Surface element integration TiO2 Derjaguin approximation Binary compound Stability Transition element compounds Modeling Aggregation Linear approximation Electrokinetic potential Models Kinetics TiO Titanium oxide |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-5f7fa6f51a13f94c3e28e41e39c8061aa57753258a3bd19797834758db3157b43 |
Notes | http://dx.doi.org/10.1016/j.jcis.2013.05.034 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4829-2538 0000-0001-5541-3396 0000-0002-5792-9051 0000-0002-3825-663X |
OpenAccessLink | https://insu.hal.science/insu-00832278 |
PMID | 23806415 |
PQID | 1400399280 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_insu_00832278v1 proquest_miscellaneous_1803099681 proquest_miscellaneous_1513491744 proquest_miscellaneous_1400399280 pubmed_primary_23806415 pascalfrancis_primary_27595176 crossref_citationtrail_10_1016_j_jcis_2013_05_034 crossref_primary_10_1016_j_jcis_2013_05_034 fao_agris_US201600078706 elsevier_sciencedirect_doi_10_1016_j_jcis_2013_05_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-15 |
PublicationDateYYYYMMDD | 2013-09-15 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Guzman, Finnegan, Banfield (b0035) 2006; 40 Carnie, Chan, Stankovich (b0250) 1994; 165 Gilbert, Lu, Kim (b0355) 2007; 313 Behrens, Christl, Emmerzael, Schurtenberger, Borkovec (b0185) 2000; 16 Elimelech, Gregory, Jia, Williams (b0080) 1995 G. Frens, Dissertation, Utrecht, 1968, 88 p. Revil, Glover (b0300) 1998 Gregory (b0245) 1975; 51 Hoffmann, Martin, Choi, Bahnemann (b0070) 1995; 95 Israelachvili, Wennerstrom (b0170) 1996; 379 Leroy, Tournassat, Bizi (b0090) 2011; 356 Bikerman (b0100) 1940; 35 D.L. Parkhurst, C.A.J. Appelo, U.S. Geological Survey Water-Resources Investigations Report, 1999, 312 p. Derjaguin, Landau (b0140) 1941; 14 Kallay, Colic, Fuerstenau, Jang, Matijevic (b0195) 1994; 272 Nowack, Bucheli (b0020) 2007; 150 Hotze, Phenrat, Lowry (b0075) 2010; 39 Revil (b0315) 2000; 105 Kallay, Preocanin, Kovacevic (b0150) 2009; 82 Bhattacharjee, Sharma (b0260) 1996; 12 Lyklema (b0095) 1991 Frens, Overbeek (b0165) 1972; 38 Hückel (b0290) 1924; 25 Verwey, Overbeek (b0135) 1948 Crespy, Boleve, Revil (b0105) 2007 Caceci, Cacheris (b0330) 1984; 9 Wiesner, Lowry, Alvarez, Dionysiou, Biswas (b0005) 2006; 40 Solovitch, Labille, Rose, Chaurand, Borschneck, Wiesner, Bottero (b0085) 2010; 44 Biggs (b0350) 2006; 24 Larson, Drummond, Chan, Grieser (b0115) 1993; 115 Liu, Chen, Su (b0050) 2011; 363 Snoswell, Duan, Fornasiero, Ralston (b0110) 2005; 78 Leckband, Israelachvili (b0240) 2001; 34 Petosa, Jaisi, Quevedo, Elimelech, Tufenkji (b0010) 2010; 44 Zhang, Chen, Westerhoff, Crittenden (b0060) 2009; 43 Schwarzer, Peukert (b0345) 2005; 60 Kihira, Ryde, Matijevic (b0145) 1992; 64 Lyklema, Minor (b0275) 1998; 140 Biswas, Wu (b0025) 2005; 55 Panagiotou, Petsi, Bourikas, Garoufalis, Tsevis, Spanos, Kordulis, Lycourghiotis (b0040) 2008; 142 M. Von Smoluchowski, L. Graetz, Leipzig, 1921, 385 p. Bourikas, Hiemstra, Van Riemsdijk (b0045) 2001 Bhattacharjee, Elimelech, Borkovec (b0255) 1998; 71 Bergstrom (b0335) 1997; 70 Bell, Levine, McCartney (b0235) 1970; 33 Herrmann (b0065) 1999; 53 Puertas (b0130) 1999; 216 Dukhin, Lyklema (b0160) 1987; 3 Elimelech, O’Melia (b0190) 1990; 6 Ohshima (b0285) 1994; 168 Ackler, French, Chiang (b0120) 1996; 179 Honig, Roebersen, Wiersema (b0215) 1971; 36 Ridley, Hackley, Machesky (b0125) 2006; 22 Kallay, Zalac (b0205) 2002; 253 Hogg, Healy, Fuerstenau (b0200) 1966; 62 Sen, Scala, Cohen (b0305) 1981; 46 Lecoanet, Wiesner (b0030) 2004; 38 Revil, Glover (b0310) 1997; 55 Shulepov, Frens (b0180) 1996; 182 Hiemstra, Van Riemsdijk (b0340) 2006; 301 Dukhin, Shilov (b0320) 1974 Henry (b0270) 1931; 133 Lecoanet, Bottero, Wiesner (b0015) 2004; 38 Kekicheff, Spalla (b0175) 1995; 75 Henry (b0280) 1948; 44 Hunter (b0220) 1981 Hamaker (b0225) 1937; 4 Shulepov (b0155) 1997; 189 French, Jacobson, Kim, Isley, Penn, Baveye (b0055) 2009; 43 Zhang, Crittenden, Li, Chen (b0210) 2012; 46 Bhattacharjee, Elimelech (b0265) 1997; 193 Hoffmann (10.1016/j.jcis.2013.05.034_b0070) 1995; 95 Kallay (10.1016/j.jcis.2013.05.034_b0195) 1994; 272 Dukhin (10.1016/j.jcis.2013.05.034_b0160) 1987; 3 Kekicheff (10.1016/j.jcis.2013.05.034_b0175) 1995; 75 French (10.1016/j.jcis.2013.05.034_b0055) 2009; 43 Nowack (10.1016/j.jcis.2013.05.034_b0020) 2007; 150 Guzman (10.1016/j.jcis.2013.05.034_b0035) 2006; 40 10.1016/j.jcis.2013.05.034_b0325 Revil (10.1016/j.jcis.2013.05.034_b0300) 1998 Kihira (10.1016/j.jcis.2013.05.034_b0145) 1992; 64 Zhang (10.1016/j.jcis.2013.05.034_b0060) 2009; 43 Lyklema (10.1016/j.jcis.2013.05.034_b0275) 1998; 140 Revil (10.1016/j.jcis.2013.05.034_b0315) 2000; 105 Shulepov (10.1016/j.jcis.2013.05.034_b0180) 1996; 182 Lyklema (10.1016/j.jcis.2013.05.034_b0095) 1991 Hückel (10.1016/j.jcis.2013.05.034_b0290) 1924; 25 Israelachvili (10.1016/j.jcis.2013.05.034_b0170) 1996; 379 Carnie (10.1016/j.jcis.2013.05.034_b0250) 1994; 165 Herrmann (10.1016/j.jcis.2013.05.034_b0065) 1999; 53 Verwey (10.1016/j.jcis.2013.05.034_b0135) 1948 Zhang (10.1016/j.jcis.2013.05.034_b0210) 2012; 46 Lecoanet (10.1016/j.jcis.2013.05.034_b0030) 2004; 38 Larson (10.1016/j.jcis.2013.05.034_b0115) 1993; 115 Gregory (10.1016/j.jcis.2013.05.034_b0245) 1975; 51 Kallay (10.1016/j.jcis.2013.05.034_b0150) 2009; 82 Snoswell (10.1016/j.jcis.2013.05.034_b0110) 2005; 78 Ackler (10.1016/j.jcis.2013.05.034_b0120) 1996; 179 Bikerman (10.1016/j.jcis.2013.05.034_b0100) 1940; 35 Petosa (10.1016/j.jcis.2013.05.034_b0010) 2010; 44 Solovitch (10.1016/j.jcis.2013.05.034_b0085) 2010; 44 Dukhin (10.1016/j.jcis.2013.05.034_b0320) 1974 Elimelech (10.1016/j.jcis.2013.05.034_b0080) 1995 10.1016/j.jcis.2013.05.034_b0230 Derjaguin (10.1016/j.jcis.2013.05.034_b0140) 1941; 14 Biswas (10.1016/j.jcis.2013.05.034_b0025) 2005; 55 Behrens (10.1016/j.jcis.2013.05.034_b0185) 2000; 16 Hotze (10.1016/j.jcis.2013.05.034_b0075) 2010; 39 Caceci (10.1016/j.jcis.2013.05.034_b0330) 1984; 9 Hiemstra (10.1016/j.jcis.2013.05.034_b0340) 2006; 301 Panagiotou (10.1016/j.jcis.2013.05.034_b0040) 2008; 142 Henry (10.1016/j.jcis.2013.05.034_b0280) 1948; 44 Schwarzer (10.1016/j.jcis.2013.05.034_b0345) 2005; 60 Ohshima (10.1016/j.jcis.2013.05.034_b0285) 1994; 168 Revil (10.1016/j.jcis.2013.05.034_b0310) 1997; 55 Bhattacharjee (10.1016/j.jcis.2013.05.034_b0265) 1997; 193 Elimelech (10.1016/j.jcis.2013.05.034_b0190) 1990; 6 Bergstrom (10.1016/j.jcis.2013.05.034_b0335) 1997; 70 Frens (10.1016/j.jcis.2013.05.034_b0165) 1972; 38 Biggs (10.1016/j.jcis.2013.05.034_b0350) 2006; 24 Gilbert (10.1016/j.jcis.2013.05.034_b0355) 2007; 313 Leroy (10.1016/j.jcis.2013.05.034_b0090) 2011; 356 Hunter (10.1016/j.jcis.2013.05.034_b0220) 1981 Wiesner (10.1016/j.jcis.2013.05.034_b0005) 2006; 40 Hogg (10.1016/j.jcis.2013.05.034_b0200) 1966; 62 Liu (10.1016/j.jcis.2013.05.034_b0050) 2011; 363 Puertas (10.1016/j.jcis.2013.05.034_b0130) 1999; 216 Sen (10.1016/j.jcis.2013.05.034_b0305) 1981; 46 Ridley (10.1016/j.jcis.2013.05.034_b0125) 2006; 22 Bourikas (10.1016/j.jcis.2013.05.034_b0045) 2001 Henry (10.1016/j.jcis.2013.05.034_b0270) 1931; 133 Kallay (10.1016/j.jcis.2013.05.034_b0205) 2002; 253 Bell (10.1016/j.jcis.2013.05.034_b0235) 1970; 33 Honig (10.1016/j.jcis.2013.05.034_b0215) 1971; 36 Shulepov (10.1016/j.jcis.2013.05.034_b0155) 1997; 189 10.1016/j.jcis.2013.05.034_b0295 Crespy (10.1016/j.jcis.2013.05.034_b0105) 2007 Bhattacharjee (10.1016/j.jcis.2013.05.034_b0255) 1998; 71 Leckband (10.1016/j.jcis.2013.05.034_b0240) 2001; 34 Bhattacharjee (10.1016/j.jcis.2013.05.034_b0260) 1996; 12 Hamaker (10.1016/j.jcis.2013.05.034_b0225) 1937; 4 Lecoanet (10.1016/j.jcis.2013.05.034_b0015) 2004; 38 |
References_xml | – volume: 44 start-page: 4897 year: 2010 ident: b0085 publication-title: Environ. Sci. Technol. – volume: 4 start-page: 1058 year: 1937 ident: b0225 publication-title: Physica – volume: 105 start-page: 16749 year: 2000 ident: b0315 publication-title: J. Geophys. Res. – Sol. Ea. – volume: 39 start-page: 1909 year: 2010 ident: b0075 publication-title: J. Environ. Qual. – volume: 12 start-page: 5498 year: 1996 ident: b0260 publication-title: Langmuir – volume: 46 start-page: 781 year: 1981 ident: b0305 publication-title: Geophysics – reference: G. Frens, Dissertation, Utrecht, 1968, 88 p. – volume: 182 start-page: 388 year: 1996 ident: b0180 publication-title: J. Colloid Interface Sci. – volume: 40 start-page: 7688 year: 2006 ident: b0035 publication-title: Environ. Sci. Technol. – start-page: 749 year: 2001 ident: b0045 publication-title: Langmuir – volume: 165 start-page: 116 year: 1994 ident: b0250 publication-title: J. Colloid Interface Sci. – reference: M. Von Smoluchowski, L. Graetz, Leipzig, 1921, 385 p. – volume: 179 start-page: 460 year: 1996 ident: b0120 publication-title: J. Colloid Interface Sci. – volume: 38 start-page: 376 year: 1972 ident: b0165 publication-title: J. Colloid Interface Sci. – year: 1974 ident: b0320 article-title: Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes – volume: 43 start-page: 1354 year: 2009 ident: b0055 publication-title: Environ. Sci. Technol. – year: 1991 ident: b0095 article-title: Fundamentals of Interface and Colloid Science – volume: 40 start-page: 4336 year: 2006 ident: b0005 publication-title: Environ. Sci. Technol. – volume: 22 start-page: 10972 year: 2006 ident: b0125 publication-title: Langmuir – volume: 14 start-page: 633 year: 1941 ident: b0140 publication-title: Acta Physicochim. USSR – volume: 140 start-page: 33 year: 1998 ident: b0275 publication-title: Colloids Surf., A – volume: 35 start-page: 154 year: 1940 ident: b0100 publication-title: Trans. Faraday Soc. – volume: 60 start-page: 11 year: 2005 ident: b0345 publication-title: Chem. Eng. Sci. – year: 1995 ident: b0080 article-title: Particle Deposition and Aggregation: Measurement, Modelling and Simulation – volume: 25 start-page: 204 year: 1924 ident: b0290 publication-title: Phys. Z. – volume: 36 start-page: 97 year: 1971 ident: b0215 publication-title: J. Colloid Interface Sci. – volume: 55 start-page: 1757 year: 1997 ident: b0310 publication-title: Phys. Rev. B – volume: 70 start-page: 125 year: 1997 ident: b0335 publication-title: Adv. Colloid Interface Sci. – year: 1981 ident: b0220 article-title: Zeta Potential in Colloid Science: Principles and Applications – volume: 216 start-page: 221 year: 1999 ident: b0130 publication-title: J. Colloid Interface Sci. – volume: 71 start-page: 883 year: 1998 ident: b0255 publication-title: Croat. Chem. Acta – volume: 301 start-page: 1 year: 2006 ident: b0340 publication-title: J. Colloid Interface Sci. – volume: 34 start-page: 105 year: 2001 ident: b0240 publication-title: Q. Rev. Biophys. – volume: 44 start-page: 6532 year: 2010 ident: b0010 publication-title: Environ. Sci. Technol. – volume: 75 start-page: 1851 year: 1995 ident: b0175 publication-title: Phys. Rev. Lett. – volume: 193 start-page: 273 year: 1997 ident: b0265 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 94 year: 1987 ident: b0160 publication-title: Langmuir – start-page: 691 year: 1998 ident: b0300 publication-title: Geophys. Res. Lett. – volume: 46 start-page: 7054 year: 2012 ident: b0210 publication-title: Environ. Sci. Technol. – volume: 43 start-page: 4249 year: 2009 ident: b0060 publication-title: Water. Res. – volume: 189 start-page: 199 year: 1997 ident: b0155 publication-title: J. Colloid Interface Sci. – volume: 133 start-page: 106 year: 1931 ident: b0270 publication-title: Proc. R. Soc. London, A – volume: 9 start-page: 340 year: 1984 ident: b0330 publication-title: Byte – volume: 253 start-page: 70 year: 2002 ident: b0205 publication-title: J. Colloid Interface Sci. – volume: 64 start-page: 317 year: 1992 ident: b0145 publication-title: Colloids Surf. – volume: 38 start-page: 5164 year: 2004 ident: b0015 publication-title: Environ. Sci. Technol. – volume: 33 start-page: 335 year: 1970 ident: b0235 publication-title: J. Colloid Interface Sci. – volume: 150 start-page: 5 year: 2007 ident: b0020 publication-title: Environ. Pollut. – reference: D.L. Parkhurst, C.A.J. Appelo, U.S. Geological Survey Water-Resources Investigations Report, 1999, 312 p. – volume: 142 start-page: 20 year: 2008 ident: b0040 publication-title: Adv. Colloid Interface Sci. – volume: 356 start-page: 442 year: 2011 ident: b0090 publication-title: J. Colloid Interface Sci. – volume: 115 start-page: 11885 year: 1993 ident: b0115 publication-title: J. Am. Chem. Soc. – volume: 379 start-page: 219 year: 1996 ident: b0170 publication-title: Nature – volume: 55 start-page: 708 year: 2005 ident: b0025 publication-title: J. Air Waste Manage. – volume: 82 start-page: 531 year: 2009 ident: b0150 publication-title: Croat. Chem. Acta – start-page: 188 year: 2007 ident: b0105 publication-title: J. Colloid Interface Sci. – volume: 62 start-page: 1638 year: 1966 ident: b0200 publication-title: Trans. Faraday Soc. – volume: 51 start-page: 44 year: 1975 ident: b0245 publication-title: J. Colloid Interface Sci. – volume: 95 start-page: 69 year: 1995 ident: b0070 publication-title: Chem. Rev. – volume: 53 start-page: 115 year: 1999 ident: b0065 publication-title: Catal. Today – volume: 78 start-page: 1 year: 2005 ident: b0110 publication-title: Int. J. Miner. Process. – volume: 16 start-page: 2566 year: 2000 ident: b0185 publication-title: Langmuir – volume: 6 start-page: 1153 year: 1990 ident: b0190 publication-title: Langmuir – volume: 24 start-page: 41 year: 2006 ident: b0350 publication-title: KONA – volume: 272 start-page: 554 year: 1994 ident: b0195 publication-title: Colloid Polym. Sci. – volume: 168 start-page: 269 year: 1994 ident: b0285 publication-title: J. Colloid Interface Sci. – volume: 44 start-page: 1021 year: 1948 ident: b0280 publication-title: Trans. Faraday Soc. – volume: 313 start-page: 152 year: 2007 ident: b0355 publication-title: J. Colloid Interface Sci. – volume: 363 start-page: 84 year: 2011 ident: b0050 publication-title: J. Colloid Interface Sci. – year: 1948 ident: b0135 article-title: Theory of the Stability of Lyophobic Colloids – volume: 38 start-page: 4377 year: 2004 ident: b0030 publication-title: Environ. Sci. Technol. – volume: 44 start-page: 4897 year: 2010 ident: 10.1016/j.jcis.2013.05.034_b0085 publication-title: Environ. Sci. Technol. doi: 10.1021/es1000819 – volume: 379 start-page: 219 year: 1996 ident: 10.1016/j.jcis.2013.05.034_b0170 publication-title: Nature doi: 10.1038/379219a0 – volume: 133 start-page: 106 year: 1931 ident: 10.1016/j.jcis.2013.05.034_b0270 publication-title: Proc. R. Soc. London, A doi: 10.1098/rspa.1931.0133 – volume: 272 start-page: 554 year: 1994 ident: 10.1016/j.jcis.2013.05.034_b0195 publication-title: Colloid Polym. Sci. doi: 10.1007/BF00653221 – year: 1995 ident: 10.1016/j.jcis.2013.05.034_b0080 – volume: 46 start-page: 781 year: 1981 ident: 10.1016/j.jcis.2013.05.034_b0305 publication-title: Geophysics doi: 10.1190/1.1441215 – volume: 71 start-page: 883 year: 1998 ident: 10.1016/j.jcis.2013.05.034_b0255 publication-title: Croat. Chem. Acta – volume: 140 start-page: 33 year: 1998 ident: 10.1016/j.jcis.2013.05.034_b0275 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(97)00266-5 – start-page: 691 year: 1998 ident: 10.1016/j.jcis.2013.05.034_b0300 publication-title: Geophys. Res. Lett. doi: 10.1029/98GL00296 – volume: 363 start-page: 84 year: 2011 ident: 10.1016/j.jcis.2013.05.034_b0050 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.06.085 – volume: 16 start-page: 2566 year: 2000 ident: 10.1016/j.jcis.2013.05.034_b0185 publication-title: Langmuir doi: 10.1021/la991154z – volume: 216 start-page: 221 year: 1999 ident: 10.1016/j.jcis.2013.05.034_b0130 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6294 – ident: 10.1016/j.jcis.2013.05.034_b0295 – volume: 36 start-page: 97 year: 1971 ident: 10.1016/j.jcis.2013.05.034_b0215 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(71)90245-1 – year: 1974 ident: 10.1016/j.jcis.2013.05.034_b0320 – volume: 55 start-page: 708 year: 2005 ident: 10.1016/j.jcis.2013.05.034_b0025 publication-title: J. Air Waste Manage. doi: 10.1080/10473289.2005.10464656 – volume: 38 start-page: 5164 year: 2004 ident: 10.1016/j.jcis.2013.05.034_b0015 publication-title: Environ. Sci. Technol. doi: 10.1021/es0352303 – volume: 38 start-page: 376 year: 1972 ident: 10.1016/j.jcis.2013.05.034_b0165 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(72)90253-6 – ident: 10.1016/j.jcis.2013.05.034_b0230 – ident: 10.1016/j.jcis.2013.05.034_b0325 – volume: 179 start-page: 460 year: 1996 ident: 10.1016/j.jcis.2013.05.034_b0120 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0238 – volume: 95 start-page: 69 year: 1995 ident: 10.1016/j.jcis.2013.05.034_b0070 publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 105 start-page: 16749 year: 2000 ident: 10.1016/j.jcis.2013.05.034_b0315 publication-title: J. Geophys. Res. – Sol. Ea. doi: 10.1029/2000JB900043 – volume: 115 start-page: 11885 year: 1993 ident: 10.1016/j.jcis.2013.05.034_b0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00078a029 – volume: 34 start-page: 105 year: 2001 ident: 10.1016/j.jcis.2013.05.034_b0240 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583501003687 – volume: 70 start-page: 125 year: 1997 ident: 10.1016/j.jcis.2013.05.034_b0335 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(97)00003-1 – volume: 44 start-page: 6532 year: 2010 ident: 10.1016/j.jcis.2013.05.034_b0010 publication-title: Environ. Sci. Technol. doi: 10.1021/es100598h – volume: 22 start-page: 10972 year: 2006 ident: 10.1016/j.jcis.2013.05.034_b0125 publication-title: Langmuir doi: 10.1021/la061774h – volume: 43 start-page: 4249 year: 2009 ident: 10.1016/j.jcis.2013.05.034_b0060 publication-title: Water. Res. doi: 10.1016/j.watres.2009.06.005 – volume: 46 start-page: 7054 year: 2012 ident: 10.1016/j.jcis.2013.05.034_b0210 publication-title: Environ. Sci. Technol. doi: 10.1021/es203623z – volume: 3 start-page: 94 year: 1987 ident: 10.1016/j.jcis.2013.05.034_b0160 publication-title: Langmuir doi: 10.1021/la00073a016 – volume: 55 start-page: 1757 year: 1997 ident: 10.1016/j.jcis.2013.05.034_b0310 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.1757 – volume: 51 start-page: 44 year: 1975 ident: 10.1016/j.jcis.2013.05.034_b0245 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(75)90081-8 – volume: 356 start-page: 442 year: 2011 ident: 10.1016/j.jcis.2013.05.034_b0090 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.01.016 – volume: 60 start-page: 11 year: 2005 ident: 10.1016/j.jcis.2013.05.034_b0345 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.06.050 – volume: 12 start-page: 5498 year: 1996 ident: 10.1016/j.jcis.2013.05.034_b0260 publication-title: Langmuir doi: 10.1021/la960074h – volume: 62 start-page: 1638 year: 1966 ident: 10.1016/j.jcis.2013.05.034_b0200 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9666201638 – volume: 150 start-page: 5 year: 2007 ident: 10.1016/j.jcis.2013.05.034_b0020 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.006 – year: 1948 ident: 10.1016/j.jcis.2013.05.034_b0135 – volume: 40 start-page: 7688 year: 2006 ident: 10.1016/j.jcis.2013.05.034_b0035 publication-title: Environ. Sci. Technol. doi: 10.1021/es060847g – volume: 78 start-page: 1 year: 2005 ident: 10.1016/j.jcis.2013.05.034_b0110 publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2005.07.001 – volume: 142 start-page: 20 year: 2008 ident: 10.1016/j.jcis.2013.05.034_b0040 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2008.04.003 – volume: 75 start-page: 1851 year: 1995 ident: 10.1016/j.jcis.2013.05.034_b0175 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.1851 – volume: 64 start-page: 317 year: 1992 ident: 10.1016/j.jcis.2013.05.034_b0145 publication-title: Colloids Surf. doi: 10.1016/0166-6622(92)80111-E – volume: 189 start-page: 199 year: 1997 ident: 10.1016/j.jcis.2013.05.034_b0155 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.4813 – volume: 301 start-page: 1 year: 2006 ident: 10.1016/j.jcis.2013.05.034_b0340 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.05.008 – volume: 14 start-page: 633 year: 1941 ident: 10.1016/j.jcis.2013.05.034_b0140 publication-title: Acta Physicochim. USSR – volume: 4 start-page: 1058 year: 1937 ident: 10.1016/j.jcis.2013.05.034_b0225 publication-title: Physica doi: 10.1016/S0031-8914(37)80203-7 – volume: 25 start-page: 204 year: 1924 ident: 10.1016/j.jcis.2013.05.034_b0290 publication-title: Phys. Z. – volume: 313 start-page: 152 year: 2007 ident: 10.1016/j.jcis.2013.05.034_b0355 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.04.038 – volume: 38 start-page: 4377 year: 2004 ident: 10.1016/j.jcis.2013.05.034_b0030 publication-title: Environ. Sci. Technol. doi: 10.1021/es035354f – volume: 53 start-page: 115 year: 1999 ident: 10.1016/j.jcis.2013.05.034_b0065 publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00107-8 – volume: 24 start-page: 41 year: 2006 ident: 10.1016/j.jcis.2013.05.034_b0350 publication-title: KONA doi: 10.14356/kona.2006008 – volume: 40 start-page: 4336 year: 2006 ident: 10.1016/j.jcis.2013.05.034_b0005 publication-title: Environ. Sci. Technol. doi: 10.1021/es062726m – volume: 44 start-page: 1021 year: 1948 ident: 10.1016/j.jcis.2013.05.034_b0280 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9484401021 – volume: 9 start-page: 340 year: 1984 ident: 10.1016/j.jcis.2013.05.034_b0330 publication-title: Byte – volume: 43 start-page: 1354 year: 2009 ident: 10.1016/j.jcis.2013.05.034_b0055 publication-title: Environ. Sci. Technol. doi: 10.1021/es802628n – year: 1991 ident: 10.1016/j.jcis.2013.05.034_b0095 – volume: 182 start-page: 388 year: 1996 ident: 10.1016/j.jcis.2013.05.034_b0180 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0478 – volume: 253 start-page: 70 year: 2002 ident: 10.1016/j.jcis.2013.05.034_b0205 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8476 – start-page: 188 year: 2007 ident: 10.1016/j.jcis.2013.05.034_b0105 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.09.038 – volume: 165 start-page: 116 year: 1994 ident: 10.1016/j.jcis.2013.05.034_b0250 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1212 – volume: 193 start-page: 273 year: 1997 ident: 10.1016/j.jcis.2013.05.034_b0265 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.5076 – volume: 39 start-page: 1909 year: 2010 ident: 10.1016/j.jcis.2013.05.034_b0075 publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0462 – volume: 6 start-page: 1153 year: 1990 ident: 10.1016/j.jcis.2013.05.034_b0190 publication-title: Langmuir doi: 10.1021/la00096a023 – volume: 33 start-page: 335 year: 1970 ident: 10.1016/j.jcis.2013.05.034_b0235 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(70)90228-6 – year: 1981 ident: 10.1016/j.jcis.2013.05.034_b0220 – volume: 168 start-page: 269 year: 1994 ident: 10.1016/j.jcis.2013.05.034_b0285 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1419 – volume: 82 start-page: 531 year: 2009 ident: 10.1016/j.jcis.2013.05.034_b0150 publication-title: Croat. Chem. Acta – start-page: 749 year: 2001 ident: 10.1016/j.jcis.2013.05.034_b0045 publication-title: Langmuir doi: 10.1021/la000806c – volume: 35 start-page: 154 year: 1940 ident: 10.1016/j.jcis.2013.05.034_b0100 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9403500154 |
SSID | ssj0011559 |
Score | 2.3239799 |
Snippet | [Display omitted]
•The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an... Titanium dioxide nanoparticles (TiO₂ NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of... Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of... |
SourceID | hal proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 75 |
SubjectTerms | Adjustable Agglomeration aquatic environment aqueous solutions Chemical Phenomena Chemistry Colloidal state and disperse state Continental interfaces, environment Crystallites Derjaguin approximation dispersions Double layer electrical conductivity electrophoresis energy Environmental Sciences Exact sciences and technology Extended Stern model General and physical chemistry Global Changes human health Humans ionic strength Kinetics Linear superposition approximation Mathematical models Nanoparticle Nanoparticles Nanoparticles - chemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena potassium chloride risk Sciences of the Universe Stability ratio Static Electricity Surface conductivity Surface element integration TiO2 Titanium - toxicity Titanium dioxide titration Zeta potential |
Title | Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: Application to the modeling of their aggregation kinetics |
URI | https://dx.doi.org/10.1016/j.jcis.2013.05.034 https://www.ncbi.nlm.nih.gov/pubmed/23806415 https://www.proquest.com/docview/1400399280 https://www.proquest.com/docview/1513491744 https://www.proquest.com/docview/1803099681 https://insu.hal.science/insu-00832278 |
Volume | 406 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUCFEJRHl8fKCG4odB3bccJttaLaAioHulJv1iRrb7egJOpme-DAf-AfM-MkW3roHrisotU4tjwTe0bzzTeMvYN0Xvi4UFEyd3mkHKQRSPDRSHkDeOFD4QPK9ySZztTnM322wyZ9LQzBKruzvz3Tw2nd_XPY7eZhvVxSjS9-bSYzlJBRRhLttlKGrPzD7w3MQ1DarYV5iIiku8KZFuN1USyJslvIwN4p1W2X0x0PFf6eE1byQQ0r3D7f9r243TENF9TRI_aw8yz5uF38Y7bjyn12b9I3dNtne_9wDz5hf4779iS88ny1vvSAjxgdEwFs6CjBq5Kje8ihJpR62fBfrgFeVw0BjHAmHHa6_BbzEkqMvDuA3Uc-vk6J86YKbwjtdnBWGhIyExwWGOcvWqEfuCgii37KZkefTifTqOvPEBVa6ybS3nhIvBYgpM9UIV2cOiWczIoU3QQAbTAYinUKMp8HVaVSYXwyz6XQJlfyGdstq9IdMJ7ExHQvCxfStihvMExzeSaUR_8ygwETvWJs0ZGXUw-Nn7ZHqV1YUqYlZdqRtqjMAXu_GVO31B1bpXWvb3vDAC3eLVvHHaBxWFjgmWxn32Ni7CO_y4ySAXuLFrOZm4i8p-OvlooMLLm-VIV8JQZseMOiNvKx0ej-GnzNm97ELFoMJXSgdNV6hWEblVZncTraIqOJgBLjTrVFJqVEW5akuJjnrQ1fr0KiLtHLe_Gf-_OS3Y9DB5EsEvoV220u1-41-nFNPgwf6pDdHR9_mZ78BWvPRQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9NAVw7B1j2aPTsN2G4zGlmTZuwXBimTNssMSoDeBdqQsXWEHjbPD_sX-8UjZTtdDc9glMALKEkRa-giSHxn7AMk8d1Eug3hus0BaSAIQ4IKedBrwwofc-SzfSTycyS-X6nKPDdpaGEqrbM7--kz3p3Xzz1mzm2er5ZJqfPFr06mmgIzUIt5nB8ROpTrsoD-6GE62wQSKvNWZHmFAA5ramTrN6ypfEmt3KDyBp5D33U_7Dkr8_UHpkg9XsMYddHXri_uxqb-jzh-zRw245P16_U_Yni2O2eGg7el2zI7-oR98yv6M2g4lvHR8vblxgI_oIBMHrG8qwcuCI0LksKJE9aLiv20FfFVWlGOEM-Gw6fJbxAso0Plucuw-8f5tVJxXpX-D77iDs9IQH5zgsEBXf1EL_cRFEV_0MzY7_zwdDIOmRUOQK6WqQDntIHYqhFC4VObCRomVoRVpniBSAFAa_aFIJSCyuddWIlBFyTwTodKZFM9ZpygLe8J4HBHZvcitj9yivEZPzWZpKB1CzBS6LGwVY_KGv5zaaFybNlHtypAyDSnT9JRBZXbZx-2YVc3esVNatfo2d2zQ4PWyc9wJGoeBBR7LZvY9ItI-gl66F3fZe7SY7dzE5T3sjw3VGRhCv1SI_CvsstM7FrWVj7RCBKzxNe9aEzNoMRTTgcKWmzV6blRdnUZJb4eMIg5KdD3lDpmEYm1pnOBiXtQ2fLsKgbpEoPfyP_fnLTscTr-OzXg0uXjFHkS-oUgahOo161Q3G_sGYV2VnTaf7V9yT0e1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+surface+conductivity+on+the+apparent+zeta+potential+of+TiO%E2%82%82+nanoparticles%3A+Application+to+the+modeling+of+their+aggregation+kinetics&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sameut+Bouhaik%2C+Izzeddine&rft.au=Leroy%2C+Philippe&rft.au=Ollivier%2C+Patrick&rft.au=Azaroual%2C+Mohamed&rft.date=2013-09-15&rft.issn=0021-9797&rft.volume=406+p.75-85&rft.spage=75&rft.epage=85&rft_id=info:doi/10.1016%2Fj.jcis.2013.05.034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |