Depression assessment using integrated multi-featured EEG bands deep neural network models: Leveraging ensemble learning techniques
Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to i...
Saved in:
Published in | Computational and structural biotechnology journal Vol. 23; pp. 1450 - 1468 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2024
Research Network of Computational and Structural Biotechnology Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.
[Display omitted] |
---|---|
AbstractList | Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.
[Display omitted] Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. The research adopts simplest EEG sensor, commercialized one channel EEG sensor, and the position of the sensor is placed at FP1 position to collecting data with 57 subjects (49 depressed and 18 heathy subjects). The result reveal that the proposed method is superior to other ensemble learning techniques. The proposed method is effective and has the potential to improve the accuracy of depression assessment. ga1 Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. |
Author | Chang, Yue-Shan Chung, Kuo-Hsuan Lin, Linen Yen, Wei-Ting Abimannan, Satheesh |
Author_xml | – sequence: 1 givenname: Kuo-Hsuan surname: Chung fullname: Chung, Kuo-Hsuan organization: Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan – sequence: 2 givenname: Yue-Shan surname: Chang fullname: Chang, Yue-Shan email: ysc@mail.ntpu.edu.tw organization: National Taipei University, Sanxia District, New Taipei City 237, Taiwan – sequence: 3 givenname: Wei-Ting surname: Yen fullname: Yen, Wei-Ting organization: National Taipei University, Sanxia District, New Taipei City 237, Taiwan – sequence: 4 givenname: Linen surname: Lin fullname: Lin, Linen organization: Department of Psychiatry, En Chu Kong Hospital, Taiwan – sequence: 5 givenname: Satheesh surname: Abimannan fullname: Abimannan, Satheesh organization: Amity School of Engineering and Technology, Amity University Maharashtra, Mumbai, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38623563$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktv1DAQjlARfdA_wAHlyGWDH3HWi5BQVZZSaSUucLb8GKdeEnuxnUWc-eN12Ba1HIovM56Z79PMN3NaHfngoapeYdRghLu320YntW0IIm2DaIMIeVadEITwAtElOnrgH1fnKW1ReRx3K4peVMeUd4Syjp5Uvz_CLkJKLvhaplS8EXyup-R8XzufoY8yg6nHachuYUHmKZbven1VK-lNqg3ArvYwRTkUk3-G-L0eg4Ehvas3sIco-5kKfIJRDVAPIKOfIxn0jXc_Jkgvq-dWDgnO7-xZ9e3T-uvl58Xmy9X15cVmoRljeUGlBNyxMoZqVy3SpJUMyvitXeJWS865tC1m2qxKxjBQHKyi1CKk-aqllp5V1wdeE-RW7KIbZfwlgnTiTyDEXsiYnR5AMKoNshJbRVirGFfGtGSpyNJaTSRVhevDgWs3qRGMLqIVBR6RPs54dyP6sBd43h5f4sLw5o4hhlmFLEaXNAyD9BCmJGhZIMUdxfz_pYiuOGKIs1L6-mFffxu633gp4IcCHUNKEazQLstc9l_adIPASMwdiq2Y70vM9yUQFeW-CpT8A71nfxL0_gAqFwF7B1Ek7cBrMC6CzkV69xT8FnNz7BA |
CitedBy_id | crossref_primary_10_1002_widm_70002 |
Cites_doi | 10.1177/1550059420916634 10.1109/TIM.2021.3053999 10.1063/5.0141897 10.1002/hbm.20275 10.1109/JBHI.2019.2938247 10.1080/03610918.2019.1689267 10.1109/ACCESS.2021.3073733 10.1109/ACCESS.2022.3190502 10.1049/ccs2.12003 10.1007/s00158-008-0230-y 10.1109/IEMBS.2003.1279682 10.1016/j.bspc.2020.102393 10.3389/fninf.2022.914823 10.1016/j.engappai.2022.105151 10.1016/j.cmpb.2018.04.012 10.1007/s12652-019-01199-0 10.1016/j.atmosenv.2006.02.006 10.1109/JBHI.2021.3049119 10.1109/ACCESS.2020.2971656 10.1016/j.jad.2018.04.041 10.1109/ACCESS.2020.3008165 10.3390/s21041262 10.1016/j.patrec.2007.06.018 10.1109/ACCESS.2021.3091487 10.1016/j.apr.2020.05.015 10.3390/e24020211 10.1007/978-981-15-1967-3_8 10.1016/0013-4694(80)90324-7 10.1016/j.clinph.2014.12.026 10.1016/j.biopsycho.2008.04.005 10.1109/TSM.2019.2904306 10.1613/jair.614 10.1109/TKDE.2005.50 10.1016/j.apr.2021.03.008 10.3390/brainsci10100672 10.1063/5.0000064 10.1109/ACCESS.2019.2912200 10.1016/j.brainres.2006.03.010 10.1016/j.ijmedinf.2019.103983 10.1016/j.bspc.2016.09.010 10.1016/j.jbi.2022.104011 10.1109/ICASI.2018.8394414 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.csbj.2024.03.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2001-0370 |
EndPage | 1468 |
ExternalDocumentID | oai_doaj_org_article_53cd0fa1fb254b58bdd427b27ffc2a3b PMC11016871 38623563 10_1016_j_csbj_2024_03_022 S2001037024000758 |
Genre | Journal Article |
GroupedDBID | 0R~ 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 0SF NCXOZ NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c555t-3aae165008b4940c24a5e0244f714ca888af415cd924ad5eb8efb33f00c8943f3 |
IEDL.DBID | M48 |
ISSN | 2001-0370 |
IngestDate | Wed Aug 27 01:23:08 EDT 2025 Thu Aug 21 18:34:22 EDT 2025 Fri Aug 22 20:23:10 EDT 2025 Fri Jul 11 06:56:48 EDT 2025 Thu Jan 02 22:39:11 EST 2025 Wed Aug 20 07:44:51 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Sat Mar 08 15:48:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mental status assessment Deep neural network Ensemble learning Multi featured deep learning EEG signal |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-3aae165008b4940c24a5e0244f714ca888af415cd924ad5eb8efb33f00c8943f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2024.03.022 |
PMID | 38623563 |
PQID | 3039805085 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53cd0fa1fb254b58bdd427b27ffc2a3b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11016871 proquest_miscellaneous_3200316318 proquest_miscellaneous_3039805085 pubmed_primary_38623563 crossref_citationtrail_10_1016_j_csbj_2024_03_022 crossref_primary_10_1016_j_csbj_2024_03_022 elsevier_sciencedirect_doi_10_1016_j_csbj_2024_03_022 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computational and structural biotechnology journal |
PublicationTitleAlternate | Comput Struct Biotechnol J |
PublicationYear | 2024 |
Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
References | Yean (bib17) 2020; 10 Shrestha, Mahmood (bib13) 2019; 7 Huang, Ling (bib51) 2005; 17 Opitz, Maclin (bib19) 1999; 11 Zhou (bib31) 2021 De Jonckheere, Ibarissene, Flocteil, Logier (bib3) 2014 Wan, Huang, Zhang, Zhou, Yang, Zhong (bib54) 2020; vol. 8 Park, Lee, Park (bib36) 2021 Sun, Zhang, Zhang (bib37) 2007; 28 Liu, Wang, Xiang, Xu, Wang, Tang (bib57) 2022; Volume 127 Lin, Chang, Abimannan (bib21) 2021; 12 Zhang, Shen, Din, Liu, Wang, Hu (bib39) 2019; 23 Wang, Gu, Zhu, Li, Yang, Du (bib40) 2021; 25 Liao, Tai, Chen, Hendry (bib14) 2020; 8 Shen, Peng, Kong, Dai (bib23) 2021; 21 Ettman, Cohen, Abdalla, Sampson (bib1) 2022; 5 Dinesh Anton Raja, Akash, John Prem Kumar, Harsha, Arunachalaperumal (bib10) 2020; 2207 Moldofsky, Lue (bib28) 1980; 50 Shen, Zhao, Yao, Wang, Feng (bib7) 2017 . Vuillerme, Chenu, Pinsault, Moreau-Gaudry, Fleury, Demongeot, Payan (bib4) 2007 Dagnew, Shekar (bib34) 2021; 3 Kirmizi-Alsan, Bayraktaroglu, Gurvit, Keskin, Emre, Demiralp (bib25) 2006; 1104 Seal, Bajpai, Agnihotri, Yazidi, Herrera-Viedma, Krejcar (bib49) 2021; vol. 70 Islam (bib16) 2021; 9 Ye, Yin, Zhao, Tian, Sun (bib41) 2022; 72 Tai, Chung, Teng, Shu, Chang (bib5) 2021; 9 Acar, Rais-Rohani (bib35) 2009; 37 Avots, Jermakovs, Bachmann, Päeske, Ozcinar, Anbarjafari (bib38) 2022; 24 Sharma, Parashar, Joshi (bib46) 2021; Volume 66 Al-Kaf, Khandoker, Khalaf, Jelinek (bib9) 2020; 2020 Rajendra Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib43) 2018; Volume 161 Pei, Wang, Bezerianos, Li (bib53) 2021; 70 pp.17–21. DOI Bachmann, Lass, Hinrikus (bib44) 2017; Volume 31 Park, YeongHyeon, JoonSung Lee, and Wonseok Park. Self-Weighted Ensemble Method to Adjust the Influence of Individual Models based on Reliability. arXiv preprint arXiv:2104.04120 (2021). Fingelkurts, Fingelkurts, Rytsälä, Suominen, Isometsä, Kähkönen (bib27) 2007; 28 Li, Tang, Deng, Yang (bib6) 2020 Morshad, Mazumder, Ahmed (bib12) 2020; 28 Saqlain, Jargalsaikhan, Lee (bib32) 2019; 32 Arikan, Metin, Tarhan (bib30) 2018; 235 Hajian, Hassan Moradi (bib8) 2017 Ganaie, M.A., Hu, Minghui, Malik, A.K., Tanveer, M., Suganthan, P.N. (2022). Ensemble deep learning: A review. Pagowski (bib20) 2006; 40 Michael, Krishnaswamy, Mohamed (bib26) 2005; 1 Lyons, G.M., Sharma, P., Baker, M., O'Malley, S., Shanahan, A. (2003). A computer game-based EMG biofeedback system for muscle rehabilitation. In Fredianto, Putri (bib56) 2023; 2727 Li, Cao, Wei, Tang, Wang (bib18) 2015; 126 Rafiei, Zahedifar, Sitaula, Marzbanrad (bib50) 2022; vol. 10 Chang, Chiao, Abimannan, Huang, Tsai, Lin (bib22) 2020; 11 Shabbir, Ahmed (bib52) 2022; 51 Amin-Naji, Aghagolzadeh, Ezoji (bib33) 2020; 11 Oathes, Ray, Yamasaki, Borkovec, Castonguay, Newman, Nitschke (bib29) 2008; 79 Deng, Fan, Lv, Sun (bib48) 2022; 16 Liao, Chen, Tai (bib11) 2018 Uyulan (bib47) 2021; Vol. 52 Iyer, Das, Teotia (bib42) 2022 Gao, Lee, Mehmood (bib15) 2015 Mumtaz, Qayyum (bib45) 2019; Volume 132 Pagowski (10.1016/j.csbj.2024.03.022_bib20) 2006; 40 Lin (10.1016/j.csbj.2024.03.022_bib21) 2021; 12 Saqlain (10.1016/j.csbj.2024.03.022_bib32) 2019; 32 Wang (10.1016/j.csbj.2024.03.022_bib40) 2021; 25 Arikan (10.1016/j.csbj.2024.03.022_bib30) 2018; 235 Rafiei (10.1016/j.csbj.2024.03.022_bib50) 2022; vol. 10 Mumtaz (10.1016/j.csbj.2024.03.022_bib45) 2019; Volume 132 10.1016/j.csbj.2024.03.022_bib24 Zhang (10.1016/j.csbj.2024.03.022_bib39) 2019; 23 Bachmann (10.1016/j.csbj.2024.03.022_bib44) 2017; Volume 31 Vuillerme (10.1016/j.csbj.2024.03.022_bib4) 2007 Gao (10.1016/j.csbj.2024.03.022_bib15) 2015 Li (10.1016/j.csbj.2024.03.022_bib6) 2020 Shen (10.1016/j.csbj.2024.03.022_bib23) 2021; 21 Liao (10.1016/j.csbj.2024.03.022_bib14) 2020; 8 10.1016/j.csbj.2024.03.022_bib2 Zhou (10.1016/j.csbj.2024.03.022_bib31) 2021 Opitz (10.1016/j.csbj.2024.03.022_bib19) 1999; 11 Chang (10.1016/j.csbj.2024.03.022_bib22) 2020; 11 Ye (10.1016/j.csbj.2024.03.022_bib41) 2022; 72 Dagnew (10.1016/j.csbj.2024.03.022_bib34) 2021; 3 Tai (10.1016/j.csbj.2024.03.022_bib5) 2021; 9 Park (10.1016/j.csbj.2024.03.022_bib36) 2021 Seal (10.1016/j.csbj.2024.03.022_bib49) 2021; vol. 70 Iyer (10.1016/j.csbj.2024.03.022_bib42) 2022 Dinesh Anton Raja (10.1016/j.csbj.2024.03.022_bib10) 2020; 2207 Fingelkurts (10.1016/j.csbj.2024.03.022_bib27) 2007; 28 Pei (10.1016/j.csbj.2024.03.022_bib53) 2021; 70 Kirmizi-Alsan (10.1016/j.csbj.2024.03.022_bib25) 2006; 1104 Shabbir (10.1016/j.csbj.2024.03.022_bib52) 2022; 51 Michael (10.1016/j.csbj.2024.03.022_bib26) 2005; 1 Huang (10.1016/j.csbj.2024.03.022_bib51) 2005; 17 Avots (10.1016/j.csbj.2024.03.022_bib38) 2022; 24 Wan (10.1016/j.csbj.2024.03.022_bib54) 2020; vol. 8 De Jonckheere (10.1016/j.csbj.2024.03.022_bib3) 2014 Hajian (10.1016/j.csbj.2024.03.022_bib8) 2017 Liu (10.1016/j.csbj.2024.03.022_bib57) 2022; Volume 127 Uyulan (10.1016/j.csbj.2024.03.022_bib47) 2021; Vol. 52 Deng (10.1016/j.csbj.2024.03.022_bib48) 2022; 16 Sharma (10.1016/j.csbj.2024.03.022_bib46) 2021; Volume 66 Li (10.1016/j.csbj.2024.03.022_bib18) 2015; 126 Shen (10.1016/j.csbj.2024.03.022_bib7) 2017 Fredianto (10.1016/j.csbj.2024.03.022_bib56) 2023; 2727 Yean (10.1016/j.csbj.2024.03.022_bib17) 2020; 10 Oathes (10.1016/j.csbj.2024.03.022_bib29) 2008; 79 Shrestha (10.1016/j.csbj.2024.03.022_bib13) 2019; 7 Islam (10.1016/j.csbj.2024.03.022_bib16) 2021; 9 Liao (10.1016/j.csbj.2024.03.022_bib11) 2018 Sun (10.1016/j.csbj.2024.03.022_bib37) 2007; 28 10.1016/j.csbj.2024.03.022_bib55 Amin-Naji (10.1016/j.csbj.2024.03.022_bib33) 2020; 11 Morshad (10.1016/j.csbj.2024.03.022_bib12) 2020; 28 Acar (10.1016/j.csbj.2024.03.022_bib35) 2009; 37 Moldofsky (10.1016/j.csbj.2024.03.022_bib28) 1980; 50 Ettman (10.1016/j.csbj.2024.03.022_bib1) 2022; 5 Rajendra Acharya (10.1016/j.csbj.2024.03.022_bib43) 2018; Volume 161 Al-Kaf (10.1016/j.csbj.2024.03.022_bib9) 2020; 2020 |
References_xml | – volume: 2207 year: 2020 ident: bib10 article-title: Feature extraction and classification of EEG signal-based anomaly detection and home automation for physically challenged/impaired people using neurosky mindwave headset publication-title: AIP Conf Proc – volume: 21 start-page: 1262 year: 2021 ident: bib23 article-title: Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition publication-title: Sensors – start-page: 22 year: 2007 end-page: 26 ident: bib4 article-title: Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement - Biomedical application to prevent pressure sores formation and falls. publication-title: 29th Annu Int Conf IEEE Eng Med Biol Soc – volume: 5 start-page: 1 year: 2022 end-page: 12 ident: bib1 article-title: Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults publication-title: Lancet Reg Health – volume: 24 start-page: 211 year: 2022 ident: bib38 article-title: Ensemble Approach for Detection of Depression Using EEG Features publication-title: Entropy – start-page: 1 year: 2020 end-page: 2 ident: bib6 article-title: Classification of resting state EEG data in patients with depression publication-title: IEEE Int Conf E-Health Netw, Appl Serv (HEALTHCOM) – start-page: 90 year: 2018 end-page: 93 ident: bib11 article-title: Emotion stress detection using EEG signal and deep learning technologies publication-title: IEEE Int Conf Appl Syst Invent (ICASI) – volume: 28 start-page: 247 year: 2007 end-page: 261 ident: bib27 article-title: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression publication-title: Hum Brain Mapp – volume: vol. 10 start-page: 73804 year: 2022 end-page: 73817 ident: bib50 article-title: Automated Detection of Major Depressive Disorder with EEG Signals: A Time Series Classification Using Deep Learning publication-title: IEEE Access – volume: Volume 66 year: 2021 ident: bib46 article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression publication-title: Biomed Signal Process Control – volume: 8 start-page: 126784 year: 2020 end-page: 126796 ident: bib14 article-title: Using EEG and Deep Learning to Predict Motion Sickness Under Wearing a Virtual Reality Device publication-title: IEEE Access – start-page: 181 year: 2021 end-page: 210 ident: bib31 article-title: Ensemble learning publication-title: Mach Learn – year: 2022 ident: bib42 article-title: CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings publication-title: Multimed Tools Appl – volume: Volume 31 start-page: 391 year: 2017 end-page: 397 ident: bib44 article-title: Single channel EEG analysis for detection of depression publication-title: Biomed Signal Process Control – volume: 126 start-page: 2078 year: 2015 end-page: 2089 ident: bib18 article-title: Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing publication-title: Clin Neurophysiol – volume: 32 start-page: 171 year: 2019 end-page: 182 ident: bib32 article-title: A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing publication-title: IEEE Trans Semicond Manuf – volume: 11 start-page: 1451 year: 2020 end-page: 1463 ident: bib22 article-title: An LSTM-based aggregated model for air pollution forecasting publication-title: Atmos Pollut Res – volume: Volume 161 start-page: 103 year: 2018 end-page: 113 ident: bib43 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput Methods Prog Biomed – volume: vol. 8 start-page: 30332 year: 2020 end-page: 30342 ident: bib54 article-title: HybridEEGNet: A Convolutional Neural Network for EEG Feature Learning and Depression Discrimination publication-title: IEEE Access – start-page: 26 year: 2014 end-page: 30 ident: bib3 article-title: A smartphone based cardiac coherence biofeedback system. publication-title: 36th Annu Int Conf IEEE Eng Med Biol Soc – volume: 51 start-page: 1891 year: 2022 end-page: 1898 ident: bib52 article-title: Estimation of interquartile range in stratified sampling under non-linear cost function publication-title: Commun Stat - Simul Comput – volume: 235 start-page: 114 year: 2018 end-page: 116 ident: bib30 article-title: EEG gamma synchronization is associated with response to paroxetine treatment publication-title: J Affect Disord – reference: Park, YeongHyeon, JoonSung Lee, and Wonseok Park. Self-Weighted Ensemble Method to Adjust the Influence of Individual Models based on Reliability. arXiv preprint arXiv:2104.04120 (2021). – volume: 2727 year: 2023 ident: bib56 article-title: Comparison of the interquartile range algorithm and local outlier factor on Australian weather data sets publication-title: AIP Conf Proc – volume: 37 start-page: 279 year: 2009 end-page: 294 ident: bib35 article-title: Ensemble of metamodels with optimized weight factors publication-title: Struct Multidiscip Optim – volume: 16 year: 2022 ident: bib48 article-title: SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination publication-title: Front Neuroinform – volume: 72 year: 2022 ident: bib41 article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network publication-title: Biomed Signal Process Control – start-page: 1 year: 2015 end-page: 5 ident: bib15 article-title: Deep learning of EEG signals for emotion recognition. publication-title: IEEE Int Conf Multimed Expo Workshops (ICMEW) – volume: vol. 70 start-page: 1 year: 2021 end-page: 13 ident: bib49 article-title: DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG publication-title: IEEE Trans Instrum Meas – volume: 9 start-page: 61256 year: 2021 end-page: 61268 ident: bib5 article-title: Inference of mood state indices by using a multimodal high-level information fusion technique publication-title: IEEE Access – volume: 11 start-page: 1749 year: 2020 end-page: 1769 ident: bib33 article-title: CNNs hard voting for multi-focus image fusion publication-title: J Ambient Intell Hum Comput – volume: 10 start-page: 672 year: 2020 ident: bib17 article-title: An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals publication-title: Brain Sci – volume: 1 start-page: 357 year: 2005 end-page: 363 ident: bib26 article-title: An open label study of the use of EEG biofeedback using beta training to reduce anxiety for patients with cardiac events publication-title: Neuropsychiatr Dis Treat – volume: 79 start-page: 165 year: 2008 end-page: 170 ident: bib29 article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band publication-title: Biol Psychol – volume: 25 start-page: 2533 year: 2021 end-page: 2544 ident: bib40 article-title: FLDNet: Frame-Level Distilling Neural Network for EEG Emotion Recognition publication-title: IEEE J Biomed Health Inform – reference: Ganaie, M.A., Hu, Minghui, Malik, A.K., Tanveer, M., Suganthan, P.N. (2022). Ensemble deep learning: A review. – volume: 17 start-page: 299 year: 2005 end-page: 310 ident: bib51 article-title: Using AUC and accuracy in evaluating learning algorithms publication-title: IEEE Trans Knowl Data Eng – volume: 7 start-page: 53040 year: 2019 end-page: 53065 ident: bib13 article-title: Review of Deep Learning Algorithms and Architectures publication-title: IEEE Access – volume: 50 start-page: 71 year: 1980 end-page: 80 ident: bib28 article-title: The relationship of alpha and delta EEG frequencies to pain and mood in ‘fibrositis’ patients treated with chlorpromazine and l-tryptophan publication-title: Electroencephalogr Clin Neurophysiol – volume: 2020 start-page: 1 year: 2020 end-page: 4 ident: bib9 article-title: NeuroSky Mindwave Mobile Headset 2 as an Intervention for Reduction of Stress and Anxiety Measured with Pulse Rate Variability publication-title: Comput Cardiol – start-page: 1879 year: 2017 end-page: 1886 ident: bib7 article-title: A novel depression detection method based on pervasive EEG and EEG splitting criterion publication-title: IEEE Int Conf Bioinforma Biomed (BIBM) – volume: 23 start-page: 2265 year: 2019 end-page: 2275 ident: bib39 article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble publication-title: IEEE J Biomed Health Inform – year: 2021 ident: bib36 publication-title: Self-Weight Ensemble Method Adjust Influ Individ Models Based Reliab – volume: 12 year: 2021 ident: bib21 article-title: Ensemble multifeatured deep learning models for air quality forecasting publication-title: Atmos Pollut Res – reference: , pp.17–21. DOI: – start-page: 1 year: 2017 end-page: 5 ident: bib8 article-title: Quantification of Depression Disorder Using EEG Signal publication-title: ) – reference: . – volume: 11 start-page: 169 year: 1999 end-page: 198 ident: bib19 article-title: Popular ensemble methods: An empirical study publication-title: J Artif Intell Res – volume: Volume 132 year: 2019 ident: bib45 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: Int J Med Inform – volume: Vol. 52 start-page: 38 year: 2021 end-page: 51 ident: bib47 article-title: Major depressive disorder classification based on different convolutional neural network models: deep learning approach publication-title: Clin EEG Neurosci – volume: 28 start-page: 1 year: 2020 end-page: 4 ident: bib12 article-title: Analysis of Brain Wave Data Using Neurosky Mindwave Mobile II publication-title: s – volume: 28 start-page: 2157 year: 2007 end-page: 2163 ident: bib37 article-title: An experimental evaluation of ensemble methods for EEG signal classification publication-title: Pattern Recognit Lett – reference: Lyons, G.M., Sharma, P., Baker, M., O'Malley, S., Shanahan, A. (2003). A computer game-based EMG biofeedback system for muscle rehabilitation. In – volume: 3 start-page: 48 year: 2021 end-page: 60 ident: bib34 article-title: Ensemble learning based classification of microarray cancer data on tree‐based features publication-title: Cogn Comput Syst – volume: 40 start-page: 3240 year: 2006 end-page: 3250 ident: bib20 article-title: Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts publication-title: Atmos Environ – volume: 9 start-page: 94601 year: 2021 end-page: 94624 ident: bib16 article-title: Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques publication-title: IEEE Access – volume: 1104 start-page: 114 year: 2006 end-page: 128 ident: bib25 article-title: Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention publication-title: Brain Res – volume: Volume 127 year: 2022 ident: bib57 article-title: Multi-channel fusion LSTM for medical event prediction using EHRs publication-title: J Biomed Inform – volume: 70 start-page: 1 year: 2021 end-page: 8 ident: bib53 article-title: EEG-based multiclass workload identification using feature fusion and selection publication-title: IEEE Trans Instrum Meas – volume: Vol. 52 start-page: 38 issue: 1 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib47 article-title: Major depressive disorder classification based on different convolutional neural network models: deep learning approach publication-title: Clin EEG Neurosci doi: 10.1177/1550059420916634 – start-page: 1 year: 2015 ident: 10.1016/j.csbj.2024.03.022_bib15 article-title: Deep learning of EEG signals for emotion recognition. publication-title: IEEE Int Conf Multimed Expo Workshops (ICMEW) – volume: vol. 70 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib49 article-title: DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3053999 – volume: 2727 year: 2023 ident: 10.1016/j.csbj.2024.03.022_bib56 article-title: Comparison of the interquartile range algorithm and local outlier factor on Australian weather data sets publication-title: AIP Conf Proc doi: 10.1063/5.0141897 – year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib36 publication-title: Self-Weight Ensemble Method Adjust Influ Individ Models Based Reliab – volume: 28 start-page: 247 issue: 3 year: 2007 ident: 10.1016/j.csbj.2024.03.022_bib27 article-title: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression publication-title: Hum Brain Mapp doi: 10.1002/hbm.20275 – volume: 1 start-page: 357 issue: 4 year: 2005 ident: 10.1016/j.csbj.2024.03.022_bib26 article-title: An open label study of the use of EEG biofeedback using beta training to reduce anxiety for patients with cardiac events publication-title: Neuropsychiatr Dis Treat – volume: 23 start-page: 2265 issue: 6 year: 2019 ident: 10.1016/j.csbj.2024.03.022_bib39 article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2938247 – volume: 51 start-page: 1891 issue: 4 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib52 article-title: Estimation of interquartile range in stratified sampling under non-linear cost function publication-title: Commun Stat - Simul Comput doi: 10.1080/03610918.2019.1689267 – volume: 9 start-page: 61256 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib5 article-title: Inference of mood state indices by using a multimodal high-level information fusion technique publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073733 – volume: vol. 10 start-page: 73804 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib50 article-title: Automated Detection of Major Depressive Disorder with EEG Signals: A Time Series Classification Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190502 – volume: 3 start-page: 48 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib34 article-title: Ensemble learning based classification of microarray cancer data on tree‐based features publication-title: Cogn Comput Syst doi: 10.1049/ccs2.12003 – year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib42 article-title: CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings publication-title: Multimed Tools Appl – volume: 37 start-page: 279 issue: 3 year: 2009 ident: 10.1016/j.csbj.2024.03.022_bib35 article-title: Ensemble of metamodels with optimized weight factors publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0230-y – ident: 10.1016/j.csbj.2024.03.022_bib2 doi: 10.1109/IEMBS.2003.1279682 – volume: Volume 66 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib46 article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102393 – ident: 10.1016/j.csbj.2024.03.022_bib55 – volume: 16 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib48 article-title: SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination publication-title: Front Neuroinform doi: 10.3389/fninf.2022.914823 – ident: 10.1016/j.csbj.2024.03.022_bib24 doi: 10.1016/j.engappai.2022.105151 – volume: Volume 161 start-page: 103 issue: Pages year: 2018 ident: 10.1016/j.csbj.2024.03.022_bib43 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2018.04.012 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib9 article-title: NeuroSky Mindwave Mobile Headset 2 as an Intervention for Reduction of Stress and Anxiety Measured with Pulse Rate Variability publication-title: Comput Cardiol – volume: 11 start-page: 1749 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib33 article-title: CNNs hard voting for multi-focus image fusion publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-019-01199-0 – volume: 40 start-page: 3240 issue: 18 year: 2006 ident: 10.1016/j.csbj.2024.03.022_bib20 article-title: Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2006.02.006 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib53 article-title: EEG-based multiclass workload identification using feature fusion and selection publication-title: IEEE Trans Instrum Meas – volume: 25 start-page: 2533 issue: 7 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib40 article-title: FLDNet: Frame-Level Distilling Neural Network for EEG Emotion Recognition publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3049119 – volume: vol. 8 start-page: 30332 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib54 article-title: HybridEEGNet: A Convolutional Neural Network for EEG Feature Learning and Depression Discrimination publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971656 – volume: 235 start-page: 114 year: 2018 ident: 10.1016/j.csbj.2024.03.022_bib30 article-title: EEG gamma synchronization is associated with response to paroxetine treatment publication-title: J Affect Disord doi: 10.1016/j.jad.2018.04.041 – volume: 8 start-page: 126784 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib14 article-title: Using EEG and Deep Learning to Predict Motion Sickness Under Wearing a Virtual Reality Device publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008165 – volume: 21 start-page: 1262 issue: 4 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib23 article-title: Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition publication-title: Sensors doi: 10.3390/s21041262 – volume: 28 start-page: 2157 issue: 15 year: 2007 ident: 10.1016/j.csbj.2024.03.022_bib37 article-title: An experimental evaluation of ensemble methods for EEG signal classification publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2007.06.018 – volume: 9 start-page: 94601 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib16 article-title: Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091487 – volume: 28 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib12 article-title: Analysis of Brain Wave Data Using Neurosky Mindwave Mobile II publication-title: Proc Int Conf Comput Advancements – volume: 11 start-page: 1451 issue: 8 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib22 article-title: An LSTM-based aggregated model for air pollution forecasting publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2020.05.015 – volume: 24 start-page: 211 issue: 2 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib38 article-title: Ensemble Approach for Detection of Depression Using EEG Features publication-title: Entropy doi: 10.3390/e24020211 – start-page: 181 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib31 article-title: Ensemble learning publication-title: Mach Learn doi: 10.1007/978-981-15-1967-3_8 – volume: 50 start-page: 71 issue: 1-2 year: 1980 ident: 10.1016/j.csbj.2024.03.022_bib28 article-title: The relationship of alpha and delta EEG frequencies to pain and mood in ‘fibrositis’ patients treated with chlorpromazine and l-tryptophan publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(80)90324-7 – volume: 5 start-page: 1 issue: 100091 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib1 article-title: Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults publication-title: Lancet Reg Health – start-page: 22 year: 2007 ident: 10.1016/j.csbj.2024.03.022_bib4 article-title: Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement - Biomedical application to prevent pressure sores formation and falls. In Proc publication-title: 29th Annu Int Conf IEEE Eng Med Biol Soc – volume: 126 start-page: 2078 issue: 11 year: 2015 ident: 10.1016/j.csbj.2024.03.022_bib18 article-title: Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.12.026 – volume: 79 start-page: 165 issue: 2 year: 2008 ident: 10.1016/j.csbj.2024.03.022_bib29 article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2008.04.005 – volume: 32 start-page: 171 issue: 2 year: 2019 ident: 10.1016/j.csbj.2024.03.022_bib32 article-title: A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing publication-title: IEEE Trans Semicond Manuf doi: 10.1109/TSM.2019.2904306 – volume: 11 start-page: 169 year: 1999 ident: 10.1016/j.csbj.2024.03.022_bib19 article-title: Popular ensemble methods: An empirical study publication-title: J Artif Intell Res doi: 10.1613/jair.614 – volume: 17 start-page: 299 issue: 3 year: 2005 ident: 10.1016/j.csbj.2024.03.022_bib51 article-title: Using AUC and accuracy in evaluating learning algorithms publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.50 – start-page: 1879 year: 2017 ident: 10.1016/j.csbj.2024.03.022_bib7 article-title: A novel depression detection method based on pervasive EEG and EEG splitting criterion publication-title: IEEE Int Conf Bioinforma Biomed (BIBM) – volume: 12 issue: 5 year: 2021 ident: 10.1016/j.csbj.2024.03.022_bib21 article-title: Ensemble multifeatured deep learning models for air quality forecasting publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2021.03.008 – volume: 10 start-page: 672 issue: 10 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib17 article-title: An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals publication-title: Brain Sci doi: 10.3390/brainsci10100672 – volume: 2207 issue: 1 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib10 article-title: Feature extraction and classification of EEG signal-based anomaly detection and home automation for physically challenged/impaired people using neurosky mindwave headset publication-title: AIP Conf Proc doi: 10.1063/5.0000064 – volume: 7 start-page: 53040 year: 2019 ident: 10.1016/j.csbj.2024.03.022_bib13 article-title: Review of Deep Learning Algorithms and Architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912200 – volume: 1104 start-page: 114 issue: 1 year: 2006 ident: 10.1016/j.csbj.2024.03.022_bib25 article-title: Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention publication-title: Brain Res doi: 10.1016/j.brainres.2006.03.010 – volume: 72 issue: Part-B year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib41 article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network publication-title: Biomed Signal Process Control – start-page: 26 year: 2014 ident: 10.1016/j.csbj.2024.03.022_bib3 article-title: A smartphone based cardiac coherence biofeedback system. In Proc publication-title: 36th Annu Int Conf IEEE Eng Med Biol Soc – start-page: 1 year: 2020 ident: 10.1016/j.csbj.2024.03.022_bib6 article-title: Classification of resting state EEG data in patients with depression publication-title: IEEE Int Conf E-Health Netw, Appl Serv (HEALTHCOM) – start-page: 1 year: 2017 ident: 10.1016/j.csbj.2024.03.022_bib8 article-title: Quantification of Depression Disorder Using EEG Signal publication-title: 24th Natl 2nd Int Iran Conf Biomed Eng (ICBME) – volume: Volume 132 year: 2019 ident: 10.1016/j.csbj.2024.03.022_bib45 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2019.103983 – volume: Volume 31 start-page: 391 issue: 2017, Pages year: 2017 ident: 10.1016/j.csbj.2024.03.022_bib44 article-title: Single channel EEG analysis for detection of depression publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.09.010 – volume: Volume 127 year: 2022 ident: 10.1016/j.csbj.2024.03.022_bib57 article-title: Multi-channel fusion LSTM for medical event prediction using EHRs publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104011 – start-page: 90 year: 2018 ident: 10.1016/j.csbj.2024.03.022_bib11 article-title: Emotion stress detection using EEG signal and deep learning technologies publication-title: IEEE Int Conf Appl Syst Invent (ICASI) doi: 10.1109/ICASI.2018.8394414 |
SSID | ssj0000816930 |
Score | 2.3520215 |
Snippet | Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG)... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1450 |
SubjectTerms | biotechnology commercialization Deep neural network EEG signal electroencephalography Ensemble learning Mental status assessment Multi featured deep learning neural networks regression analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQT3BA7IRNRuKGIhwvidMbyysVAk5U6s3yeCmt2rTivf6C_nHGdhK9gPS4cE2ceBt7vpE_f0PImzaoyDvX1o5FqKXXUFuJm2GU0Dc67cr5KObb9_bwSH45Vsdbqb4SJ6zIA5eBe6eE8yzaJgKGMqA0eC95B7yL0XErIO2-6PO2gqm8B-skMsLGWzKF0OXWcIYBIZdZ1ZTzhSfKgv0Lh_Q34PyTN7nliA7ukbsjgqTvS8vvk1theEDubOkKPiQ3nyZ-60DtLL1JE8f9hM4CEZ5mNmEdQxb39HS1-kwhXf2lPoQrmqQusaKhEMVpzpmz3qdfA1p_zm1EMQQOF3Ae6Jh74oTOkrDrR-ToYPXj42E9ZluonVJqUwtrQ4N4jWmQvWSOS6sCjpaMXSOdxUjZRvT2zmPEZr0KoEMEISJjLmm4R_GY7A2XQ3hKaOzBdS3rhQWPcKyzVnfR-8gV98CBV6SZRt64UYo8ZcQ4NxPn7Myk2TJptgwTBmerIm_nb66KEMfO0h_ShM4lk4h2foCmZUbTMv8yrYqoyRzMiEcKzsBfne6s_PVkOwYXazqBsUO4vF4bxAu9ZoiJ1Y4yiS6IKLnRFXlS7G3uhsD4U6hWVEQvLHHRz-Wb4fRnFg1vUmMxOn72P0bmObmd-ltoPS_I3ubXdXiJ4GwDr_I6_A2Aiz4V priority: 102 providerName: Directory of Open Access Journals |
Title | Depression assessment using integrated multi-featured EEG bands deep neural network models: Leveraging ensemble learning techniques |
URI | https://dx.doi.org/10.1016/j.csbj.2024.03.022 https://www.ncbi.nlm.nih.gov/pubmed/38623563 https://www.proquest.com/docview/3039805085 https://www.proquest.com/docview/3200316318 https://pubmed.ncbi.nlm.nih.gov/PMC11016871 https://doaj.org/article/53cd0fa1fb254b58bdd427b27ffc2a3b |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLaq9gIHxE4ojIzEDQU5XrJUQqjAlIpSDogRvVlep62GTJlMJTjzx3l2FhqoRlwTx47t9-zvJZ-_h9Dz3AlPC5OnhnidclvqVHFYDD3XVVaGVTn-ijn-lB_O-IcTcbKF-nRH3QA214Z2IZ_UbLV4-eP7z9fg8K_-cLVMo88h1qM8CpZSWJJ3YGcqgqMed3A_rsxlkB4Jn106JlFBunM011cz2quipP9oy_oXkv7NrLyyVR3cRrc6jIn3W6O4g7ZcfRfdvKI8eA_9etczYGusBnFOHFjwczxISFgc-Yapd1H-0-Lp9D3W4XAwts5d4CCGCQ3VLZUcx6w6zR7-6MA_YvYjDEGy-6YXDnfZKeZ4EI1t7qPZwfTL28O0y8eQGiHEOmVKuQwQHSk1rzgxlCvhYLS4LzJuFMTSygMeMBZiOmWF06XzmjFPiAkq7549QNv1snaPEPaVNkVOKqa0BcBWKFUW3lpPBbWaapqgrB95aTqx8pAzYyF7Vtq5DLMlw2xJwiTMVoJeDM9ctFIdG0u_CRM6lAwy2_HCcjWXnddKwYwlXmVeQxytRamt5bTQtPDeUMV0gkRvDrJDLC0SgarONjb-rLcdCe4c_tGo2i0vGwmIoioJoGaxoUwgFAKOzsoEPWztbegGgwiViZwlqBxZ4qif4zv12WmUFc_Cy0L8_Pg_Gt5FN0J3Wl7PE7S9Xl26p4DO1nqCdvaPPn89msSvG5PogL8BIe4-WA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depression+assessment+using+integrated+multi-featured+EEG+bands+deep+neural+network+models%3A+Leveraging+ensemble+learning+techniques&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Chung%2C+Kuo-Hsuan&rft.au=Chang%2C+Yue-Shan&rft.au=Yen%2C+Wei-Ting&rft.au=Lin%2C+Linen&rft.date=2024-12-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=23+p.1450-1468&rft.spage=1450&rft.epage=1468&rft_id=info:doi/10.1016%2Fj.csbj.2024.03.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |