Depression assessment using integrated multi-featured EEG bands deep neural network models: Leveraging ensemble learning techniques

Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to i...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 23; pp. 1450 - 1468
Main Authors Chung, Kuo-Hsuan, Chang, Yue-Shan, Yen, Wei-Ting, Lin, Linen, Abimannan, Satheesh
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2024
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. [Display omitted]
AbstractList Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. [Display omitted]
Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.
Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment. The research adopts simplest EEG sensor, commercialized one channel EEG sensor, and the position of the sensor is placed at FP1 position to collecting data with 57 subjects (49 depressed and 18 heathy subjects). The result reveal that the proposed method is superior to other ensemble learning techniques. The proposed method is effective and has the potential to improve the accuracy of depression assessment. ga1
Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG) technology to gauge an individual's mental state or level of depression. This study introduces a novel multi-tier ensemble learning approach to integrate multiple EEG bands for conducting mental state or depression assessments. Initially, the EEG signal is divided into eight sub-bands, and then a Long Short-Term Memory (LSTM)-based Deep Neural Network (DNN) model is trained for each band. Subsequently, the integration of multi-band EEG frequency models and the evaluation of mental state or depression level are facilitated through a two-tier ensemble learning approach based on Multiple Linear Regression (MLR). The authors conducted numerous experiments to validate the performance of the proposed method under different evaluation metrics. For clarity and conciseness, the research employs the simplest commercialized one-channel EEG sensor, positioned at FP1, to collect data from 57 subjects (49 depressed and 18 healthy subjects). The obtained results, including an accuracy of 0.897, F1-score of 0.921, precision of 0.935, negative predictive value of 0.829, recall of 0.908, specificity of 0.875, and AUC of 0.8917, provide evidence of the superior performance of the proposed method compared to other ensemble learning techniques. This method not only proves effective but also holds the potential to significantly enhance the accuracy of depression assessment.
Author Chang, Yue-Shan
Chung, Kuo-Hsuan
Lin, Linen
Yen, Wei-Ting
Abimannan, Satheesh
Author_xml – sequence: 1
  givenname: Kuo-Hsuan
  surname: Chung
  fullname: Chung, Kuo-Hsuan
  organization: Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
– sequence: 2
  givenname: Yue-Shan
  surname: Chang
  fullname: Chang, Yue-Shan
  email: ysc@mail.ntpu.edu.tw
  organization: National Taipei University, Sanxia District, New Taipei City 237, Taiwan
– sequence: 3
  givenname: Wei-Ting
  surname: Yen
  fullname: Yen, Wei-Ting
  organization: National Taipei University, Sanxia District, New Taipei City 237, Taiwan
– sequence: 4
  givenname: Linen
  surname: Lin
  fullname: Lin, Linen
  organization: Department of Psychiatry, En Chu Kong Hospital, Taiwan
– sequence: 5
  givenname: Satheesh
  surname: Abimannan
  fullname: Abimannan, Satheesh
  organization: Amity School of Engineering and Technology, Amity University Maharashtra, Mumbai, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38623563$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARfdA_wAHlyGWDH3HWi5BQVZZSaSUucLb8GKdeEnuxnUWc-eN12Ba1HIovM56Z79PMN3NaHfngoapeYdRghLu320YntW0IIm2DaIMIeVadEITwAtElOnrgH1fnKW1ReRx3K4peVMeUd4Syjp5Uvz_CLkJKLvhaplS8EXyup-R8XzufoY8yg6nHachuYUHmKZbven1VK-lNqg3ArvYwRTkUk3-G-L0eg4Ehvas3sIco-5kKfIJRDVAPIKOfIxn0jXc_Jkgvq-dWDgnO7-xZ9e3T-uvl58Xmy9X15cVmoRljeUGlBNyxMoZqVy3SpJUMyvitXeJWS865tC1m2qxKxjBQHKyi1CKk-aqllp5V1wdeE-RW7KIbZfwlgnTiTyDEXsiYnR5AMKoNshJbRVirGFfGtGSpyNJaTSRVhevDgWs3qRGMLqIVBR6RPs54dyP6sBd43h5f4sLw5o4hhlmFLEaXNAyD9BCmJGhZIMUdxfz_pYiuOGKIs1L6-mFffxu633gp4IcCHUNKEazQLstc9l_adIPASMwdiq2Y70vM9yUQFeW-CpT8A71nfxL0_gAqFwF7B1Ek7cBrMC6CzkV69xT8FnNz7BA
CitedBy_id crossref_primary_10_1002_widm_70002
Cites_doi 10.1177/1550059420916634
10.1109/TIM.2021.3053999
10.1063/5.0141897
10.1002/hbm.20275
10.1109/JBHI.2019.2938247
10.1080/03610918.2019.1689267
10.1109/ACCESS.2021.3073733
10.1109/ACCESS.2022.3190502
10.1049/ccs2.12003
10.1007/s00158-008-0230-y
10.1109/IEMBS.2003.1279682
10.1016/j.bspc.2020.102393
10.3389/fninf.2022.914823
10.1016/j.engappai.2022.105151
10.1016/j.cmpb.2018.04.012
10.1007/s12652-019-01199-0
10.1016/j.atmosenv.2006.02.006
10.1109/JBHI.2021.3049119
10.1109/ACCESS.2020.2971656
10.1016/j.jad.2018.04.041
10.1109/ACCESS.2020.3008165
10.3390/s21041262
10.1016/j.patrec.2007.06.018
10.1109/ACCESS.2021.3091487
10.1016/j.apr.2020.05.015
10.3390/e24020211
10.1007/978-981-15-1967-3_8
10.1016/0013-4694(80)90324-7
10.1016/j.clinph.2014.12.026
10.1016/j.biopsycho.2008.04.005
10.1109/TSM.2019.2904306
10.1613/jair.614
10.1109/TKDE.2005.50
10.1016/j.apr.2021.03.008
10.3390/brainsci10100672
10.1063/5.0000064
10.1109/ACCESS.2019.2912200
10.1016/j.brainres.2006.03.010
10.1016/j.ijmedinf.2019.103983
10.1016/j.bspc.2016.09.010
10.1016/j.jbi.2022.104011
10.1109/ICASI.2018.8394414
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2024.03.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 1468
ExternalDocumentID oai_doaj_org_article_53cd0fa1fb254b58bdd427b27ffc2a3b
PMC11016871
38623563
10_1016_j_csbj_2024_03_022
S2001037024000758
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
0SF
NCXOZ
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c555t-3aae165008b4940c24a5e0244f714ca888af415cd924ad5eb8efb33f00c8943f3
IEDL.DBID M48
ISSN 2001-0370
IngestDate Wed Aug 27 01:23:08 EDT 2025
Thu Aug 21 18:34:22 EDT 2025
Fri Aug 22 20:23:10 EDT 2025
Fri Jul 11 06:56:48 EDT 2025
Thu Jan 02 22:39:11 EST 2025
Wed Aug 20 07:44:51 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Sat Mar 08 15:48:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mental status assessment
Deep neural network
Ensemble learning
Multi featured deep learning
EEG signal
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-3aae165008b4940c24a5e0244f714ca888af415cd924ad5eb8efb33f00c8943f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2024.03.022
PMID 38623563
PQID 3039805085
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_53cd0fa1fb254b58bdd427b27ffc2a3b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11016871
proquest_miscellaneous_3200316318
proquest_miscellaneous_3039805085
pubmed_primary_38623563
crossref_citationtrail_10_1016_j_csbj_2024_03_022
crossref_primary_10_1016_j_csbj_2024_03_022
elsevier_sciencedirect_doi_10_1016_j_csbj_2024_03_022
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational and structural biotechnology journal
PublicationTitleAlternate Comput Struct Biotechnol J
PublicationYear 2024
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Yean (bib17) 2020; 10
Shrestha, Mahmood (bib13) 2019; 7
Huang, Ling (bib51) 2005; 17
Opitz, Maclin (bib19) 1999; 11
Zhou (bib31) 2021
De Jonckheere, Ibarissene, Flocteil, Logier (bib3) 2014
Wan, Huang, Zhang, Zhou, Yang, Zhong (bib54) 2020; vol. 8
Park, Lee, Park (bib36) 2021
Sun, Zhang, Zhang (bib37) 2007; 28
Liu, Wang, Xiang, Xu, Wang, Tang (bib57) 2022; Volume 127
Lin, Chang, Abimannan (bib21) 2021; 12
Zhang, Shen, Din, Liu, Wang, Hu (bib39) 2019; 23
Wang, Gu, Zhu, Li, Yang, Du (bib40) 2021; 25
Liao, Tai, Chen, Hendry (bib14) 2020; 8
Shen, Peng, Kong, Dai (bib23) 2021; 21
Ettman, Cohen, Abdalla, Sampson (bib1) 2022; 5
Dinesh Anton Raja, Akash, John Prem Kumar, Harsha, Arunachalaperumal (bib10) 2020; 2207
Moldofsky, Lue (bib28) 1980; 50
Shen, Zhao, Yao, Wang, Feng (bib7) 2017
.
Vuillerme, Chenu, Pinsault, Moreau-Gaudry, Fleury, Demongeot, Payan (bib4) 2007
Dagnew, Shekar (bib34) 2021; 3
Kirmizi-Alsan, Bayraktaroglu, Gurvit, Keskin, Emre, Demiralp (bib25) 2006; 1104
Seal, Bajpai, Agnihotri, Yazidi, Herrera-Viedma, Krejcar (bib49) 2021; vol. 70
Islam (bib16) 2021; 9
Ye, Yin, Zhao, Tian, Sun (bib41) 2022; 72
Tai, Chung, Teng, Shu, Chang (bib5) 2021; 9
Acar, Rais-Rohani (bib35) 2009; 37
Avots, Jermakovs, Bachmann, Päeske, Ozcinar, Anbarjafari (bib38) 2022; 24
Sharma, Parashar, Joshi (bib46) 2021; Volume 66
Al-Kaf, Khandoker, Khalaf, Jelinek (bib9) 2020; 2020
Rajendra Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib43) 2018; Volume 161
Pei, Wang, Bezerianos, Li (bib53) 2021; 70
pp.17–21. DOI
Bachmann, Lass, Hinrikus (bib44) 2017; Volume 31
Park, YeongHyeon, JoonSung Lee, and Wonseok Park. Self-Weighted Ensemble Method to Adjust the Influence of Individual Models based on Reliability. arXiv preprint arXiv:2104.04120 (2021).
Fingelkurts, Fingelkurts, Rytsälä, Suominen, Isometsä, Kähkönen (bib27) 2007; 28
Li, Tang, Deng, Yang (bib6) 2020
Morshad, Mazumder, Ahmed (bib12) 2020; 28
Saqlain, Jargalsaikhan, Lee (bib32) 2019; 32
Arikan, Metin, Tarhan (bib30) 2018; 235
Hajian, Hassan Moradi (bib8) 2017
Ganaie, M.A., Hu, Minghui, Malik, A.K., Tanveer, M., Suganthan, P.N. (2022). Ensemble deep learning: A review.
Pagowski (bib20) 2006; 40
Michael, Krishnaswamy, Mohamed (bib26) 2005; 1
Lyons, G.M., Sharma, P., Baker, M., O'Malley, S., Shanahan, A. (2003). A computer game-based EMG biofeedback system for muscle rehabilitation. In
Fredianto, Putri (bib56) 2023; 2727
Li, Cao, Wei, Tang, Wang (bib18) 2015; 126
Rafiei, Zahedifar, Sitaula, Marzbanrad (bib50) 2022; vol. 10
Chang, Chiao, Abimannan, Huang, Tsai, Lin (bib22) 2020; 11
Shabbir, Ahmed (bib52) 2022; 51
Amin-Naji, Aghagolzadeh, Ezoji (bib33) 2020; 11
Oathes, Ray, Yamasaki, Borkovec, Castonguay, Newman, Nitschke (bib29) 2008; 79
Deng, Fan, Lv, Sun (bib48) 2022; 16
Liao, Chen, Tai (bib11) 2018
Uyulan (bib47) 2021; Vol. 52
Iyer, Das, Teotia (bib42) 2022
Gao, Lee, Mehmood (bib15) 2015
Mumtaz, Qayyum (bib45) 2019; Volume 132
Pagowski (10.1016/j.csbj.2024.03.022_bib20) 2006; 40
Lin (10.1016/j.csbj.2024.03.022_bib21) 2021; 12
Saqlain (10.1016/j.csbj.2024.03.022_bib32) 2019; 32
Wang (10.1016/j.csbj.2024.03.022_bib40) 2021; 25
Arikan (10.1016/j.csbj.2024.03.022_bib30) 2018; 235
Rafiei (10.1016/j.csbj.2024.03.022_bib50) 2022; vol. 10
Mumtaz (10.1016/j.csbj.2024.03.022_bib45) 2019; Volume 132
10.1016/j.csbj.2024.03.022_bib24
Zhang (10.1016/j.csbj.2024.03.022_bib39) 2019; 23
Bachmann (10.1016/j.csbj.2024.03.022_bib44) 2017; Volume 31
Vuillerme (10.1016/j.csbj.2024.03.022_bib4) 2007
Gao (10.1016/j.csbj.2024.03.022_bib15) 2015
Li (10.1016/j.csbj.2024.03.022_bib6) 2020
Shen (10.1016/j.csbj.2024.03.022_bib23) 2021; 21
Liao (10.1016/j.csbj.2024.03.022_bib14) 2020; 8
10.1016/j.csbj.2024.03.022_bib2
Zhou (10.1016/j.csbj.2024.03.022_bib31) 2021
Opitz (10.1016/j.csbj.2024.03.022_bib19) 1999; 11
Chang (10.1016/j.csbj.2024.03.022_bib22) 2020; 11
Ye (10.1016/j.csbj.2024.03.022_bib41) 2022; 72
Dagnew (10.1016/j.csbj.2024.03.022_bib34) 2021; 3
Tai (10.1016/j.csbj.2024.03.022_bib5) 2021; 9
Park (10.1016/j.csbj.2024.03.022_bib36) 2021
Seal (10.1016/j.csbj.2024.03.022_bib49) 2021; vol. 70
Iyer (10.1016/j.csbj.2024.03.022_bib42) 2022
Dinesh Anton Raja (10.1016/j.csbj.2024.03.022_bib10) 2020; 2207
Fingelkurts (10.1016/j.csbj.2024.03.022_bib27) 2007; 28
Pei (10.1016/j.csbj.2024.03.022_bib53) 2021; 70
Kirmizi-Alsan (10.1016/j.csbj.2024.03.022_bib25) 2006; 1104
Shabbir (10.1016/j.csbj.2024.03.022_bib52) 2022; 51
Michael (10.1016/j.csbj.2024.03.022_bib26) 2005; 1
Huang (10.1016/j.csbj.2024.03.022_bib51) 2005; 17
Avots (10.1016/j.csbj.2024.03.022_bib38) 2022; 24
Wan (10.1016/j.csbj.2024.03.022_bib54) 2020; vol. 8
De Jonckheere (10.1016/j.csbj.2024.03.022_bib3) 2014
Hajian (10.1016/j.csbj.2024.03.022_bib8) 2017
Liu (10.1016/j.csbj.2024.03.022_bib57) 2022; Volume 127
Uyulan (10.1016/j.csbj.2024.03.022_bib47) 2021; Vol. 52
Deng (10.1016/j.csbj.2024.03.022_bib48) 2022; 16
Sharma (10.1016/j.csbj.2024.03.022_bib46) 2021; Volume 66
Li (10.1016/j.csbj.2024.03.022_bib18) 2015; 126
Shen (10.1016/j.csbj.2024.03.022_bib7) 2017
Fredianto (10.1016/j.csbj.2024.03.022_bib56) 2023; 2727
Yean (10.1016/j.csbj.2024.03.022_bib17) 2020; 10
Oathes (10.1016/j.csbj.2024.03.022_bib29) 2008; 79
Shrestha (10.1016/j.csbj.2024.03.022_bib13) 2019; 7
Islam (10.1016/j.csbj.2024.03.022_bib16) 2021; 9
Liao (10.1016/j.csbj.2024.03.022_bib11) 2018
Sun (10.1016/j.csbj.2024.03.022_bib37) 2007; 28
10.1016/j.csbj.2024.03.022_bib55
Amin-Naji (10.1016/j.csbj.2024.03.022_bib33) 2020; 11
Morshad (10.1016/j.csbj.2024.03.022_bib12) 2020; 28
Acar (10.1016/j.csbj.2024.03.022_bib35) 2009; 37
Moldofsky (10.1016/j.csbj.2024.03.022_bib28) 1980; 50
Ettman (10.1016/j.csbj.2024.03.022_bib1) 2022; 5
Rajendra Acharya (10.1016/j.csbj.2024.03.022_bib43) 2018; Volume 161
Al-Kaf (10.1016/j.csbj.2024.03.022_bib9) 2020; 2020
References_xml – volume: 2207
  year: 2020
  ident: bib10
  article-title: Feature extraction and classification of EEG signal-based anomaly detection and home automation for physically challenged/impaired people using neurosky mindwave headset
  publication-title: AIP Conf Proc
– volume: 21
  start-page: 1262
  year: 2021
  ident: bib23
  article-title: Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
  publication-title: Sensors
– start-page: 22
  year: 2007
  end-page: 26
  ident: bib4
  article-title: Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement - Biomedical application to prevent pressure sores formation and falls.
  publication-title: 29th Annu Int Conf IEEE Eng Med Biol Soc
– volume: 5
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib1
  article-title: Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults
  publication-title: Lancet Reg Health
– volume: 24
  start-page: 211
  year: 2022
  ident: bib38
  article-title: Ensemble Approach for Detection of Depression Using EEG Features
  publication-title: Entropy
– start-page: 1
  year: 2020
  end-page: 2
  ident: bib6
  article-title: Classification of resting state EEG data in patients with depression
  publication-title: IEEE Int Conf E-Health Netw, Appl Serv (HEALTHCOM)
– start-page: 90
  year: 2018
  end-page: 93
  ident: bib11
  article-title: Emotion stress detection using EEG signal and deep learning technologies
  publication-title: IEEE Int Conf Appl Syst Invent (ICASI)
– volume: 28
  start-page: 247
  year: 2007
  end-page: 261
  ident: bib27
  article-title: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression
  publication-title: Hum Brain Mapp
– volume: vol. 10
  start-page: 73804
  year: 2022
  end-page: 73817
  ident: bib50
  article-title: Automated Detection of Major Depressive Disorder with EEG Signals: A Time Series Classification Using Deep Learning
  publication-title: IEEE Access
– volume: Volume 66
  year: 2021
  ident: bib46
  article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression
  publication-title: Biomed Signal Process Control
– volume: 8
  start-page: 126784
  year: 2020
  end-page: 126796
  ident: bib14
  article-title: Using EEG and Deep Learning to Predict Motion Sickness Under Wearing a Virtual Reality Device
  publication-title: IEEE Access
– start-page: 181
  year: 2021
  end-page: 210
  ident: bib31
  article-title: Ensemble learning
  publication-title: Mach Learn
– year: 2022
  ident: bib42
  article-title: CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings
  publication-title: Multimed Tools Appl
– volume: Volume 31
  start-page: 391
  year: 2017
  end-page: 397
  ident: bib44
  article-title: Single channel EEG analysis for detection of depression
  publication-title: Biomed Signal Process Control
– volume: 126
  start-page: 2078
  year: 2015
  end-page: 2089
  ident: bib18
  article-title: Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing
  publication-title: Clin Neurophysiol
– volume: 32
  start-page: 171
  year: 2019
  end-page: 182
  ident: bib32
  article-title: A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing
  publication-title: IEEE Trans Semicond Manuf
– volume: 11
  start-page: 1451
  year: 2020
  end-page: 1463
  ident: bib22
  article-title: An LSTM-based aggregated model for air pollution forecasting
  publication-title: Atmos Pollut Res
– volume: Volume 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: bib43
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput Methods Prog Biomed
– volume: vol. 8
  start-page: 30332
  year: 2020
  end-page: 30342
  ident: bib54
  article-title: HybridEEGNet: A Convolutional Neural Network for EEG Feature Learning and Depression Discrimination
  publication-title: IEEE Access
– start-page: 26
  year: 2014
  end-page: 30
  ident: bib3
  article-title: A smartphone based cardiac coherence biofeedback system.
  publication-title: 36th Annu Int Conf IEEE Eng Med Biol Soc
– volume: 51
  start-page: 1891
  year: 2022
  end-page: 1898
  ident: bib52
  article-title: Estimation of interquartile range in stratified sampling under non-linear cost function
  publication-title: Commun Stat - Simul Comput
– volume: 235
  start-page: 114
  year: 2018
  end-page: 116
  ident: bib30
  article-title: EEG gamma synchronization is associated with response to paroxetine treatment
  publication-title: J Affect Disord
– reference: Park, YeongHyeon, JoonSung Lee, and Wonseok Park. Self-Weighted Ensemble Method to Adjust the Influence of Individual Models based on Reliability. arXiv preprint arXiv:2104.04120 (2021).
– volume: 2727
  year: 2023
  ident: bib56
  article-title: Comparison of the interquartile range algorithm and local outlier factor on Australian weather data sets
  publication-title: AIP Conf Proc
– volume: 37
  start-page: 279
  year: 2009
  end-page: 294
  ident: bib35
  article-title: Ensemble of metamodels with optimized weight factors
  publication-title: Struct Multidiscip Optim
– volume: 16
  year: 2022
  ident: bib48
  article-title: SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination
  publication-title: Front Neuroinform
– volume: 72
  year: 2022
  ident: bib41
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed Signal Process Control
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib15
  article-title: Deep learning of EEG signals for emotion recognition.
  publication-title: IEEE Int Conf Multimed Expo Workshops (ICMEW)
– volume: vol. 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib49
  article-title: DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG
  publication-title: IEEE Trans Instrum Meas
– volume: 9
  start-page: 61256
  year: 2021
  end-page: 61268
  ident: bib5
  article-title: Inference of mood state indices by using a multimodal high-level information fusion technique
  publication-title: IEEE Access
– volume: 11
  start-page: 1749
  year: 2020
  end-page: 1769
  ident: bib33
  article-title: CNNs hard voting for multi-focus image fusion
  publication-title: J Ambient Intell Hum Comput
– volume: 10
  start-page: 672
  year: 2020
  ident: bib17
  article-title: An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals
  publication-title: Brain Sci
– volume: 1
  start-page: 357
  year: 2005
  end-page: 363
  ident: bib26
  article-title: An open label study of the use of EEG biofeedback using beta training to reduce anxiety for patients with cardiac events
  publication-title: Neuropsychiatr Dis Treat
– volume: 79
  start-page: 165
  year: 2008
  end-page: 170
  ident: bib29
  article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band
  publication-title: Biol Psychol
– volume: 25
  start-page: 2533
  year: 2021
  end-page: 2544
  ident: bib40
  article-title: FLDNet: Frame-Level Distilling Neural Network for EEG Emotion Recognition
  publication-title: IEEE J Biomed Health Inform
– reference: Ganaie, M.A., Hu, Minghui, Malik, A.K., Tanveer, M., Suganthan, P.N. (2022). Ensemble deep learning: A review.
– volume: 17
  start-page: 299
  year: 2005
  end-page: 310
  ident: bib51
  article-title: Using AUC and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans Knowl Data Eng
– volume: 7
  start-page: 53040
  year: 2019
  end-page: 53065
  ident: bib13
  article-title: Review of Deep Learning Algorithms and Architectures
  publication-title: IEEE Access
– volume: 50
  start-page: 71
  year: 1980
  end-page: 80
  ident: bib28
  article-title: The relationship of alpha and delta EEG frequencies to pain and mood in ‘fibrositis’ patients treated with chlorpromazine and l-tryptophan
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 4
  ident: bib9
  article-title: NeuroSky Mindwave Mobile Headset 2 as an Intervention for Reduction of Stress and Anxiety Measured with Pulse Rate Variability
  publication-title: Comput Cardiol
– start-page: 1879
  year: 2017
  end-page: 1886
  ident: bib7
  article-title: A novel depression detection method based on pervasive EEG and EEG splitting criterion
  publication-title: IEEE Int Conf Bioinforma Biomed (BIBM)
– volume: 23
  start-page: 2265
  year: 2019
  end-page: 2275
  ident: bib39
  article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble
  publication-title: IEEE J Biomed Health Inform
– year: 2021
  ident: bib36
  publication-title: Self-Weight Ensemble Method Adjust Influ Individ Models Based Reliab
– volume: 12
  year: 2021
  ident: bib21
  article-title: Ensemble multifeatured deep learning models for air quality forecasting
  publication-title: Atmos Pollut Res
– reference: , pp.17–21. DOI:
– start-page: 1
  year: 2017
  end-page: 5
  ident: bib8
  article-title: Quantification of Depression Disorder Using EEG Signal
  publication-title: )
– reference: .
– volume: 11
  start-page: 169
  year: 1999
  end-page: 198
  ident: bib19
  article-title: Popular ensemble methods: An empirical study
  publication-title: J Artif Intell Res
– volume: Volume 132
  year: 2019
  ident: bib45
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: Int J Med Inform
– volume: Vol. 52
  start-page: 38
  year: 2021
  end-page: 51
  ident: bib47
  article-title: Major depressive disorder classification based on different convolutional neural network models: deep learning approach
  publication-title: Clin EEG Neurosci
– volume: 28
  start-page: 1
  year: 2020
  end-page: 4
  ident: bib12
  article-title: Analysis of Brain Wave Data Using Neurosky Mindwave Mobile II
  publication-title: s
– volume: 28
  start-page: 2157
  year: 2007
  end-page: 2163
  ident: bib37
  article-title: An experimental evaluation of ensemble methods for EEG signal classification
  publication-title: Pattern Recognit Lett
– reference: Lyons, G.M., Sharma, P., Baker, M., O'Malley, S., Shanahan, A. (2003). A computer game-based EMG biofeedback system for muscle rehabilitation. In
– volume: 3
  start-page: 48
  year: 2021
  end-page: 60
  ident: bib34
  article-title: Ensemble learning based classification of microarray cancer data on tree‐based features
  publication-title: Cogn Comput Syst
– volume: 40
  start-page: 3240
  year: 2006
  end-page: 3250
  ident: bib20
  article-title: Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts
  publication-title: Atmos Environ
– volume: 9
  start-page: 94601
  year: 2021
  end-page: 94624
  ident: bib16
  article-title: Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques
  publication-title: IEEE Access
– volume: 1104
  start-page: 114
  year: 2006
  end-page: 128
  ident: bib25
  article-title: Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention
  publication-title: Brain Res
– volume: Volume 127
  year: 2022
  ident: bib57
  article-title: Multi-channel fusion LSTM for medical event prediction using EHRs
  publication-title: J Biomed Inform
– volume: 70
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib53
  article-title: EEG-based multiclass workload identification using feature fusion and selection
  publication-title: IEEE Trans Instrum Meas
– volume: Vol. 52
  start-page: 38
  issue: 1
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib47
  article-title: Major depressive disorder classification based on different convolutional neural network models: deep learning approach
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059420916634
– start-page: 1
  year: 2015
  ident: 10.1016/j.csbj.2024.03.022_bib15
  article-title: Deep learning of EEG signals for emotion recognition.
  publication-title: IEEE Int Conf Multimed Expo Workshops (ICMEW)
– volume: vol. 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib49
  article-title: DeprNet: A Deep Convolution Neural Network Framework for Detecting Depression Using EEG
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3053999
– volume: 2727
  year: 2023
  ident: 10.1016/j.csbj.2024.03.022_bib56
  article-title: Comparison of the interquartile range algorithm and local outlier factor on Australian weather data sets
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0141897
– year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib36
  publication-title: Self-Weight Ensemble Method Adjust Influ Individ Models Based Reliab
– volume: 28
  start-page: 247
  issue: 3
  year: 2007
  ident: 10.1016/j.csbj.2024.03.022_bib27
  article-title: Impaired functional connectivity at EEG alpha and theta frequency bands in major depression
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20275
– volume: 1
  start-page: 357
  issue: 4
  year: 2005
  ident: 10.1016/j.csbj.2024.03.022_bib26
  article-title: An open label study of the use of EEG biofeedback using beta training to reduce anxiety for patients with cardiac events
  publication-title: Neuropsychiatr Dis Treat
– volume: 23
  start-page: 2265
  issue: 6
  year: 2019
  ident: 10.1016/j.csbj.2024.03.022_bib39
  article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2938247
– volume: 51
  start-page: 1891
  issue: 4
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib52
  article-title: Estimation of interquartile range in stratified sampling under non-linear cost function
  publication-title: Commun Stat - Simul Comput
  doi: 10.1080/03610918.2019.1689267
– volume: 9
  start-page: 61256
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib5
  article-title: Inference of mood state indices by using a multimodal high-level information fusion technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073733
– volume: vol. 10
  start-page: 73804
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib50
  article-title: Automated Detection of Major Depressive Disorder with EEG Signals: A Time Series Classification Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190502
– volume: 3
  start-page: 48
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib34
  article-title: Ensemble learning based classification of microarray cancer data on tree‐based features
  publication-title: Cogn Comput Syst
  doi: 10.1049/ccs2.12003
– year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib42
  article-title: CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings
  publication-title: Multimed Tools Appl
– volume: 37
  start-page: 279
  issue: 3
  year: 2009
  ident: 10.1016/j.csbj.2024.03.022_bib35
  article-title: Ensemble of metamodels with optimized weight factors
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0230-y
– ident: 10.1016/j.csbj.2024.03.022_bib2
  doi: 10.1109/IEMBS.2003.1279682
– volume: Volume 66
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib46
  article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102393
– ident: 10.1016/j.csbj.2024.03.022_bib55
– volume: 16
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib48
  article-title: SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2022.914823
– ident: 10.1016/j.csbj.2024.03.022_bib24
  doi: 10.1016/j.engappai.2022.105151
– volume: Volume 161
  start-page: 103
  issue: Pages
  year: 2018
  ident: 10.1016/j.csbj.2024.03.022_bib43
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib9
  article-title: NeuroSky Mindwave Mobile Headset 2 as an Intervention for Reduction of Stress and Anxiety Measured with Pulse Rate Variability
  publication-title: Comput Cardiol
– volume: 11
  start-page: 1749
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib33
  article-title: CNNs hard voting for multi-focus image fusion
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-019-01199-0
– volume: 40
  start-page: 3240
  issue: 18
  year: 2006
  ident: 10.1016/j.csbj.2024.03.022_bib20
  article-title: Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2006.02.006
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib53
  article-title: EEG-based multiclass workload identification using feature fusion and selection
  publication-title: IEEE Trans Instrum Meas
– volume: 25
  start-page: 2533
  issue: 7
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib40
  article-title: FLDNet: Frame-Level Distilling Neural Network for EEG Emotion Recognition
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3049119
– volume: vol. 8
  start-page: 30332
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib54
  article-title: HybridEEGNet: A Convolutional Neural Network for EEG Feature Learning and Depression Discrimination
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971656
– volume: 235
  start-page: 114
  year: 2018
  ident: 10.1016/j.csbj.2024.03.022_bib30
  article-title: EEG gamma synchronization is associated with response to paroxetine treatment
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2018.04.041
– volume: 8
  start-page: 126784
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib14
  article-title: Using EEG and Deep Learning to Predict Motion Sickness Under Wearing a Virtual Reality Device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008165
– volume: 21
  start-page: 1262
  issue: 4
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib23
  article-title: Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
  publication-title: Sensors
  doi: 10.3390/s21041262
– volume: 28
  start-page: 2157
  issue: 15
  year: 2007
  ident: 10.1016/j.csbj.2024.03.022_bib37
  article-title: An experimental evaluation of ensemble methods for EEG signal classification
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2007.06.018
– volume: 9
  start-page: 94601
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib16
  article-title: Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091487
– volume: 28
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib12
  article-title: Analysis of Brain Wave Data Using Neurosky Mindwave Mobile II
  publication-title: Proc Int Conf Comput Advancements
– volume: 11
  start-page: 1451
  issue: 8
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib22
  article-title: An LSTM-based aggregated model for air pollution forecasting
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.05.015
– volume: 24
  start-page: 211
  issue: 2
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib38
  article-title: Ensemble Approach for Detection of Depression Using EEG Features
  publication-title: Entropy
  doi: 10.3390/e24020211
– start-page: 181
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib31
  article-title: Ensemble learning
  publication-title: Mach Learn
  doi: 10.1007/978-981-15-1967-3_8
– volume: 50
  start-page: 71
  issue: 1-2
  year: 1980
  ident: 10.1016/j.csbj.2024.03.022_bib28
  article-title: The relationship of alpha and delta EEG frequencies to pain and mood in ‘fibrositis’ patients treated with chlorpromazine and l-tryptophan
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(80)90324-7
– volume: 5
  start-page: 1
  issue: 100091
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib1
  article-title: Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults
  publication-title: Lancet Reg Health
– start-page: 22
  year: 2007
  ident: 10.1016/j.csbj.2024.03.022_bib4
  article-title: Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement - Biomedical application to prevent pressure sores formation and falls. In Proc
  publication-title: 29th Annu Int Conf IEEE Eng Med Biol Soc
– volume: 126
  start-page: 2078
  issue: 11
  year: 2015
  ident: 10.1016/j.csbj.2024.03.022_bib18
  article-title: Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.12.026
– volume: 79
  start-page: 165
  issue: 2
  year: 2008
  ident: 10.1016/j.csbj.2024.03.022_bib29
  article-title: Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2008.04.005
– volume: 32
  start-page: 171
  issue: 2
  year: 2019
  ident: 10.1016/j.csbj.2024.03.022_bib32
  article-title: A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing
  publication-title: IEEE Trans Semicond Manuf
  doi: 10.1109/TSM.2019.2904306
– volume: 11
  start-page: 169
  year: 1999
  ident: 10.1016/j.csbj.2024.03.022_bib19
  article-title: Popular ensemble methods: An empirical study
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.614
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  ident: 10.1016/j.csbj.2024.03.022_bib51
  article-title: Using AUC and accuracy in evaluating learning algorithms
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.50
– start-page: 1879
  year: 2017
  ident: 10.1016/j.csbj.2024.03.022_bib7
  article-title: A novel depression detection method based on pervasive EEG and EEG splitting criterion
  publication-title: IEEE Int Conf Bioinforma Biomed (BIBM)
– volume: 12
  issue: 5
  year: 2021
  ident: 10.1016/j.csbj.2024.03.022_bib21
  article-title: Ensemble multifeatured deep learning models for air quality forecasting
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2021.03.008
– volume: 10
  start-page: 672
  issue: 10
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib17
  article-title: An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals
  publication-title: Brain Sci
  doi: 10.3390/brainsci10100672
– volume: 2207
  issue: 1
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib10
  article-title: Feature extraction and classification of EEG signal-based anomaly detection and home automation for physically challenged/impaired people using neurosky mindwave headset
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0000064
– volume: 7
  start-page: 53040
  year: 2019
  ident: 10.1016/j.csbj.2024.03.022_bib13
  article-title: Review of Deep Learning Algorithms and Architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– volume: 1104
  start-page: 114
  issue: 1
  year: 2006
  ident: 10.1016/j.csbj.2024.03.022_bib25
  article-title: Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2006.03.010
– volume: 72
  issue: Part-B
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib41
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed Signal Process Control
– start-page: 26
  year: 2014
  ident: 10.1016/j.csbj.2024.03.022_bib3
  article-title: A smartphone based cardiac coherence biofeedback system. In Proc
  publication-title: 36th Annu Int Conf IEEE Eng Med Biol Soc
– start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2024.03.022_bib6
  article-title: Classification of resting state EEG data in patients with depression
  publication-title: IEEE Int Conf E-Health Netw, Appl Serv (HEALTHCOM)
– start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2024.03.022_bib8
  article-title: Quantification of Depression Disorder Using EEG Signal
  publication-title: 24th Natl 2nd Int Iran Conf Biomed Eng (ICBME)
– volume: Volume 132
  year: 2019
  ident: 10.1016/j.csbj.2024.03.022_bib45
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2019.103983
– volume: Volume 31
  start-page: 391
  issue: 2017, Pages
  year: 2017
  ident: 10.1016/j.csbj.2024.03.022_bib44
  article-title: Single channel EEG analysis for detection of depression
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.09.010
– volume: Volume 127
  year: 2022
  ident: 10.1016/j.csbj.2024.03.022_bib57
  article-title: Multi-channel fusion LSTM for medical event prediction using EHRs
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2022.104011
– start-page: 90
  year: 2018
  ident: 10.1016/j.csbj.2024.03.022_bib11
  article-title: Emotion stress detection using EEG signal and deep learning technologies
  publication-title: IEEE Int Conf Appl Syst Invent (ICASI)
  doi: 10.1109/ICASI.2018.8394414
SSID ssj0000816930
Score 2.3520215
Snippet Mental Status Assessment (MSA) holds significant importance in psychiatry. In recent years, several studies have leveraged Electroencephalogram (EEG)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1450
SubjectTerms biotechnology
commercialization
Deep neural network
EEG signal
electroencephalography
Ensemble learning
Mental status assessment
Multi featured deep learning
neural networks
regression analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQT3BA7IRNRuKGIhwvidMbyysVAk5U6s3yeCmt2rTivf6C_nHGdhK9gPS4cE2ceBt7vpE_f0PImzaoyDvX1o5FqKXXUFuJm2GU0Dc67cr5KObb9_bwSH45Vsdbqb4SJ6zIA5eBe6eE8yzaJgKGMqA0eC95B7yL0XErIO2-6PO2gqm8B-skMsLGWzKF0OXWcIYBIZdZ1ZTzhSfKgv0Lh_Q34PyTN7nliA7ukbsjgqTvS8vvk1theEDubOkKPiQ3nyZ-60DtLL1JE8f9hM4CEZ5mNmEdQxb39HS1-kwhXf2lPoQrmqQusaKhEMVpzpmz3qdfA1p_zm1EMQQOF3Ae6Jh74oTOkrDrR-ToYPXj42E9ZluonVJqUwtrQ4N4jWmQvWSOS6sCjpaMXSOdxUjZRvT2zmPEZr0KoEMEISJjLmm4R_GY7A2XQ3hKaOzBdS3rhQWPcKyzVnfR-8gV98CBV6SZRt64UYo8ZcQ4NxPn7Myk2TJptgwTBmerIm_nb66KEMfO0h_ShM4lk4h2foCmZUbTMv8yrYqoyRzMiEcKzsBfne6s_PVkOwYXazqBsUO4vF4bxAu9ZoiJ1Y4yiS6IKLnRFXlS7G3uhsD4U6hWVEQvLHHRz-Wb4fRnFg1vUmMxOn72P0bmObmd-ltoPS_I3ubXdXiJ4GwDr_I6_A2Aiz4V
  priority: 102
  providerName: Directory of Open Access Journals
Title Depression assessment using integrated multi-featured EEG bands deep neural network models: Leveraging ensemble learning techniques
URI https://dx.doi.org/10.1016/j.csbj.2024.03.022
https://www.ncbi.nlm.nih.gov/pubmed/38623563
https://www.proquest.com/docview/3039805085
https://www.proquest.com/docview/3200316318
https://pubmed.ncbi.nlm.nih.gov/PMC11016871
https://doaj.org/article/53cd0fa1fb254b58bdd427b27ffc2a3b
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLaq9gIHxE4ojIzEDQU5XrJUQqjAlIpSDogRvVlep62GTJlMJTjzx3l2FhqoRlwTx47t9-zvJZ-_h9Dz3AlPC5OnhnidclvqVHFYDD3XVVaGVTn-ijn-lB_O-IcTcbKF-nRH3QA214Z2IZ_UbLV4-eP7z9fg8K_-cLVMo88h1qM8CpZSWJJ3YGcqgqMed3A_rsxlkB4Jn106JlFBunM011cz2quipP9oy_oXkv7NrLyyVR3cRrc6jIn3W6O4g7ZcfRfdvKI8eA_9etczYGusBnFOHFjwczxISFgc-Yapd1H-0-Lp9D3W4XAwts5d4CCGCQ3VLZUcx6w6zR7-6MA_YvYjDEGy-6YXDnfZKeZ4EI1t7qPZwfTL28O0y8eQGiHEOmVKuQwQHSk1rzgxlCvhYLS4LzJuFMTSygMeMBZiOmWF06XzmjFPiAkq7549QNv1snaPEPaVNkVOKqa0BcBWKFUW3lpPBbWaapqgrB95aTqx8pAzYyF7Vtq5DLMlw2xJwiTMVoJeDM9ctFIdG0u_CRM6lAwy2_HCcjWXnddKwYwlXmVeQxytRamt5bTQtPDeUMV0gkRvDrJDLC0SgarONjb-rLcdCe4c_tGo2i0vGwmIoioJoGaxoUwgFAKOzsoEPWztbegGgwiViZwlqBxZ4qif4zv12WmUFc_Cy0L8_Pg_Gt5FN0J3Wl7PE7S9Xl26p4DO1nqCdvaPPn89msSvG5PogL8BIe4-WA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depression+assessment+using+integrated+multi-featured+EEG+bands+deep+neural+network+models%3A+Leveraging+ensemble+learning+techniques&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Chung%2C+Kuo-Hsuan&rft.au=Chang%2C+Yue-Shan&rft.au=Yen%2C+Wei-Ting&rft.au=Lin%2C+Linen&rft.date=2024-12-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=23+p.1450-1468&rft.spage=1450&rft.epage=1468&rft_id=info:doi/10.1016%2Fj.csbj.2024.03.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon