Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices

The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate fo...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 14; no. 7; pp. 1294 - 1301
Main Authors Au, Anthony K, Lee, Wonjae, Folch, Albert
Format Journal Article
LanguageEnglish
Published England 07.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.
AbstractList The vast majority of microfluidic devices are developed in PDMS by molding (“soft lithography”) because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.
The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted viaa web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.
The vast majority of microfluidic devices are developed in PDMS by molding (“soft lithography”) because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques ( e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.
Author Au, Anthony K
Folch, Albert
Lee, Wonjae
AuthorAffiliation a Department of Bioengineering, University of Washington, Seattle, WA, USA
b Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
AuthorAffiliation_xml – name: a Department of Bioengineering, University of Washington, Seattle, WA, USA
– name: b Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
Author_xml – sequence: 1
  givenname: Anthony K
  surname: Au
  fullname: Au, Anthony K
  email: afolch@u.washington.edu
  organization: Department of Bioengineering, University of Washington, Seattle, WA, USA. afolch@u.washington.edu
– sequence: 2
  givenname: Wonjae
  surname: Lee
  fullname: Lee, Wonjae
– sequence: 3
  givenname: Albert
  surname: Folch
  fullname: Folch, Albert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24510161$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LAzEQhoNUbK1e_AGyRxFWk83Hdj0IWvyCihc9h2wy20bSTU12C_57t_aDevI0A_PwzrzzHqNe7WtA6IzgK4Jpca2p05xQgcsDNCAspykmo6K364u8j45j_MSYcCZGR6ifMU4wEWSAzKuyLvXBQEjmVgdfudYaq-NNAkvlWtVYXye-SmIDAbyzzcxPg1rMvpPKh6SZQbII3rR6y-2LJAaWVkM8QYeVchFON3WIPh4f3sfP6eTt6WV8N0k157xJORcFI7RiwE1GGWdGqJKXrCqM6QAFjCnDDca6G4-KLKN5SYxgooK8KDGlQ3S71l205RyMhroJyslFsHMVvqVXVv6d1HYmp34pGRVZnq0ELjYCwX-1EBs5t1GDc6oG30ZJRE54t5AV_6McM8Y7F1mHXq7R7jMxBqh2FxEsVwnKMZ2MfxO87-DzfQ87dBsZ_QFqoJpk
CitedBy_id crossref_primary_10_1134_S1990519X21060134
crossref_primary_10_1016_j_jmapro_2020_04_079
crossref_primary_10_1007_s40472_016_0085_x
crossref_primary_10_1016_j_engreg_2022_05_001
crossref_primary_10_1063_1_5124303
crossref_primary_10_1109_JSEN_2022_3199663
crossref_primary_10_1371_journal_pone_0192752
crossref_primary_10_1016_j_surfin_2022_101989
crossref_primary_10_3390_polym15122690
crossref_primary_10_1021_acsami_5b03969
crossref_primary_10_1039_D3LC00296A
crossref_primary_10_1063_5_0072715
crossref_primary_10_1021_acs_analchem_7b00136
crossref_primary_10_1002_polb_24007
crossref_primary_10_1039_C4LC00992D
crossref_primary_10_3390_mi10050298
crossref_primary_10_3390_mi13081197
crossref_primary_10_1039_C5LC00126A
crossref_primary_10_1371_journal_pone_0240237
crossref_primary_10_3390_mi9020091
crossref_primary_10_1039_C7LC00802C
crossref_primary_10_1002_cite_201500086
crossref_primary_10_1016_j_bios_2019_111900
crossref_primary_10_1039_C7RA08611C
crossref_primary_10_1016_j_mee_2014_10_013
crossref_primary_10_1039_C6LC00144K
crossref_primary_10_1002_adma_201705800
crossref_primary_10_1142_S2339547820500041
crossref_primary_10_1021_acs_analchem_9b01429
crossref_primary_10_1039_C9RE00201D
crossref_primary_10_1063_5_0171350
crossref_primary_10_1109_JMEMS_2018_2869327
crossref_primary_10_1039_D3LC00520H
crossref_primary_10_1016_j_snb_2019_05_086
crossref_primary_10_1021_acs_analchem_5b04310
crossref_primary_10_3390_mi15010061
crossref_primary_10_1002_cyto_b_21388
crossref_primary_10_1007_s10853_021_06362_7
crossref_primary_10_1021_acsapm_0c01071
crossref_primary_10_1016_j_addma_2022_102867
crossref_primary_10_1002_smll_201702831
crossref_primary_10_1039_C6LC00153J
crossref_primary_10_1007_s42242_020_00112_5
crossref_primary_10_1002_admt_202400047
crossref_primary_10_1007_s00170_024_12966_5
crossref_primary_10_1042_EBC20200131
crossref_primary_10_3390_chemosensors11050306
crossref_primary_10_1515_epoly_2023_0110
crossref_primary_10_1088_1758_5090_ab89cb
crossref_primary_10_1002_admt_201800455
crossref_primary_10_1038_srep07717
crossref_primary_10_1016_j_addma_2019_100793
crossref_primary_10_1021_acs_analchem_8b04844
crossref_primary_10_1063_1_4927197
crossref_primary_10_1039_C6LC00764C
crossref_primary_10_1016_j_ceja_2022_100438
crossref_primary_10_1039_C5LC00685F
crossref_primary_10_3390_bioengineering4010010
crossref_primary_10_1016_j_msec_2021_112388
crossref_primary_10_3390_mi13091408
crossref_primary_10_1039_C8LC00636A
crossref_primary_10_1002_admt_202001218
crossref_primary_10_1039_D2AY00772J
crossref_primary_10_1063_1_4902929
crossref_primary_10_1088_1361_6439_aa6152
crossref_primary_10_1039_D3LC00391D
crossref_primary_10_1038_s41598_022_26684_z
crossref_primary_10_1109_ACCESS_2020_3003985
crossref_primary_10_1039_D0AN00614A
crossref_primary_10_1007_s10404_014_1542_4
crossref_primary_10_1098_rsos_231029
crossref_primary_10_3390_mi11090853
crossref_primary_10_1039_D2LC00499B
crossref_primary_10_1088_1757_899X_1201_1_012041
crossref_primary_10_1177_0954406220932203
crossref_primary_10_1002_adhm_202300636
crossref_primary_10_1088_0960_1317_25_8_085013
crossref_primary_10_1016_j_tifs_2022_05_003
crossref_primary_10_3390_mi9080394
crossref_primary_10_1186_s12929_017_0384_2
crossref_primary_10_1080_16864360_2017_1397883
crossref_primary_10_1108_RPJ_10_2019_0255
crossref_primary_10_1371_journal_pone_0152023
crossref_primary_10_1007_s40964_019_00097_3
crossref_primary_10_1039_C6LC00284F
crossref_primary_10_1002_smtd_202300211
crossref_primary_10_1039_C6LC00163G
crossref_primary_10_1021_ac501436d
crossref_primary_10_1039_C9LC01130G
crossref_primary_10_3390_mi10100678
crossref_primary_10_1093_bfgp_elz006
crossref_primary_10_3390_mi11100898
crossref_primary_10_3390_mi13030486
crossref_primary_10_7567_JJAP_55_06GN02
crossref_primary_10_1088_1757_899X_743_1_012031
crossref_primary_10_1016_j_aca_2021_338796
crossref_primary_10_1073_pnas_1712195114
crossref_primary_10_1002_smll_201804326
crossref_primary_10_1016_j_trac_2024_117731
crossref_primary_10_1002_admt_202101180
crossref_primary_10_3390_mi9100502
crossref_primary_10_1016_j_trac_2018_06_013
crossref_primary_10_1002_smll_201901847
crossref_primary_10_1007_s13206_023_00100_8
crossref_primary_10_1039_D1LC00419K
crossref_primary_10_1007_s10762_019_00584_2
crossref_primary_10_1063_1_5063425
crossref_primary_10_1039_C5LC00539F
crossref_primary_10_1021_acs_analchem_1c00654
crossref_primary_10_1016_j_talanta_2017_03_059
crossref_primary_10_1038_s41467_021_25788_w
crossref_primary_10_1021_acs_langmuir_6b04506
crossref_primary_10_1039_C5LC01195G
crossref_primary_10_1038_ncomms10780
crossref_primary_10_1021_acsami_7b02633
crossref_primary_10_1021_acs_jchemed_9b00620
crossref_primary_10_3390_ijms21207757
crossref_primary_10_1002_admt_202100094
crossref_primary_10_1109_TNANO_2021_3138751
crossref_primary_10_3390_mi9100523
crossref_primary_10_3390_mi12101266
crossref_primary_10_1021_acs_analchem_6b02257
crossref_primary_10_1016_j_snb_2017_12_132
crossref_primary_10_1038_srep35111
crossref_primary_10_1039_D3LC00371J
crossref_primary_10_1063_5_0037274
crossref_primary_10_1039_C5LC00234F
crossref_primary_10_1039_C5RA23129A
crossref_primary_10_1016_j_apenergy_2020_116041
crossref_primary_10_1002_smtd_201700277
crossref_primary_10_1039_C9LC00980A
crossref_primary_10_2217_3dp_2016_0010
crossref_primary_10_3390_mi15040425
crossref_primary_10_3390_mi8050137
crossref_primary_10_1063_1_4927379
crossref_primary_10_1063_1_5127778
crossref_primary_10_1016_j_snb_2018_01_174
crossref_primary_10_1063_5_0003302
crossref_primary_10_1016_j_jiec_2016_04_017
crossref_primary_10_1128_Spectrum_00736_21
crossref_primary_10_1142_S2251237316400165
crossref_primary_10_1016_j_sna_2020_111916
crossref_primary_10_1016_j_molliq_2023_122706
crossref_primary_10_1108_SR_09_2014_697
crossref_primary_10_1177_25165984241237357
crossref_primary_10_1088_2631_7990_ab70af
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1039_D3LC00094J
crossref_primary_10_1063_5_0057733
crossref_primary_10_1146_annurev_bioeng_092618_020341
crossref_primary_10_1007_s11094_022_02630_1
crossref_primary_10_1021_acs_analchem_7b00409
crossref_primary_10_1088_1758_5090_8_2_025019
crossref_primary_10_3390_mi12030339
crossref_primary_10_1021_acs_analchem_0c04672
crossref_primary_10_1039_C5LC01389E
crossref_primary_10_1063_5_0047497
crossref_primary_10_1016_j_matdes_2017_07_068
crossref_primary_10_1016_j_aca_2024_342692
crossref_primary_10_1021_acs_analchem_5b00903
crossref_primary_10_1039_C7LC00878C
crossref_primary_10_1371_journal_pone_0143636
crossref_primary_10_1371_journal_pone_0145935
crossref_primary_10_3390_s17061336
crossref_primary_10_1002_mame_201700484
crossref_primary_10_1115_1_4046042
crossref_primary_10_1039_D0LC01300E
crossref_primary_10_1039_C6LC00565A
crossref_primary_10_1002_app_48277
crossref_primary_10_1088_2053_1613_aab86b
crossref_primary_10_1007_s10404_021_02478_z
crossref_primary_10_1007_s11814_016_0041_6
crossref_primary_10_1007_s00604_024_06512_z
crossref_primary_10_1016_j_matchemphys_2017_07_084
crossref_primary_10_1007_s00216_017_0398_3
crossref_primary_10_1109_JMEMS_2014_2368071
crossref_primary_10_1016_j_bios_2015_05_041
crossref_primary_10_1088_1758_5090_ab2798
crossref_primary_10_1089_3dp_2017_0028
crossref_primary_10_1002_adem_202100738
crossref_primary_10_1007_s10404_016_1715_4
crossref_primary_10_1016_j_snb_2023_134290
crossref_primary_10_1371_journal_pone_0160624
crossref_primary_10_1002_nano_202000241
crossref_primary_10_1002_admt_201800068
crossref_primary_10_3390_mi7120225
crossref_primary_10_1002_adem_201901109
crossref_primary_10_1038_s41598_020_62569_9
crossref_primary_10_1039_C7LC00951H
crossref_primary_10_1039_C5RA23855B
crossref_primary_10_1039_C7CS00631D
crossref_primary_10_1155_2021_5598347
crossref_primary_10_2174_1573411019666230526163826
crossref_primary_10_3390_bios12080652
crossref_primary_10_1002_admt_201900794
crossref_primary_10_1021_acssensors_5b00100
crossref_primary_10_1016_j_trac_2018_06_006
crossref_primary_10_1063_1_4898632
crossref_primary_10_1002_admt_202301858
crossref_primary_10_1063_1_4958909
crossref_primary_10_1080_10837450_2021_1965163
crossref_primary_10_1016_j_eurpolymj_2021_110451
crossref_primary_10_1371_journal_pone_0137631
crossref_primary_10_1089_soro_2020_0143
crossref_primary_10_1021_acs_chemrev_6b00848
crossref_primary_10_1063_5_0020531
crossref_primary_10_1039_C6LC00562D
crossref_primary_10_4028_www_scientific_net_MSF_941_2448
crossref_primary_10_1016_j_trac_2020_116151
crossref_primary_10_1038_s42003_023_05531_5
crossref_primary_10_3390_jmmp5030091
crossref_primary_10_1073_pnas_1414764111
crossref_primary_10_1038_srep15609
crossref_primary_10_1088_1361_6439_abd9a9
crossref_primary_10_1002_ange_201504382
crossref_primary_10_4155_bio_2016_0028
crossref_primary_10_3390_coatings13071252
crossref_primary_10_1039_C8LC00427G
crossref_primary_10_1038_s41598_019_47475_z
crossref_primary_10_3390_ijms22042011
crossref_primary_10_1002_mame_202100464
crossref_primary_10_3390_gels9100790
crossref_primary_10_1371_journal_pone_0155921
crossref_primary_10_3390_mi14071286
crossref_primary_10_1016_j_ijpharm_2024_124142
crossref_primary_10_1039_C7LC01052D
crossref_primary_10_1039_C6LC01430E
crossref_primary_10_1016_j_promfg_2021_06_047
crossref_primary_10_1039_D0CS01062F
crossref_primary_10_3390_mi9070327
crossref_primary_10_3390_mi11110970
crossref_primary_10_1007_s13206_022_00048_1
crossref_primary_10_1016_j_snb_2017_10_041
crossref_primary_10_1002_admt_202300667
crossref_primary_10_3389_fmedt_2022_842958
crossref_primary_10_1016_j_actbio_2015_09_009
crossref_primary_10_1039_C6LC01238H
crossref_primary_10_1002_advs_201700187
crossref_primary_10_1016_j_addma_2018_02_012
crossref_primary_10_1038_s41598_020_79015_5
crossref_primary_10_3390_polym11010064
crossref_primary_10_1007_s00170_021_07329_3
crossref_primary_10_1063_1_4939031
crossref_primary_10_1021_acsmeasuresciau_3c00003
crossref_primary_10_1016_j_addma_2018_02_017
crossref_primary_10_1021_acssensors_5b00156
crossref_primary_10_1021_acsbiomaterials_6b00129
crossref_primary_10_1016_j_microc_2024_110630
crossref_primary_10_1038_s41598_022_05350_4
crossref_primary_10_1116_1_5003203
crossref_primary_10_1002_pat_5847
crossref_primary_10_1038_s41570_018_0058_y
crossref_primary_10_1039_C8LC01037D
crossref_primary_10_1039_C4RA05072J
crossref_primary_10_1039_C5AY01969A
crossref_primary_10_1088_1361_6439_ab0e64
crossref_primary_10_1063_1_4905840
crossref_primary_10_1088_0957_4484_27_28_284002
crossref_primary_10_1016_j_mee_2017_12_010
crossref_primary_10_1039_c4lc90023e
crossref_primary_10_1016_j_talanta_2019_04_026
crossref_primary_10_1080_05704928_2017_1287082
crossref_primary_10_1016_j_snb_2021_131342
crossref_primary_10_1002_anie_201504382
crossref_primary_10_1016_j_biomaterials_2017_11_030
crossref_primary_10_1016_j_sna_2019_111557
crossref_primary_10_3390_mi12030319
crossref_primary_10_1002_adsr_202400008
crossref_primary_10_1007_s00170_018_2039_1
crossref_primary_10_1007_s00216_023_04862_w
crossref_primary_10_3390_en13112800
crossref_primary_10_3390_polym14142955
crossref_primary_10_1039_C7LC00202E
crossref_primary_10_1039_C5LC01374G
crossref_primary_10_1039_C4LC01392A
crossref_primary_10_1088_1742_6596_1549_5_052055
crossref_primary_10_1002_admt_202200230
crossref_primary_10_1016_j_aca_2020_11_001
crossref_primary_10_1063_1_5003477
crossref_primary_10_1149_1945_7111_ac50e1
crossref_primary_10_3390_bios12040220
crossref_primary_10_1016_j_addma_2018_12_012
Cites_doi 10.1039/c1ay05253e
10.1002/pen.11288
10.1016/S0890-6955(99)00068-1
10.1016/S0039-9140(01)00594-X
10.1108/01445150510626460
10.1007/s00348-012-1346-9
10.1108/13552540810896166
10.1039/c2lc21204h
10.1038/nmeth0909-683
10.1039/c001195a
10.1039/b805086d
10.1115/1.1811116
10.1117/12.454606
10.1016/j.sna.2004.09.023
ContentType Journal Article
Copyright The Royal Society of Chemistry 2013 2013
Copyright_xml – notice: The Royal Society of Chemistry 2013 2013
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7SP
7TB
7U5
8FD
FR3
L7M
5PM
DOI 10.1039/c3lc51360b
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1473-0189
EndPage 1301
ExternalDocumentID 10_1039_C3LC51360B
24510161
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB009761
– fundername: NINDS NIH HHS
  grantid: R01 NS064387
GroupedDBID ---
-JG
0-7
0R~
29L
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CGR
CS3
CUY
CVF
DU5
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
L-8
M4U
N9A
NPM
O9-
R7B
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0UZ
0VX
1TJ
53G
71~
AAYXX
ACHDF
ACMRT
AFFNX
AHGXI
ANLMG
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
IDY
KC5
NDZJH
R56
RCLXC
7X8
7SP
7TB
7U5
8FD
FR3
L7M
5PM
ID FETCH-LOGICAL-c555t-5569413f4e5d23454d6ab5b4f9dd555ae44ad5d00cd23892237b1d646fe79b033
ISSN 1473-0197
IngestDate Tue Sep 17 21:14:35 EDT 2024
Sat Aug 17 01:59:58 EDT 2024
Sat Oct 05 04:44:56 EDT 2024
Fri Aug 23 02:37:06 EDT 2024
Sat Sep 28 07:58:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c555t-5569413f4e5d23454d6ab5b4f9dd555ae44ad5d00cd23892237b1d646fe79b033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors contributed equally to this work.
OpenAccessLink https://europepmc.org/articles/pmc4362723?pdf=render
PMID 24510161
PQID 1504453452
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4362723
proquest_miscellaneous_1671564649
proquest_miscellaneous_1504453452
crossref_primary_10_1039_C3LC51360B
pubmed_primary_24510161
PublicationCentury 2000
PublicationDate 2014-04-07
PublicationDateYYYYMMDD 2014-04-07
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Lab on a chip
PublicationTitleAlternate Lab Chip
PublicationYear 2014
References 18968500 - Talanta. 2002 Feb 11;56(2):267-87
20369211 - Lab Chip. 2010 Jun 7;10(11):1365-86
18651081 - Lab Chip. 2008 Aug;8(8):1374-8
Cedorge (C3LC51360B-(cit16)/*[position()=1]) 2000; 40
Butscher (C3LC51360B-(cit14)/*[position()=1]) 2012; 53
Focke (C3LC51360B-(cit3)/*[position()=1]) 2010; 10
Blow (C3LC51360B-(cit5)/*[position()=1]) 2009; 6
Wang (C3LC51360B-(cit8)/*[position()=1]) 2001; 4590
Becker (C3LC51360B-(cit4)/*[position()=1]) 2002; 56
Chin (C3LC51360B-(cit6)/*[position()=1]) 2012; 12
Waldbaur (C3LC51360B-(cit7)/*[position()=1]) 2011; 3
Zhou (C3LC51360B-(cit12)/*[position()=1]) 2000; 40
Kang (C3LC51360B-(cit9)/*[position()=1]) 2004; 126
Yuen (C3LC51360B-(cit19)/*[position()=1]) 2008; 8
Sager (C3LC51360B-(cit17)/*[position()=1]) 2008; 14
Kim (C3LC51360B-(cit1)/*[position()=1]) 2005; 119
Wicker (C3LC51360B-(cit11)/*[position()=1]) 2005; 25
Jacobs (C3LC51360B-(cit15)/*[position()=1]) 1996
References_xml – volume: 3
  start-page: 2681
  year: 2011
  ident: C3LC51360B-(cit7)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/c1ay05253e
  contributor:
    fullname: Waldbaur
– volume: 40
  start-page: 1581
  year: 2000
  ident: C3LC51360B-(cit16)/*[position()=1]
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.11288
  contributor:
    fullname: Cedorge
– volume: 40
  start-page: 363
  year: 2000
  ident: C3LC51360B-(cit12)/*[position()=1]
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(99)00068-1
  contributor:
    fullname: Zhou
– volume: 56
  start-page: 267
  year: 2002
  ident: C3LC51360B-(cit4)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/S0039-9140(01)00594-X
  contributor:
    fullname: Becker
– volume: 25
  start-page: 316
  year: 2005
  ident: C3LC51360B-(cit11)/*[position()=1]
  publication-title: Assem. Autom.
  doi: 10.1108/01445150510626460
  contributor:
    fullname: Wicker
– volume: 53
  start-page: 1123
  year: 2012
  ident: C3LC51360B-(cit14)/*[position()=1]
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-012-1346-9
  contributor:
    fullname: Butscher
– volume: 14
  start-page: 213
  year: 2008
  ident: C3LC51360B-(cit17)/*[position()=1]
  publication-title: Rapid Prototyping J.
  doi: 10.1108/13552540810896166
  contributor:
    fullname: Sager
– volume: 12
  start-page: 2118
  year: 2012
  ident: C3LC51360B-(cit6)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc21204h
  contributor:
    fullname: Chin
– volume: 6
  start-page: 683
  year: 2009
  ident: C3LC51360B-(cit5)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0909-683
  contributor:
    fullname: Blow
– volume: 10
  start-page: 1365
  year: 2010
  ident: C3LC51360B-(cit3)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c001195a
  contributor:
    fullname: Focke
– volume: 8
  start-page: 1374
  year: 2008
  ident: C3LC51360B-(cit19)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b805086d
  contributor:
    fullname: Yuen
– volume-title: Stereolithography and other RP&M technologies
  year: 1996
  ident: C3LC51360B-(cit15)/*[position()=1]
  contributor:
    fullname: Jacobs
– volume: 126
  start-page: 766
  year: 2004
  ident: C3LC51360B-(cit9)/*[position()=1]
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.1811116
  contributor:
    fullname: Kang
– volume: 4590
  start-page: 213
  year: 2001
  ident: C3LC51360B-(cit8)/*[position()=1]
  publication-title: Proc. SPIE (BioMEMS and Smart Nanostructures)
  doi: 10.1117/12.454606
  contributor:
    fullname: Wang
– volume: 119
  start-page: 593
  year: 2005
  ident: C3LC51360B-(cit1)/*[position()=1]
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2004.09.023
  contributor:
    fullname: Kim
SSID ssj0015468
Score 2.6024735
Snippet The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical...
The vast majority of microfluidic devices are developed in PDMS by molding (“soft lithography”) because PDMS is an inexpensive material, has physicochemical...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1294
SubjectTerms Clarity
Commercialization
Devices
Marketing
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidics
Silicone resins
Stereolithography
Three dimensional
Title Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices
URI https://www.ncbi.nlm.nih.gov/pubmed/24510161
https://search.proquest.com/docview/1504453452
https://search.proquest.com/docview/1671564649
https://pubmed.ncbi.nlm.nih.gov/PMC4362723
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVohyQBBe4SUjuFVObe8r5hZFrQoETqnoLfJ6d9WiYkfFPsCvZya215ukQoWLFdnrdbzzZXcm8823hLxXRtl8ErNQ8sxiSU4UTlKVhywzkmqbS60xUPzyVZyesU_n_HwwsB5rqa7UOP99Y13J_1gVzoFdsUr2HyzrOoUT8BnsC0ewMBxvZWMkSIRr8czDH0iss1f1pUbmD26342S80R9EOQSDVLeLVqLa0QtXjeRr287vBguqcBrx_dd5pjC9kGER-MqBpfZkCA4_j7dIPt_K4nvm8HNSXjW7T01RXavy_3WIG7KK9CZKJpGH1XBrx8Y_12wJ5GZX5qFIelMlOBrMW3ZhLY1vnNIjioqoMzqf8ZiKqE_suGT91nrmWIbr_DpNl_29d8h-IlMOQfr-9Hjxce7yTZw1RZPdW3VCtjQ96u_edF124pFtWq3npywekgdtgBFMG7Q8IgNTDMndZsvRX0Nyb9bt8Dck9z0xysdE92gKNtD0IeixFJQ22MFSAFgKAEtBjyVs53cStFh6Qs5Ojhez07DdgyPMOedVyDlWOlPLDNcJZZxpkSmumE21hgaZYSzTXEdRDpcnKTibUsVaMGGNTFVE6VOyV5SFeU4CBRFSToUwsYEwObHgKAoaWwUeps6pmYzIu254l6tGamW5a8IReduN_BKGC9NbWWHK-ucSQhvGOHzH5C9thER1JMHSEXnWWMs9K2G4Pol4ROSGHV0DVGLfvFJcXqwV2Rm4gTKhL271Bi_JQf-LekX2quvavAbPtlJvWlj-AQskpoE
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mail-order+microfluidics%3A+evaluation+of+stereolithography+for+the+production+of+microfluidic+devices&rft.jtitle=Lab+on+a+chip&rft.au=Au%2C+Anthony+K.&rft.au=Lee%2C+Wonjae&rft.au=Folch%2C+Albert&rft.date=2014-04-07&rft.issn=1473-0197&rft.eissn=1473-0189&rft.volume=14&rft.issue=7&rft.spage=1294&rft.epage=1301&rft_id=info:doi/10.1039%2FC3LC51360B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C3LC51360B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon