Identifying promising druggable binding sites and their flexibility to target the receptor-binding domain of SARS-CoV-2 spike protein
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD bin...
Saved in:
Published in | Computational and structural biotechnology journal Vol. 21; pp. 2339 - 2351 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2023
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2001-0370 2001-0370 |
DOI | 10.1016/j.csbj.2023.03.029 |
Cover
Loading…
Abstract | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.
[Display omitted]
•Three druggable and stable target sites have been identified on the SARS-CoV-2 Spike RBD protein.•Site 3 could be targeted to prevent the ACE2 protein from interacting, though it is subject to mutations.•Sites 1 and 2 are not or slightly affected by the variant mutations and can be targeted to block spike protein activation. |
---|---|
AbstractList | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer.The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) protein is required for the virus to enter the host cell. We identified RBD binding sites to block its function with inhibitors by combining the protein structural flexibility with machine learning analysis. Molecular dynamics simulations were performed on unbound or ACE2-bound RBD conformations. Pockets estimation, tracking and druggability prediction were performed on a large sample of simulated RBD conformations. Recurrent druggable binding sites and their key residues were identified by clustering pockets based on their residue similarity. This protocol successfully identified three druggable sites and their key residues, aiming to target with inhibitors for preventing ACE2 interaction. One site features key residues for direct ACE2 interaction, highlighted using energetic computations, but can be affected by several mutations of the variants of concern. Two highly druggable sites, located between the spike protein monomers interface are promising. One weakly impacted by only one Omicron mutation, could contribute to stabilizing the spike protein in its closed state. The other, currently not affected by mutations, could avoid the activation of the spike protein trimer. [Display omitted] •Three druggable and stable target sites have been identified on the SARS-CoV-2 Spike RBD protein.•Site 3 could be targeted to prevent the ACE2 protein from interacting, though it is subject to mutations.•Sites 1 and 2 are not or slightly affected by the variant mutations and can be targeted to block spike protein activation. |
Author | Moroy, G. Camproux, A.C. Ghoula, M. Flatters, D. Sitruk, S. Naceri, S. |
Author_xml | – sequence: 1 givenname: M. surname: Ghoula fullname: Ghoula, M. – sequence: 2 givenname: S. surname: Naceri fullname: Naceri, S. – sequence: 3 givenname: S. surname: Sitruk fullname: Sitruk, S. – sequence: 4 givenname: D. surname: Flatters fullname: Flatters, D. – sequence: 5 givenname: G. surname: Moroy fullname: Moroy, G. email: gautier.moroy@u-paris.fr – sequence: 6 givenname: A.C. surname: Camproux fullname: Camproux, A.C. email: anne-claude.camproux@u-paris.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36998674$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUttq3DAQNSWlSdP8QB-KH_virW6WbSiUsPQSCBSa0Fehy9iZrdfaStqQ_YD-d-VutiR9SMWAhtGco8PMeVkcTX6ConhNyYISKt-tFjaa1YIRxhckB-ueFSeMEFoR3pCjB_lxcRbjiuTTUtlx8qI45rLrWtmIk-LXhYMpYb_DaSg3wa8xzpkL22HQZoTS4OTmSsQEsdSTK9MNYCj7Ee7Q4IhpVyZfJh0GSPNbGcDCJvlQHaDOrzVOpe_Lq_NvV9XSf69YGTf4A-YfE-D0qnje6zHC2f19Wlx_-ni9_FJdfv18sTy_rGxd16mirCYCDPQG2l5y0xMruLMNpUb0hmqQFozlPQfb0ZpIqS1oWbeSSdNSwU-Liz2t83qlNgHXOuyU16j-FHwYlA4J7QiKN7WoiXOWi0ZIJ7QgThBNerC1kG2TuT7suTZbswZn8xSDHh-RPn6Z8EYN_lZRklfGKMsMb-8Zgv-5hZhUHr6FcdQT-G1UnNa8ZZTy_7eypuNdy2sx63rzUNdfQYeV54Z232CDjzFArywmndDPMnHM-tRsMLVSs8HUbDBFcrAuQ9k_0AP7k6D3exDkxd4iBBUtwmTBYXZKyqPHp-C_ActO638 |
CitedBy_id | crossref_primary_10_3390_v15102073 crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_3390_v16121836 crossref_primary_10_3390_ijms25094955 crossref_primary_10_3390_v15102009 |
Cites_doi | 10.1016/j.heliyon.2021.e06035 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M 10.1371/journal.pcbi.1008450 10.1080/17460441.2017.1280456 10.18637/jss.v025.i03 10.1093/nar/gkv462 10.1021/acs.jpcb.0c11321 10.1038/s41586-020-2180-5 10.1021/ci5006004 10.1063/1.2408420 10.1056/NEJMoa2118542 10.1080/07391102.2020.1773318 10.1002/prot.26086 10.1021/acs.accounts.9b00613 10.3389/fmolb.2020.605236 10.1016/j.cell.2020.02.058 10.1517/17460441.2015.1032936 10.1016/j.bbrc.2020.05.028 10.1038/s41579-021-00630-8 10.1038/s41423-020-0400-4 10.1038/s41423-020-0458-z 10.3389/fchem.2020.572885 10.1016/j.imu.2020.100451 10.7554/eLife.75720 10.3390/v12050537 10.1002/jmv.25699 10.1126/science.abb7269 10.1007/s00357-014-9161-z 10.1038/s41577-021-00542-x 10.1080/07391102.2020.1796811 10.1021/acs.jcim.1c00560 10.1038/s41598-022-10097-z 10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C 10.1038/nature02145 10.1038/s41586-021-03402-9 10.1016/j.drudis.2016.11.021 10.1186/1471-2105-10-168 10.1080/22221751.2020.1725399 10.1038/s41586-022-04594-4 10.1080/08927029108022142 10.1126/science.abd3255 10.7554/eLife.61312 10.1021/ci500020m 10.1016/j.bbrc.2020.11.075 10.1126/science.abb2507 10.1038/s41586-020-2179-y 10.1021/acs.jpclett.0c01148 10.1126/science.abi6226 10.1038/s41591-021-01270-4 10.1016/j.softx.2015.06.001 10.1016/S0140-6736(20)30251-8 10.1038/s41564-020-0695-z 10.1186/s12929-021-00784-w 10.1021/acs.accounts.5b00516 10.1063/1.328693 10.3390/ijms21145152 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1016/j.biopha.2020.110559 10.1016/0263-7855(96)00018-5 10.1016/j.peptides.2020.170328 10.1021/acs.jmedchem.1c00311 10.1002/prot.20660 10.1016/j.cell.2020.03.045 10.1021/ja406995j 10.1016/j.csbj.2020.07.017 10.1038/nmeth.4067 10.1371/journal.ppat.1008762 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 The Authors. 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.csbj.2023.03.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2001-0370 |
EndPage | 2351 |
ExternalDocumentID | oai_doaj_org_article_375450ddc34746d4a40d40a0fec54687 PMC10023212 36998674 10_1016_j_csbj_2023_03_029 S2001037023001290 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c555t-12504ebefbe8f63bf0c43dc711b4fb1ae6cebc3f3ec915066acea658626b8143 |
IEDL.DBID | M48 |
ISSN | 2001-0370 |
IngestDate | Wed Aug 27 01:32:40 EDT 2025 Thu Aug 21 18:37:24 EDT 2025 Fri Jul 11 10:32:34 EDT 2025 Fri Jul 11 07:53:54 EDT 2025 Thu Jan 02 22:52:44 EST 2025 Thu Apr 24 23:01:45 EDT 2025 Tue Jul 01 03:43:02 EDT 2025 Sat Dec 21 16:00:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pocket tracking SARS-CoV-2 Spike protein Binding site flexibility Key-residues COVID-19 variants Structural flexibility Molecular dynamics simulation Druggable binding sites Hot spot residues |
Language | English |
License | This is an open access article under the CC BY license. 2023 The Authors. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-12504ebefbe8f63bf0c43dc711b4fb1ae6cebc3f3ec915066acea658626b8143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first two authors contributed equally The last two authors contributed equally |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2023.03.029 |
PMID | 36998674 |
PQID | 2793983547 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_375450ddc34746d4a40d40a0fec54687 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023212 proquest_miscellaneous_3153821132 proquest_miscellaneous_2793983547 pubmed_primary_36998674 crossref_citationtrail_10_1016_j_csbj_2023_03_029 crossref_primary_10_1016_j_csbj_2023_03_029 elsevier_sciencedirect_doi_10_1016_j_csbj_2023_03_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computational and structural biotechnology journal |
PublicationTitleAlternate | Comput Struct Biotechnol J |
PublicationYear | 2023 |
Publisher | Elsevier B.V Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology – name: Elsevier |
References | Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu, Zhou, Hu, Zhou, Zhao, Chen, Meng, Wang, Lin, Yuan, Xie, Ma, Liu, Wang, Xu, Holmes, Gao, Wu, Chen, Shi, Tan (bib17) 2020; 395 Spinello, Saltalamacchia, Magistrato (bib29) 2020; 11 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bib44) 2015; 1 Toelzer, Gupta, Yadav, Borucu, Davidson, Kavanagh Williamson, Shoemark, Garzoni, Staufer, Milligan, Capin, Mulholland, Spatz, Fitzgerald, Berger, Schaffitzel (bib67) 2020; 370 Hammond, Leister-Tebbe, Gardner, Abreu, Bao, Wisemandle, Baniecki, Hendrick, Damle, Simón-Campos, Pypstra, Rusnak (bib12) 2022; 386 Borrel, Regad, Xhaard, Petitjean, Camproux (bib41) 2015; 55 Chen, Liu, Zhang, Xu, Ye, Wu, Sun, Liu, Wu, Zhong, Mei, Zhang, Chen, Li, Shi, Lan, Liu (bib2) 2020; 9 Delgado, Duro, Rogers, Tkatchenko, Pandit, Varma (bib30) 2021; 89 Veeramachaneni, Thunuguntla, Bobbillapati, Bondili (bib62) 2021; 39 R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org. Coronaviridae Study Group of the International Committee on Taxonomy of VirusesThe species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Nat Microbiol 5 2020 536 544 doi: 10.1038/s41564-020-0695-z. Ling, Dai, Huang, Huang, Yu, Lu, Jiang (bib20) 2020; 130 Pandey, Rane, Chatterjee, Kumar, Khan, Prakash, Ray (bib21) 2021; 39 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib16) 2020; 181 Genheden, Ryde (bib28) 2015; 10 Hess, Bekker, Berendsen, Fraaije (bib46) 1997; 18 Grubmüller, Heller, Windemuth, Schulten (bib47) 1991; 6 Tai, He, Zhang, Pu, Voronin, Jiang, Zhou, Du (bib19) 2020; 17 Li, Robertson, Jensen (bib43) 2005; 61 Yi, Sun, Ye, Ding, Liu, Yang, Lu, Zhang, Ma, Gu, Qu, Xu, Shi, Ling, Sun (bib61) 2020; 17 . Xie, Liu, Liu, Zhang, Zou, Fontes-Garfias, Xia, Swanson, Cutler, Cooper, Menachery, Weaver, Dormitzer, Shi (bib3) 2021; 27 Hussein, Borrel, Geneix, Petitjean, Regad, Camproux (bib42) 2015; 43 Chakraborty (bib65) 2021; 534 Olotu, Omolabi, Soliman (bib35) 2020; 21 Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 2.0, 2015. https://pymol.org/2/. Stank, Kokh, Fuller, Wade (bib37) 2016; 49 Iketani, Liu, Guo, Liu, Chan, Huang, Wang, Luo, Yu, Chu, Chik, Yuen, Yin, Sobieszczyk, Huang, Yuen, Wang, Sheng, Ho (bib10) 2022; 604 Gervasoni, Vistoli, Talarico, Manelfi, Beccari, Studer, Tauriello, Waterhouse, Schwede, Pedretti (bib34) 2020; 21 Parrinello, Rahman (bib49) 1981; 52 Kukic, Farrell, McIntosh, García-Moreno, Jensen, Toleikis, Teilum, Nielsen (bib57) 2013; 135 Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmüller, MacKerell (bib45) 2017; 14 Abi Hussein, Geneix, Cauvin, Marc, Flatters, Camproux (bib38) 2020; 12 Bussi, Donadio, Parrinello (bib48) 2007; 126 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib71) 2020; 368 Weisblum, Schmidt, Zhang, DaSilva, Poston, Lorenzi, Muecksch, Rutkowska, Hoffmann, Michailidis, Gaebler, Agudelo, Cho, Wang, Gazumyan, Cipolla, Luchsinger, Hillyer, Caskey, Robbiani, Rice, Nussenzweig, Hatziioannou, Bieniasz (bib69) 2020; 9 Yang, Rao (bib15) 2021; 19 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib25) 2020; 581 Kumari, Kumar (bib56) 2014; 54 Gobeil, Janowska, McDowell, Mansouri, Parks, Stalls, Kopp, Manne, Li, Wiehe, Saunders, Edwards, Korber, Haynes, Henderson, Acharya (bib70) 2021; 373 Mariano, Farthing, Lale-Farjat, Bergeron (bib14) 2020; 7 Jawad, Adhikari, Podgornik, Ching (bib31) 2021; 61 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib24) 2020; 367 Le Guilloux, Schmidtke, Tuffery (bib36) 2009; 10 Duarte, Ketcheson, Eguíluz, Agustí, Fernández-Gracia, Jamil, Laiolo, Gojobori, Alam (bib13) 2022; 12 Dokainish, Re, Mori, Kobayashi, Jung, Sugita (bib40) 2022; 11 Giovanetti, Benvenuto, Angeletti, Ciccozzi (bib6) 2020; 92 T. Williams, C. Kelley, many others, GNUPLOT 5.2. An Interactive Plotting Program, 2019. Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough, Choe, Farzan (bib18) 2003; 426 Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bib27) 2020; 581 Mittal, Manjunath, Ranjan, Kaushik, Kumar, Verma (bib60) 2020; 16 Luan, Huynh (bib68) 2021; 65 Hahsler, Hornik, Buchta (bib59) 2008; 25 Murtagh, Legendre (bib58) 2014; 31 Carino, Moraca, Fiorillo, Marchianò, Sepe, Biagioli, Finamore, Bozza, Francisci, Distrutti, Catalanotti, Zampella, Fiorucci (bib33) 2020; 8 Tegally, Wilkinson, Giovanetti, Iranzadeh, Fonseca, Giandhari, Doolabh, Pillay, San, Msomi, Mlisana, von Gottberg, Walaza, Allam, Ismail, Mohale, Glass, Engelbrecht, Van Zyl, Preiser, Petruccione, Sigal, Hardie, Marais, Hsiao, Korsman, Davies, Tyers, Mudau, York, Maslo, Goedhals, Abrahams, Laguda-Akingba, Alisoltani-Dehkordi, Godzik, Wibmer, Sewell, Lourenço, Alcantara, Kosakovsky Pond, Weaver, Martin, Lessells, Bhiman, Williamson, de Oliveira (bib4) 2021; 592 Abi Hussein, Geneix, Petitjean, Borrel, Flatters, Camproux (bib23) 2017; 22 Taylor, Adams, Hufford, de la Torre, Winthrop, Gottlieb (bib8) 2021; 21 Trigueiro-Louro, Correia, Figueiredo-Nunes, Gíria, Rebelo-de-Andrade (bib32) 2020; 18 Delgado Blanco, Hernandez-Alias, Cianferoni, Serrano (bib63) 2020; 16 Starr, Greaney, Dingens, Bloom (bib5) 2021; 2 Humphrey, Dalke, Schulten (bib50) 1996; 14 Hussain, Hasan, Nejadi Babadaei, Bloukh, Chowdhury, Sharifi, Haghighat, Falahati (bib22) 2020; 130 Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen, Wang, Zhou, Yan, Qi (bib26) 2020; 181 Daura, Gademann, Jaun, van Gunsteren, Mark (bib55) 1999; 38 Williams-Noonan, Todorova, Kulkarni, Aguilar, Yarovsky (bib66) 2021; 125 Sallam, Ababneh, Dababseh, Bakri, Mahafzah (bib7) 2021; 7 Choi, Choi (bib11) 2017; 12 Hwang, Lu, Su, Chiang, Ko, Ke, Liang, Hsieh, Wu (bib9) 2022; 29 Vorobjev, Almagro, Hermans (bib54) 1998; 32 Kuzmanic, Bowman, Juarez-Jimenez, Michel, Gervasio (bib39) 2020; 53 Othman, Bouslama, Brandenburg, da Rocha, Hamdi, Ghedira, Srairi-Abid, Hazelhurst (bib64) 2020; 527 Borrel (10.1016/j.csbj.2023.03.029_bib41) 2015; 55 Mittal (10.1016/j.csbj.2023.03.029_bib60) 2020; 16 Gervasoni (10.1016/j.csbj.2023.03.029_bib34) 2020; 21 Kukic (10.1016/j.csbj.2023.03.029_bib57) 2013; 135 Hussein (10.1016/j.csbj.2023.03.029_bib42) 2015; 43 Othman (10.1016/j.csbj.2023.03.029_bib64) 2020; 527 Luan (10.1016/j.csbj.2023.03.029_bib68) 2021; 65 Giovanetti (10.1016/j.csbj.2023.03.029_bib6) 2020; 92 Humphrey (10.1016/j.csbj.2023.03.029_bib50) 1996; 14 Genheden (10.1016/j.csbj.2023.03.029_bib28) 2015; 10 Bussi (10.1016/j.csbj.2023.03.029_bib48) 2007; 126 Tegally (10.1016/j.csbj.2023.03.029_bib4) 2021; 592 Iketani (10.1016/j.csbj.2023.03.029_bib10) 2022; 604 Hess (10.1016/j.csbj.2023.03.029_bib46) 1997; 18 Veeramachaneni (10.1016/j.csbj.2023.03.029_bib62) 2021; 39 10.1016/j.csbj.2023.03.029_bib1 10.1016/j.csbj.2023.03.029_bib51 10.1016/j.csbj.2023.03.029_bib52 Stank (10.1016/j.csbj.2023.03.029_bib37) 2016; 49 10.1016/j.csbj.2023.03.029_bib53 Walls (10.1016/j.csbj.2023.03.029_bib16) 2020; 181 Le Guilloux (10.1016/j.csbj.2023.03.029_bib36) 2009; 10 Hammond (10.1016/j.csbj.2023.03.029_bib12) 2022; 386 Hahsler (10.1016/j.csbj.2023.03.029_bib59) 2008; 25 Toelzer (10.1016/j.csbj.2023.03.029_bib67) 2020; 370 Vorobjev (10.1016/j.csbj.2023.03.029_bib54) 1998; 32 Li (10.1016/j.csbj.2023.03.029_bib18) 2003; 426 Jawad (10.1016/j.csbj.2023.03.029_bib31) 2021; 61 Weisblum (10.1016/j.csbj.2023.03.029_bib69) 2020; 9 Hussain (10.1016/j.csbj.2023.03.029_bib22) 2020; 130 Yang (10.1016/j.csbj.2023.03.029_bib15) 2021; 19 Sallam (10.1016/j.csbj.2023.03.029_bib7) 2021; 7 Shang (10.1016/j.csbj.2023.03.029_bib27) 2020; 581 Grubmüller (10.1016/j.csbj.2023.03.029_bib47) 1991; 6 Murtagh (10.1016/j.csbj.2023.03.029_bib58) 2014; 31 Dokainish (10.1016/j.csbj.2023.03.029_bib40) 2022; 11 Ling (10.1016/j.csbj.2023.03.029_bib20) 2020; 130 Olotu (10.1016/j.csbj.2023.03.029_bib35) 2020; 21 Choi (10.1016/j.csbj.2023.03.029_bib11) 2017; 12 Spinello (10.1016/j.csbj.2023.03.029_bib29) 2020; 11 Yuan (10.1016/j.csbj.2023.03.029_bib71) 2020; 368 Xie (10.1016/j.csbj.2023.03.029_bib3) 2021; 27 Daura (10.1016/j.csbj.2023.03.029_bib55) 1999; 38 Li (10.1016/j.csbj.2023.03.029_bib43) 2005; 61 Williams-Noonan (10.1016/j.csbj.2023.03.029_bib66) 2021; 125 Gobeil (10.1016/j.csbj.2023.03.029_bib70) 2021; 373 Abi Hussein (10.1016/j.csbj.2023.03.029_bib23) 2017; 22 Delgado (10.1016/j.csbj.2023.03.029_bib30) 2021; 89 Trigueiro-Louro (10.1016/j.csbj.2023.03.029_bib32) 2020; 18 Hwang (10.1016/j.csbj.2023.03.029_bib9) 2022; 29 Parrinello (10.1016/j.csbj.2023.03.029_bib49) 1981; 52 Chakraborty (10.1016/j.csbj.2023.03.029_bib65) 2021; 534 Duarte (10.1016/j.csbj.2023.03.029_bib13) 2022; 12 Mariano (10.1016/j.csbj.2023.03.029_bib14) 2020; 7 Wrapp (10.1016/j.csbj.2023.03.029_bib24) 2020; 367 Starr (10.1016/j.csbj.2023.03.029_bib5) 2021; 2 Kuzmanic (10.1016/j.csbj.2023.03.029_bib39) 2020; 53 Pandey (10.1016/j.csbj.2023.03.029_bib21) 2021; 39 Lu (10.1016/j.csbj.2023.03.029_bib17) 2020; 395 Wang (10.1016/j.csbj.2023.03.029_bib26) 2020; 181 Delgado Blanco (10.1016/j.csbj.2023.03.029_bib63) 2020; 16 Abraham (10.1016/j.csbj.2023.03.029_bib44) 2015; 1 Tai (10.1016/j.csbj.2023.03.029_bib19) 2020; 17 Carino (10.1016/j.csbj.2023.03.029_bib33) 2020; 8 Lan (10.1016/j.csbj.2023.03.029_bib25) 2020; 581 Huang (10.1016/j.csbj.2023.03.029_bib45) 2017; 14 Chen (10.1016/j.csbj.2023.03.029_bib2) 2020; 9 Taylor (10.1016/j.csbj.2023.03.029_bib8) 2021; 21 Abi Hussein (10.1016/j.csbj.2023.03.029_bib38) 2020; 12 Yi (10.1016/j.csbj.2023.03.029_bib61) 2020; 17 Kumari (10.1016/j.csbj.2023.03.029_bib56) 2014; 54 |
References_xml | – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bib49 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J Appl Phys – volume: 27 start-page: 620 year: 2021 end-page: 621 ident: bib3 article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera publication-title: Nat Med – volume: 1 start-page: 19 year: 2015 end-page: 25 ident: bib44 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 135 start-page: 16968 year: 2013 end-page: 16976 ident: bib57 article-title: Protein dielectric constants determined from NMR chemical shift perturbations publication-title: J Am Chem Soc – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bib50 article-title: VMD: Visual Molecular Dynamics publication-title: J Mol Graph – volume: 16 year: 2020 ident: bib63 article-title: In silico mutagenesis of human ACE2 with S protein and translational efficiency explain SARS-CoV-2 infectivity in different species publication-title: PLoS Comput Biol – reference: Schrödinger, L.L.C. The PyMOL Molecular Graphics System, Version 2.0, 2015. https://pymol.org/2/. – volume: 12 start-page: 6457 year: 2022 ident: bib13 article-title: Rapid evolution of SARS-CoV-2 challenges human defenses publication-title: Sci Rep – volume: 21 start-page: 5152 year: 2020 ident: bib34 article-title: A comprehensive mapping of the druggable cavities within the SARS-CoV-2 therapeutically relevant proteins by combining pocket and docking searches as implemented in pockets 2.0 publication-title: Int J Mol Sci – volume: 39 start-page: 6306 year: 2021 end-page: 6316 ident: bib21 article-title: Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an publication-title: J Biomol Struct Dyn – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib24 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 12 start-page: 537 year: 2020 ident: bib38 article-title: Molecular dynamics simulations of influenza A virus NS1 reveal a remarkably stable RNA-binding domain harboring promising druggable pockets publication-title: Viruses – volume: 11 start-page: 4785 year: 2020 end-page: 4790 ident: bib29 article-title: Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations publication-title: J Phys Chem Lett – volume: 31 start-page: 274 year: 2014 end-page: 295 ident: bib58 article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? publication-title: J Classif – volume: 32 start-page: 399 year: 1998 end-page: 413 ident: bib54 article-title: Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model publication-title: Proteins – volume: 89 start-page: 1134 year: 2021 end-page: 1144 ident: bib30 article-title: Molecular basis for higher affinity of SARS‐CoV ‐2 spike RBD for human ACE2 receptor publication-title: Proteins – volume: 10 start-page: 168 year: 2009 ident: bib36 article-title: Fpocket: an open source platform for ligand pocket detection publication-title: BMC Bioinforma – volume: 54 start-page: 1951 year: 2014 end-page: 1962 ident: bib56 article-title: Open source drug discovery consortium, A. Lynn, publication-title: J Chem Inf Model – volume: 16 year: 2020 ident: bib60 article-title: COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2 publication-title: PLoS Pathog – volume: 181 start-page: 894 year: 2020 end-page: 904 ident: bib26 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell – volume: 9 year: 2020 ident: bib69 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: eLife – volume: 17 start-page: 621 year: 2020 end-page: 630 ident: bib61 article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies publication-title: Cell Mol Immunol – volume: 9 start-page: 313 year: 2020 end-page: 319 ident: bib2 article-title: RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak publication-title: Emerg Microbes Infect – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bib18 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 12 start-page: 293 year: 2017 end-page: 303 ident: bib11 article-title: Screening-based approaches to identify small molecules that inhibit protein–protein interactions publication-title: Expert Opin Drug Disco – volume: 38 start-page: 236 year: 1999 end-page: 240 ident: bib55 article-title: Peptide folding: when simulation meets experiment publication-title: Angew Chem Int Ed – volume: 61 start-page: 4425 year: 2021 end-page: 4441 ident: bib31 article-title: Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation publication-title: J Chem Inf Model – reference: T. Williams, C. Kelley, many others, GNUPLOT 5.2. An Interactive Plotting Program, 2019. – volume: 55 start-page: 882 year: 2015 end-page: 895 ident: bib41 article-title: PockDrug: a model for predicting pocket druggability that overcomes pocket estimation uncertainties publication-title: J Chem Inf Model – volume: 25 start-page: 1 year: 2008 end-page: 34 ident: bib59 article-title: Getting things in order: an introduction to the R package seriation publication-title: J Stat Soft – volume: 126 year: 2007 ident: bib48 article-title: Canonical sampling through velocity rescaling publication-title: J Chem Phys – volume: 527 start-page: 702 year: 2020 end-page: 708 ident: bib64 article-title: Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism publication-title: Biochem Biophys Res Commun – volume: 592 start-page: 438 year: 2021 end-page: 443 ident: bib4 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature – volume: 18 start-page: 1463 year: 1997 end-page: 1472 ident: bib46 article-title: LINCS: a linear constraint solver for molecular simulations publication-title: J Comput Chem – volume: 29 start-page: 1 year: 2022 ident: bib9 article-title: Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection publication-title: J Biomed Sci – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib25 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 6 start-page: 121 year: 1991 end-page: 142 ident: bib47 article-title: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions publication-title: Mol Simul) – volume: 7 year: 2021 ident: bib7 article-title: Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa publication-title: Heliyon – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: bib27 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 21 start-page: 382 year: 2021 end-page: 393 ident: bib8 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nat Rev Immunol – volume: 43 start-page: W436 year: 2015 end-page: W442 ident: bib42 article-title: PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins publication-title: Nucleic Acids Res – volume: 386 start-page: 1397 year: 2022 end-page: 1408 ident: bib12 article-title: EPIC-HR investigators, oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19 publication-title: N Engl J Med – volume: 65 start-page: 2820 year: 2021 end-page: 2826 ident: bib68 article-title: Molecular mechanism of the N501Y mutation for enhanced binding between SARS-CoV-2′s spike protein and human ACE2 receptor publication-title: J Med Chem – volume: 2 year: 2021 ident: bib5 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep Med – volume: 534 start-page: 374 year: 2021 end-page: 380 ident: bib65 article-title: Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity publication-title: Biochem Biophys Res Commun – reference: Coronaviridae Study Group of the International Committee on Taxonomy of VirusesThe species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 Nat Microbiol 5 2020 536 544 doi: 10.1038/s41564-020-0695-z. – volume: 49 start-page: 809 year: 2016 end-page: 815 ident: bib37 article-title: Protein binding pocket dynamics publication-title: Acc Chem Res – volume: 61 start-page: 704 year: 2005 end-page: 721 ident: bib43 article-title: Very fast empirical prediction and rationalization of protein pKa values publication-title: Proteins – volume: 22 start-page: 404 year: 2017 end-page: 415 ident: bib23 article-title: Global vision of druggability issues: applications and perspectives publication-title: Drug Discov Today – volume: 14 start-page: 71 year: 2017 end-page: 73 ident: bib45 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat Methods – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bib17 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 604 start-page: 553 year: 2022 end-page: 556 ident: bib10 article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages publication-title: Nature – volume: 10 start-page: 449 year: 2015 end-page: 461 ident: bib28 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin Drug Disco – volume: 370 start-page: 725 year: 2020 end-page: 730 ident: bib67 article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein publication-title: Science – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: bib16 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 39 start-page: 4015 year: 2021 end-page: 4025 ident: bib62 article-title: Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor publication-title: J Biomol Struct Dyn – volume: 125 start-page: 2533 year: 2021 end-page: 2550 ident: bib66 article-title: An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2 publication-title: J Phys Chem B – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib71 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 17 start-page: 613 year: 2020 end-page: 620 ident: bib19 article-title: Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine publication-title: Cell Mol Immunol – volume: 130 year: 2020 ident: bib20 article-title: In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2 publication-title: Peptides – volume: 7 year: 2020 ident: bib14 article-title: Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be publication-title: Front Mol Biosci – volume: 21 year: 2020 ident: bib35 article-title: Leaving no stone unturned: allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain publication-title: Inform Med Unlocked – reference: R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020. https://www.R-project.org. – volume: 11 year: 2022 ident: bib40 article-title: The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein publication-title: ELife – volume: 18 start-page: 2117 year: 2020 end-page: 2131 ident: bib32 article-title: Unlocking COVID therapeutic targets: a structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike publication-title: Comput Struct Biotechnol J – volume: 8 year: 2020 ident: bib33 article-title: Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain publication-title: Front Chem – volume: 130 year: 2020 ident: bib22 article-title: Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies publication-title: Biomed Pharmacother – volume: 53 start-page: 654 year: 2020 end-page: 661 ident: bib39 article-title: Investigating cryptic binding sites by molecular dynamics simulations publication-title: Acc Chem Res – reference: . – volume: 92 start-page: 518 year: 2020 end-page: 521 ident: bib6 article-title: The first two cases of 2019–nCoV in Italy: Where they come from? publication-title: J Med Virol – volume: 19 start-page: 685 year: 2021 end-page: 700 ident: bib15 article-title: Structural biology of SARS-CoV-2 and implications for therapeutic development publication-title: Nat Rev Microbiol – volume: 373 year: 2021 ident: bib70 article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity publication-title: Science – volume: 7 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib7 article-title: Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06035 – volume: 38 start-page: 236 year: 1999 ident: 10.1016/j.csbj.2023.03.029_bib55 article-title: Peptide folding: when simulation meets experiment publication-title: Angew Chem Int Ed doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M – volume: 16 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib63 article-title: In silico mutagenesis of human ACE2 with S protein and translational efficiency explain SARS-CoV-2 infectivity in different species publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1008450 – volume: 12 start-page: 293 year: 2017 ident: 10.1016/j.csbj.2023.03.029_bib11 article-title: Screening-based approaches to identify small molecules that inhibit protein–protein interactions publication-title: Expert Opin Drug Disco doi: 10.1080/17460441.2017.1280456 – volume: 25 start-page: 1 year: 2008 ident: 10.1016/j.csbj.2023.03.029_bib59 article-title: Getting things in order: an introduction to the R package seriation publication-title: J Stat Soft doi: 10.18637/jss.v025.i03 – volume: 43 start-page: W436 year: 2015 ident: 10.1016/j.csbj.2023.03.029_bib42 article-title: PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv462 – volume: 125 start-page: 2533 issue: 10 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib66 article-title: An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2 publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.0c11321 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib25 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 55 start-page: 882 year: 2015 ident: 10.1016/j.csbj.2023.03.029_bib41 article-title: PockDrug: a model for predicting pocket druggability that overcomes pocket estimation uncertainties publication-title: J Chem Inf Model doi: 10.1021/ci5006004 – volume: 126 issue: 1 year: 2007 ident: 10.1016/j.csbj.2023.03.029_bib48 article-title: Canonical sampling through velocity rescaling publication-title: J Chem Phys doi: 10.1063/1.2408420 – volume: 386 start-page: 1397 year: 2022 ident: 10.1016/j.csbj.2023.03.029_bib12 article-title: EPIC-HR investigators, oral nirmatrelvir for high-risk, nonhospitalized adults with covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2118542 – volume: 39 start-page: 4015 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib62 article-title: Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2020.1773318 – volume: 89 start-page: 1134 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib30 article-title: Molecular basis for higher affinity of SARS‐CoV ‐2 spike RBD for human ACE2 receptor publication-title: Proteins doi: 10.1002/prot.26086 – ident: 10.1016/j.csbj.2023.03.029_bib53 – volume: 53 start-page: 654 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib39 article-title: Investigating cryptic binding sites by molecular dynamics simulations publication-title: Acc Chem Res doi: 10.1021/acs.accounts.9b00613 – volume: 7 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib14 article-title: Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.605236 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib16 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 10 start-page: 449 year: 2015 ident: 10.1016/j.csbj.2023.03.029_bib28 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin Drug Disco doi: 10.1517/17460441.2015.1032936 – volume: 527 start-page: 702 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib64 article-title: Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.05.028 – volume: 19 start-page: 685 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib15 article-title: Structural biology of SARS-CoV-2 and implications for therapeutic development publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00630-8 – volume: 17 start-page: 613 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib19 article-title: Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-0400-4 – volume: 17 start-page: 621 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib61 article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies publication-title: Cell Mol Immunol doi: 10.1038/s41423-020-0458-z – volume: 8 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib33 article-title: Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain publication-title: Front Chem doi: 10.3389/fchem.2020.572885 – volume: 21 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib35 article-title: Leaving no stone unturned: allosteric targeting of SARS-CoV-2 spike protein at putative druggable sites disrupts human angiotensin-converting enzyme interactions at the receptor binding domain publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100451 – volume: 11 year: 2022 ident: 10.1016/j.csbj.2023.03.029_bib40 article-title: The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein publication-title: ELife doi: 10.7554/eLife.75720 – volume: 12 start-page: 537 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib38 article-title: Molecular dynamics simulations of influenza A virus NS1 reveal a remarkably stable RNA-binding domain harboring promising druggable pockets publication-title: Viruses doi: 10.3390/v12050537 – volume: 92 start-page: 518 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib6 article-title: The first two cases of 2019–nCoV in Italy: Where they come from? publication-title: J Med Virol doi: 10.1002/jmv.25699 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib71 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 31 start-page: 274 year: 2014 ident: 10.1016/j.csbj.2023.03.029_bib58 article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? publication-title: J Classif doi: 10.1007/s00357-014-9161-z – volume: 21 start-page: 382 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib8 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00542-x – volume: 39 start-page: 6306 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib21 article-title: Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2020.1796811 – volume: 61 start-page: 4425 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib31 article-title: Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: combination of molecular dynamics simulation and density functional calculation publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00560 – volume: 12 start-page: 6457 year: 2022 ident: 10.1016/j.csbj.2023.03.029_bib13 article-title: Rapid evolution of SARS-CoV-2 challenges human defenses publication-title: Sci Rep doi: 10.1038/s41598-022-10097-z – volume: 32 start-page: 399 year: 1998 ident: 10.1016/j.csbj.2023.03.029_bib54 article-title: Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C – ident: 10.1016/j.csbj.2023.03.029_bib52 – volume: 426 start-page: 450 year: 2003 ident: 10.1016/j.csbj.2023.03.029_bib18 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 592 start-page: 438 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib4 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature doi: 10.1038/s41586-021-03402-9 – volume: 22 start-page: 404 year: 2017 ident: 10.1016/j.csbj.2023.03.029_bib23 article-title: Global vision of druggability issues: applications and perspectives publication-title: Drug Discov Today doi: 10.1016/j.drudis.2016.11.021 – volume: 10 start-page: 168 year: 2009 ident: 10.1016/j.csbj.2023.03.029_bib36 article-title: Fpocket: an open source platform for ligand pocket detection publication-title: BMC Bioinforma doi: 10.1186/1471-2105-10-168 – volume: 9 start-page: 313 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib2 article-title: RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1725399 – volume: 604 start-page: 553 year: 2022 ident: 10.1016/j.csbj.2023.03.029_bib10 article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages publication-title: Nature doi: 10.1038/s41586-022-04594-4 – volume: 6 start-page: 121 issue: 1–3 year: 1991 ident: 10.1016/j.csbj.2023.03.029_bib47 article-title: Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions publication-title: Mol Simul) doi: 10.1080/08927029108022142 – volume: 370 start-page: 725 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib67 article-title: Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein publication-title: Science doi: 10.1126/science.abd3255 – volume: 9 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib69 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: eLife doi: 10.7554/eLife.61312 – volume: 54 start-page: 1951 year: 2014 ident: 10.1016/j.csbj.2023.03.029_bib56 article-title: Open source drug discovery consortium, A. Lynn, g_mmpbsa - A GROMACS Tool for High-Throughput MM-PBSA Calculations publication-title: J Chem Inf Model doi: 10.1021/ci500020m – volume: 534 start-page: 374 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib65 article-title: Evolutionary and structural analysis elucidates mutations on SARS-CoV2 spike protein with altered human ACE2 binding affinity publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.11.075 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib24 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 581 start-page: 221 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib27 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 11 start-page: 4785 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib29 article-title: Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c01148 – volume: 373 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib70 article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity publication-title: Science doi: 10.1126/science.abi6226 – volume: 27 start-page: 620 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib3 article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera publication-title: Nat Med doi: 10.1038/s41591-021-01270-4 – volume: 1 start-page: 19 year: 2015 ident: 10.1016/j.csbj.2023.03.029_bib44 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 395 start-page: 565 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib17 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 2 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib5 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep Med – ident: 10.1016/j.csbj.2023.03.029_bib1 doi: 10.1038/s41564-020-0695-z – volume: 29 start-page: 1 year: 2022 ident: 10.1016/j.csbj.2023.03.029_bib9 article-title: Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection publication-title: J Biomed Sci doi: 10.1186/s12929-021-00784-w – volume: 49 start-page: 809 year: 2016 ident: 10.1016/j.csbj.2023.03.029_bib37 article-title: Protein binding pocket dynamics publication-title: Acc Chem Res doi: 10.1021/acs.accounts.5b00516 – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.csbj.2023.03.029_bib49 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J Appl Phys doi: 10.1063/1.328693 – volume: 21 start-page: 5152 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib34 article-title: A comprehensive mapping of the druggable cavities within the SARS-CoV-2 therapeutically relevant proteins by combining pocket and docking searches as implemented in pockets 2.0 publication-title: Int J Mol Sci doi: 10.3390/ijms21145152 – volume: 18 start-page: 1463 year: 1997 ident: 10.1016/j.csbj.2023.03.029_bib46 article-title: LINCS: a linear constraint solver for molecular simulations publication-title: J Comput Chem doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 130 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib22 article-title: Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2020.110559 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.csbj.2023.03.029_bib50 article-title: VMD: Visual Molecular Dynamics publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – ident: 10.1016/j.csbj.2023.03.029_bib51 – volume: 130 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib20 article-title: In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2 publication-title: Peptides doi: 10.1016/j.peptides.2020.170328 – volume: 65 start-page: 2820 year: 2021 ident: 10.1016/j.csbj.2023.03.029_bib68 article-title: Molecular mechanism of the N501Y mutation for enhanced binding between SARS-CoV-2′s spike protein and human ACE2 receptor publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00311 – volume: 61 start-page: 704 year: 2005 ident: 10.1016/j.csbj.2023.03.029_bib43 article-title: Very fast empirical prediction and rationalization of protein pKa values publication-title: Proteins doi: 10.1002/prot.20660 – volume: 181 start-page: 894 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib26 article-title: Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 135 start-page: 16968 year: 2013 ident: 10.1016/j.csbj.2023.03.029_bib57 article-title: Protein dielectric constants determined from NMR chemical shift perturbations publication-title: J Am Chem Soc doi: 10.1021/ja406995j – volume: 18 start-page: 2117 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib32 article-title: Unlocking COVID therapeutic targets: a structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.07.017 – volume: 14 start-page: 71 year: 2017 ident: 10.1016/j.csbj.2023.03.029_bib45 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat Methods doi: 10.1038/nmeth.4067 – volume: 16 year: 2020 ident: 10.1016/j.csbj.2023.03.029_bib60 article-title: COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008762 |
SSID | ssj0000816930 |
Score | 2.2810037 |
Snippet | The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for viral infection. The interaction of its receptor-binding... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2339 |
SubjectTerms | Binding site flexibility biotechnology COVID-19 variants domain Druggable binding sites Hot spot residues humans Key-residues molecular dynamics Molecular dynamics simulation mutation peptidyl-dipeptidase A Pocket tracking prediction SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Spike protein Structural flexibility viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAeBMelZG4IUMSP5I9lqpVhQQHWlBvlp8lLSSr7u6BH8D_ZsZOtrsgygUphyhxHvZMPN_EM98Q8kq0dZTeRhZn0TERSg7fnG-ZtCLA3BidTFx6Hz6q48_i_Zk82yj1hTFhmR44D9xbLNEqS-8dF41QXhhRelGaMga4jWpTHjnYvA1nKs3BLZKMlGOWTA7ocgt78QarhSdW04Qpry1RIuzfMkh_As7f4yY3DNHRXXJnRJB0P7_5PXIr9PfJ7Q1ewQfkZ06_TSlMFB4AssQ9f7U6P8dUKWq7lMxCcel4QU3vaVowoBHpMVO47A-6HGgOE8dzFCbGMAf_nE2X-uG76Xo6RHqy_-mEHQxfWE0X8-4y0MT90PUPyenR4enBMRvrLTAnpVyyCunMQKjRhjYqbmPpBPeuqSoroq1MUC5YxyMPbobEhMq4YADBgE9kW8Bdj8hOP_ThCaHShCZyJ2ydGAUd6EEFfolUuKhpVVmQahp67UYuciyJ8U1PQWcXGsWlUVy6hK2eFeT1-pp5ZuK4sfU7lOi6JbJopwOgW3rULf0v3SqInPRBj4AkAw24VXfjw19OyqNBwrgEY_owrBa6hulwhv_amr-34WiEwC_ndUEeZ4Vbd4MrcI9VIwrSbqniVj-3z_Td18Qajly7HIDK0_8xMs_ILvY3_4t6TnaWV6vwAtDZ0u6lD_EXI7E56w priority: 102 providerName: Directory of Open Access Journals |
Title | Identifying promising druggable binding sites and their flexibility to target the receptor-binding domain of SARS-CoV-2 spike protein |
URI | https://dx.doi.org/10.1016/j.csbj.2023.03.029 https://www.ncbi.nlm.nih.gov/pubmed/36998674 https://www.proquest.com/docview/2793983547 https://www.proquest.com/docview/3153821132 https://pubmed.ncbi.nlm.nih.gov/PMC10023212 https://doaj.org/article/375450ddc34746d4a40d40a0fec54687 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4k14rIzEDaVK4keSA0JLRVVRlUMf0FsUv7YpJVk2uxL9AfxvZpxkaaBUSHuINk4sZ8aeb-yZbwh5zbPECaNc6HKnQ24jBnPOZKFQ3MLa6LTwXHoHn-TeCf94Kk43yFDuqP-A7bWuHdaTOllcbP_4fvkOJvzb37FaulXn21gI3BOWJvktsgWWSaKWH_Rw36_MGVKP4LZLH0mURn0ezfWvGdkqT-k_Mll_Q9I_IyuvmKrde-RujzHptFOK-2TD1g_InSvMgw_Jzy5B1yc5UegApI1XZrGazTCZiqrKp7tQPFxuaVkb6o8UqEMCTR9Qe0mXDe0CyfEehaXTzsGDD4dHTfOtrGraOHo0PTwKd5rPYULbefXVUs8OUdWPyPHuh-OdvbCvyBBqIcQyjJHwDMTulM2cZMpFmjOj0zhW3Km4tFJbpZljVudIXShLbUvAOOA1qQyQ2WOyWTe1fUqoKG3qmOYq8ZyDGjQlBs9FSDz2VDIKSDx8-kL3bOVYNOOiGMLSzgsUV4HiKiL4JXlA3qyfmXdcHTe2fo8SXbdEnm3_R7OYFf20LbBAsIiM0YynXBpe8sjwqIycBSWWWRoQMehD0UOWDorAq6obO381KE8BEsZDmrK2zaotElgwc9yNS__dhqGZAs-dJQF50incehhMggMtUx6QbKSKo3GO79TVmecVRzZeBlDm2X90_JzcxuF0m1EvyOZysbIvAZ4t1YRsTfcPv-xP_PbGxM_AX0QDPGc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+promising+druggable+binding+sites+and+their+flexibility+to+target+the+receptor-binding+domain+of+SARS-CoV-2+spike+protein&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Ghoula%2C+M&rft.au=Naceri%2C+S&rft.au=Sitruk%2C+S&rft.au=Flatters%2C+D&rft.date=2023-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=21+p.2339-2351&rft.spage=2339&rft.epage=2351&rft_id=info:doi/10.1016%2Fj.csbj.2023.03.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |