GAT TransPruning: progressive channel pruning strategy combining graph attention network and transformer

Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 10; p. e2012
Main Authors Lin, Yu-Chen, Wang, Chia-Hung, Lin, Yu-Cheng
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 23.04.2024
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio.
AbstractList Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio.
Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio.Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio.
ArticleNumber e2012
Audience Academic
Author Lin, Yu-Cheng
Wang, Chia-Hung
Lin, Yu-Chen
Author_xml – sequence: 1
  givenname: Yu-Chen
  surname: Lin
  fullname: Lin, Yu-Chen
  organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
– sequence: 2
  givenname: Chia-Hung
  surname: Wang
  fullname: Wang, Chia-Hung
  organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
– sequence: 3
  givenname: Yu-Cheng
  surname: Lin
  fullname: Lin, Yu-Cheng
  organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38686001$$D View this record in MEDLINE/PubMed
BookMark eNptkkFv1DAQhSNUREvpkSuKxAUOWewkthMuaFVBWakSCJazNXEmWS-JvdhOof8eZ7dFXVTnYOv5zZcZ-T1PTow1mCQvKVkIQcW7HaLbZsovckLzJ8lZXgiesbrOTx6cT5ML77eEEMpoXPWz5LSoeMWjcJZsrpbrdO3A-K9uMtr079Ods71D7_UNpmoDxuAQtf1l6oODgP1tquzY6L3UO9htUggBTdDWpAbDb-t-pmDaNMzgzroR3YvkaQeDx4u7_Tz58enj-vJzdv3lanW5vM4UYyxklAKwSpSUI-8U8go6BW3TtgjIKs7akpSsYnXO8haJKGtedSWpFW_LNmeiKc6T1YHbWtjKndMjuFtpQcu9YF0vwQWtBpQFqZsGKRdcQAkCQMR_YkcJ7wirWRVZHw6s3dSM2Ko4oYPhCHp8Y_RG9vZGUkqYYFxEwps7grO_JvRBjtorHAYwaCcfWyhrkcdVROvrg7WH2Js2nY1INdvlsqJFled1Pre0eMQVvxZHrWI6Oh31o4K3RwXRE_BP6GHyXq6-fzv2vno4779B7-MSDcXBoJz13mEnlQ4wP3vsQg-SEjnnUu5zKZWXcy5jVfZf1T34cf9fNaPnBw
CitedBy_id crossref_primary_10_7717_peerj_cs_2625
crossref_primary_10_7717_peerj_cs_2560
Cites_doi 10.1109/CVPR.2017.98
10.1109/CVPR52729.2023.02333
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00289
10.1109/CVPR.2015.7298594
10.1109/TNNLS.2020.2979517
10.1109/CVPR.2019.00290
10.1109/DCC.2019.00075
10.1109/TIT.2022.3142846
10.1109/CVPR52729.2023.01544
10.1109/TPAMI.2021.3066410
10.1109/TNNLS.2020.3045153
10.1109/ICCV.2017.541
10.1109/CVPR42600.2020.00160
10.1007/978-3-030-01237-3_12
10.1109/ICCV.2017.155
10.1109/JETCAS.2019.2952137
10.1109/CVPR.2018.00474
10.1016/j.neucom.2021.07.034
10.1109/CVPR.2019.00447
10.1109/ACCESS.2021.3126685
10.1007/978-3-030-01234-2_48
10.1109/IGARSS47720.2021.9553154
10.1109/CVPR.2017.205
10.1109/CVPR52729.2023.00513
10.1007/978-3-030-01249-6_18
10.1109/CVPR.2017.195
10.1109/AICAS.2019.8771531
10.1016/B978-0-12-815480-9.00015-3
10.1109/ICCV.2017.460
ContentType Journal Article
Copyright 2024 Lin et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Lin et al. 2024 Lin et al.
Copyright_xml – notice: 2024 Lin et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Lin et al. 2024 Lin et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2012
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_309bbe16767a4a7aa7e6fef106f05958
PMC11057567
A813822928
38686001
10_7717_peerj_cs_2012
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan, R.O.C.
  grantid: 112-2218-E-035-001
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
H13
NPM
PQGLB
PMFND
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c555t-11aa587416e6fce68afcadbddeae5865d4045859252de074968f409c6d4d257b3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:07:52 EDT 2025
Thu Aug 21 18:34:21 EDT 2025
Fri Jul 11 15:53:07 EDT 2025
Tue Jun 17 22:01:32 EDT 2025
Tue Jun 10 21:01:00 EDT 2025
Fri Jun 27 05:26:41 EDT 2025
Mon Jul 21 05:57:46 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Tue Jul 01 04:11:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Self-attention mechanism
Transformer
Progressive channel pruning
Graph attention network
Model compression
Edge computing platform
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Lin et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-11aa587416e6fce68afcadbddeae5865d4045859252de074968f409c6d4d257b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/309bbe16767a4a7aa7e6fef106f05958
PMID 38686001
PQID 3049722223
PQPubID 23479
PageCount e2012
ParticipantIDs doaj_primary_oai_doaj_org_article_309bbe16767a4a7aa7e6fef106f05958
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11057567
proquest_miscellaneous_3049722223
gale_infotracmisc_A813822928
gale_infotracacademiconefile_A813822928
gale_incontextgauss_ISR_A813822928
pubmed_primary_38686001
crossref_citationtrail_10_7717_peerj_cs_2012
crossref_primary_10_7717_peerj_cs_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Huang (10.7717/peerj-cs.2012/ref-16) 2023
Lin (10.7717/peerj-cs.2012/ref-23) 2017; 30
Bagherinezhad (10.7717/peerj-cs.2012/ref-2) 2017
Yang (10.7717/peerj-cs.2012/ref-41) 2018
Basha (10.7717/peerj-cs.2012/ref-3) 2024; 573
Wang (10.7717/peerj-cs.2012/ref-38) 2021; 461
Sandler (10.7717/peerj-cs.2012/ref-30) 2018
Chiliang (10.7717/peerj-cs.2012/ref-6) 2019
Lin (10.7717/peerj-cs.2012/ref-22) 2019
Veličković (10.7717/peerj-cs.2012/ref-36) 2017
Chollet (10.7717/peerj-cs.2012/ref-7) 2017
Zhao (10.7717/peerj-cs.2012/ref-47) 2019
Hooker (10.7717/peerj-cs.2012/ref-15) 2021
Wang (10.7717/peerj-cs.2012/ref-39) 2020
Miikkulainen (10.7717/peerj-cs.2012/ref-28) 2019
Srivastava (10.7717/peerj-cs.2012/ref-32) 2014; 1
Yu (10.7717/peerj-cs.2012/ref-42) 2023
Dong (10.7717/peerj-cs.2012/ref-8) 2017
Wen (10.7717/peerj-cs.2012/ref-40) 2016; 29
Krizhevsky (10.7717/peerj-cs.2012/ref-18) 2009
Zhang (10.7717/peerj-cs.2012/ref-45) 2022; 33
McMahan (10.7717/peerj-cs.2012/ref-27) 2017
Tan (10.7717/peerj-cs.2012/ref-34) 2019
He (10.7717/peerj-cs.2012/ref-12) 2019
Li (10.7717/peerj-cs.2012/ref-19) 2017
Vaswani (10.7717/peerj-cs.2012/ref-35) 2017; 30
Yuan (10.7717/peerj-cs.2012/ref-43) 2021
He (10.7717/peerj-cs.2012/ref-11) 2018
Masana (10.7717/peerj-cs.2012/ref-26) 2017
Wang (10.7717/peerj-cs.2012/ref-37) 2019
Zhang (10.7717/peerj-cs.2012/ref-44) 2022; 88
Fang (10.7717/peerj-cs.2012/ref-9) 2023
Kim (10.7717/peerj-cs.2012/ref-17) 2019
Zhang (10.7717/peerj-cs.2012/ref-46) 2018
Brock (10.7717/peerj-cs.2012/ref-4) 2018
He (10.7717/peerj-cs.2012/ref-14) 2017
Szegedy (10.7717/peerj-cs.2012/ref-33) 2015
Zheng (10.7717/peerj-cs.2012/ref-48) 2024; 569
Ashok (10.7717/peerj-cs.2012/ref-1) 2017
Liu (10.7717/peerj-cs.2012/ref-24) 2022; 44
Luo (10.7717/peerj-cs.2012/ref-25) 2017
Lin (10.7717/peerj-cs.2012/ref-21) 2020
He (10.7717/peerj-cs.2012/ref-13) 2016
Lillicrap (10.7717/peerj-cs.2012/ref-20) 2015
Gong (10.7717/peerj-cs.2012/ref-10) 2014
Chen (10.7717/peerj-cs.2012/ref-5) 2021; 32
Sekanina (10.7717/peerj-cs.2012/ref-31) 2021; 9
Moon (10.7717/peerj-cs.2012/ref-29) 2019; 9
References_xml – volume: 573
  start-page: 1-10
  issue: 7
  year: 2024
  ident: 10.7717/peerj-cs.2012/ref-3
  article-title: A novel and efficient model pruning method for deep convolutional neural networks by evaluating the direct and indirect effects of filters
  publication-title: Neurocomputing
– start-page: 860
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-2
  article-title: LCNN: Lookup-based convolutional neural network
  doi: 10.1109/CVPR.2017.98
– start-page: 24355
  year: 2023
  ident: 10.7717/peerj-cs.2012/ref-42
  article-title: X-pruner: explainable pruning for vision transformers
  doi: 10.1109/CVPR52729.2023.02333
– start-page: 770
  year: 2016
  ident: 10.7717/peerj-cs.2012/ref-13
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
– start-page: 2780
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-47
  article-title: Variational convolutional neural network pruning
  doi: 10.1109/CVPR.2019.00289
– start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.2012/ref-33
  article-title: Going deeper with convolutions
  doi: 10.1109/CVPR.2015.7298594
– volume: 32
  start-page: 799
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2012/ref-5
  article-title: Dynamical channel pruning by conditional accuracy change for deep neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2979517
– start-page: 2790
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-22
  article-title: Towards optimal structured CNN pruning via generative adversarial learning
  doi: 10.1109/CVPR.2019.00290
– volume: 569
  start-page: 1-10
  issue: 7
  year: 2024
  ident: 10.7717/peerj-cs.2012/ref-48
  article-title: Deep model compression based on the training history
  publication-title: Neurocomputing
– start-page: 563
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-6
  article-title: Accelerating convolutional neural networks with dynamic channel pruning
  doi: 10.1109/DCC.2019.00075
– year: 2009
  ident: 10.7717/peerj-cs.2012/ref-18
  article-title: Learning multiple layers of features from tiny images
– volume: 88
  start-page: 2551
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2012/ref-44
  article-title: Sparse nonnegative tensor factorization and completion with noisy observations
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2022.3142846
– start-page: 16091
  year: 2023
  ident: 10.7717/peerj-cs.2012/ref-9
  article-title: Depgraph: towards any structural pruning
  doi: 10.1109/CVPR52729.2023.01544
– volume: 44
  start-page: 4035
  issue: 8
  year: 2022
  ident: 10.7717/peerj-cs.2012/ref-24
  article-title: Discrimination-aware network pruning for deep model compression
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3066410
– volume: 33
  start-page: 2259
  issue: 5
  year: 2022
  ident: 10.7717/peerj-cs.2012/ref-45
  article-title: StructADMM: achieving ultrahigh efficiency in structured pruning for DNNs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3045153
– start-page: 5068
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-25
  article-title: ThiNet: a filter level pruning method for deep neural network compression
  doi: 10.1109/ICCV.2017.541
– start-page: 1526
  year: 2020
  ident: 10.7717/peerj-cs.2012/ref-21
  article-title: HRank: filter pruning using high-rank feature map
  doi: 10.1109/CVPR42600.2020.00160
– start-page: 184
  year: 2018
  ident: 10.7717/peerj-cs.2012/ref-46
  article-title: A systematic DNN weight pruning framework using alternating direction method of multipliers
  doi: 10.1007/978-3-030-01237-3_12
– start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-1
  article-title: N2N learning: network to network compression via policy gradient reinforcement learning
– start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-36
  article-title: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection
– start-page: 1398
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-14
  article-title: Channel pruning for accelerating very deep neural networks
  doi: 10.1109/ICCV.2017.155
– start-page: 6105
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-34
  article-title: Efficientnet: rethinking model scaling for convolutional neural networks
– volume: 30
  start-page: 6000
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-35
  article-title: Attention is all you need
  publication-title: Neural Information Processing Systems
– volume: 9
  start-page: 735
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-29
  article-title: Memory-reduced network stacking for edge-level CNN architecture with structured weight pruning
  publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
  doi: 10.1109/JETCAS.2019.2952137
– start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.2012/ref-39
  article-title: Neural pruning via growing regularization
– start-page: 4510
  year: 2018
  ident: 10.7717/peerj-cs.2012/ref-30
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  doi: 10.1109/CVPR.2018.00474
– start-page: 6566
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-37
  article-title: Structured pruning in the kroneckerfactored eigenbasis
– volume: 461
  start-page: 41
  year: 2021
  ident: 10.7717/peerj-cs.2012/ref-38
  article-title: Filter pruning with a feature map entropy importance criterion for convolution neural networks compressing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.034
– start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.2012/ref-20
  article-title: Continuous control with deep reinforcement learning
– volume: 29
  start-page: 2074
  year: 2016
  ident: 10.7717/peerj-cs.2012/ref-40
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Neural Information Processing Systems
– year: 2014
  ident: 10.7717/peerj-cs.2012/ref-10
  article-title: Compressing deep convolutional networks using vector quantization
– start-page: 4335
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-12
  article-title: Filter pruning via geometric median for deep convolutional neural networks acceleration
  doi: 10.1109/CVPR.2019.00447
– volume: 9
  start-page: 151337
  year: 2021
  ident: 10.7717/peerj-cs.2012/ref-31
  article-title: Neural architecture search and hardware accelerator co-search: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3126685
– volume: 1
  start-page: 1929
  year: 2014
  ident: 10.7717/peerj-cs.2012/ref-32
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 30
  start-page: 2181
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-23
  article-title: Runtime neural pruning
  publication-title: Neural Information Processing Systems
– start-page: 784
  year: 2018
  ident: 10.7717/peerj-cs.2012/ref-11
  article-title: AMC: AutoML for model compression and acceleration on mobile devices
  doi: 10.1007/978-3-030-01234-2_48
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.2012/ref-4
  article-title: Smash: one-shot model architecture search through hypernetworks
– start-page: 3333
  year: 2021
  ident: 10.7717/peerj-cs.2012/ref-43
  article-title: Weighted sparsity constraint tensor factorization for hyperspectral unmixing
  doi: 10.1109/IGARSS47720.2021.9553154
– start-page: 1895
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-8
  article-title: More is Less: a more complicated network with less inference complexity
  doi: 10.1109/CVPR.2017.205
– start-page: 5302
  year: 2023
  ident: 10.7717/peerj-cs.2012/ref-16
  article-title: CP3: Channel pruning plug-in for point-based networks
  doi: 10.1109/CVPR52729.2023.00513
– start-page: 289
  year: 2018
  ident: 10.7717/peerj-cs.2012/ref-41
  article-title: Netadapt: platform-aware neural network adaptation for mobile applications
  doi: 10.1007/978-3-030-01249-6_18
– start-page: 1251
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-7
  article-title: Xception: deep learning with depthwise separable convolutions
  doi: 10.1109/CVPR.2017.195
– year: 2021
  ident: 10.7717/peerj-cs.2012/ref-15
  article-title: What do compressed deep neural networks forget?
– start-page: 258
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-17
  article-title: Fast convolution algorithm for convolutional neural networks
  doi: 10.1109/AICAS.2019.8771531
– start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-19
  article-title: Pruning filters for efficient convNets
– start-page: 293
  year: 2019
  ident: 10.7717/peerj-cs.2012/ref-28
  article-title: Evolving deep neural networks
  doi: 10.1016/B978-0-12-815480-9.00015-3
– start-page: 4299
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-26
  article-title: Domain-adaptive deep network compression
  doi: 10.1109/ICCV.2017.460
– start-page: 1273
  year: 2017
  ident: 10.7717/peerj-cs.2012/ref-27
  article-title: Dropout: a simple way to prevent neural networks from overfitting
SSID ssj0001511119
Score 2.2749603
Snippet Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2012
SubjectTerms Algorithms and Analysis of Algorithms
Analysis
Artificial Intelligence
Computational linguistics
Computer Vision
Edge computing platform
Electric transformers
Embedded Computing
Graph attention network
Language processing
Model compression
Natural language interfaces
Neural Networks
Progressive channel pruning
Self-attention mechanism
Transformer
Title GAT TransPruning: progressive channel pruning strategy combining graph attention network and transformer
URI https://www.ncbi.nlm.nih.gov/pubmed/38686001
https://www.proquest.com/docview/3049722223
https://pubmed.ncbi.nlm.nih.gov/PMC11057567
https://doaj.org/article/309bbe16767a4a7aa7e6fef106f05958
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI6gXLjwfgyUVUAILoy688hMwm2Lui1IVFVppd4iJ-NpQdVstQ8k_j12MrvaEUJcuCY-JLETf06cz0K8haJUhYcsdSVAWhbjcQomM6nh-Nq1DhH5HvLrcXV0Xn65UBdbpb44JyzSA8eF2yvGxjnMmFcMSqgBaqxabCmSaQkZqPDNl3zeVjAV_wfzUWAiqWZNIcveDeL8R-qZoTvLB04ocPX_eSJvuaRhuuSW_5k-EPd64CgnccAPxS3sHon766IMst-jj8XV4eRMBg90Ml_xpcdHGXKwON31J0r-6NvhNbWFTrmI7LS_JFmeC8UiZOCwlsy7GTIhZRczxSV0jVyucS7On4jz6cHZp6O0L6eQeqXUMs0yAKUZgdEKeqw0tB4aR-cboNKVakp-NFUmV3mDhCxMpVuK_nzVlA1tbFc8FTvdrMPnQjoP3jCzGKqirHQJytWuBWUa0jhol4gP6_W1vuca55IX15ZiDlaHDeqwfmFZHYl4txG_iSQbfxPcZ2VthJgbOzSQxdjeYuy_LCYRb1jVltkvOk6vuYTVYmE_fzu1E82UjLnJSeh9L9TOaOQ03_hbgebPhFkDyd2BJG1PP-h-vbYoy12c09bhbLWw_MBZ54zPEvEsWthmYoWuNEPRROiB7Q1mPuzpvl8FdvCMKzerqn7xP9bqpbibE4rj57O82BU7y_kKXxEKW7qRuK2nhyNxZ__g-OR0FLbfbz3DN8U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAT+TransPruning%3A+progressive+channel+pruning+strategy+combining+graph+attention+network+and+transformer&rft.jtitle=PeerJ.+Computer+science&rft.au=Lin%2C+Yu-Chen&rft.au=Wang%2C+Chia-Hung&rft.au=Lin%2C+Yu-Cheng&rft.date=2024-04-23&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2012&rft_id=info:doi/10.7717%2Fpeerj-cs.2012&rft_id=info%3Apmid%2F38686001&rft.externalDocID=38686001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon