Adaptive Spatial–Temporal Aware Graph Learning for EEG-Based Emotion Recognition

An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare, entertainment, and education, thanks to its portability, high temporal resolution, and real-time capabilities. However, the existing research in...

Full description

Saved in:
Bibliographic Details
Published inCyborg and Bionic Systems Vol. 5; p. 0088
Main Authors Ye, Weishan, Wang, Jiyuan, Chen, Lin, Dai, Lifei, Sun, Zhe, Liang, Zhen
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science (AAAS) 01.01.2024
AAAS
Subjects
Online AccessGet full text
ISSN2692-7632
2097-1087
2692-7632
DOI10.34133/cbsystems.0088

Cover

Loading…
Abstract An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare, entertainment, and education, thanks to its portability, high temporal resolution, and real-time capabilities. However, the existing research in this field faces limitations stemming from the nonstationary nature and individual variability of EEG signals. In this study, we present a novel EEG emotion recognition model, named GraphEmotionNet, designed to enhance the accuracy of EEG-based emotion recognition through the incorporation of a spatiotemporal attention mechanism and transfer learning. The proposed GraphEmotionNet model can effectively learn the intrinsic connections between EEG channels and construct an adaptive graph. This graph’s adaptive nature is crucial in optimizing spatial–temporal graph convolutions, which in turn enhances spatial–temporal feature characterization and contributes to the process of emotion classification. Moreover, an integration of domain adaptation aligns the extracted features across different domains, further alleviating the impact of individual EEG variability. We evaluate the model performance on two benchmark databases, employing two types of cross-validation protocols: within-subject cross-validation and cross-subject cross-validation. The experimental results affirm the model’s efficacy in extracting EEG features linked to emotional semantics and demonstrate its promising performance in emotion recognition.
AbstractList An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare, entertainment, and education, thanks to its portability, high temporal resolution, and real-time capabilities. However, the existing research in this field faces limitations stemming from the nonstationary nature and individual variability of EEG signals. In this study, we present a novel EEG emotion recognition model, named GraphEmotionNet, designed to enhance the accuracy of EEG-based emotion recognition through the incorporation of a spatiotemporal attention mechanism and transfer learning. The proposed GraphEmotionNet model can effectively learn the intrinsic connections between EEG channels and construct an adaptive graph. This graph’s adaptive nature is crucial in optimizing spatial–temporal graph convolutions, which in turn enhances spatial–temporal feature characterization and contributes to the process of emotion classification. Moreover, an integration of domain adaptation aligns the extracted features across different domains, further alleviating the impact of individual EEG variability. We evaluate the model performance on two benchmark databases, employing two types of cross-validation protocols: within-subject cross-validation and cross-subject cross-validation. The experimental results affirm the model’s efficacy in extracting EEG features linked to emotional semantics and demonstrate its promising performance in emotion recognition.
An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare, entertainment, and education, thanks to its portability, high temporal resolution, and real-time capabilities. However, the existing research in this field faces limitations stemming from the nonstationary nature and individual variability of EEG signals. In this study, we present a novel EEG emotion recognition model, named GraphEmotionNet, designed to enhance the accuracy of EEG-based emotion recognition through the incorporation of a spatiotemporal attention mechanism and transfer learning. The proposed GraphEmotionNet model can effectively learn the intrinsic connections between EEG channels and construct an adaptive graph. This graph's adaptive nature is crucial in optimizing spatial-temporal graph convolutions, which in turn enhances spatial-temporal feature characterization and contributes to the process of emotion classification. Moreover, an integration of domain adaptation aligns the extracted features across different domains, further alleviating the impact of individual EEG variability. We evaluate the model performance on two benchmark databases, employing two types of cross-validation protocols: within-subject cross-validation and cross-subject cross-validation. The experimental results affirm the model's efficacy in extracting EEG features linked to emotional semantics and demonstrate its promising performance in emotion recognition.An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare, entertainment, and education, thanks to its portability, high temporal resolution, and real-time capabilities. However, the existing research in this field faces limitations stemming from the nonstationary nature and individual variability of EEG signals. In this study, we present a novel EEG emotion recognition model, named GraphEmotionNet, designed to enhance the accuracy of EEG-based emotion recognition through the incorporation of a spatiotemporal attention mechanism and transfer learning. The proposed GraphEmotionNet model can effectively learn the intrinsic connections between EEG channels and construct an adaptive graph. This graph's adaptive nature is crucial in optimizing spatial-temporal graph convolutions, which in turn enhances spatial-temporal feature characterization and contributes to the process of emotion classification. Moreover, an integration of domain adaptation aligns the extracted features across different domains, further alleviating the impact of individual EEG variability. We evaluate the model performance on two benchmark databases, employing two types of cross-validation protocols: within-subject cross-validation and cross-subject cross-validation. The experimental results affirm the model's efficacy in extracting EEG features linked to emotional semantics and demonstrate its promising performance in emotion recognition.
Author Weishan Ye
Jiyuan Wang
Lifei Dai
Lin Chen
Zhen Liang
Zhe Sun
AuthorAffiliation 4 Faculty of Health Data Science and Faculty of Medicine , Juntendo University , Tokyo, Japan
3 School of Clinical Medicine , Harbin Medical University , Harbin, China
5 International Health Science Innovation Center, Medical School , Shenzhen University , Shenzhen, China
1 School of Biomedical Engineering, Medical School , Shenzhen University , Shenzhen, China
2 Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging , Shenzhen, China
AuthorAffiliation_xml – name: 4 Faculty of Health Data Science and Faculty of Medicine , Juntendo University , Tokyo, Japan
– name: 3 School of Clinical Medicine , Harbin Medical University , Harbin, China
– name: 5 International Health Science Innovation Center, Medical School , Shenzhen University , Shenzhen, China
– name: 1 School of Biomedical Engineering, Medical School , Shenzhen University , Shenzhen, China
– name: 2 Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging , Shenzhen, China
Author_xml – sequence: 1
  givenname: Weishan
  surname: Ye
  fullname: Ye, Weishan
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China., Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 2
  givenname: Jiyuan
  surname: Wang
  fullname: Wang, Jiyuan
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China., Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 3
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China., Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
– sequence: 4
  givenname: Lifei
  surname: Dai
  fullname: Dai, Lifei
  organization: School of Clinical Medicine, Harbin Medical University, Harbin, China
– sequence: 5
  givenname: Zhe
  surname: Sun
  fullname: Sun, Zhe
  organization: Faculty of Health Data Science and Faculty of Medicine, Juntendo University, Tokyo, Japan
– sequence: 6
  givenname: Zhen
  orcidid: 0000-0002-1749-2975
  surname: Liang
  fullname: Liang, Zhen
  organization: School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China., Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China., International Health Science Innovation Center, Medical School, Shenzhen University, Shenzhen, China
BackLink https://cir.nii.ac.jp/crid/1871147691541208448$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/40391296$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNURMvQNTuUBQs20_r6J7ZXaKiGodJISKWsLce5mRolcbAzRd3xDrwhT4KnU0YtCzb2lX3Od319XhZHQxiwKF4DOWMcGDt3dbpLE_bpjBClnhUntNJ0LitGjx7Vx8VpSr4mvBIVCElfFMecMA1UVyfF1aKx4-Rvsfwy2snb7vfPX9fYjyHarlz8sBHLVbTjTblGGwc_bMo2xHK5XM0_2IRNuezD5MNQXqELm8Hv6lfF89Z2CU8f9lnx9ePy-uLTfP15dXmxWM-dEGKaQ9soLsFqVbd5GC1aizVasOgogKxkrS2pRSUEp7IBBYRT1uZFQgsNATYrLvfcJthvZoy-t_HOBOvN_UGIG2Pj5F2HpkVe0RaFa2rFG4daa9BOc6YI1xQws97vWeO27jErhil_wBPo05vB35hNuDVAiZKasEx490CI4fsW02R6nxx2nR0wbJNhlAhFicyJzIo3j5sduvxNJQvO9wIXQ0oR24MEiLmP3hyiN7vos0P843B-srs08mt99x_f271v8D5bdisoCcBlpUHw3XScK_YHHwbAkA
CitedBy_id crossref_primary_10_1016_j_aei_2024_102831
crossref_primary_10_3390_bios15030180
crossref_primary_10_1038_s41598_025_92563_y
crossref_primary_10_3390_s25051594
crossref_primary_10_3389_fncom_2025_1581047
Cites_doi 10.1088/1741-2560/8/5/056001
10.1109/TNN.2010.2091281
10.1109/ICCV.2013.368
10.26599/BSA.2020.9050026
10.1109/TAFFC.2020.2994159
10.1109/ACCESS.2019.2891579
10.1023/A:1010933404324
10.1609/aaai.v32i1.11496
10.1109/TCYB.2017.2788081
10.1109/TITS.2017.2740427
10.1109/TCDS.2020.2999337
10.1109/TAMD.2015.2431497
10.1109/TCDS.2020.3007453
10.1109/TCDS.2016.2587290
10.4310/SII.2009.v2.n3.a8
10.1109/TAFFC.2020.3013711
10.1007/978-3-030-36708-4_3
10.1109/TNSRE.2023.3236434
10.1016/S0003-2670(01)95359-0
10.1109/TCDS.2021.3098842
10.1109/EMBC46164.2021.9630277
10.1109/TCDS.2019.2949306
10.1109/TAFFC.2018.2817622
10.1609/aaai.v30i1.10306
10.1109/TAFFC.2018.2885474
10.1007/978-3-030-04221-9_25
10.1109/TCYB.2018.2797176
10.1007/s11063-018-9829-1
10.1177/2096595819896200
10.1109/TAFFC.2019.2922912
10.1109/CVPR.2012.6247911
10.1007/978-3-030-04221-9_36
10.1109/CVPR.2018.00835
ContentType Journal Article
Copyright Copyright © 2024 Weishan Ye et al.
Copyright © 2024 Weishan Ye et al.
Copyright © 2024 Weishan Ye et al. 2024 Weishan Ye et al.
Copyright_xml – notice: Copyright © 2024 Weishan Ye et al.
– notice: Copyright © 2024 Weishan Ye et al.
– notice: Copyright © 2024 Weishan Ye et al. 2024 Weishan Ye et al.
DBID RYH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.34133/cbsystems.0088
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2692-7632
ExternalDocumentID oai_doaj_org_article_fe462fe5cdb84dce99919c943804921e
PMC12087903
40391296
10_34133_cbsystems_0088
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 62276169, 62071310, and 82272114
– fundername: ;
  grantid: -
– fundername: ;
  grantid: 2022SHIBS0003
– fundername: ;
  grantid: KCXFZ20201221173613036
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
RYH
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c555t-1fd8471a98bf13395faebea1aec211767b9a0b5655427d1810423f04271f1d013
IEDL.DBID DOA
ISSN 2692-7632
2097-1087
IngestDate Wed Aug 27 01:27:29 EDT 2025
Thu Aug 21 18:30:50 EDT 2025
Wed May 21 12:34:23 EDT 2025
Thu May 22 05:05:22 EDT 2025
Tue Jul 01 04:22:07 EDT 2025
Thu Apr 24 23:06:24 EDT 2025
Thu Jun 26 23:39:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2024 Weishan Ye et al.
Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-1fd8471a98bf13395faebea1aec211767b9a0b5655427d1810423f04271f1d013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1749-2975
OpenAccessLink https://doaj.org/article/fe462fe5cdb84dce99919c943804921e
PMID 40391296
PQID 3205820776
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fe462fe5cdb84dce99919c943804921e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12087903
proquest_miscellaneous_3205820776
pubmed_primary_40391296
crossref_primary_10_34133_cbsystems_0088
crossref_citationtrail_10_34133_cbsystems_0088
nii_cinii_1871147691541208448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cyborg and Bionic Systems
PublicationTitleAlternate Cyborg Bionic Syst
PublicationYear 2024
Publisher American Association for the Advancement of Science (AAAS)
AAAS
Publisher_xml – name: American Association for the Advancement of Science (AAAS)
– name: AAAS
References Niu W (e_1_3_3_10_2) 2023; 31
Du X (e_1_3_3_21_2) 2020; 13
Li Y (e_1_3_3_32_2) 2019; 49
Zhang T (e_1_3_3_35_2) 2018; 49
Siddharth S (e_1_3_3_2_2) 2019
Haufe S (e_1_3_3_4_2) 2011; 8
Zheng W-L (e_1_3_3_23_2) 2015; 7
Li Y (e_1_3_3_30_2) 2020; 13
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
Zheng W (e_1_3_3_33_2) 2016; 9
e_1_3_3_39_2
e_1_3_3_36_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
Li W (e_1_3_3_28_2) 2021; 14
Veličković P (e_1_3_3_13_2) 2017; 1050
e_1_3_3_31_2
Zhu J (e_1_3_3_46_2) 2009; 2
Song T (e_1_3_3_29_2) 2018; 11
e_1_3_3_40_2
Li J (e_1_3_3_45_2) 2019; 12
Li Y (e_1_3_3_20_2) 2019; 13
Duvenaud D (e_1_3_3_11_2) 2015; 28
Zhong P (e_1_3_3_26_2) 2020; 13
Hamilton W (e_1_3_3_12_2) 2017; 30
Hu W (e_1_3_3_8_2) 2020; 6
Li J (e_1_3_3_25_2) 2019; 50
Zheng W-L (e_1_3_3_24_2) 2018; 49
Pan SJ (e_1_3_3_38_2) 2010; 22
Teng T (e_1_3_3_3_2) 2017; 19
Hu B (e_1_3_3_6_2) 2022; 2022
Wu D (e_1_3_3_27_2) 2020; 14
Song T (e_1_3_3_47_2) 2019; 7
Ganin Y (e_1_3_3_22_2) 2016; 17
e_1_3_3_9_2
Ju J (e_1_3_3_5_2) 2022; 2022
Hu X (e_1_3_3_7_2) 2019; 5
e_1_3_3_43_2
Li Y (e_1_3_3_18_2) 2021; 12
e_1_3_3_44_2
e_1_3_3_41_2
e_1_3_3_42_2
References_xml – volume: 8
  issue: 5
  year: 2011
  ident: e_1_3_3_4_2
  article-title: EEG potentials predict upcoming emergency brakings during simulated driving
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/5/056001
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: e_1_3_3_38_2
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2091281
– ident: e_1_3_3_40_2
  doi: 10.1109/ICCV.2013.368
– volume: 6
  start-page: 255
  issue: 3
  year: 2020
  ident: e_1_3_3_8_2
  article-title: Video-triggered EEG-emotion public databases and current methods: A survey
  publication-title: Brain Sci Adv
  doi: 10.26599/BSA.2020.9050026
– volume: 13
  start-page: 1290
  issue: 3
  year: 2020
  ident: e_1_3_3_26_2
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.2994159
– volume: 7
  start-page: 12177
  year: 2019
  ident: e_1_3_3_47_2
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– ident: e_1_3_3_36_2
  doi: 10.1023/A:1010933404324
– ident: e_1_3_3_9_2
  doi: 10.1609/aaai.v32i1.11496
– volume: 1050
  start-page: 10
  year: 2017
  ident: e_1_3_3_13_2
  article-title: Graph attention networks
  publication-title: Stat
– volume: 49
  start-page: 839
  issue: 3
  year: 2018
  ident: e_1_3_3_35_2
  article-title: Spatial–temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2788081
– volume: 28
  start-page: 2224
  year: 2015
  ident: e_1_3_3_11_2
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Adv Neural Inf Process
– volume: 19
  start-page: 1766
  issue: 6
  year: 2017
  ident: e_1_3_3_3_2
  article-title: EEG-based detection of driver emergency braking intention for brain-controlled vehicles
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2017.2740427
– volume: 13
  start-page: 354
  issue: 2
  year: 2020
  ident: e_1_3_3_30_2
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans Cogn Develop Syst
  doi: 10.1109/TCDS.2020.2999337
– ident: e_1_3_3_31_2
– ident: e_1_3_3_15_2
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: e_1_3_3_23_2
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans Auton Ment Dev
  doi: 10.1109/TAMD.2015.2431497
– ident: e_1_3_3_14_2
– volume: 14
  start-page: 4
  issue: 1
  year: 2020
  ident: e_1_3_3_27_2
  article-title: Transfer learning for EEG-based brain-computer interfaces: A review of progress made since 2016
  publication-title: IEEE Trans Cogn Develop Syst
  doi: 10.1109/TCDS.2020.3007453
– ident: e_1_3_3_17_2
– volume: 9
  start-page: 281
  issue: 3
  year: 2016
  ident: e_1_3_3_33_2
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Trans Cogn Develop Syst
  doi: 10.1109/TCDS.2016.2587290
– volume: 2
  start-page: 349
  year: 2009
  ident: e_1_3_3_46_2
  article-title: Multi-class AdaBoost
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 13
  start-page: 1528
  issue: 3
  year: 2020
  ident: e_1_3_3_21_2
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2020.3013711
– ident: e_1_3_3_44_2
  doi: 10.1007/978-3-030-36708-4_3
– volume: 31
  start-page: 917
  year: 2023
  ident: e_1_3_3_10_2
  article-title: A brain network analysis-based double way deep neural network for emotion recognition
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2023.3236434
– ident: e_1_3_3_37_2
  doi: 10.1016/S0003-2670(01)95359-0
– volume: 14
  start-page: 833
  issue: 3
  year: 2021
  ident: e_1_3_3_28_2
  article-title: Can emotion be transferred?—A review on transfer learning for EEG-based emotion recognition
  publication-title: IEEE Trans Cogn Develop Syst
  doi: 10.1109/TCDS.2021.3098842
– ident: e_1_3_3_42_2
  doi: 10.1109/EMBC46164.2021.9630277
– volume: 12
  start-page: 344
  issue: 2
  year: 2019
  ident: e_1_3_3_45_2
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans Cogn Develop Syst
  doi: 10.1109/TCDS.2019.2949306
– volume: 2022
  year: 2022
  ident: e_1_3_3_6_2
  article-title: The inverse problems for computational psychophysiology: Opinions and insights
  publication-title: Cyborg Bionic Syst
– volume: 30
  start-page: 1025
  year: 2017
  ident: e_1_3_3_12_2
  article-title: Inductive representation learning on large graphs
  publication-title: Adv Neural Inf Process Syst
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: e_1_3_3_29_2
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2018.2817622
– ident: e_1_3_3_39_2
  doi: 10.1609/aaai.v30i1.10306
– year: 2019
  ident: e_1_3_3_2_2
  article-title: Utilizing deep learning towards multi-modal biosensing and vision-based affective computing
  publication-title: IEEE Trans Affect Comput
– volume: 17
  start-page: 2096
  year: 2016
  ident: e_1_3_3_22_2
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: e_1_3_3_25_2
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans Cybern
– volume: 12
  start-page: 494
  issue: 2
  year: 2021
  ident: e_1_3_3_18_2
  article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2018.2885474
– ident: e_1_3_3_19_2
  doi: 10.1007/978-3-030-04221-9_25
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: e_1_3_3_24_2
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2797176
– volume: 2022
  year: 2022
  ident: e_1_3_3_5_2
  article-title: Recognition of drivers’ hard and soft braking intentions based on hybrid brain-computer interfaces
  publication-title: Cyborg Bionic Syst
– volume: 49
  start-page: 555
  year: 2019
  ident: e_1_3_3_32_2
  article-title: EEG emotion recognition based on graph regularized sparse linear regression
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9829-1
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_3_3_7_2
  article-title: Ten challenges for EEG-based affective computing
  publication-title: Brain Sci Adv
  doi: 10.1177/2096595819896200
– volume: 13
  start-page: 568
  issue: 2
  year: 2019
  ident: e_1_3_3_20_2
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2019.2922912
– ident: e_1_3_3_16_2
– ident: e_1_3_3_41_2
  doi: 10.1109/CVPR.2012.6247911
– ident: e_1_3_3_43_2
  doi: 10.1007/978-3-030-04221-9_36
– ident: e_1_3_3_34_2
  doi: 10.1109/CVPR.2018.00835
SSID ssib046561572
ssj0002875728
Score 2.3531375
Snippet An intelligent emotion recognition system based on electroencephalography (EEG) signals shows considerable potential in various domains such as healthcare,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 0088
SubjectTerms Cybernetics
Q300-390
Title Adaptive Spatial–Temporal Aware Graph Learning for EEG-Based Emotion Recognition
URI https://cir.nii.ac.jp/crid/1871147691541208448
https://www.ncbi.nlm.nih.gov/pubmed/40391296
https://www.proquest.com/docview/3205820776
https://pubmed.ncbi.nlm.nih.gov/PMC12087903
https://doaj.org/article/fe462fe5cdb84dce99919c943804921e
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqHm0JL7lSD_QQiBM_4uNutYB66AGBxC3yExahLGIXceU_8A_7SzoTZ1e7qKiXXnKIY8UZj_1944y-IeQbUI5KMmdzaesq5xwCFKNMkWsTJcKHE6bL8v0lz6_4z2txvVTqC3PCkjxwMtxJDFyWMQjnbc29C0hotNMolM51yQLuvoB5S8HUXXdkpIQq66Tlgxt1deJs0kaeoqJpvQJDnVo_gEs7Hv-NaL7Nl1wCoNMN8rFnjnSQRrxJPoR2i2z2a3NKj3oB6e_b5GLgzQNuYxQLDoOD_X55vUwSVND_2TwGeoY61bQXV72hwFzpaHSWDwHTPB2l0j70Yp5cNGk_kavT0eWP87yvnZA7IcQsZ9Ej7hhd2whfr0U0MF2GmeAg5FNSWW0KC2xO8FJ5gHnMj4lYeINF5oEXfiZr7aQNO4RWKOCtvJTCWYiPlLYA89wwpWzwKrqMHM9N2bheWBzrW9w3EGB0tm8Wtm_Q9hk5WnR4SJoa7z86xLlZPIZi2N0NcJGmd5HmXy6SkQOYWRgbXhlEiIwrqYE7srKoITzNyNf5nDewuPCPiWnD5GnaVGUhgCIpJTPyJfnAYigctfVLDS31inesjHW1pR3fdgLe-F6li2r3f3zdHlkvgWilY6F9sjZ7fAoHQJRm9rBbE4fdCdYfb_4SPw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Spatial-Temporal+Aware+Graph+Learning+for+EEG-Based+Emotion+Recognition&rft.jtitle=Cyborg+and+bionic+systems&rft.au=Ye%2C+Weishan&rft.au=Wang%2C+Jiyuan&rft.au=Chen%2C+Lin&rft.au=Dai%2C+Lifei&rft.date=2024-01-01&rft.issn=2692-7632&rft.eissn=2692-7632&rft.volume=5&rft.spage=0088&rft_id=info:doi/10.34133%2Fcbsystems.0088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-7632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-7632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-7632&client=summon