Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: Application to the modeling of their aggregation kinetics

[Display omitted] •The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius correspo...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 406; pp. 75 - 85
Main Authors Sameut Bouhaik, Izzeddine, Leroy, Philippe, Ollivier, Patrick, Azaroual, Mohamed, Mercury, Lionel
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.09.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius corresponds to that of primary particles.•The aggregation kinetics of TiO2 NPs can be predicted successfully by the DLVO theory. Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.
AbstractList [Display omitted] •The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an extended Stern model.•The true zeta potential can be twice that not corrected of surface conductivity.•The effective interaction radius corresponds to that of primary particles.•The aggregation kinetics of TiO2 NPs can be predicted successfully by the DLVO theory. Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.
Titanium dioxide nanoparticles (TiO₂ NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO₂ NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO₂ NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO₂ NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO₂ NPs if the double layer interaction energy is estimated accurately.
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.
Author Leroy, Philippe
Ollivier, Patrick
Azaroual, Mohamed
Sameut Bouhaik, Izzeddine
Mercury, Lionel
Author_xml – sequence: 1
  givenname: Izzeddine
  surname: Sameut Bouhaik
  fullname: Sameut Bouhaik, Izzeddine
  organization: BRGM, ISTO UMR 7327, 45060 Orléans, France
– sequence: 2
  givenname: Philippe
  surname: Leroy
  fullname: Leroy, Philippe
  email: p.leroy@brgm.fr
  organization: BRGM, ISTO UMR 7327, 45060 Orléans, France
– sequence: 3
  givenname: Patrick
  surname: Ollivier
  fullname: Ollivier, Patrick
  organization: BRGM, ISTO UMR 7327, 45060 Orléans, France
– sequence: 4
  givenname: Mohamed
  surname: Azaroual
  fullname: Azaroual, Mohamed
  organization: BRGM, ISTO UMR 7327, 45060 Orléans, France
– sequence: 5
  givenname: Lionel
  surname: Mercury
  fullname: Mercury, Lionel
  organization: Université d’Orléans, ISTO UMR 7327, 45071 Orléans, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27595176$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23806415$$D View this record in MEDLINE/PubMed
https://insu.hal.science/insu-00832278$$DView record in HAL
BookMark eNqNksFu1DAQhi1URLcLL8ABckFCSLuM4zhOEJdVBbTSSj3Qnq1Zx9l6ydrBdlYqb8Eb4zRbkDgUTh7L3_977PnPyIl1VhPyksKSAi3f75Y7ZcIyB8qWwJfAiidkRqHmC0GBnZAZQE4XtajFKTkLYQdAKef1M3KaswrKgvIZ-Xlp227QVunMtVkYfIupVM42g4rmYOJd5mwWb3WGfY9e25j90BGz3sVUG-xG2bW5yjOL1iUiGtXp8CFb9X1nFEYzyt29w941ujN2O0rS3vgMt1uvtxP0zVidxOE5edpiF_SL4zonN58_XZ9fLNZXXy7PV-uF4pzHBW9Fi2XLKVLW1oViOq90QTWrVXobReRCcJbzCtmmoeMnVKwQvGo2jHKxKdicvJt8b7GTvTd79HfSoZEXq7U0NgwSoGJ5LqoDTfDbCe69-z7oEOXeBKW7Dq12Q5C0AgZ1XVb_gXLKipqKovg3WgCwus6T-Zy8OqLDZq-b3w0_TDIBb44ABoVd69GmcPzhBK85FWXiqolT3oXgdSuVifcTiB5NJynIMVxyJ8dwyTFcErhM4UrS_C_pg_ujoteTqEUncevT8c3XBJQAICoBY0cfJ0KnaR-M9jIoMyayMV6rKBtnHrvgF86q8GA
CODEN JCISA5
CitedBy_id crossref_primary_10_1007_s00340_014_5831_0
crossref_primary_10_3390_ma8115437
crossref_primary_10_1177_0954008314555522
crossref_primary_10_1016_j_jconhyd_2015_06_007
crossref_primary_10_1016_j_solener_2024_112553
crossref_primary_10_1088_0957_4484_27_44_445702
crossref_primary_10_1016_j_jcis_2015_02_051
crossref_primary_10_1021_acs_langmuir_4c04456
crossref_primary_10_3390_polym15132804
crossref_primary_10_1016_j_talanta_2019_06_062
crossref_primary_10_1007_s10404_018_2167_9
crossref_primary_10_1016_j_heliyon_2019_e01308
crossref_primary_10_1016_j_jwpe_2019_01_009
crossref_primary_10_1016_j_jes_2021_09_041
crossref_primary_10_1016_j_porgcoat_2015_04_002
crossref_primary_10_1016_j_eti_2021_102053
crossref_primary_10_1016_j_ijpharm_2017_06_006
crossref_primary_10_1021_cm504406a
crossref_primary_10_1021_la403615w
crossref_primary_10_1016_j_jhazmat_2018_07_035
crossref_primary_10_1016_j_cemconcomp_2019_103397
crossref_primary_10_1016_j_colsurfa_2018_09_006
crossref_primary_10_1016_j_jcis_2020_05_022
crossref_primary_10_1016_j_jpowsour_2014_06_057
crossref_primary_10_1021_acs_energyfuels_6b00051
crossref_primary_10_3389_fbioe_2024_1367405
crossref_primary_10_3390_ijms17040576
crossref_primary_10_1007_s10337_017_3347_6
crossref_primary_10_1016_j_colsurfa_2021_126610
crossref_primary_10_1016_j_colsurfa_2015_08_044
crossref_primary_10_1016_j_envpol_2016_03_011
crossref_primary_10_1021_acs_jpcc_9b11371
crossref_primary_10_1039_C8RA04300K
crossref_primary_10_1007_s13369_022_06976_2
crossref_primary_10_1002_cplu_201300426
crossref_primary_10_1007_s11051_016_3501_3
crossref_primary_10_1016_j_ensm_2019_11_008
crossref_primary_10_1021_acs_langmuir_1c02056
crossref_primary_10_1016_j_jenvman_2020_110740
crossref_primary_10_1016_j_ceramint_2018_10_123
crossref_primary_10_1016_j_jcp_2024_113439
crossref_primary_10_1007_s11164_017_2862_2
crossref_primary_10_1021_acs_est_2c05237
crossref_primary_10_1016_j_actbio_2020_11_018
crossref_primary_10_1016_j_ijpharm_2015_09_021
crossref_primary_10_1016_j_jhazmat_2024_133769
crossref_primary_10_1016_j_jcis_2016_01_075
crossref_primary_10_3390_math9233089
Cites_doi 10.1021/es1000819
10.1038/379219a0
10.1098/rspa.1931.0133
10.1007/BF00653221
10.1190/1.1441215
10.1016/S0927-7757(97)00266-5
10.1029/98GL00296
10.1016/j.jcis.2011.06.085
10.1021/la991154z
10.1006/jcis.1999.6294
10.1016/0021-9797(71)90245-1
10.1080/10473289.2005.10464656
10.1021/es0352303
10.1016/0021-9797(72)90253-6
10.1006/jcis.1996.0238
10.1021/cr00033a004
10.1029/2000JB900043
10.1021/ja00078a029
10.1017/S0033583501003687
10.1016/S0001-8686(97)00003-1
10.1021/es100598h
10.1021/la061774h
10.1016/j.watres.2009.06.005
10.1021/es203623z
10.1021/la00073a016
10.1103/PhysRevB.55.1757
10.1016/0021-9797(75)90081-8
10.1016/j.jcis.2011.01.016
10.1016/j.ces.2004.06.050
10.1021/la960074h
10.1039/tf9666201638
10.1016/j.envpol.2007.06.006
10.1021/es060847g
10.1016/j.minpro.2005.07.001
10.1016/j.cis.2008.04.003
10.1103/PhysRevLett.75.1851
10.1016/0166-6622(92)80111-E
10.1006/jcis.1997.4813
10.1016/j.jcis.2006.05.008
10.1016/S0031-8914(37)80203-7
10.1016/j.jcis.2007.04.038
10.1021/es035354f
10.1016/S0920-5861(99)00107-8
10.14356/kona.2006008
10.1021/es062726m
10.1039/tf9484401021
10.1021/es802628n
10.1006/jcis.1996.0478
10.1006/jcis.2002.8476
10.1016/j.jcis.2006.09.038
10.1006/jcis.1994.1212
10.1006/jcis.1997.5076
10.2134/jeq2009.0462
10.1021/la00096a023
10.1016/0021-9797(70)90228-6
10.1006/jcis.1994.1419
10.1021/la000806c
10.1039/tf9403500154
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QQ
7SR
7U5
8FD
JG9
L7M
7S9
L.6
1XC
VOOES
DOI 10.1016/j.jcis.2013.05.034
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Ceramic Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database

MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1095-7103
EndPage 85
ExternalDocumentID oai_HAL_insu_00832278v1
23806415
27595176
10_1016_j_jcis_2013_05_034
US201600078706
S0021979713004736
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
ABPIF
ABPTK
ACNNM
ADFGL
ADMUD
AFFNX
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
D-I
EJD
FBQ
FEDTE
FGOYB
G-2
G8K
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
VH1
WUQ
XFK
ZGI
ZXP
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7QQ
7SR
7U5
8FD
JG9
L7M
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c555t-5f7fa6f51a13f94c3e28e41e39c8061aa57753258a3bd19797834758db3157b43
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Wed Jul 16 07:51:44 EDT 2025
Fri Jul 11 13:54:18 EDT 2025
Fri Jul 11 05:08:39 EDT 2025
Mon Jul 21 10:12:14 EDT 2025
Mon Jul 21 05:50:00 EDT 2025
Wed Apr 02 07:15:12 EDT 2025
Tue Jul 01 01:18:13 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Wed Dec 27 19:18:23 EST 2023
Fri Feb 23 02:28:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extended Stern model
Nanoparticle
Zeta potential
Surface conductivity
Linear superposition approximation
Stability ratio
Surface element integration
TiO2
Derjaguin approximation
Binary compound
Stability
Transition element compounds
Modeling
Aggregation
Linear approximation
Electrokinetic potential
Models
Kinetics
TiO
Titanium oxide
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-5f7fa6f51a13f94c3e28e41e39c8061aa57753258a3bd19797834758db3157b43
Notes http://dx.doi.org/10.1016/j.jcis.2013.05.034
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4829-2538
0000-0001-5541-3396
0000-0002-5792-9051
0000-0002-3825-663X
OpenAccessLink https://insu.hal.science/insu-00832278
PMID 23806415
PQID 1400399280
PQPubID 23479
PageCount 11
ParticipantIDs hal_primary_oai_HAL_insu_00832278v1
proquest_miscellaneous_1803099681
proquest_miscellaneous_1513491744
proquest_miscellaneous_1400399280
pubmed_primary_23806415
pascalfrancis_primary_27595176
crossref_citationtrail_10_1016_j_jcis_2013_05_034
crossref_primary_10_1016_j_jcis_2013_05_034
fao_agris_US201600078706
elsevier_sciencedirect_doi_10_1016_j_jcis_2013_05_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-15
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Guzman, Finnegan, Banfield (b0035) 2006; 40
Carnie, Chan, Stankovich (b0250) 1994; 165
Gilbert, Lu, Kim (b0355) 2007; 313
Behrens, Christl, Emmerzael, Schurtenberger, Borkovec (b0185) 2000; 16
Elimelech, Gregory, Jia, Williams (b0080) 1995
G. Frens, Dissertation, Utrecht, 1968, 88 p.
Revil, Glover (b0300) 1998
Gregory (b0245) 1975; 51
Hoffmann, Martin, Choi, Bahnemann (b0070) 1995; 95
Israelachvili, Wennerstrom (b0170) 1996; 379
Leroy, Tournassat, Bizi (b0090) 2011; 356
Bikerman (b0100) 1940; 35
D.L. Parkhurst, C.A.J. Appelo, U.S. Geological Survey Water-Resources Investigations Report, 1999, 312 p.
Derjaguin, Landau (b0140) 1941; 14
Kallay, Colic, Fuerstenau, Jang, Matijevic (b0195) 1994; 272
Nowack, Bucheli (b0020) 2007; 150
Hotze, Phenrat, Lowry (b0075) 2010; 39
Revil (b0315) 2000; 105
Kallay, Preocanin, Kovacevic (b0150) 2009; 82
Bhattacharjee, Sharma (b0260) 1996; 12
Lyklema (b0095) 1991
Frens, Overbeek (b0165) 1972; 38
Hückel (b0290) 1924; 25
Verwey, Overbeek (b0135) 1948
Crespy, Boleve, Revil (b0105) 2007
Caceci, Cacheris (b0330) 1984; 9
Wiesner, Lowry, Alvarez, Dionysiou, Biswas (b0005) 2006; 40
Solovitch, Labille, Rose, Chaurand, Borschneck, Wiesner, Bottero (b0085) 2010; 44
Biggs (b0350) 2006; 24
Larson, Drummond, Chan, Grieser (b0115) 1993; 115
Liu, Chen, Su (b0050) 2011; 363
Snoswell, Duan, Fornasiero, Ralston (b0110) 2005; 78
Leckband, Israelachvili (b0240) 2001; 34
Petosa, Jaisi, Quevedo, Elimelech, Tufenkji (b0010) 2010; 44
Zhang, Chen, Westerhoff, Crittenden (b0060) 2009; 43
Schwarzer, Peukert (b0345) 2005; 60
Kihira, Ryde, Matijevic (b0145) 1992; 64
Lyklema, Minor (b0275) 1998; 140
Biswas, Wu (b0025) 2005; 55
Panagiotou, Petsi, Bourikas, Garoufalis, Tsevis, Spanos, Kordulis, Lycourghiotis (b0040) 2008; 142
M. Von Smoluchowski, L. Graetz, Leipzig, 1921, 385 p.
Bourikas, Hiemstra, Van Riemsdijk (b0045) 2001
Bhattacharjee, Elimelech, Borkovec (b0255) 1998; 71
Bergstrom (b0335) 1997; 70
Bell, Levine, McCartney (b0235) 1970; 33
Herrmann (b0065) 1999; 53
Puertas (b0130) 1999; 216
Dukhin, Lyklema (b0160) 1987; 3
Elimelech, O’Melia (b0190) 1990; 6
Ohshima (b0285) 1994; 168
Ackler, French, Chiang (b0120) 1996; 179
Honig, Roebersen, Wiersema (b0215) 1971; 36
Ridley, Hackley, Machesky (b0125) 2006; 22
Kallay, Zalac (b0205) 2002; 253
Hogg, Healy, Fuerstenau (b0200) 1966; 62
Sen, Scala, Cohen (b0305) 1981; 46
Lecoanet, Wiesner (b0030) 2004; 38
Revil, Glover (b0310) 1997; 55
Shulepov, Frens (b0180) 1996; 182
Hiemstra, Van Riemsdijk (b0340) 2006; 301
Dukhin, Shilov (b0320) 1974
Henry (b0270) 1931; 133
Lecoanet, Bottero, Wiesner (b0015) 2004; 38
Kekicheff, Spalla (b0175) 1995; 75
Henry (b0280) 1948; 44
Hunter (b0220) 1981
Hamaker (b0225) 1937; 4
Shulepov (b0155) 1997; 189
French, Jacobson, Kim, Isley, Penn, Baveye (b0055) 2009; 43
Zhang, Crittenden, Li, Chen (b0210) 2012; 46
Bhattacharjee, Elimelech (b0265) 1997; 193
Hoffmann (10.1016/j.jcis.2013.05.034_b0070) 1995; 95
Kallay (10.1016/j.jcis.2013.05.034_b0195) 1994; 272
Dukhin (10.1016/j.jcis.2013.05.034_b0160) 1987; 3
Kekicheff (10.1016/j.jcis.2013.05.034_b0175) 1995; 75
French (10.1016/j.jcis.2013.05.034_b0055) 2009; 43
Nowack (10.1016/j.jcis.2013.05.034_b0020) 2007; 150
Guzman (10.1016/j.jcis.2013.05.034_b0035) 2006; 40
10.1016/j.jcis.2013.05.034_b0325
Revil (10.1016/j.jcis.2013.05.034_b0300) 1998
Kihira (10.1016/j.jcis.2013.05.034_b0145) 1992; 64
Zhang (10.1016/j.jcis.2013.05.034_b0060) 2009; 43
Lyklema (10.1016/j.jcis.2013.05.034_b0275) 1998; 140
Revil (10.1016/j.jcis.2013.05.034_b0315) 2000; 105
Shulepov (10.1016/j.jcis.2013.05.034_b0180) 1996; 182
Lyklema (10.1016/j.jcis.2013.05.034_b0095) 1991
Hückel (10.1016/j.jcis.2013.05.034_b0290) 1924; 25
Israelachvili (10.1016/j.jcis.2013.05.034_b0170) 1996; 379
Carnie (10.1016/j.jcis.2013.05.034_b0250) 1994; 165
Herrmann (10.1016/j.jcis.2013.05.034_b0065) 1999; 53
Verwey (10.1016/j.jcis.2013.05.034_b0135) 1948
Zhang (10.1016/j.jcis.2013.05.034_b0210) 2012; 46
Lecoanet (10.1016/j.jcis.2013.05.034_b0030) 2004; 38
Larson (10.1016/j.jcis.2013.05.034_b0115) 1993; 115
Gregory (10.1016/j.jcis.2013.05.034_b0245) 1975; 51
Kallay (10.1016/j.jcis.2013.05.034_b0150) 2009; 82
Snoswell (10.1016/j.jcis.2013.05.034_b0110) 2005; 78
Ackler (10.1016/j.jcis.2013.05.034_b0120) 1996; 179
Bikerman (10.1016/j.jcis.2013.05.034_b0100) 1940; 35
Petosa (10.1016/j.jcis.2013.05.034_b0010) 2010; 44
Solovitch (10.1016/j.jcis.2013.05.034_b0085) 2010; 44
Dukhin (10.1016/j.jcis.2013.05.034_b0320) 1974
Elimelech (10.1016/j.jcis.2013.05.034_b0080) 1995
10.1016/j.jcis.2013.05.034_b0230
Derjaguin (10.1016/j.jcis.2013.05.034_b0140) 1941; 14
Biswas (10.1016/j.jcis.2013.05.034_b0025) 2005; 55
Behrens (10.1016/j.jcis.2013.05.034_b0185) 2000; 16
Hotze (10.1016/j.jcis.2013.05.034_b0075) 2010; 39
Caceci (10.1016/j.jcis.2013.05.034_b0330) 1984; 9
Hiemstra (10.1016/j.jcis.2013.05.034_b0340) 2006; 301
Panagiotou (10.1016/j.jcis.2013.05.034_b0040) 2008; 142
Henry (10.1016/j.jcis.2013.05.034_b0280) 1948; 44
Schwarzer (10.1016/j.jcis.2013.05.034_b0345) 2005; 60
Ohshima (10.1016/j.jcis.2013.05.034_b0285) 1994; 168
Revil (10.1016/j.jcis.2013.05.034_b0310) 1997; 55
Bhattacharjee (10.1016/j.jcis.2013.05.034_b0265) 1997; 193
Elimelech (10.1016/j.jcis.2013.05.034_b0190) 1990; 6
Bergstrom (10.1016/j.jcis.2013.05.034_b0335) 1997; 70
Frens (10.1016/j.jcis.2013.05.034_b0165) 1972; 38
Biggs (10.1016/j.jcis.2013.05.034_b0350) 2006; 24
Gilbert (10.1016/j.jcis.2013.05.034_b0355) 2007; 313
Leroy (10.1016/j.jcis.2013.05.034_b0090) 2011; 356
Hunter (10.1016/j.jcis.2013.05.034_b0220) 1981
Wiesner (10.1016/j.jcis.2013.05.034_b0005) 2006; 40
Hogg (10.1016/j.jcis.2013.05.034_b0200) 1966; 62
Liu (10.1016/j.jcis.2013.05.034_b0050) 2011; 363
Puertas (10.1016/j.jcis.2013.05.034_b0130) 1999; 216
Sen (10.1016/j.jcis.2013.05.034_b0305) 1981; 46
Ridley (10.1016/j.jcis.2013.05.034_b0125) 2006; 22
Bourikas (10.1016/j.jcis.2013.05.034_b0045) 2001
Henry (10.1016/j.jcis.2013.05.034_b0270) 1931; 133
Kallay (10.1016/j.jcis.2013.05.034_b0205) 2002; 253
Bell (10.1016/j.jcis.2013.05.034_b0235) 1970; 33
Honig (10.1016/j.jcis.2013.05.034_b0215) 1971; 36
Shulepov (10.1016/j.jcis.2013.05.034_b0155) 1997; 189
10.1016/j.jcis.2013.05.034_b0295
Crespy (10.1016/j.jcis.2013.05.034_b0105) 2007
Bhattacharjee (10.1016/j.jcis.2013.05.034_b0255) 1998; 71
Leckband (10.1016/j.jcis.2013.05.034_b0240) 2001; 34
Bhattacharjee (10.1016/j.jcis.2013.05.034_b0260) 1996; 12
Hamaker (10.1016/j.jcis.2013.05.034_b0225) 1937; 4
Lecoanet (10.1016/j.jcis.2013.05.034_b0015) 2004; 38
References_xml – volume: 44
  start-page: 4897
  year: 2010
  ident: b0085
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 1058
  year: 1937
  ident: b0225
  publication-title: Physica
– volume: 105
  start-page: 16749
  year: 2000
  ident: b0315
  publication-title: J. Geophys. Res. – Sol. Ea.
– volume: 39
  start-page: 1909
  year: 2010
  ident: b0075
  publication-title: J. Environ. Qual.
– volume: 12
  start-page: 5498
  year: 1996
  ident: b0260
  publication-title: Langmuir
– volume: 46
  start-page: 781
  year: 1981
  ident: b0305
  publication-title: Geophysics
– reference: G. Frens, Dissertation, Utrecht, 1968, 88 p.
– volume: 182
  start-page: 388
  year: 1996
  ident: b0180
  publication-title: J. Colloid Interface Sci.
– volume: 40
  start-page: 7688
  year: 2006
  ident: b0035
  publication-title: Environ. Sci. Technol.
– start-page: 749
  year: 2001
  ident: b0045
  publication-title: Langmuir
– volume: 165
  start-page: 116
  year: 1994
  ident: b0250
  publication-title: J. Colloid Interface Sci.
– reference: M. Von Smoluchowski, L. Graetz, Leipzig, 1921, 385 p.
– volume: 179
  start-page: 460
  year: 1996
  ident: b0120
  publication-title: J. Colloid Interface Sci.
– volume: 38
  start-page: 376
  year: 1972
  ident: b0165
  publication-title: J. Colloid Interface Sci.
– year: 1974
  ident: b0320
  article-title: Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes
– volume: 43
  start-page: 1354
  year: 2009
  ident: b0055
  publication-title: Environ. Sci. Technol.
– year: 1991
  ident: b0095
  article-title: Fundamentals of Interface and Colloid Science
– volume: 40
  start-page: 4336
  year: 2006
  ident: b0005
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 10972
  year: 2006
  ident: b0125
  publication-title: Langmuir
– volume: 14
  start-page: 633
  year: 1941
  ident: b0140
  publication-title: Acta Physicochim. USSR
– volume: 140
  start-page: 33
  year: 1998
  ident: b0275
  publication-title: Colloids Surf., A
– volume: 35
  start-page: 154
  year: 1940
  ident: b0100
  publication-title: Trans. Faraday Soc.
– volume: 60
  start-page: 11
  year: 2005
  ident: b0345
  publication-title: Chem. Eng. Sci.
– year: 1995
  ident: b0080
  article-title: Particle Deposition and Aggregation: Measurement, Modelling and Simulation
– volume: 25
  start-page: 204
  year: 1924
  ident: b0290
  publication-title: Phys. Z.
– volume: 36
  start-page: 97
  year: 1971
  ident: b0215
  publication-title: J. Colloid Interface Sci.
– volume: 55
  start-page: 1757
  year: 1997
  ident: b0310
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 125
  year: 1997
  ident: b0335
  publication-title: Adv. Colloid Interface Sci.
– year: 1981
  ident: b0220
  article-title: Zeta Potential in Colloid Science: Principles and Applications
– volume: 216
  start-page: 221
  year: 1999
  ident: b0130
  publication-title: J. Colloid Interface Sci.
– volume: 71
  start-page: 883
  year: 1998
  ident: b0255
  publication-title: Croat. Chem. Acta
– volume: 301
  start-page: 1
  year: 2006
  ident: b0340
  publication-title: J. Colloid Interface Sci.
– volume: 34
  start-page: 105
  year: 2001
  ident: b0240
  publication-title: Q. Rev. Biophys.
– volume: 44
  start-page: 6532
  year: 2010
  ident: b0010
  publication-title: Environ. Sci. Technol.
– volume: 75
  start-page: 1851
  year: 1995
  ident: b0175
  publication-title: Phys. Rev. Lett.
– volume: 193
  start-page: 273
  year: 1997
  ident: b0265
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 94
  year: 1987
  ident: b0160
  publication-title: Langmuir
– start-page: 691
  year: 1998
  ident: b0300
  publication-title: Geophys. Res. Lett.
– volume: 46
  start-page: 7054
  year: 2012
  ident: b0210
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 4249
  year: 2009
  ident: b0060
  publication-title: Water. Res.
– volume: 189
  start-page: 199
  year: 1997
  ident: b0155
  publication-title: J. Colloid Interface Sci.
– volume: 133
  start-page: 106
  year: 1931
  ident: b0270
  publication-title: Proc. R. Soc. London, A
– volume: 9
  start-page: 340
  year: 1984
  ident: b0330
  publication-title: Byte
– volume: 253
  start-page: 70
  year: 2002
  ident: b0205
  publication-title: J. Colloid Interface Sci.
– volume: 64
  start-page: 317
  year: 1992
  ident: b0145
  publication-title: Colloids Surf.
– volume: 38
  start-page: 5164
  year: 2004
  ident: b0015
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 335
  year: 1970
  ident: b0235
  publication-title: J. Colloid Interface Sci.
– volume: 150
  start-page: 5
  year: 2007
  ident: b0020
  publication-title: Environ. Pollut.
– reference: D.L. Parkhurst, C.A.J. Appelo, U.S. Geological Survey Water-Resources Investigations Report, 1999, 312 p.
– volume: 142
  start-page: 20
  year: 2008
  ident: b0040
  publication-title: Adv. Colloid Interface Sci.
– volume: 356
  start-page: 442
  year: 2011
  ident: b0090
  publication-title: J. Colloid Interface Sci.
– volume: 115
  start-page: 11885
  year: 1993
  ident: b0115
  publication-title: J. Am. Chem. Soc.
– volume: 379
  start-page: 219
  year: 1996
  ident: b0170
  publication-title: Nature
– volume: 55
  start-page: 708
  year: 2005
  ident: b0025
  publication-title: J. Air Waste Manage.
– volume: 82
  start-page: 531
  year: 2009
  ident: b0150
  publication-title: Croat. Chem. Acta
– start-page: 188
  year: 2007
  ident: b0105
  publication-title: J. Colloid Interface Sci.
– volume: 62
  start-page: 1638
  year: 1966
  ident: b0200
  publication-title: Trans. Faraday Soc.
– volume: 51
  start-page: 44
  year: 1975
  ident: b0245
  publication-title: J. Colloid Interface Sci.
– volume: 95
  start-page: 69
  year: 1995
  ident: b0070
  publication-title: Chem. Rev.
– volume: 53
  start-page: 115
  year: 1999
  ident: b0065
  publication-title: Catal. Today
– volume: 78
  start-page: 1
  year: 2005
  ident: b0110
  publication-title: Int. J. Miner. Process.
– volume: 16
  start-page: 2566
  year: 2000
  ident: b0185
  publication-title: Langmuir
– volume: 6
  start-page: 1153
  year: 1990
  ident: b0190
  publication-title: Langmuir
– volume: 24
  start-page: 41
  year: 2006
  ident: b0350
  publication-title: KONA
– volume: 272
  start-page: 554
  year: 1994
  ident: b0195
  publication-title: Colloid Polym. Sci.
– volume: 168
  start-page: 269
  year: 1994
  ident: b0285
  publication-title: J. Colloid Interface Sci.
– volume: 44
  start-page: 1021
  year: 1948
  ident: b0280
  publication-title: Trans. Faraday Soc.
– volume: 313
  start-page: 152
  year: 2007
  ident: b0355
  publication-title: J. Colloid Interface Sci.
– volume: 363
  start-page: 84
  year: 2011
  ident: b0050
  publication-title: J. Colloid Interface Sci.
– year: 1948
  ident: b0135
  article-title: Theory of the Stability of Lyophobic Colloids
– volume: 38
  start-page: 4377
  year: 2004
  ident: b0030
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 4897
  year: 2010
  ident: 10.1016/j.jcis.2013.05.034_b0085
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1000819
– volume: 379
  start-page: 219
  year: 1996
  ident: 10.1016/j.jcis.2013.05.034_b0170
  publication-title: Nature
  doi: 10.1038/379219a0
– volume: 133
  start-page: 106
  year: 1931
  ident: 10.1016/j.jcis.2013.05.034_b0270
  publication-title: Proc. R. Soc. London, A
  doi: 10.1098/rspa.1931.0133
– volume: 272
  start-page: 554
  year: 1994
  ident: 10.1016/j.jcis.2013.05.034_b0195
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF00653221
– year: 1995
  ident: 10.1016/j.jcis.2013.05.034_b0080
– volume: 46
  start-page: 781
  year: 1981
  ident: 10.1016/j.jcis.2013.05.034_b0305
  publication-title: Geophysics
  doi: 10.1190/1.1441215
– volume: 71
  start-page: 883
  year: 1998
  ident: 10.1016/j.jcis.2013.05.034_b0255
  publication-title: Croat. Chem. Acta
– volume: 140
  start-page: 33
  year: 1998
  ident: 10.1016/j.jcis.2013.05.034_b0275
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(97)00266-5
– start-page: 691
  year: 1998
  ident: 10.1016/j.jcis.2013.05.034_b0300
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/98GL00296
– volume: 363
  start-page: 84
  year: 2011
  ident: 10.1016/j.jcis.2013.05.034_b0050
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.06.085
– volume: 16
  start-page: 2566
  year: 2000
  ident: 10.1016/j.jcis.2013.05.034_b0185
  publication-title: Langmuir
  doi: 10.1021/la991154z
– volume: 216
  start-page: 221
  year: 1999
  ident: 10.1016/j.jcis.2013.05.034_b0130
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6294
– ident: 10.1016/j.jcis.2013.05.034_b0295
– volume: 36
  start-page: 97
  year: 1971
  ident: 10.1016/j.jcis.2013.05.034_b0215
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(71)90245-1
– year: 1974
  ident: 10.1016/j.jcis.2013.05.034_b0320
– volume: 55
  start-page: 708
  year: 2005
  ident: 10.1016/j.jcis.2013.05.034_b0025
  publication-title: J. Air Waste Manage.
  doi: 10.1080/10473289.2005.10464656
– volume: 38
  start-page: 5164
  year: 2004
  ident: 10.1016/j.jcis.2013.05.034_b0015
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0352303
– volume: 38
  start-page: 376
  year: 1972
  ident: 10.1016/j.jcis.2013.05.034_b0165
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(72)90253-6
– ident: 10.1016/j.jcis.2013.05.034_b0230
– ident: 10.1016/j.jcis.2013.05.034_b0325
– volume: 179
  start-page: 460
  year: 1996
  ident: 10.1016/j.jcis.2013.05.034_b0120
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0238
– volume: 95
  start-page: 69
  year: 1995
  ident: 10.1016/j.jcis.2013.05.034_b0070
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 105
  start-page: 16749
  year: 2000
  ident: 10.1016/j.jcis.2013.05.034_b0315
  publication-title: J. Geophys. Res. – Sol. Ea.
  doi: 10.1029/2000JB900043
– volume: 115
  start-page: 11885
  year: 1993
  ident: 10.1016/j.jcis.2013.05.034_b0115
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00078a029
– volume: 34
  start-page: 105
  year: 2001
  ident: 10.1016/j.jcis.2013.05.034_b0240
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583501003687
– volume: 70
  start-page: 125
  year: 1997
  ident: 10.1016/j.jcis.2013.05.034_b0335
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(97)00003-1
– volume: 44
  start-page: 6532
  year: 2010
  ident: 10.1016/j.jcis.2013.05.034_b0010
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100598h
– volume: 22
  start-page: 10972
  year: 2006
  ident: 10.1016/j.jcis.2013.05.034_b0125
  publication-title: Langmuir
  doi: 10.1021/la061774h
– volume: 43
  start-page: 4249
  year: 2009
  ident: 10.1016/j.jcis.2013.05.034_b0060
  publication-title: Water. Res.
  doi: 10.1016/j.watres.2009.06.005
– volume: 46
  start-page: 7054
  year: 2012
  ident: 10.1016/j.jcis.2013.05.034_b0210
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203623z
– volume: 3
  start-page: 94
  year: 1987
  ident: 10.1016/j.jcis.2013.05.034_b0160
  publication-title: Langmuir
  doi: 10.1021/la00073a016
– volume: 55
  start-page: 1757
  year: 1997
  ident: 10.1016/j.jcis.2013.05.034_b0310
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.1757
– volume: 51
  start-page: 44
  year: 1975
  ident: 10.1016/j.jcis.2013.05.034_b0245
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(75)90081-8
– volume: 356
  start-page: 442
  year: 2011
  ident: 10.1016/j.jcis.2013.05.034_b0090
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.01.016
– volume: 60
  start-page: 11
  year: 2005
  ident: 10.1016/j.jcis.2013.05.034_b0345
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.06.050
– volume: 12
  start-page: 5498
  year: 1996
  ident: 10.1016/j.jcis.2013.05.034_b0260
  publication-title: Langmuir
  doi: 10.1021/la960074h
– volume: 62
  start-page: 1638
  year: 1966
  ident: 10.1016/j.jcis.2013.05.034_b0200
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9666201638
– volume: 150
  start-page: 5
  year: 2007
  ident: 10.1016/j.jcis.2013.05.034_b0020
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.06.006
– year: 1948
  ident: 10.1016/j.jcis.2013.05.034_b0135
– volume: 40
  start-page: 7688
  year: 2006
  ident: 10.1016/j.jcis.2013.05.034_b0035
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060847g
– volume: 78
  start-page: 1
  year: 2005
  ident: 10.1016/j.jcis.2013.05.034_b0110
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2005.07.001
– volume: 142
  start-page: 20
  year: 2008
  ident: 10.1016/j.jcis.2013.05.034_b0040
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2008.04.003
– volume: 75
  start-page: 1851
  year: 1995
  ident: 10.1016/j.jcis.2013.05.034_b0175
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.1851
– volume: 64
  start-page: 317
  year: 1992
  ident: 10.1016/j.jcis.2013.05.034_b0145
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(92)80111-E
– volume: 189
  start-page: 199
  year: 1997
  ident: 10.1016/j.jcis.2013.05.034_b0155
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.4813
– volume: 301
  start-page: 1
  year: 2006
  ident: 10.1016/j.jcis.2013.05.034_b0340
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.05.008
– volume: 14
  start-page: 633
  year: 1941
  ident: 10.1016/j.jcis.2013.05.034_b0140
  publication-title: Acta Physicochim. USSR
– volume: 4
  start-page: 1058
  year: 1937
  ident: 10.1016/j.jcis.2013.05.034_b0225
  publication-title: Physica
  doi: 10.1016/S0031-8914(37)80203-7
– volume: 25
  start-page: 204
  year: 1924
  ident: 10.1016/j.jcis.2013.05.034_b0290
  publication-title: Phys. Z.
– volume: 313
  start-page: 152
  year: 2007
  ident: 10.1016/j.jcis.2013.05.034_b0355
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.04.038
– volume: 38
  start-page: 4377
  year: 2004
  ident: 10.1016/j.jcis.2013.05.034_b0030
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035354f
– volume: 53
  start-page: 115
  year: 1999
  ident: 10.1016/j.jcis.2013.05.034_b0065
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(99)00107-8
– volume: 24
  start-page: 41
  year: 2006
  ident: 10.1016/j.jcis.2013.05.034_b0350
  publication-title: KONA
  doi: 10.14356/kona.2006008
– volume: 40
  start-page: 4336
  year: 2006
  ident: 10.1016/j.jcis.2013.05.034_b0005
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es062726m
– volume: 44
  start-page: 1021
  year: 1948
  ident: 10.1016/j.jcis.2013.05.034_b0280
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9484401021
– volume: 9
  start-page: 340
  year: 1984
  ident: 10.1016/j.jcis.2013.05.034_b0330
  publication-title: Byte
– volume: 43
  start-page: 1354
  year: 2009
  ident: 10.1016/j.jcis.2013.05.034_b0055
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802628n
– year: 1991
  ident: 10.1016/j.jcis.2013.05.034_b0095
– volume: 182
  start-page: 388
  year: 1996
  ident: 10.1016/j.jcis.2013.05.034_b0180
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0478
– volume: 253
  start-page: 70
  year: 2002
  ident: 10.1016/j.jcis.2013.05.034_b0205
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2002.8476
– start-page: 188
  year: 2007
  ident: 10.1016/j.jcis.2013.05.034_b0105
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.09.038
– volume: 165
  start-page: 116
  year: 1994
  ident: 10.1016/j.jcis.2013.05.034_b0250
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1212
– volume: 193
  start-page: 273
  year: 1997
  ident: 10.1016/j.jcis.2013.05.034_b0265
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.5076
– volume: 39
  start-page: 1909
  year: 2010
  ident: 10.1016/j.jcis.2013.05.034_b0075
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0462
– volume: 6
  start-page: 1153
  year: 1990
  ident: 10.1016/j.jcis.2013.05.034_b0190
  publication-title: Langmuir
  doi: 10.1021/la00096a023
– volume: 33
  start-page: 335
  year: 1970
  ident: 10.1016/j.jcis.2013.05.034_b0235
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(70)90228-6
– year: 1981
  ident: 10.1016/j.jcis.2013.05.034_b0220
– volume: 168
  start-page: 269
  year: 1994
  ident: 10.1016/j.jcis.2013.05.034_b0285
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1419
– volume: 82
  start-page: 531
  year: 2009
  ident: 10.1016/j.jcis.2013.05.034_b0150
  publication-title: Croat. Chem. Acta
– start-page: 749
  year: 2001
  ident: 10.1016/j.jcis.2013.05.034_b0045
  publication-title: Langmuir
  doi: 10.1021/la000806c
– volume: 35
  start-page: 154
  year: 1940
  ident: 10.1016/j.jcis.2013.05.034_b0100
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9403500154
SSID ssj0011559
Score 2.3239799
Snippet [Display omitted] •The high surface conductivity of TiO2 NPs decreases their electrophoretic mobility.•The zeta potential can be estimated directly from an...
Titanium dioxide nanoparticles (TiO₂ NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of...
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 75
SubjectTerms Adjustable
Agglomeration
aquatic environment
aqueous solutions
Chemical Phenomena
Chemistry
Colloidal state and disperse state
Continental interfaces, environment
Crystallites
Derjaguin approximation
dispersions
Double layer
electrical conductivity
electrophoresis
energy
Environmental Sciences
Exact sciences and technology
Extended Stern model
General and physical chemistry
Global Changes
human health
Humans
ionic strength
Kinetics
Linear superposition approximation
Mathematical models
Nanoparticle
Nanoparticles
Nanoparticles - chemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
potassium chloride
risk
Sciences of the Universe
Stability ratio
Static Electricity
Surface conductivity
Surface element integration
TiO2
Titanium - toxicity
Titanium dioxide
titration
Zeta potential
Title Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: Application to the modeling of their aggregation kinetics
URI https://dx.doi.org/10.1016/j.jcis.2013.05.034
https://www.ncbi.nlm.nih.gov/pubmed/23806415
https://www.proquest.com/docview/1400399280
https://www.proquest.com/docview/1513491744
https://www.proquest.com/docview/1803099681
https://insu.hal.science/insu-00832278
Volume 406
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUCFEJRHl8fKCG4odB3bccJttaLaAioHulJv1iRrb7egJOpme-DAf-AfM-MkW3roHrisotU4tjwTe0bzzTeMvYN0Xvi4UFEyd3mkHKQRSPDRSHkDeOFD4QPK9ySZztTnM322wyZ9LQzBKruzvz3Tw2nd_XPY7eZhvVxSjS9-bSYzlJBRRhLttlKGrPzD7w3MQ1DarYV5iIiku8KZFuN1USyJslvIwN4p1W2X0x0PFf6eE1byQQ0r3D7f9r243TENF9TRI_aw8yz5uF38Y7bjyn12b9I3dNtne_9wDz5hf4779iS88ny1vvSAjxgdEwFs6CjBq5Kje8ihJpR62fBfrgFeVw0BjHAmHHa6_BbzEkqMvDuA3Uc-vk6J86YKbwjtdnBWGhIyExwWGOcvWqEfuCgii37KZkefTifTqOvPEBVa6ybS3nhIvBYgpM9UIV2cOiWczIoU3QQAbTAYinUKMp8HVaVSYXwyz6XQJlfyGdstq9IdMJ7ExHQvCxfStihvMExzeSaUR_8ygwETvWJs0ZGXUw-Nn7ZHqV1YUqYlZdqRtqjMAXu_GVO31B1bpXWvb3vDAC3eLVvHHaBxWFjgmWxn32Ni7CO_y4ySAXuLFrOZm4i8p-OvlooMLLm-VIV8JQZseMOiNvKx0ej-GnzNm97ELFoMJXSgdNV6hWEblVZncTraIqOJgBLjTrVFJqVEW5akuJjnrQ1fr0KiLtHLe_Gf-_OS3Y9DB5EsEvoV220u1-41-nFNPgwf6pDdHR9_mZ78BWvPRQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9NAVw7B1j2aPTsN2G4zGlmTZuwXBimTNssMSoDeBdqQsXWEHjbPD_sX-8UjZTtdDc9glMALKEkRa-giSHxn7AMk8d1Eug3hus0BaSAIQ4IKedBrwwofc-SzfSTycyS-X6nKPDdpaGEqrbM7--kz3p3Xzz1mzm2er5ZJqfPFr06mmgIzUIt5nB8ROpTrsoD-6GE62wQSKvNWZHmFAA5ramTrN6ypfEmt3KDyBp5D33U_7Dkr8_UHpkg9XsMYddHXri_uxqb-jzh-zRw245P16_U_Yni2O2eGg7el2zI7-oR98yv6M2g4lvHR8vblxgI_oIBMHrG8qwcuCI0LksKJE9aLiv20FfFVWlGOEM-Gw6fJbxAso0Plucuw-8f5tVJxXpX-D77iDs9IQH5zgsEBXf1EL_cRFEV_0MzY7_zwdDIOmRUOQK6WqQDntIHYqhFC4VObCRomVoRVpniBSAFAa_aFIJSCyuddWIlBFyTwTodKZFM9ZpygLe8J4HBHZvcitj9yivEZPzWZpKB1CzBS6LGwVY_KGv5zaaFybNlHtypAyDSnT9JRBZXbZx-2YVc3esVNatfo2d2zQ4PWyc9wJGoeBBR7LZvY9ItI-gl66F3fZe7SY7dzE5T3sjw3VGRhCv1SI_CvsstM7FrWVj7RCBKzxNe9aEzNoMRTTgcKWmzV6blRdnUZJb4eMIg5KdD3lDpmEYm1pnOBiXtQ2fLsKgbpEoPfyP_fnLTscTr-OzXg0uXjFHkS-oUgahOo161Q3G_sGYV2VnTaf7V9yT0e1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+surface+conductivity+on+the+apparent+zeta+potential+of+TiO%E2%82%82+nanoparticles%3A+Application+to+the+modeling+of+their+aggregation+kinetics&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Sameut+Bouhaik%2C+Izzeddine&rft.au=Leroy%2C+Philippe&rft.au=Ollivier%2C+Patrick&rft.au=Azaroual%2C+Mohamed&rft.date=2013-09-15&rft.issn=0021-9797&rft.volume=406+p.75-85&rft.spage=75&rft.epage=85&rft_id=info:doi/10.1016%2Fj.jcis.2013.05.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon