GAT TransPruning: progressive channel pruning strategy combining graph attention network and transformer
Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing...
Saved in:
Published in | PeerJ. Computer science Vol. 10; p. e2012 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
23.04.2024
PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio. |
---|---|
AbstractList | Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio. Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio.Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on edge computing platforms is often subject to many constraints because of their resource requirements. These models require powerful computing platforms with a high memory capacity to store and process the numerous parameters and activations, which makes it challenging to deploy these large-scale models directly. Therefore, model compression techniques are crucial role in making these models more practical and accessible. In this article, a progressive channel pruning strategy combining graph attention network and transformer, namely GAT TransPruning, is proposed, which uses the graph attention networks (GAT) and the attention of transformer mechanism to determine the channel-to-channel relationship in large networks. This approach ensures that the network maintains its critical functional connections and optimizes the trade-off between model size and performance. In this study, VGG-16, VGG-19, ResNet-18, ResNet-34, and ResNet-50 are used as large-scale network models with the CIFAR-10 and CIFAR-100 datasets for verification and quantitative analysis of the proposed progressive channel pruning strategy. The experimental results reveal that the accuracy rate only drops by 6.58% when the channel pruning rate is 89% for VGG-19/CIFAR-100. In addition, the lightweight model inference speed is 9.10 times faster than that of the original large model. In comparison with the traditional channel pruning schemes, the proposed progressive channel pruning strategy based on the GAT and Transformer cannot only cut out the insignificant weight channels and effectively reduce the model size, but also ensure that the performance drop rate of its lightweight model is still the smallest even under high pruning ratio. |
ArticleNumber | e2012 |
Audience | Academic |
Author | Lin, Yu-Cheng Wang, Chia-Hung Lin, Yu-Chen |
Author_xml | – sequence: 1 givenname: Yu-Chen surname: Lin fullname: Lin, Yu-Chen organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan – sequence: 2 givenname: Chia-Hung surname: Wang fullname: Wang, Chia-Hung organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan – sequence: 3 givenname: Yu-Cheng surname: Lin fullname: Lin, Yu-Cheng organization: Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38686001$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkFv1DAQhSNUREvpkSuKxAUOWewkthMuaFVBWakSCJazNXEmWS-JvdhOof8eZ7dFXVTnYOv5zZcZ-T1PTow1mCQvKVkIQcW7HaLbZsovckLzJ8lZXgiesbrOTx6cT5ML77eEEMpoXPWz5LSoeMWjcJZsrpbrdO3A-K9uMtr079Ods71D7_UNpmoDxuAQtf1l6oODgP1tquzY6L3UO9htUggBTdDWpAbDb-t-pmDaNMzgzroR3YvkaQeDx4u7_Tz58enj-vJzdv3lanW5vM4UYyxklAKwSpSUI-8U8go6BW3TtgjIKs7akpSsYnXO8haJKGtedSWpFW_LNmeiKc6T1YHbWtjKndMjuFtpQcu9YF0vwQWtBpQFqZsGKRdcQAkCQMR_YkcJ7wirWRVZHw6s3dSM2Ko4oYPhCHp8Y_RG9vZGUkqYYFxEwps7grO_JvRBjtorHAYwaCcfWyhrkcdVROvrg7WH2Js2nY1INdvlsqJFled1Pre0eMQVvxZHrWI6Oh31o4K3RwXRE_BP6GHyXq6-fzv2vno4779B7-MSDcXBoJz13mEnlQ4wP3vsQg-SEjnnUu5zKZWXcy5jVfZf1T34cf9fNaPnBw |
CitedBy_id | crossref_primary_10_7717_peerj_cs_2625 crossref_primary_10_7717_peerj_cs_2560 |
Cites_doi | 10.1109/CVPR.2017.98 10.1109/CVPR52729.2023.02333 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00289 10.1109/CVPR.2015.7298594 10.1109/TNNLS.2020.2979517 10.1109/CVPR.2019.00290 10.1109/DCC.2019.00075 10.1109/TIT.2022.3142846 10.1109/CVPR52729.2023.01544 10.1109/TPAMI.2021.3066410 10.1109/TNNLS.2020.3045153 10.1109/ICCV.2017.541 10.1109/CVPR42600.2020.00160 10.1007/978-3-030-01237-3_12 10.1109/ICCV.2017.155 10.1109/JETCAS.2019.2952137 10.1109/CVPR.2018.00474 10.1016/j.neucom.2021.07.034 10.1109/CVPR.2019.00447 10.1109/ACCESS.2021.3126685 10.1007/978-3-030-01234-2_48 10.1109/IGARSS47720.2021.9553154 10.1109/CVPR.2017.205 10.1109/CVPR52729.2023.00513 10.1007/978-3-030-01249-6_18 10.1109/CVPR.2017.195 10.1109/AICAS.2019.8771531 10.1016/B978-0-12-815480-9.00015-3 10.1109/ICCV.2017.460 |
ContentType | Journal Article |
Copyright | 2024 Lin et al. COPYRIGHT 2024 PeerJ. Ltd. 2024 Lin et al. 2024 Lin et al. |
Copyright_xml | – notice: 2024 Lin et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Lin et al. 2024 Lin et al. |
DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.2012 |
DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_309bbe16767a4a7aa7e6fef106f05958 PMC11057567 A813822928 38686001 10_7717_peerj_cs_2012 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan, R.O.C. grantid: 112-2218-E-035-001 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM H13 NPM PQGLB PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c555t-11aa587416e6fce68afcadbddeae5865d4045859252de074968f409c6d4d257b3 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:07:52 EDT 2025 Thu Aug 21 18:34:21 EDT 2025 Fri Jul 11 15:53:07 EDT 2025 Tue Jun 17 22:01:32 EDT 2025 Tue Jun 10 21:01:00 EDT 2025 Fri Jun 27 05:26:41 EDT 2025 Mon Jul 21 05:57:46 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Tue Jul 01 04:11:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-attention mechanism Transformer Progressive channel pruning Graph attention network Model compression Edge computing platform |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c555t-11aa587416e6fce68afcadbddeae5865d4045859252de074968f409c6d4d257b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/309bbe16767a4a7aa7e6fef106f05958 |
PMID | 38686001 |
PQID | 3049722223 |
PQPubID | 23479 |
PageCount | e2012 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_309bbe16767a4a7aa7e6fef106f05958 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11057567 proquest_miscellaneous_3049722223 gale_infotracmisc_A813822928 gale_infotracacademiconefile_A813822928 gale_incontextgauss_ISR_A813822928 pubmed_primary_38686001 crossref_citationtrail_10_7717_peerj_cs_2012 crossref_primary_10_7717_peerj_cs_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-23 |
PublicationDateYYYYMMDD | 2024-04-23 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2024 |
Publisher | PeerJ. Ltd PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
References | Huang (10.7717/peerj-cs.2012/ref-16) 2023 Lin (10.7717/peerj-cs.2012/ref-23) 2017; 30 Bagherinezhad (10.7717/peerj-cs.2012/ref-2) 2017 Yang (10.7717/peerj-cs.2012/ref-41) 2018 Basha (10.7717/peerj-cs.2012/ref-3) 2024; 573 Wang (10.7717/peerj-cs.2012/ref-38) 2021; 461 Sandler (10.7717/peerj-cs.2012/ref-30) 2018 Chiliang (10.7717/peerj-cs.2012/ref-6) 2019 Lin (10.7717/peerj-cs.2012/ref-22) 2019 Veličković (10.7717/peerj-cs.2012/ref-36) 2017 Chollet (10.7717/peerj-cs.2012/ref-7) 2017 Zhao (10.7717/peerj-cs.2012/ref-47) 2019 Hooker (10.7717/peerj-cs.2012/ref-15) 2021 Wang (10.7717/peerj-cs.2012/ref-39) 2020 Miikkulainen (10.7717/peerj-cs.2012/ref-28) 2019 Srivastava (10.7717/peerj-cs.2012/ref-32) 2014; 1 Yu (10.7717/peerj-cs.2012/ref-42) 2023 Dong (10.7717/peerj-cs.2012/ref-8) 2017 Wen (10.7717/peerj-cs.2012/ref-40) 2016; 29 Krizhevsky (10.7717/peerj-cs.2012/ref-18) 2009 Zhang (10.7717/peerj-cs.2012/ref-45) 2022; 33 McMahan (10.7717/peerj-cs.2012/ref-27) 2017 Tan (10.7717/peerj-cs.2012/ref-34) 2019 He (10.7717/peerj-cs.2012/ref-12) 2019 Li (10.7717/peerj-cs.2012/ref-19) 2017 Vaswani (10.7717/peerj-cs.2012/ref-35) 2017; 30 Yuan (10.7717/peerj-cs.2012/ref-43) 2021 He (10.7717/peerj-cs.2012/ref-11) 2018 Masana (10.7717/peerj-cs.2012/ref-26) 2017 Wang (10.7717/peerj-cs.2012/ref-37) 2019 Zhang (10.7717/peerj-cs.2012/ref-44) 2022; 88 Fang (10.7717/peerj-cs.2012/ref-9) 2023 Kim (10.7717/peerj-cs.2012/ref-17) 2019 Zhang (10.7717/peerj-cs.2012/ref-46) 2018 Brock (10.7717/peerj-cs.2012/ref-4) 2018 He (10.7717/peerj-cs.2012/ref-14) 2017 Szegedy (10.7717/peerj-cs.2012/ref-33) 2015 Zheng (10.7717/peerj-cs.2012/ref-48) 2024; 569 Ashok (10.7717/peerj-cs.2012/ref-1) 2017 Liu (10.7717/peerj-cs.2012/ref-24) 2022; 44 Luo (10.7717/peerj-cs.2012/ref-25) 2017 Lin (10.7717/peerj-cs.2012/ref-21) 2020 He (10.7717/peerj-cs.2012/ref-13) 2016 Lillicrap (10.7717/peerj-cs.2012/ref-20) 2015 Gong (10.7717/peerj-cs.2012/ref-10) 2014 Chen (10.7717/peerj-cs.2012/ref-5) 2021; 32 Sekanina (10.7717/peerj-cs.2012/ref-31) 2021; 9 Moon (10.7717/peerj-cs.2012/ref-29) 2019; 9 |
References_xml | – volume: 573 start-page: 1-10 issue: 7 year: 2024 ident: 10.7717/peerj-cs.2012/ref-3 article-title: A novel and efficient model pruning method for deep convolutional neural networks by evaluating the direct and indirect effects of filters publication-title: Neurocomputing – start-page: 860 year: 2017 ident: 10.7717/peerj-cs.2012/ref-2 article-title: LCNN: Lookup-based convolutional neural network doi: 10.1109/CVPR.2017.98 – start-page: 24355 year: 2023 ident: 10.7717/peerj-cs.2012/ref-42 article-title: X-pruner: explainable pruning for vision transformers doi: 10.1109/CVPR52729.2023.02333 – start-page: 770 year: 2016 ident: 10.7717/peerj-cs.2012/ref-13 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 – start-page: 2780 year: 2019 ident: 10.7717/peerj-cs.2012/ref-47 article-title: Variational convolutional neural network pruning doi: 10.1109/CVPR.2019.00289 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.2012/ref-33 article-title: Going deeper with convolutions doi: 10.1109/CVPR.2015.7298594 – volume: 32 start-page: 799 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2012/ref-5 article-title: Dynamical channel pruning by conditional accuracy change for deep neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.2979517 – start-page: 2790 year: 2019 ident: 10.7717/peerj-cs.2012/ref-22 article-title: Towards optimal structured CNN pruning via generative adversarial learning doi: 10.1109/CVPR.2019.00290 – volume: 569 start-page: 1-10 issue: 7 year: 2024 ident: 10.7717/peerj-cs.2012/ref-48 article-title: Deep model compression based on the training history publication-title: Neurocomputing – start-page: 563 year: 2019 ident: 10.7717/peerj-cs.2012/ref-6 article-title: Accelerating convolutional neural networks with dynamic channel pruning doi: 10.1109/DCC.2019.00075 – year: 2009 ident: 10.7717/peerj-cs.2012/ref-18 article-title: Learning multiple layers of features from tiny images – volume: 88 start-page: 2551 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2012/ref-44 article-title: Sparse nonnegative tensor factorization and completion with noisy observations publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2022.3142846 – start-page: 16091 year: 2023 ident: 10.7717/peerj-cs.2012/ref-9 article-title: Depgraph: towards any structural pruning doi: 10.1109/CVPR52729.2023.01544 – volume: 44 start-page: 4035 issue: 8 year: 2022 ident: 10.7717/peerj-cs.2012/ref-24 article-title: Discrimination-aware network pruning for deep model compression publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3066410 – volume: 33 start-page: 2259 issue: 5 year: 2022 ident: 10.7717/peerj-cs.2012/ref-45 article-title: StructADMM: achieving ultrahigh efficiency in structured pruning for DNNs publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3045153 – start-page: 5068 year: 2017 ident: 10.7717/peerj-cs.2012/ref-25 article-title: ThiNet: a filter level pruning method for deep neural network compression doi: 10.1109/ICCV.2017.541 – start-page: 1526 year: 2020 ident: 10.7717/peerj-cs.2012/ref-21 article-title: HRank: filter pruning using high-rank feature map doi: 10.1109/CVPR42600.2020.00160 – start-page: 184 year: 2018 ident: 10.7717/peerj-cs.2012/ref-46 article-title: A systematic DNN weight pruning framework using alternating direction method of multipliers doi: 10.1007/978-3-030-01237-3_12 – start-page: 1 year: 2017 ident: 10.7717/peerj-cs.2012/ref-1 article-title: N2N learning: network to network compression via policy gradient reinforcement learning – start-page: 1 year: 2017 ident: 10.7717/peerj-cs.2012/ref-36 article-title: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection – start-page: 1398 year: 2017 ident: 10.7717/peerj-cs.2012/ref-14 article-title: Channel pruning for accelerating very deep neural networks doi: 10.1109/ICCV.2017.155 – start-page: 6105 year: 2019 ident: 10.7717/peerj-cs.2012/ref-34 article-title: Efficientnet: rethinking model scaling for convolutional neural networks – volume: 30 start-page: 6000 year: 2017 ident: 10.7717/peerj-cs.2012/ref-35 article-title: Attention is all you need publication-title: Neural Information Processing Systems – volume: 9 start-page: 735 issue: 4 year: 2019 ident: 10.7717/peerj-cs.2012/ref-29 article-title: Memory-reduced network stacking for edge-level CNN architecture with structured weight pruning publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems doi: 10.1109/JETCAS.2019.2952137 – start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2012/ref-39 article-title: Neural pruning via growing regularization – start-page: 4510 year: 2018 ident: 10.7717/peerj-cs.2012/ref-30 article-title: MobileNetV2: inverted residuals and linear bottlenecks doi: 10.1109/CVPR.2018.00474 – start-page: 6566 year: 2019 ident: 10.7717/peerj-cs.2012/ref-37 article-title: Structured pruning in the kroneckerfactored eigenbasis – volume: 461 start-page: 41 year: 2021 ident: 10.7717/peerj-cs.2012/ref-38 article-title: Filter pruning with a feature map entropy importance criterion for convolution neural networks compressing publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.034 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.2012/ref-20 article-title: Continuous control with deep reinforcement learning – volume: 29 start-page: 2074 year: 2016 ident: 10.7717/peerj-cs.2012/ref-40 article-title: Learning structured sparsity in deep neural networks publication-title: Neural Information Processing Systems – year: 2014 ident: 10.7717/peerj-cs.2012/ref-10 article-title: Compressing deep convolutional networks using vector quantization – start-page: 4335 year: 2019 ident: 10.7717/peerj-cs.2012/ref-12 article-title: Filter pruning via geometric median for deep convolutional neural networks acceleration doi: 10.1109/CVPR.2019.00447 – volume: 9 start-page: 151337 year: 2021 ident: 10.7717/peerj-cs.2012/ref-31 article-title: Neural architecture search and hardware accelerator co-search: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3126685 – volume: 1 start-page: 1929 year: 2014 ident: 10.7717/peerj-cs.2012/ref-32 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 30 start-page: 2181 year: 2017 ident: 10.7717/peerj-cs.2012/ref-23 article-title: Runtime neural pruning publication-title: Neural Information Processing Systems – start-page: 784 year: 2018 ident: 10.7717/peerj-cs.2012/ref-11 article-title: AMC: AutoML for model compression and acceleration on mobile devices doi: 10.1007/978-3-030-01234-2_48 – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.2012/ref-4 article-title: Smash: one-shot model architecture search through hypernetworks – start-page: 3333 year: 2021 ident: 10.7717/peerj-cs.2012/ref-43 article-title: Weighted sparsity constraint tensor factorization for hyperspectral unmixing doi: 10.1109/IGARSS47720.2021.9553154 – start-page: 1895 year: 2017 ident: 10.7717/peerj-cs.2012/ref-8 article-title: More is Less: a more complicated network with less inference complexity doi: 10.1109/CVPR.2017.205 – start-page: 5302 year: 2023 ident: 10.7717/peerj-cs.2012/ref-16 article-title: CP3: Channel pruning plug-in for point-based networks doi: 10.1109/CVPR52729.2023.00513 – start-page: 289 year: 2018 ident: 10.7717/peerj-cs.2012/ref-41 article-title: Netadapt: platform-aware neural network adaptation for mobile applications doi: 10.1007/978-3-030-01249-6_18 – start-page: 1251 year: 2017 ident: 10.7717/peerj-cs.2012/ref-7 article-title: Xception: deep learning with depthwise separable convolutions doi: 10.1109/CVPR.2017.195 – year: 2021 ident: 10.7717/peerj-cs.2012/ref-15 article-title: What do compressed deep neural networks forget? – start-page: 258 year: 2019 ident: 10.7717/peerj-cs.2012/ref-17 article-title: Fast convolution algorithm for convolutional neural networks doi: 10.1109/AICAS.2019.8771531 – start-page: 1 year: 2017 ident: 10.7717/peerj-cs.2012/ref-19 article-title: Pruning filters for efficient convNets – start-page: 293 year: 2019 ident: 10.7717/peerj-cs.2012/ref-28 article-title: Evolving deep neural networks doi: 10.1016/B978-0-12-815480-9.00015-3 – start-page: 4299 year: 2017 ident: 10.7717/peerj-cs.2012/ref-26 article-title: Domain-adaptive deep network compression doi: 10.1109/ICCV.2017.460 – start-page: 1273 year: 2017 ident: 10.7717/peerj-cs.2012/ref-27 article-title: Dropout: a simple way to prevent neural networks from overfitting |
SSID | ssj0001511119 |
Score | 2.2749603 |
Snippet | Recently, large-scale artificial intelligence models with billions of parameters have achieved good results in experiments, but their practical deployment on... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2012 |
SubjectTerms | Algorithms and Analysis of Algorithms Analysis Artificial Intelligence Computational linguistics Computer Vision Edge computing platform Electric transformers Embedded Computing Graph attention network Language processing Model compression Natural language interfaces Neural Networks Progressive channel pruning Self-attention mechanism Transformer |
Title | GAT TransPruning: progressive channel pruning strategy combining graph attention network and transformer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38686001 https://www.proquest.com/docview/3049722223 https://pubmed.ncbi.nlm.nih.gov/PMC11057567 https://doaj.org/article/309bbe16767a4a7aa7e6fef106f05958 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI6gXLjwfgyUVUAILoy688hMwm2Lui1IVFVppd4iJ-NpQdVstQ8k_j12MrvaEUJcuCY-JLETf06cz0K8haJUhYcsdSVAWhbjcQomM6nh-Nq1DhH5HvLrcXV0Xn65UBdbpb44JyzSA8eF2yvGxjnMmFcMSqgBaqxabCmSaQkZqPDNl3zeVjAV_wfzUWAiqWZNIcveDeL8R-qZoTvLB04ocPX_eSJvuaRhuuSW_5k-EPd64CgnccAPxS3sHon766IMst-jj8XV4eRMBg90Ml_xpcdHGXKwON31J0r-6NvhNbWFTrmI7LS_JFmeC8UiZOCwlsy7GTIhZRczxSV0jVyucS7On4jz6cHZp6O0L6eQeqXUMs0yAKUZgdEKeqw0tB4aR-cboNKVakp-NFUmV3mDhCxMpVuK_nzVlA1tbFc8FTvdrMPnQjoP3jCzGKqirHQJytWuBWUa0jhol4gP6_W1vuca55IX15ZiDlaHDeqwfmFZHYl4txG_iSQbfxPcZ2VthJgbOzSQxdjeYuy_LCYRb1jVltkvOk6vuYTVYmE_fzu1E82UjLnJSeh9L9TOaOQ03_hbgebPhFkDyd2BJG1PP-h-vbYoy12c09bhbLWw_MBZ54zPEvEsWthmYoWuNEPRROiB7Q1mPuzpvl8FdvCMKzerqn7xP9bqpbibE4rj57O82BU7y_kKXxEKW7qRuK2nhyNxZ__g-OR0FLbfbz3DN8U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAT+TransPruning%3A+progressive+channel+pruning+strategy+combining+graph+attention+network+and+transformer&rft.jtitle=PeerJ.+Computer+science&rft.au=Lin%2C+Yu-Chen&rft.au=Wang%2C+Chia-Hung&rft.au=Lin%2C+Yu-Cheng&rft.date=2024-04-23&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2012&rft_id=info:doi/10.7717%2Fpeerj-cs.2012&rft_id=info%3Apmid%2F38686001&rft.externalDocID=38686001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |