Identifying promising druggable binding sites and their flexibility to target the receptor-binding domain of SARS-CoV-2 spike protein

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD bin...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 21; pp. 2339 - 2351
Main Authors Ghoula, M., Naceri, S., Sitruk, S., Flatters, D., Moroy, G., Camproux, A.C.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2023
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text
ISSN2001-0370
2001-0370
DOI10.1016/j.csbj.2023.03.029

Cover

Loading…
Abstract The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. [Display omitted] •Three druggable and stable target sites have been identified on the SARS-CoV-2 Spike RBD protein.•Site 3 could be targeted to prevent the ACE2 protein from interacting, though it is subject to mutations.•Sites 1 and 2 are not or slightly affected by the variant mutations and can be targeted to block spike protein activation.
AbstractList The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. [Display omitted] •Three druggable and stable target sites have been identified on the SARS-CoV-2 Spike RBD protein.•Site 3 could be targeted to prevent the ACE2 protein from interacting, though it is subject to mutations.•Sites 1 and 2 are not or slightly affected by the variant mutations and can be targeted to block spike protein activation.
Author Moroy, G.
Camproux, A.C.
Ghoula, M.
Flatters, D.
Sitruk, S.
Naceri, S.
Author_xml – sequence: 1
  givenname: M.
  surname: Ghoula
  fullname: Ghoula, M.
– sequence: 2
  givenname: S.
  surname: Naceri
  fullname: Naceri, S.
– sequence: 3
  givenname: S.
  surname: Sitruk
  fullname: Sitruk, S.
– sequence: 4
  givenname: D.
  surname: Flatters
  fullname: Flatters, D.
– sequence: 5
  givenname: G.
  surname: Moroy
  fullname: Moroy, G.
  email: gautier.moroy@u-paris.fr
– sequence: 6
  givenname: A.C.
  surname: Camproux
  fullname: Camproux, A.C.
  email: anne-claude.camproux@u-paris.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36998674$$D View this record in MEDLINE/PubMed
BookMark eNqFUttq3DAQNSWlSdP8QB-KH_virW6WbSiUsPQSCBSa0Fehy9iZrdfaStqQ_YD-d-VutiR9SMWAhtGco8PMeVkcTX6ConhNyYISKt-tFjaa1YIRxhckB-ueFSeMEFoR3pCjB_lxcRbjiuTTUtlx8qI45rLrWtmIk-LXhYMpYb_DaSg3wa8xzpkL22HQZoTS4OTmSsQEsdSTK9MNYCj7Ee7Q4IhpVyZfJh0GSPNbGcDCJvlQHaDOrzVOpe_Lq_NvV9XSf69YGTf4A-YfE-D0qnje6zHC2f19Wlx_-ni9_FJdfv18sTy_rGxd16mirCYCDPQG2l5y0xMruLMNpUb0hmqQFozlPQfb0ZpIqS1oWbeSSdNSwU-Liz2t83qlNgHXOuyU16j-FHwYlA4J7QiKN7WoiXOWi0ZIJ7QgThBNerC1kG2TuT7suTZbswZn8xSDHh-RPn6Z8EYN_lZRklfGKMsMb-8Zgv-5hZhUHr6FcdQT-G1UnNa8ZZTy_7eypuNdy2sx63rzUNdfQYeV54Z232CDjzFArywmndDPMnHM-tRsMLVSs8HUbDBFcrAuQ9k_0AP7k6D3exDkxd4iBBUtwmTBYXZKyqPHp-C_ActO638
CitedBy_id crossref_primary_10_3390_v15102073
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_3390_v16121836
crossref_primary_10_3390_ijms25094955
crossref_primary_10_3390_v15102009
Cites_doi 10.1016/j.heliyon.2021.e06035
10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
10.1371/journal.pcbi.1008450
10.1080/17460441.2017.1280456
10.18637/jss.v025.i03
10.1093/nar/gkv462
10.1021/acs.jpcb.0c11321
10.1038/s41586-020-2180-5
10.1021/ci5006004
10.1063/1.2408420
10.1056/NEJMoa2118542
10.1080/07391102.2020.1773318
10.1002/prot.26086
10.1021/acs.accounts.9b00613
10.3389/fmolb.2020.605236
10.1016/j.cell.2020.02.058
10.1517/17460441.2015.1032936
10.1016/j.bbrc.2020.05.028
10.1038/s41579-021-00630-8
10.1038/s41423-020-0400-4
10.1038/s41423-020-0458-z
10.3389/fchem.2020.572885
10.1016/j.imu.2020.100451
10.7554/eLife.75720
10.3390/v12050537
10.1002/jmv.25699
10.1126/science.abb7269
10.1007/s00357-014-9161-z
10.1038/s41577-021-00542-x
10.1080/07391102.2020.1796811
10.1021/acs.jcim.1c00560
10.1038/s41598-022-10097-z
10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C
10.1038/nature02145
10.1038/s41586-021-03402-9
10.1016/j.drudis.2016.11.021
10.1186/1471-2105-10-168
10.1080/22221751.2020.1725399
10.1038/s41586-022-04594-4
10.1080/08927029108022142
10.1126/science.abd3255
10.7554/eLife.61312
10.1021/ci500020m
10.1016/j.bbrc.2020.11.075
10.1126/science.abb2507
10.1038/s41586-020-2179-y
10.1021/acs.jpclett.0c01148
10.1126/science.abi6226
10.1038/s41591-021-01270-4
10.1016/j.softx.2015.06.001
10.1016/S0140-6736(20)30251-8
10.1038/s41564-020-0695-z
10.1186/s12929-021-00784-w
10.1021/acs.accounts.5b00516
10.1063/1.328693
10.3390/ijms21145152
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1016/j.biopha.2020.110559
10.1016/0263-7855(96)00018-5
10.1016/j.peptides.2020.170328
10.1021/acs.jmedchem.1c00311
10.1002/prot.20660
10.1016/j.cell.2020.03.045
10.1021/ja406995j
10.1016/j.csbj.2020.07.017
10.1038/nmeth.4067
10.1371/journal.ppat.1008762
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2023.03.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 2351
ExternalDocumentID oai_doaj_org_article_375450ddc34746d4a40d40a0fec54687
PMC10023212
36998674
10_1016_j_csbj_2023_03_029
S2001037023001290
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c555t-12504ebefbe8f63bf0c43dc711b4fb1ae6cebc3f3ec915066acea658626b8143
IEDL.DBID M48
ISSN 2001-0370
IngestDate Wed Aug 27 01:32:40 EDT 2025
Thu Aug 21 18:37:24 EDT 2025
Fri Jul 11 10:32:34 EDT 2025
Fri Jul 11 07:53:54 EDT 2025
Thu Jan 02 22:52:44 EST 2025
Thu Apr 24 23:01:45 EDT 2025
Tue Jul 01 03:43:02 EDT 2025
Sat Dec 21 16:00:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pocket tracking
SARS-CoV-2
Spike protein
Binding site flexibility
Key-residues
COVID-19 variants
Structural flexibility
Molecular dynamics simulation
Druggable binding sites
Hot spot residues
Language English
License This is an open access article under the CC BY license.
2023 The Authors.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-12504ebefbe8f63bf0c43dc711b4fb1ae6cebc3f3ec915066acea658626b8143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors contributed equally
The last two authors contributed equally
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2023.03.029
PMID 36998674
PQID 2793983547
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_375450ddc34746d4a40d40a0fec54687
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023212
proquest_miscellaneous_3153821132
proquest_miscellaneous_2793983547
pubmed_primary_36998674
crossref_citationtrail_10_1016_j_csbj_2023_03_029
crossref_primary_10_1016_j_csbj_2023_03_029
elsevier_sciencedirect_doi_10_1016_j_csbj_2023_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational and structural biotechnology journal
PublicationTitleAlternate Comput Struct Biotechnol J
PublicationYear 2023
Publisher Elsevier B.V
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu, Zhou, Hu, Zhou, Zhao, Chen, Meng, Wang, Lin, Yuan, Xie, Ma, Liu, Wang, Xu, Holmes, Gao, Wu, Chen, Shi, Tan (bib17) 2020; 395
Spinello, Saltalamacchia, Magistrato (bib29) 2020; 11
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bib44) 2015; 1
Toelzer, Gupta, Yadav, Borucu, Davidson, Kavanagh Williamson, Shoemark, Garzoni, Staufer, Milligan, Capin, Mulholland, Spatz, Fitzgerald, Berger, Schaffitzel (bib67) 2020; 370
Hammond, Leister-Tebbe, Gardner, Abreu, Bao, Wisemandle, Baniecki, Hendrick, Damle, Simón-Campos, Pypstra, Rusnak (bib12) 2022; 386
Borrel, Regad, Xhaard, Petitjean, Camproux (bib41) 2015; 55
Chen, Liu, Zhang, Xu, Ye, Wu, Sun, Liu, Wu, Zhong, Mei, Zhang, Chen, Li, Shi, Lan, Liu (bib2) 2020; 9
Delgado, Duro, Rogers, Tkatchenko, Pandit, Varma (bib30) 2021; 89
Veeramachaneni, Thunuguntla, Bobbillapati, Bondili (bib62) 2021; 39
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org.
Coronaviridae Study Group of the International Committee on Taxonomy of VirusesThe species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Nat Microbiol 5 2020 536 544 doi: 10.1038/s41564-020-0695-z.
Ling, Dai, Huang, Huang, Yu, Lu, Jiang (bib20) 2020; 130
Pandey, Rane, Chatterjee, Kumar, Khan, Prakash, Ray (bib21) 2021; 39
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib16) 2020; 181
Genheden, Ryde (bib28) 2015; 10
Hess, Bekker, Berendsen, Fraaije (bib46) 1997; 18
Grubmüller, Heller, Windemuth, Schulten (bib47) 1991; 6
Tai, He, Zhang, Pu, Voronin, Jiang, Zhou, Du (bib19) 2020; 17
Li, Robertson, Jensen (bib43) 2005; 61
Yi, Sun, Ye, Ding, Liu, Yang, Lu, Zhang, Ma, Gu, Qu, Xu, Shi, Ling, Sun (bib61) 2020; 17
.
Xie, Liu, Liu, Zhang, Zou, Fontes-Garfias, Xia, Swanson, Cutler, Cooper, Menachery, Weaver, Dormitzer, Shi (bib3) 2021; 27
Hussein, Borrel, Geneix, Petitjean, Regad, Camproux (bib42) 2015; 43
Chakraborty (bib65) 2021; 534
Olotu, Omolabi, Soliman (bib35) 2020; 21
Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 2.0, 2015. https://pymol.org/2/.
Stank, Kokh, Fuller, Wade (bib37) 2016; 49
Iketani, Liu, Guo, Liu, Chan, Huang, Wang, Luo, Yu, Chu, Chik, Yuen, Yin, Sobieszczyk, Huang, Yuen, Wang, Sheng, Ho (bib10) 2022; 604
Gervasoni, Vistoli, Talarico, Manelfi, Beccari, Studer, Tauriello, Waterhouse, Schwede, Pedretti (bib34) 2020; 21
Parrinello, Rahman (bib49) 1981; 52
Kukic, Farrell, McIntosh, García-Moreno, Jensen, Toleikis, Teilum, Nielsen (bib57) 2013; 135
Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmüller, MacKerell (bib45) 2017; 14
Abi Hussein, Geneix, Cauvin, Marc, Flatters, Camproux (bib38) 2020; 12
Bussi, Donadio, Parrinello (bib48) 2007; 126
Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib71) 2020; 368
Weisblum, Schmidt, Zhang, DaSilva, Poston, Lorenzi, Muecksch, Rutkowska, Hoffmann, Michailidis, Gaebler, Agudelo, Cho, Wang, Gazumyan, Cipolla, Luchsinger, Hillyer, Caskey, Robbiani, Rice, Nussenzweig, Hatziioannou, Bieniasz (bib69) 2020; 9
Yang, Rao (bib15) 2021; 19
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib25) 2020; 581
Kumari, Kumar (bib56) 2014; 54
Gobeil, Janowska, McDowell, Mansouri, Parks, Stalls, Kopp, Manne, Li, Wiehe, Saunders, Edwards, Korber, Haynes, Henderson, Acharya (bib70) 2021; 373
Mariano, Farthing, Lale-Farjat, Bergeron (bib14) 2020; 7
Jawad, Adhikari, Podgornik, Ching (bib31) 2021; 61
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib24) 2020; 367
Le Guilloux, Schmidtke, Tuffery (bib36) 2009; 10
Duarte, Ketcheson, Eguíluz, Agustí, Fernández-Gracia, Jamil, Laiolo, Gojobori, Alam (bib13) 2022; 12
Dokainish, Re, Mori, Kobayashi, Jung, Sugita (bib40) 2022; 11
Giovanetti, Benvenuto, Angeletti, Ciccozzi (bib6) 2020; 92
T. Williams, C. Kelley, many others, GNUPLOT 5.2. An Interactive Plotting Program, 2019.
Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough, Choe, Farzan (bib18) 2003; 426
Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bib27) 2020; 581
Mittal, Manjunath, Ranjan, Kaushik, Kumar, Verma (bib60) 2020; 16
Luan, Huynh (bib68) 2021; 65
Hahsler, Hornik, Buchta (bib59) 2008; 25
Murtagh, Legendre (bib58) 2014; 31
Carino, Moraca, Fiorillo, Marchianò, Sepe, Biagioli, Finamore, Bozza, Francisci, Distrutti, Catalanotti, Zampella, Fiorucci (bib33) 2020; 8
Tegally, Wilkinson, Giovanetti, Iranzadeh, Fonseca, Giandhari, Doolabh, Pillay, San, Msomi, Mlisana, von Gottberg, Walaza, Allam, Ismail, Mohale, Glass, Engelbrecht, Van Zyl, Preiser, Petruccione, Sigal, Hardie, Marais, Hsiao, Korsman, Davies, Tyers, Mudau, York, Maslo, Goedhals, Abrahams, Laguda-Akingba, Alisoltani-Dehkordi, Godzik, Wibmer, Sewell, Lourenço, Alcantara, Kosakovsky Pond, Weaver, Martin, Lessells, Bhiman, Williamson, de Oliveira (bib4) 2021; 592
Abi Hussein, Geneix, Petitjean, Borrel, Flatters, Camproux (bib23) 2017; 22
Taylor, Adams, Hufford, de la Torre, Winthrop, Gottlieb (bib8) 2021; 21
Trigueiro-Louro, Correia, Figueiredo-Nunes, Gíria, Rebelo-de-Andrade (bib32) 2020; 18
Delgado Blanco, Hernandez-Alias, Cianferoni, Serrano (bib63) 2020; 16
Starr, Greaney, Dingens, Bloom (bib5) 2021; 2
Humphrey, Dalke, Schulten (bib50) 1996; 14
Hussain, Hasan, Nejadi Babadaei, Bloukh, Chowdhury, Sharifi, Haghighat, Falahati (bib22) 2020; 130
Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen, Wang, Zhou, Yan, Qi (bib26) 2020; 181
Daura, Gademann, Jaun, van Gunsteren, Mark (bib55) 1999; 38
Williams-Noonan, Todorova, Kulkarni, Aguilar, Yarovsky (bib66) 2021; 125
Sallam, Ababneh, Dababseh, Bakri, Mahafzah (bib7) 2021; 7
Choi, Choi (bib11) 2017; 12
Hwang, Lu, Su, Chiang, Ko, Ke, Liang, Hsieh, Wu (bib9) 2022; 29
Vorobjev, Almagro, Hermans (bib54) 1998; 32
Kuzmanic, Bowman, Juarez-Jimenez, Michel, Gervasio (bib39) 2020; 53
Othman, Bouslama, Brandenburg, da Rocha, Hamdi, Ghedira, Srairi-Abid, Hazelhurst (bib64) 2020; 527
Borrel (10.1016/j.csbj.2023.03.029_bib41) 2015; 55
Mittal (10.1016/j.csbj.2023.03.029_bib60) 2020; 16
Gervasoni (10.1016/j.csbj.2023.03.029_bib34) 2020; 21
Kukic (10.1016/j.csbj.2023.03.029_bib57) 2013; 135
Hussein (10.1016/j.csbj.2023.03.029_bib42) 2015; 43
Othman (10.1016/j.csbj.2023.03.029_bib64) 2020; 527
Luan (10.1016/j.csbj.2023.03.029_bib68) 2021; 65
Giovanetti (10.1016/j.csbj.2023.03.029_bib6) 2020; 92
Humphrey (10.1016/j.csbj.2023.03.029_bib50) 1996; 14
Genheden (10.1016/j.csbj.2023.03.029_bib28) 2015; 10
Bussi (10.1016/j.csbj.2023.03.029_bib48) 2007; 126
Tegally (10.1016/j.csbj.2023.03.029_bib4) 2021; 592
Iketani (10.1016/j.csbj.2023.03.029_bib10) 2022; 604
Hess (10.1016/j.csbj.2023.03.029_bib46) 1997; 18
Veeramachaneni (10.1016/j.csbj.2023.03.029_bib62) 2021; 39
10.1016/j.csbj.2023.03.029_bib1
10.1016/j.csbj.2023.03.029_bib51
10.1016/j.csbj.2023.03.029_bib52
Stank (10.1016/j.csbj.2023.03.029_bib37) 2016; 49
10.1016/j.csbj.2023.03.029_bib53
Walls (10.1016/j.csbj.2023.03.029_bib16) 2020; 181
Le Guilloux (10.1016/j.csbj.2023.03.029_bib36) 2009; 10
Hammond (10.1016/j.csbj.2023.03.029_bib12) 2022; 386
Hahsler (10.1016/j.csbj.2023.03.029_bib59) 2008; 25
Toelzer (10.1016/j.csbj.2023.03.029_bib67) 2020; 370
Vorobjev (10.1016/j.csbj.2023.03.029_bib54) 1998; 32
Li (10.1016/j.csbj.2023.03.029_bib18) 2003; 426
Jawad (10.1016/j.csbj.2023.03.029_bib31) 2021; 61
Weisblum (10.1016/j.csbj.2023.03.029_bib69) 2020; 9
Hussain (10.1016/j.csbj.2023.03.029_bib22) 2020; 130
Yang (10.1016/j.csbj.2023.03.029_bib15) 2021; 19
Sallam (10.1016/j.csbj.2023.03.029_bib7) 2021; 7
Shang (10.1016/j.csbj.2023.03.029_bib27) 2020; 581
Grubmüller (10.1016/j.csbj.2023.03.029_bib47) 1991; 6
Murtagh (10.1016/j.csbj.2023.03.029_bib58) 2014; 31
Dokainish (10.1016/j.csbj.2023.03.029_bib40) 2022; 11
Ling (10.1016/j.csbj.2023.03.029_bib20) 2020; 130
Olotu (10.1016/j.csbj.2023.03.029_bib35) 2020; 21
Choi (10.1016/j.csbj.2023.03.029_bib11) 2017; 12
Spinello (10.1016/j.csbj.2023.03.029_bib29) 2020; 11
Yuan (10.1016/j.csbj.2023.03.029_bib71) 2020; 368
Xie (10.1016/j.csbj.2023.03.029_bib3) 2021; 27
Daura (10.1016/j.csbj.2023.03.029_bib55) 1999; 38
Li (10.1016/j.csbj.2023.03.029_bib43) 2005; 61
Williams-Noonan (10.1016/j.csbj.2023.03.029_bib66) 2021; 125
Gobeil (10.1016/j.csbj.2023.03.029_bib70) 2021; 373
Abi Hussein (10.1016/j.csbj.2023.03.029_bib23) 2017; 22
Delgado (10.1016/j.csbj.2023.03.029_bib30) 2021; 89
Trigueiro-Louro (10.1016/j.csbj.2023.03.029_bib32) 2020; 18
Hwang (10.1016/j.csbj.2023.03.029_bib9) 2022; 29
Parrinello (10.1016/j.csbj.2023.03.029_bib49) 1981; 52
Chakraborty (10.1016/j.csbj.2023.03.029_bib65) 2021; 534
Duarte (10.1016/j.csbj.2023.03.029_bib13) 2022; 12
Mariano (10.1016/j.csbj.2023.03.029_bib14) 2020; 7
Wrapp (10.1016/j.csbj.2023.03.029_bib24) 2020; 367
Starr (10.1016/j.csbj.2023.03.029_bib5) 2021; 2
Kuzmanic (10.1016/j.csbj.2023.03.029_bib39) 2020; 53
Pandey (10.1016/j.csbj.2023.03.029_bib21) 2021; 39
Lu (10.1016/j.csbj.2023.03.029_bib17) 2020; 395
Wang (10.1016/j.csbj.2023.03.029_bib26) 2020; 181
Delgado Blanco (10.1016/j.csbj.2023.03.029_bib63) 2020; 16
Abraham (10.1016/j.csbj.2023.03.029_bib44) 2015; 1
Tai (10.1016/j.csbj.2023.03.029_bib19) 2020; 17
Carino (10.1016/j.csbj.2023.03.029_bib33) 2020; 8
Lan (10.1016/j.csbj.2023.03.029_bib25) 2020; 581
Huang (10.1016/j.csbj.2023.03.029_bib45) 2017; 14
Chen (10.1016/j.csbj.2023.03.029_bib2) 2020; 9
Taylor (10.1016/j.csbj.2023.03.029_bib8) 2021; 21
Abi Hussein (10.1016/j.csbj.2023.03.029_bib38) 2020; 12
Yi (10.1016/j.csbj.2023.03.029_bib61) 2020; 17
Kumari (10.1016/j.csbj.2023.03.029_bib56) 2014; 54
References_xml – volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bib49
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J Appl Phys
– volume: 27
  start-page: 620
  year: 2021
  end-page: 621
  ident: bib3
  article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera
  publication-title: Nat Med
– volume: 1
  start-page: 19
  year: 2015
  end-page: 25
  ident: bib44
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 135
  start-page: 16968
  year: 2013
  end-page: 16976
  ident: bib57
  article-title: Protein dielectric constants determined from NMR chemical shift perturbations
  publication-title: J Am Chem Soc
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bib50
  article-title: VMD: Visual Molecular Dynamics
  publication-title: J Mol Graph
– volume: 16
  year: 2020
  ident: bib63
  article-title: In silico mutagenesis of human ACE2 with S protein and translational efficiency explain SARS-CoV-2 infectivity in different species
  publication-title: PLoS Comput Biol
– reference: Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 2.0, 2015. https://pymol.org/2/.
– volume: 12
  start-page: 6457
  year: 2022
  ident: bib13
  article-title: Rapid evolution of SARS-CoV-2 challenges human defenses
  publication-title: Sci Rep
– volume: 21
  start-page: 5152
  year: 2020
  ident: bib34
  article-title: A comprehensive mapping of the druggable cavities within the SARS-CoV-2 therapeutically relevant proteins by combining pocket and docking searches as implemented in pockets 2.0
  publication-title: Int J Mol Sci
– volume: 39
  start-page: 6306
  year: 2021
  end-page: 6316
  ident: bib21
  article-title: Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an
  publication-title: J Biomol Struct Dyn
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib24
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 12
  start-page: 537
  year: 2020
  ident: bib38
  article-title: Molecular dynamics simulations of influenza A virus NS1 reveal a remarkably stable RNA-binding domain harboring promising druggable pockets
  publication-title: Viruses
– volume: 11
  start-page: 4785
  year: 2020
  end-page: 4790
  ident: bib29
  article-title: Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations
  publication-title: J Phys Chem Lett
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: bib58
  article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
  publication-title: J Classif
– volume: 32
  start-page: 399
  year: 1998
  end-page: 413
  ident: bib54
  article-title: Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model
  publication-title: Proteins
– volume: 89
  start-page: 1134
  year: 2021
  end-page: 1144
  ident: bib30
  article-title: Molecular basis for higher affinity of SARS‐CoV ‐2 spike RBD for human ACE2 receptor
  publication-title: Proteins
– volume: 10
  start-page: 168
  year: 2009
  ident: bib36
  article-title: Fpocket: an open source platform for ligand pocket detection
  publication-title: BMC Bioinforma
– volume: 54
  start-page: 1951
  year: 2014
  end-page: 1962
  ident: bib56
  article-title: Open source drug discovery consortium, A. Lynn,
  publication-title: J Chem Inf Model
– volume: 16
  year: 2020
  ident: bib60
  article-title: COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2
  publication-title: PLoS Pathog
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904
  ident: bib26
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
– volume: 9
  year: 2020
  ident: bib69
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
– volume: 17
  start-page: 621
  year: 2020
  end-page: 630
  ident: bib61
  article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
  publication-title: Cell Mol Immunol
– volume: 9
  start-page: 313
  year: 2020
  end-page: 319
  ident: bib2
  article-title: RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak
  publication-title: Emerg Microbes Infect
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: bib18
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
– volume: 12
  start-page: 293
  year: 2017
  end-page: 303
  ident: bib11
  article-title: Screening-based approaches to identify small molecules that inhibit protein–protein interactions
  publication-title: Expert Opin Drug Disco
– volume: 38
  start-page: 236
  year: 1999
  end-page: 240
  ident: bib55
  article-title: Peptide folding: when simulation meets experiment
  publication-title: Angew Chem Int Ed
– volume: 61
  start-page: 4425
  year: 2021
  end-page: 4441
  ident: bib31
  article-title: Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation
  publication-title: J Chem Inf Model
– reference: T. Williams, C. Kelley, many others, GNUPLOT 5.2. An Interactive Plotting Program, 2019.
– volume: 55
  start-page: 882
  year: 2015
  end-page: 895
  ident: bib41
  article-title: PockDrug: a model for predicting pocket druggability that overcomes pocket estimation uncertainties
  publication-title: J Chem Inf Model
– volume: 25
  start-page: 1
  year: 2008
  end-page: 34
  ident: bib59
  article-title: Getting things in order: an introduction to the R package seriation
  publication-title: J Stat Soft
– volume: 126
  year: 2007
  ident: bib48
  article-title: Canonical sampling through velocity rescaling
  publication-title: J Chem Phys
– volume: 527
  start-page: 702
  year: 2020
  end-page: 708
  ident: bib64
  article-title: Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism
  publication-title: Biochem Biophys Res Commun
– volume: 592
  start-page: 438
  year: 2021
  end-page: 443
  ident: bib4
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: bib46
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J Comput Chem
– volume: 29
  start-page: 1
  year: 2022
  ident: bib9
  article-title: Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection
  publication-title: J Biomed Sci
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib25
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 6
  start-page: 121
  year: 1991
  end-page: 142
  ident: bib47
  article-title: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions
  publication-title: Mol Simul)
– volume: 7
  year: 2021
  ident: bib7
  article-title: Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa
  publication-title: Heliyon
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: bib27
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– volume: 21
  start-page: 382
  year: 2021
  end-page: 393
  ident: bib8
  article-title: Neutralizing monoclonal antibodies for treatment of COVID-19
  publication-title: Nat Rev Immunol
– volume: 43
  start-page: W436
  year: 2015
  end-page: W442
  ident: bib42
  article-title: PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins
  publication-title: Nucleic Acids Res
– volume: 386
  start-page: 1397
  year: 2022
  end-page: 1408
  ident: bib12
  article-title: EPIC-HR investigators, oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19
  publication-title: N Engl J Med
– volume: 65
  start-page: 2820
  year: 2021
  end-page: 2826
  ident: bib68
  article-title: Molecular mechanism of the N501Y mutation for enhanced binding between SARS-CoV-2′s spike protein and human ACE2 receptor
  publication-title: J Med Chem
– volume: 2
  year: 2021
  ident: bib5
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
– volume: 534
  start-page: 374
  year: 2021
  end-page: 380
  ident: bib65
  article-title: Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity
  publication-title: Biochem Biophys Res Commun
– reference: Coronaviridae Study Group of the International Committee on Taxonomy of VirusesThe species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Nat Microbiol 5 2020 536 544 doi: 10.1038/s41564-020-0695-z.
– volume: 49
  start-page: 809
  year: 2016
  end-page: 815
  ident: bib37
  article-title: Protein binding pocket dynamics
  publication-title: Acc Chem Res
– volume: 61
  start-page: 704
  year: 2005
  end-page: 721
  ident: bib43
  article-title: Very fast empirical prediction and rationalization of protein pKa values
  publication-title: Proteins
– volume: 22
  start-page: 404
  year: 2017
  end-page: 415
  ident: bib23
  article-title: Global vision of druggability issues: applications and perspectives
  publication-title: Drug Discov Today
– volume: 14
  start-page: 71
  year: 2017
  end-page: 73
  ident: bib45
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nat Methods
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bib17
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
– volume: 604
  start-page: 553
  year: 2022
  end-page: 556
  ident: bib10
  article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages
  publication-title: Nature
– volume: 10
  start-page: 449
  year: 2015
  end-page: 461
  ident: bib28
  article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities
  publication-title: Expert Opin Drug Disco
– volume: 370
  start-page: 725
  year: 2020
  end-page: 730
  ident: bib67
  article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein
  publication-title: Science
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292
  ident: bib16
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 39
  start-page: 4015
  year: 2021
  end-page: 4025
  ident: bib62
  article-title: Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor
  publication-title: J Biomol Struct Dyn
– volume: 125
  start-page: 2533
  year: 2021
  end-page: 2550
  ident: bib66
  article-title: An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2
  publication-title: J Phys Chem B
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: bib71
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
– volume: 17
  start-page: 613
  year: 2020
  end-page: 620
  ident: bib19
  article-title: Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine
  publication-title: Cell Mol Immunol
– volume: 130
  year: 2020
  ident: bib20
  article-title: In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2
  publication-title: Peptides
– volume: 7
  year: 2020
  ident: bib14
  article-title: Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be
  publication-title: Front Mol Biosci
– volume: 21
  year: 2020
  ident: bib35
  article-title: Leaving no stone unturned: allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain
  publication-title: Inform Med Unlocked
– reference: R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org.
– volume: 11
  year: 2022
  ident: bib40
  article-title: The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein
  publication-title: ELife
– volume: 18
  start-page: 2117
  year: 2020
  end-page: 2131
  ident: bib32
  article-title: Unlocking COVID therapeutic targets: a structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike
  publication-title: Comput Struct Biotechnol J
– volume: 8
  year: 2020
  ident: bib33
  article-title: Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain
  publication-title: Front Chem
– volume: 130
  year: 2020
  ident: bib22
  article-title: Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies
  publication-title: Biomed Pharmacother
– volume: 53
  start-page: 654
  year: 2020
  end-page: 661
  ident: bib39
  article-title: Investigating cryptic binding sites by molecular dynamics simulations
  publication-title: Acc Chem Res
– reference: .
– volume: 92
  start-page: 518
  year: 2020
  end-page: 521
  ident: bib6
  article-title: The first two cases of 2019–nCoV in Italy: Where they come from?
  publication-title: J Med Virol
– volume: 19
  start-page: 685
  year: 2021
  end-page: 700
  ident: bib15
  article-title: Structural biology of SARS-CoV-2 and implications for therapeutic development
  publication-title: Nat Rev Microbiol
– volume: 373
  year: 2021
  ident: bib70
  article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity
  publication-title: Science
– volume: 7
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib7
  article-title: Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06035
– volume: 38
  start-page: 236
  year: 1999
  ident: 10.1016/j.csbj.2023.03.029_bib55
  article-title: Peptide folding: when simulation meets experiment
  publication-title: Angew Chem Int Ed
  doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M
– volume: 16
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib63
  article-title: In silico mutagenesis of human ACE2 with S protein and translational efficiency explain SARS-CoV-2 infectivity in different species
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008450
– volume: 12
  start-page: 293
  year: 2017
  ident: 10.1016/j.csbj.2023.03.029_bib11
  article-title: Screening-based approaches to identify small molecules that inhibit protein–protein interactions
  publication-title: Expert Opin Drug Disco
  doi: 10.1080/17460441.2017.1280456
– volume: 25
  start-page: 1
  year: 2008
  ident: 10.1016/j.csbj.2023.03.029_bib59
  article-title: Getting things in order: an introduction to the R package seriation
  publication-title: J Stat Soft
  doi: 10.18637/jss.v025.i03
– volume: 43
  start-page: W436
  year: 2015
  ident: 10.1016/j.csbj.2023.03.029_bib42
  article-title: PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv462
– volume: 125
  start-page: 2533
  issue: 10
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib66
  article-title: An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.0c11321
– volume: 581
  start-page: 215
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib25
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 55
  start-page: 882
  year: 2015
  ident: 10.1016/j.csbj.2023.03.029_bib41
  article-title: PockDrug: a model for predicting pocket druggability that overcomes pocket estimation uncertainties
  publication-title: J Chem Inf Model
  doi: 10.1021/ci5006004
– volume: 126
  issue: 1
  year: 2007
  ident: 10.1016/j.csbj.2023.03.029_bib48
  article-title: Canonical sampling through velocity rescaling
  publication-title: J Chem Phys
  doi: 10.1063/1.2408420
– volume: 386
  start-page: 1397
  year: 2022
  ident: 10.1016/j.csbj.2023.03.029_bib12
  article-title: EPIC-HR investigators, oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2118542
– volume: 39
  start-page: 4015
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib62
  article-title: Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2020.1773318
– volume: 89
  start-page: 1134
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib30
  article-title: Molecular basis for higher affinity of SARS‐CoV ‐2 spike RBD for human ACE2 receptor
  publication-title: Proteins
  doi: 10.1002/prot.26086
– ident: 10.1016/j.csbj.2023.03.029_bib53
– volume: 53
  start-page: 654
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib39
  article-title: Investigating cryptic binding sites by molecular dynamics simulations
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.9b00613
– volume: 7
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib14
  article-title: Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.605236
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib16
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 10
  start-page: 449
  year: 2015
  ident: 10.1016/j.csbj.2023.03.029_bib28
  article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities
  publication-title: Expert Opin Drug Disco
  doi: 10.1517/17460441.2015.1032936
– volume: 527
  start-page: 702
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib64
  article-title: Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.05.028
– volume: 19
  start-page: 685
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib15
  article-title: Structural biology of SARS-CoV-2 and implications for therapeutic development
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-021-00630-8
– volume: 17
  start-page: 613
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib19
  article-title: Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-0400-4
– volume: 17
  start-page: 621
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib61
  article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
  publication-title: Cell Mol Immunol
  doi: 10.1038/s41423-020-0458-z
– volume: 8
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib33
  article-title: Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.572885
– volume: 21
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib35
  article-title: Leaving no stone unturned: allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100451
– volume: 11
  year: 2022
  ident: 10.1016/j.csbj.2023.03.029_bib40
  article-title: The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein
  publication-title: ELife
  doi: 10.7554/eLife.75720
– volume: 12
  start-page: 537
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib38
  article-title: Molecular dynamics simulations of influenza A virus NS1 reveal a remarkably stable RNA-binding domain harboring promising druggable pockets
  publication-title: Viruses
  doi: 10.3390/v12050537
– volume: 92
  start-page: 518
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib6
  article-title: The first two cases of 2019–nCoV in Italy: Where they come from?
  publication-title: J Med Virol
  doi: 10.1002/jmv.25699
– volume: 368
  start-page: 630
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib71
  article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 31
  start-page: 274
  year: 2014
  ident: 10.1016/j.csbj.2023.03.029_bib58
  article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– volume: 21
  start-page: 382
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib8
  article-title: Neutralizing monoclonal antibodies for treatment of COVID-19
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00542-x
– volume: 39
  start-page: 6306
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib21
  article-title: Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2020.1796811
– volume: 61
  start-page: 4425
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib31
  article-title: Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00560
– volume: 12
  start-page: 6457
  year: 2022
  ident: 10.1016/j.csbj.2023.03.029_bib13
  article-title: Rapid evolution of SARS-CoV-2 challenges human defenses
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-10097-z
– volume: 32
  start-page: 399
  year: 1998
  ident: 10.1016/j.csbj.2023.03.029_bib54
  article-title: Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C
– ident: 10.1016/j.csbj.2023.03.029_bib52
– volume: 426
  start-page: 450
  year: 2003
  ident: 10.1016/j.csbj.2023.03.029_bib18
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 592
  start-page: 438
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib4
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
  doi: 10.1038/s41586-021-03402-9
– volume: 22
  start-page: 404
  year: 2017
  ident: 10.1016/j.csbj.2023.03.029_bib23
  article-title: Global vision of druggability issues: applications and perspectives
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2016.11.021
– volume: 10
  start-page: 168
  year: 2009
  ident: 10.1016/j.csbj.2023.03.029_bib36
  article-title: Fpocket: an open source platform for ligand pocket detection
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-168
– volume: 9
  start-page: 313
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib2
  article-title: RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1725399
– volume: 604
  start-page: 553
  year: 2022
  ident: 10.1016/j.csbj.2023.03.029_bib10
  article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages
  publication-title: Nature
  doi: 10.1038/s41586-022-04594-4
– volume: 6
  start-page: 121
  issue: 1–3
  year: 1991
  ident: 10.1016/j.csbj.2023.03.029_bib47
  article-title: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions
  publication-title: Mol Simul)
  doi: 10.1080/08927029108022142
– volume: 370
  start-page: 725
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib67
  article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein
  publication-title: Science
  doi: 10.1126/science.abd3255
– volume: 9
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib69
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
  doi: 10.7554/eLife.61312
– volume: 54
  start-page: 1951
  year: 2014
  ident: 10.1016/j.csbj.2023.03.029_bib56
  article-title: Open source drug discovery consortium, A. Lynn, g_mmpbsa - A GROMACS Tool for High-Throughput MM-PBSA Calculations
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500020m
– volume: 534
  start-page: 374
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib65
  article-title: Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.11.075
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib24
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 581
  start-page: 221
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib27
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 11
  start-page: 4785
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib29
  article-title: Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.0c01148
– volume: 373
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib70
  article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity
  publication-title: Science
  doi: 10.1126/science.abi6226
– volume: 27
  start-page: 620
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib3
  article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01270-4
– volume: 1
  start-page: 19
  year: 2015
  ident: 10.1016/j.csbj.2023.03.029_bib44
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 395
  start-page: 565
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib17
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 2
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib5
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
– ident: 10.1016/j.csbj.2023.03.029_bib1
  doi: 10.1038/s41564-020-0695-z
– volume: 29
  start-page: 1
  year: 2022
  ident: 10.1016/j.csbj.2023.03.029_bib9
  article-title: Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection
  publication-title: J Biomed Sci
  doi: 10.1186/s12929-021-00784-w
– volume: 49
  start-page: 809
  year: 2016
  ident: 10.1016/j.csbj.2023.03.029_bib37
  article-title: Protein binding pocket dynamics
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.5b00516
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.csbj.2023.03.029_bib49
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J Appl Phys
  doi: 10.1063/1.328693
– volume: 21
  start-page: 5152
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib34
  article-title: A comprehensive mapping of the druggable cavities within the SARS-CoV-2 therapeutically relevant proteins by combining pocket and docking searches as implemented in pockets 2.0
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21145152
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.csbj.2023.03.029_bib46
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J Comput Chem
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 130
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib22
  article-title: Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2020.110559
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.csbj.2023.03.029_bib50
  article-title: VMD: Visual Molecular Dynamics
  publication-title: J Mol Graph
  doi: 10.1016/0263-7855(96)00018-5
– ident: 10.1016/j.csbj.2023.03.029_bib51
– volume: 130
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib20
  article-title: In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2
  publication-title: Peptides
  doi: 10.1016/j.peptides.2020.170328
– volume: 65
  start-page: 2820
  year: 2021
  ident: 10.1016/j.csbj.2023.03.029_bib68
  article-title: Molecular mechanism of the N501Y mutation for enhanced binding between SARS-CoV-2′s spike protein and human ACE2 receptor
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c00311
– volume: 61
  start-page: 704
  year: 2005
  ident: 10.1016/j.csbj.2023.03.029_bib43
  article-title: Very fast empirical prediction and rationalization of protein pKa values
  publication-title: Proteins
  doi: 10.1002/prot.20660
– volume: 181
  start-page: 894
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib26
  article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 135
  start-page: 16968
  year: 2013
  ident: 10.1016/j.csbj.2023.03.029_bib57
  article-title: Protein dielectric constants determined from NMR chemical shift perturbations
  publication-title: J Am Chem Soc
  doi: 10.1021/ja406995j
– volume: 18
  start-page: 2117
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib32
  article-title: Unlocking COVID therapeutic targets: a structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.07.017
– volume: 14
  start-page: 71
  year: 2017
  ident: 10.1016/j.csbj.2023.03.029_bib45
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4067
– volume: 16
  year: 2020
  ident: 10.1016/j.csbj.2023.03.029_bib60
  article-title: COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008762
SSID ssj0000816930
Score 2.2810037
Snippet The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2339
SubjectTerms Binding site flexibility
biotechnology
COVID-19 variants
domain
Druggable binding sites
Hot spot residues
humans
Key-residues
molecular dynamics
Molecular dynamics simulation
mutation
peptidyl-dipeptidase A
Pocket tracking
prediction
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Spike protein
Structural flexibility
viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAeBMelZG4IUMSP5I9lqpVhQQHWlBvlp8lLSSr7u6BH8D_ZsZOtrsgygUphyhxHvZMPN_EM98Q8kq0dZTeRhZn0TERSg7fnG-ZtCLA3BidTFx6Hz6q48_i_Zk82yj1hTFhmR44D9xbLNEqS-8dF41QXhhRelGaMga4jWpTHjnYvA1nKs3BLZKMlGOWTA7ocgt78QarhSdW04Qpry1RIuzfMkh_As7f4yY3DNHRXXJnRJB0P7_5PXIr9PfJ7Q1ewQfkZ06_TSlMFB4AssQ9f7U6P8dUKWq7lMxCcel4QU3vaVowoBHpMVO47A-6HGgOE8dzFCbGMAf_nE2X-uG76Xo6RHqy_-mEHQxfWE0X8-4y0MT90PUPyenR4enBMRvrLTAnpVyyCunMQKjRhjYqbmPpBPeuqSoroq1MUC5YxyMPbobEhMq4YADBgE9kW8Bdj8hOP_ThCaHShCZyJ2ydGAUd6EEFfolUuKhpVVmQahp67UYuciyJ8U1PQWcXGsWlUVy6hK2eFeT1-pp5ZuK4sfU7lOi6JbJopwOgW3rULf0v3SqInPRBj4AkAw24VXfjw19OyqNBwrgEY_owrBa6hulwhv_amr-34WiEwC_ndUEeZ4Vbd4MrcI9VIwrSbqniVj-3z_Td18Qajly7HIDK0_8xMs_ILvY3_4t6TnaWV6vwAtDZ0u6lD_EXI7E56w
  priority: 102
  providerName: Directory of Open Access Journals
Title Identifying promising druggable binding sites and their flexibility to target the receptor-binding domain of SARS-CoV-2 spike protein
URI https://dx.doi.org/10.1016/j.csbj.2023.03.029
https://www.ncbi.nlm.nih.gov/pubmed/36998674
https://www.proquest.com/docview/2793983547
https://www.proquest.com/docview/3153821132
https://pubmed.ncbi.nlm.nih.gov/PMC10023212
https://doaj.org/article/375450ddc34746d4a40d40a0fec54687
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4k14rIzEDaVK4keSA0JLRVVRlUMf0FsUv7YpJVk2uxL9AfxvZpxkaaBUSHuINk4sZ8aeb-yZbwh5zbPECaNc6HKnQ24jBnPOZKFQ3MLa6LTwXHoHn-TeCf94Kk43yFDuqP-A7bWuHdaTOllcbP_4fvkOJvzb37FaulXn21gI3BOWJvktsgWWSaKWH_Rw36_MGVKP4LZLH0mURn0ezfWvGdkqT-k_Mll_Q9I_IyuvmKrde-RujzHptFOK-2TD1g_InSvMgw_Jzy5B1yc5UegApI1XZrGazTCZiqrKp7tQPFxuaVkb6o8UqEMCTR9Qe0mXDe0CyfEehaXTzsGDD4dHTfOtrGraOHo0PTwKd5rPYULbefXVUs8OUdWPyPHuh-OdvbCvyBBqIcQyjJHwDMTulM2cZMpFmjOj0zhW3Km4tFJbpZljVudIXShLbUvAOOA1qQyQ2WOyWTe1fUqoKG3qmOYq8ZyDGjQlBs9FSDz2VDIKSDx8-kL3bOVYNOOiGMLSzgsUV4HiKiL4JXlA3qyfmXdcHTe2fo8SXbdEnm3_R7OYFf20LbBAsIiM0YynXBpe8sjwqIycBSWWWRoQMehD0UOWDorAq6obO381KE8BEsZDmrK2zaotElgwc9yNS__dhqGZAs-dJQF50incehhMggMtUx6QbKSKo3GO79TVmecVRzZeBlDm2X90_JzcxuF0m1EvyOZysbIvAZ4t1YRsTfcPv-xP_PbGxM_AX0QDPGc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+promising+druggable+binding+sites+and+their+flexibility+to+target+the+receptor-binding+domain+of+SARS-CoV-2+spike+protein&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Ghoula%2C+M&rft.au=Naceri%2C+S&rft.au=Sitruk%2C+S&rft.au=Flatters%2C+D&rft.date=2023-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=21+p.2339-2351&rft.spage=2339&rft.epage=2351&rft_id=info:doi/10.1016%2Fj.csbj.2023.03.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon