Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up‐regulated in human cancers. In this...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 56; no. 2; pp. 622 - 631 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2012
Wiley Wolters Kluwer Health, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up‐regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up‐regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up‐regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up‐regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri‐methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2‐knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well‐characterized tumor‐suppressor miRNAs, such as miR‐139‐5p, miR‐125b, miR‐101, let‐7c, and miR‐200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2‐silenced miRNAs in modulating cell motility and metastasis‐related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Conclusion: Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. (HEPATOLOGY 2012) |
---|---|
AbstractList | Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs.UNLABELLEDEpigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs.Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis.CONCLUSIONOur study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Conclusion: Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. (HEPATOLOGY 2012) Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. |
Author | Wong, Chun-Ming Fan, Dorothy Ngo-Yin Lee, Joyce Man-Fong Wong, Carmen Chak-Lui Tsang, Felice Hoching Ng, Irene Oi-Lin Au, Sandy Leung-Kuen |
Author_xml | – sequence: 1 givenname: Sandy Leung-Kuen surname: Au fullname: Au, Sandy Leung-Kuen organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 2 givenname: Carmen Chak-Lui surname: Wong fullname: Wong, Carmen Chak-Lui organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 3 givenname: Joyce Man-Fong surname: Lee fullname: Lee, Joyce Man-Fong organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 4 givenname: Dorothy Ngo-Yin surname: Fan fullname: Fan, Dorothy Ngo-Yin organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 5 givenname: Felice Hoching surname: Tsang fullname: Tsang, Felice Hoching organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 6 givenname: Irene Oi-Lin surname: Ng fullname: Ng, Irene Oi-Lin email: iolng@hkucc.hku.hk organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong – sequence: 7 givenname: Chun-Ming surname: Wong fullname: Wong, Chun-Ming email: jackwong@pathology.hku.hk organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26255723$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22370893$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFPFDEUhRuDkQV98A-YJsZEHgY67bZ35hHIChJAgxp9azpDhy12pmM7oyy_3rvuAgmJmrRpH75z2nvu3SIbXegsIS9ztpszxvfmtt_lUkH5hExyySETQrINMmEcWFbmotwkWyldM8bKKS-ekU3OBbCiFBNyO-vmpqttpKGhtzYNls5DG3y4opza3l3Zzg6uNt4vaHLeIppoO_rB9d7SYWxDpGns-2hTwmvr6hguzvcTHQLtIzqhoXc_0b9ePdPawSRcLj0nTxvjk32xPrfJl3ezz4fH2emHo_eH-6dZLaUsswa4EjZnUgmoWMMhn6oSal43UClRFSUYWTNVsOISRFNJUzFbTlljGYCY4t4mb1e--J8fI5aoW5dq673pbBiTzgGUAo7R_B9lgjGQRbF0ff0IvQ5j7LAQNFSq4LKEAqlXa2qsWnup--haExf6rgEIvFkDJmHKTcSUXHrgFJcS-JLbWXGYb0rRNvdIzvRyCDQOgf4zBMjuPWJrN5jBhW6Ixvl_KX5hixd_t9bHs493imylcDgyN_cKE79rBQKk_np-pL9dHIji5NOZPhG_AXpN0R8 |
CODEN | HPTLD9 |
CitedBy_id | crossref_primary_10_1007_s12072_016_9743_4 crossref_primary_10_1158_0008_5472_CAN_18_1659 crossref_primary_10_1158_1535_7163_MCT_14_0971 crossref_primary_10_1007_s13277_015_4410_2 crossref_primary_10_2144_fsoa_2019_0017 crossref_primary_10_5858_arpa_2012_0525_OA crossref_primary_10_1002_hep_26083 crossref_primary_10_3390_ijms19123978 crossref_primary_10_1038_cddis_2013_197 crossref_primary_10_1038_s41389_020_00284_w crossref_primary_10_1080_01635581_2016_1180410 crossref_primary_10_3892_ol_2017_6312 crossref_primary_10_1097_CAD_0000000000000746 crossref_primary_10_1016_j_jhepr_2020_100167 crossref_primary_10_4137_BMI_S29512 crossref_primary_10_1158_1541_7786_MCR_14_0034 crossref_primary_10_1186_s12935_020_01622_z crossref_primary_10_3390_v10100531 crossref_primary_10_1002_cnr2_2152 crossref_primary_10_1007_s11434_014_0273_y crossref_primary_10_1016_j_jhep_2014_05_015 crossref_primary_10_3389_fphys_2018_01019 crossref_primary_10_1186_1756_9966_32_96 crossref_primary_10_1038_s41597_023_02493_5 crossref_primary_10_32604_biocell_2024_055505 crossref_primary_10_1016_j_bbagrm_2016_03_005 crossref_primary_10_1016_j_jcmgh_2018_09_005 crossref_primary_10_1016_j_bmcl_2016_11_080 crossref_primary_10_3389_fonc_2021_691115 crossref_primary_10_4155_fsoa_2019_0017 crossref_primary_10_1016_j_yexcr_2020_112277 crossref_primary_10_1093_carcin_bgs381 crossref_primary_10_1002_smll_201703152 crossref_primary_10_1016_j_gendis_2020_11_014 crossref_primary_10_1016_j_prp_2018_08_005 crossref_primary_10_1111_hepr_12386 crossref_primary_10_1186_s12951_024_02349_z crossref_primary_10_1186_1476_4598_13_124 crossref_primary_10_2217_epi_2016_0061 crossref_primary_10_1016_j_yexcr_2014_09_013 crossref_primary_10_1155_2016_3956485 crossref_primary_10_1016_j_biocel_2014_05_003 crossref_primary_10_3390_livers2030017 crossref_primary_10_3390_cells8091015 crossref_primary_10_3390_diseases5010011 crossref_primary_10_1038_s41388_017_0057_3 crossref_primary_10_1093_nar_gkac1251 crossref_primary_10_3389_fimmu_2024_1400744 crossref_primary_10_1097_MD_0000000000027117 crossref_primary_10_3892_ijo_2020_5047 crossref_primary_10_1111_his_12436 crossref_primary_10_1016_j_cmi_2015_12_024 crossref_primary_10_3892_ol_2017_6351 crossref_primary_10_1002_jcp_27080 crossref_primary_10_1371_journal_pone_0123987 crossref_primary_10_1136_gutjnl_2015_311292 crossref_primary_10_3748_wjg_v27_i36_6004 crossref_primary_10_18632_oncotarget_15531 crossref_primary_10_1517_14728222_2014_941285 crossref_primary_10_18632_oncotarget_3969 crossref_primary_10_1016_j_bbcan_2022_188806 crossref_primary_10_1016_j_ejphar_2017_09_023 crossref_primary_10_3390_medicina58020155 crossref_primary_10_18632_oncotarget_25484 crossref_primary_10_1096_fj_14_261537 crossref_primary_10_1128_mbio_00245_24 crossref_primary_10_1093_nar_gkv574 crossref_primary_10_1042_CS20190666 crossref_primary_10_1007_s11684_013_0253_7 crossref_primary_10_1016_j_bbrc_2015_05_062 crossref_primary_10_1186_s12935_023_03002_9 crossref_primary_10_1002_iub_2423 crossref_primary_10_3390_cancers13061333 crossref_primary_10_2147_OTT_S264600 crossref_primary_10_1007_s00204_014_1435_z crossref_primary_10_1002_path_4688 crossref_primary_10_1002_cam4_70093 crossref_primary_10_1038_nrgastro_2017_169 crossref_primary_10_3390_ijms25020975 crossref_primary_10_3892_or_2012_2105 crossref_primary_10_3892_ol_2019_11031 crossref_primary_10_18632_oncotarget_19597 crossref_primary_10_4254_wjh_v16_i5_703 crossref_primary_10_18632_oncotarget_2435 crossref_primary_10_1093_jmcb_mjw010 crossref_primary_10_1186_s40164_023_00405_2 crossref_primary_10_1186_s13046_023_02855_2 crossref_primary_10_5306_wjco_v7_i2_135 crossref_primary_10_1007_s00109_016_1442_z crossref_primary_10_1186_s41065_021_00212_x crossref_primary_10_1007_s40495_015_0016_z crossref_primary_10_4254_wjh_v9_i36_1305 crossref_primary_10_4161_cc_26539 crossref_primary_10_1038_s41388_023_02646_1 crossref_primary_10_1074_jbc_M115_658237 crossref_primary_10_3892_or_2014_3032 crossref_primary_10_1002_pros_22652 crossref_primary_10_1002_hep_31141 crossref_primary_10_1038_ncomms9494 crossref_primary_10_3892_or_2015_4467 crossref_primary_10_1016_j_cbi_2021_109530 crossref_primary_10_1186_s12943_018_0847_4 crossref_primary_10_1369_0022155413503662 crossref_primary_10_3390_ijms241914653 crossref_primary_10_1016_j_abb_2019_01_023 crossref_primary_10_1016_j_pharmthera_2014_09_005 crossref_primary_10_3390_genes9030137 crossref_primary_10_18632_oncoscience_420 crossref_primary_10_18632_oncotarget_1902 crossref_primary_10_18632_oncotarget_5724 crossref_primary_10_18632_oncotarget_6135 crossref_primary_10_1186_s13046_017_0670_6 crossref_primary_10_1016_j_omtn_2021_10_004 crossref_primary_10_3390_cancers11121906 crossref_primary_10_1002_hep_28304 crossref_primary_10_1007_s13277_016_4999_9 crossref_primary_10_1002_jcb_25110 crossref_primary_10_3390_cancers13030514 crossref_primary_10_1002_1878_0261_12038 crossref_primary_10_12688_f1000research_6946_1 crossref_primary_10_3390_ijms19020459 crossref_primary_10_3390_cancers12051243 crossref_primary_10_1038_cdd_2017_34 crossref_primary_10_1038_s41419_018_0286_6 crossref_primary_10_1016_j_canlet_2018_08_024 crossref_primary_10_1038_cdd_2014_142 crossref_primary_10_1016_j_cmi_2016_07_019 crossref_primary_10_1186_s12935_018_0538_7 crossref_primary_10_3390_ijms22063137 crossref_primary_10_3389_fgene_2022_957059 crossref_primary_10_3390_ijms21228617 crossref_primary_10_3389_fimmu_2021_661204 crossref_primary_10_1016_j_tranon_2020_01_002 crossref_primary_10_3892_mmr_2017_7828 crossref_primary_10_1016_j_jhep_2017_08_016 crossref_primary_10_3390_cancers12071781 crossref_primary_10_1186_1752_0509_7_104 crossref_primary_10_1016_j_toxlet_2015_10_016 crossref_primary_10_1517_14728222_2012_714774 crossref_primary_10_1002_path_4373 crossref_primary_10_1038_s42003_021_02405_6 crossref_primary_10_1038_s41419_020_03381_1 crossref_primary_10_1080_14728222_2019_1696309 crossref_primary_10_1155_2022_4889807 crossref_primary_10_3389_fphar_2015_00236 crossref_primary_10_1021_acs_jmedchem_2c01607 crossref_primary_10_1186_s12885_016_2273_6 crossref_primary_10_3389_fonc_2020_608393 crossref_primary_10_1097_HEP_0000000000001177 crossref_primary_10_3390_cells8121504 crossref_primary_10_4161_cc_23598 crossref_primary_10_1016_j_ctarc_2017_06_003 crossref_primary_10_1517_14728222_2016_1134490 crossref_primary_10_1016_j_canlet_2014_11_003 crossref_primary_10_1016_j_bioorg_2024_107698 crossref_primary_10_3390_jmp3020009 crossref_primary_10_1073_pnas_1210371110 crossref_primary_10_1038_s41598_021_00889_0 crossref_primary_10_1016_j_trecan_2017_01_002 crossref_primary_10_1158_0008_5472_CAN_19_2060 crossref_primary_10_1242_jcs_122275 crossref_primary_10_1002_mc_22955 crossref_primary_10_1007_s13277_015_3199_3 crossref_primary_10_1186_s13046_019_1213_0 crossref_primary_10_1016_j_heliyon_2024_e38562 crossref_primary_10_3892_ol_2015_3759 crossref_primary_10_1007_s00535_013_0909_8 crossref_primary_10_18632_oncotarget_20996 crossref_primary_10_1002_hep_27131 crossref_primary_10_1002_jcp_28540 crossref_primary_10_1186_s12943_020_01172_y crossref_primary_10_1586_17474124_2016_1133291 crossref_primary_10_1002_hep_26720 crossref_primary_10_3390_v12070746 crossref_primary_10_3892_ijmm_2017_3084 crossref_primary_10_1016_j_biopha_2016_04_019 crossref_primary_10_1038_s41419_019_1671_5 crossref_primary_10_1155_2013_924206 crossref_primary_10_1155_2015_473942 crossref_primary_10_1002_hep_30414 crossref_primary_10_1155_2018_8126208 crossref_primary_10_1016_j_bbrc_2013_03_037 crossref_primary_10_4251_wjgo_v14_i9_1856 crossref_primary_10_1002_hep_29683 crossref_primary_10_3390_ijms141224154 crossref_primary_10_3390_cells11050769 crossref_primary_10_3390_biology9050093 crossref_primary_10_1016_j_ajpath_2013_01_045 crossref_primary_10_3390_ijms18020310 crossref_primary_10_1111_cas_12132 crossref_primary_10_1016_j_mam_2012_06_005 crossref_primary_10_1016_j_jhep_2013_10_028 crossref_primary_10_1016_j_lfs_2014_01_073 crossref_primary_10_1016_j_lfs_2019_117215 crossref_primary_10_1016_S1001_9294_13_60013_9 crossref_primary_10_3390_ijms161126000 crossref_primary_10_1371_journal_pone_0068226 crossref_primary_10_1038_onc_2013_53 crossref_primary_10_1038_srep17675 crossref_primary_10_1016_j_canlet_2015_08_008 crossref_primary_10_1038_cddis_2014_256 crossref_primary_10_1016_j_cancergen_2020_04_077 crossref_primary_10_1016_j_cellsig_2023_110730 crossref_primary_10_1111_jvh_14044 crossref_primary_10_1038_s41416_025_02969_8 crossref_primary_10_1016_j_jhep_2017_05_015 crossref_primary_10_1002_hep_27046 crossref_primary_10_1080_1354750X_2019_1691267 crossref_primary_10_1038_cddis_2015_150 crossref_primary_10_4254_wjh_v7_i11_1530 crossref_primary_10_1007_s13258_023_01468_5 crossref_primary_10_1016_j_nbt_2013_01_007 crossref_primary_10_1007_s10585_022_10188_1 crossref_primary_10_3748_wjg_v20_i37_13477 crossref_primary_10_3892_or_2014_3322 |
Cites_doi | 10.1016/j.ccr.2006.04.020 10.1126/science.1165395 10.1371/journal.pone.0002779 10.1111/j.1478-3231.2007.01637.x 10.1038/labinvest.2008.52 10.1016/j.devcel.2006.09.009 10.1093/bioinformatics/btp299 10.1016/j.cell.2006.02.043 10.1158/0008-5472.CAN-05-1318 10.1016/j.molcel.2008.10.016 10.1002/1097-0142(19951215)76:12<2443::AID-CNCR2820761207>3.0.CO;2-F 10.1038/nrg2936 10.1158/0008-5472.CAN-08-2886 10.1002/hep.22836 10.1182/blood-2008-07-170589 10.1038/nm.2100 10.1016/j.cell.2005.01.014 10.1101/gad.1524107 10.1038/nature07228 10.1016/j.molcel.2010.08.013 10.1038/nature07242 10.1002/hep.23904 10.1158/0008-5472.CAN-07-5194 10.1016/j.molmed.2010.04.001 10.1038/sj.bjc.6602531 10.2119/molmed.2010.00103 10.1182/blood-2008-03-147645 10.1016/j.ccr.2011.06.016 10.1126/science.1076997 10.1038/nature01075 10.1016/j.cell.2009.01.002 10.1038/ncb1722 10.3322/canjclin.55.2.74 10.1073/pnas.0803055105 10.1038/onc.2008.333 10.1172/JCI31457 10.1002/hep.21668 10.1053/j.gastro.2010.10.006 10.1016/j.molcel.2004.06.020 10.1016/j.cell.2009.04.021 10.1016/j.humpath.2004.06.012 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Association for the Study of Liver Diseases 2015 INIST-CNRS Copyright © 2012 American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: Copyright © 2012 American Association for the Study of Liver Diseases – notice: 2015 INIST-CNRS – notice: Copyright © 2012 American Association for the Study of Liver Diseases. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 |
DOI | 10.1002/hep.25679 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 631 |
ExternalDocumentID | 3958155691 22370893 26255723 10_1002_hep_25679 HEP25679 ark_67375_WNG_XRB38JSM_J |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council Collaborative Research Fund funderid: HKU 1/06C; HKU 7/CRG/09 – fundername: Loke Yew Professor in Pathology – fundername: Hong Kong Research Grants Council General Research Fund funderid: HKU 778508M; HKU 782411M |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OC 1ZS 1~5 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANHP AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABMAC ABOCM ABPVW ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACLDA ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ACZKN ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AFBPY AFFNX AFGKR AFNMH AFUWQ AFZJQ AGQPQ AHMBA AHQVU AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MEWTI MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RIG RIWAO RJQFR ROL RPZ RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT 1OB 24P AEUQT AFPWT RGB RWI WIN WRC WUP AAYXX CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW ACIJW CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c5559-f7263e105637b0f2714697c2cf7b63b897a5c06808d73fb5ab0e940fe07734773 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Fri Jul 11 00:00:04 EDT 2025 Fri Jul 11 00:30:26 EDT 2025 Sun Jul 13 05:07:01 EDT 2025 Wed Feb 19 01:55:40 EST 2025 Mon Jul 21 09:14:20 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Tue Jul 01 03:33:31 EDT 2025 Wed Jan 22 17:10:53 EST 2025 Thu Apr 24 03:19:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Liver cancer Silence Multiple Gastroenterology Digestive diseases Hepatic disease Suppressor Malignant tumor Liver metastasis Cancer |
Language | English |
License | CC BY 4.0 Copyright © 2012 American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5559-f7263e105637b0f2714697c2cf7b63b897a5c06808d73fb5ab0e940fe07734773 |
Notes | Potential conflict of interest: Nothing to report. istex:5D0B4699892A09B2A65ABEF8823BC537849A7710 ark:/67375/WNG-XRB38JSM-J ArticleID:HEP25679 Loke Yew Professor in Pathology Hong Kong Research Grants Council General Research Fund - No. HKU 778508M; No. HKU 782411M Hong Kong Research Grants Council Collaborative Research Fund - No. HKU 1/06C; No. HKU 7/CRG/09 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.25679 |
PMID | 22370893 |
PQID | 1766825978 |
PQPubID | 996352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1776672942 proquest_miscellaneous_1030075887 proquest_journals_1766825978 pubmed_primary_22370893 pascalfrancis_primary_26255723 crossref_primary_10_1002_hep_25679 crossref_citationtrail_10_1002_hep_25679 wiley_primary_10_1002_hep_25679_HEP25679 istex_primary_ark_67375_WNG_XRB38JSM_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wolters Kluwer Health, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wolters Kluwer Health, Inc |
References | Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71. Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 2005; 65: 8861-8868. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491-502. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050-1063. Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005; 9: 191-211, v. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005-1017. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25: 1991-1993. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105: 13556-13561. Wong CC, Wong CM, Tung EK, Man K, Ng IO. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. HEPATOLOGY 2009; 49: 1583-1594. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011; 20: 187-199. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57-67. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441-450. Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16: 257-267. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695-1699. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69: 1135-1142. Wong CM, Ng IO. Molecular pathogenesis of hepatocellular carcinoma. Liver Int 2008; 28: 160-174. Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011; 17: 12-20. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039-1043. Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 2007; 20: 65-73. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274-7284. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88: 873-882. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-313. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094-2105. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411-6418. Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92: 1754-1758. Wong CC, Wong CM, Ko FC, Chan LK, Ching YP, Yam JW, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One 2008; 3: e2779. Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2: 113-121. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435-443. Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. HEPATOLOGY 2007; 46: 200-208. Chan KL, Guan XY, Ng IO. High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol 2004; 35: 1324-1331. Ng IO, Lai EC, Fan ST, Ng MM, So MK. Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients. Cancer 1995; 76: 2443-2448. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286-294. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58-63. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624-629. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601. Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722. Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 2011; 140: 322-331. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. HEPATOLOGY 2010; 52: 1731-1740. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761-772. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-647. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202-4212. 2009; 25 2009; 69 2010; 16 2006; 11 2010; 39 2002; 298 2006; 9 1995; 76 2009; 113 2005; 65 2008; 105 2008; 32 2008; 10 2002; 419 2011; 12 2008; 3 2008; 322 2011; 17 2009; 136 2009; 49 2009; 137 2005; 120 2007; 117 2005; 9 2004; 15 2008; 27 2008; 28 2004; 35 2003; 2 2011; 20 2008; 68 2008; 88 2005; 92 2008; 455 2008; 112 2007; 20 2011; 140 2007; 21 2005; 55 2010; 52 2007; 46 2006; 125 Baek (R33-26-20241201) 2008; 455 Cao (R44-26-20241201) 2011; 20 Sudo (R40-26-20241201) 2005; 92 Shen (R25-26-20241201) 2008; 32 Calvisi (R38-26-20241201) 2007; 117 Kirmizis (R4-26-20241201) 2003; 2 Garzon (R16-26-20241201) 2009; 113 Wong (R22-26-20241201) 2011; 140 Su (R32-26-20241201) 2009; 69 Huntzinger (R9-26-20241201) 2011; 12 Lee (R7-26-20241201) 2006; 125 Papadopoulos (R23-26-20241201) 2009; 25 Liang (R28-26-20241201) 2010; 52 Varambally (R6-26-20241201) 2002; 419 Varambally (R18-26-20241201) 2008; 322 Chan (R19-26-20241201) 2004; 35 Selbach (R34-26-20241201) 2008; 455 Cao (R26-26-20241201) 2008; 27 Wong (R36-26-20241201) 2005; 65 Lujambio (R15-26-20241201) 2008; 105 Di Leva (R12-26-20241201) 2010; 16 Ng (R20-26-20241201) 1995; 76 Johnson (R30-26-20241201) 2005; 120 Sander (R17-26-20241201) 2008; 112 Gregory (R31-26-20241201) 2008; 10 Cao (R24-26-20241201) 2004; 15 Wong (R35-26-20241201) 2008; 3 Tan (R29-26-20241201) 2007; 21 Wong (R3-26-20241201) 2008; 28 Min (R27-26-20241201) 2010; 16 Parkin (R1-26-20241201) 2005; 55 Cao (R8-26-20241201) 2002; 298 Oh (R37-26-20241201) 2007; 20 Saito (R13-26-20241201) 2006; 9 Sasaki (R5-26-20241201) 2008; 88 Chen (R41-26-20241201) 2007; 46 Su (R42-26-20241201) 2009; 69 Kloosterman (R11-26-20241201) 2006; 11 Kota (R45-26-20241201) 2009; 137 Bartel (R10-26-20241201) 2009; 136 Kozaki (R14-26-20241201) 2008; 68 Cai (R39-26-20241201) 2011; 17 Iliopoulos (R43-26-20241201) 2010; 39 Wong (R21-26-20241201) 2009; 49 |
References_xml | – reference: Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411-6418. – reference: Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094-2105. – reference: Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71. – reference: Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761-772. – reference: Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005-1017. – reference: Wong CC, Wong CM, Tung EK, Man K, Ng IO. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. HEPATOLOGY 2009; 49: 1583-1594. – reference: Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58-63. – reference: Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92: 1754-1758. – reference: Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. HEPATOLOGY 2007; 46: 200-208. – reference: Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108. – reference: Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624-629. – reference: Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441-450. – reference: Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88: 873-882. – reference: Wong CC, Wong CM, Ko FC, Chan LK, Ching YP, Yam JW, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One 2008; 3: e2779. – reference: Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105: 13556-13561. – reference: Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695-1699. – reference: Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435-443. – reference: Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202-4212. – reference: Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050-1063. – reference: Ng IO, Lai EC, Fan ST, Ng MM, So MK. Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients. Cancer 1995; 76: 2443-2448. – reference: Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233. – reference: Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 2007; 20: 65-73. – reference: Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722. – reference: Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274-7284. – reference: Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286-294. – reference: Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 2005; 65: 8861-8868. – reference: Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601. – reference: Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57-67. – reference: Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011; 20: 187-199. – reference: Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491-502. – reference: Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039-1043. – reference: Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 2011; 140: 322-331. – reference: Chan KL, Guan XY, Ng IO. High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol 2004; 35: 1324-1331. – reference: Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2: 113-121. – reference: Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-647. – reference: Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25: 1991-1993. – reference: Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011; 17: 12-20. – reference: Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. HEPATOLOGY 2010; 52: 1731-1740. – reference: Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-313. – reference: Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69: 1135-1142. – reference: Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005; 9: 191-211, v. – reference: Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16: 257-267. – reference: Wong CM, Ng IO. Molecular pathogenesis of hepatocellular carcinoma. Liver Int 2008; 28: 160-174. – reference: Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110. – volume: 125 start-page: 301 year: 2006 end-page: 313 article-title: Control of developmental regulators by Polycomb in human embryonic stem cells publication-title: Cell – volume: 112 start-page: 4202 year: 2008 end-page: 4212 article-title: MYC stimulates EZH2 expression by repression of its negative regulator miR‐26a publication-title: Blood – volume: 27 start-page: 7274 year: 2008 end-page: 7284 article-title: Repression of E‐cadherin by the polycomb group protein EZH2 in cancer publication-title: Oncogene – volume: 419 start-page: 624 year: 2002 end-page: 629 article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer publication-title: Nature – volume: 68 start-page: 2094 year: 2008 end-page: 2105 article-title: Exploration of tumor‐suppressive microRNAs silenced by DNA hypermethylation in oral cancer publication-title: Cancer Res – volume: 9 start-page: 191 year: 2005 end-page: 211 article-title: Epidemiology of hepatocellular carcinoma publication-title: Clin Liver Dis – volume: 455 start-page: 58 year: 2008 end-page: 63 article-title: Widespread changes in protein synthesis induced by microRNAs publication-title: Nature – volume: 88 start-page: 873 year: 2008 end-page: 882 article-title: The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma publication-title: Lab Invest – volume: 32 start-page: 491 year: 2008 end-page: 502 article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency publication-title: Mol Cell – volume: 105 start-page: 13556 year: 2008 end-page: 13561 article-title: A microRNA DNA methylation signature for human cancer metastasis publication-title: Proc Natl Acad Sci U S A – volume: 49 start-page: 1583 year: 2009 end-page: 1594 article-title: Rho‐kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion publication-title: HEPATOLOGY – volume: 65 start-page: 8861 year: 2005 end-page: 8868 article-title: Rho GTPase‐activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma publication-title: Cancer Res – volume: 55 start-page: 74 year: 2005 end-page: 108 article-title: Global cancer statistics, 2002 publication-title: CA Cancer J Clin – volume: 140 start-page: 322 year: 2011 end-page: 331 article-title: The microRNA miR‐139 suppresses metastasis and progression of hepatocellular carcinoma by down‐regulating Rho‐kinase 2 publication-title: Gastroenterology – volume: 117 start-page: 2713 year: 2007 end-page: 2722 article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma publication-title: J Clin Invest – volume: 69 start-page: 1135 year: 2009 end-page: 1142 article-title: MicroRNA‐101, down‐regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity publication-title: Cancer Res – volume: 3 start-page: e2779 year: 2008 article-title: Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma publication-title: PLoS One – volume: 39 start-page: 761 year: 2010 end-page: 772 article-title: Loss of miR‐200 inhibition of Suz12 leads to polycomb‐mediated repression required for the formation and maintenance of cancer stem cells publication-title: Mol Cell – volume: 2 start-page: 113 year: 2003 end-page: 121 article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy publication-title: Mol Cancer Ther – volume: 15 start-page: 57 year: 2004 end-page: 67 article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex publication-title: Mol Cell – volume: 455 start-page: 64 year: 2008 end-page: 71 article-title: The impact of microRNAs on protein output publication-title: Nature – volume: 16 start-page: 286 year: 2010 end-page: 294 article-title: An oncogene‐tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor‐kappaB publication-title: Nat Med – volume: 21 start-page: 1050 year: 2007 end-page: 1063 article-title: Pharmacologic disruption of Polycomb‐repressive complex 2‐mediated gene repression selectively induces apoptosis in cancer cells publication-title: Genes Dev – volume: 136 start-page: 215 year: 2009 end-page: 233 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell – volume: 20 start-page: 65 year: 2007 end-page: 73 article-title: DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation publication-title: Int J Mol Med – volume: 76 start-page: 2443 year: 1995 end-page: 2448 article-title: Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients publication-title: Cancer – volume: 120 start-page: 635 year: 2005 end-page: 647 article-title: RAS is regulated by the let‐7 microRNA family publication-title: Cell – volume: 35 start-page: 1324 year: 2004 end-page: 1331 article-title: High‐throughput tissue microarray analysis of c‐myc activation in chronic liver diseases and hepatocellular carcinoma publication-title: Hum Pathol – volume: 20 start-page: 187 year: 2011 end-page: 199 article-title: Coordinated regulation of polycomb group complexes through microRNAs in cancer publication-title: Cancer Cell – volume: 137 start-page: 1005 year: 2009 end-page: 1017 article-title: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model publication-title: Cell – volume: 92 start-page: 1754 year: 2005 end-page: 1758 article-title: Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma publication-title: Br J Cancer – volume: 52 start-page: 1731 year: 2010 end-page: 1740 article-title: MicroRNA‐125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2 publication-title: HEPATOLOGY – volume: 322 start-page: 1695 year: 2008 end-page: 1699 article-title: Genomic loss of microRNA‐101 leads to overexpression of histone methyltransferase EZH2 in cancer publication-title: Science – volume: 17 start-page: 12 year: 2011 end-page: 20 article-title: High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients publication-title: Mol Med – volume: 28 start-page: 160 year: 2008 end-page: 174 article-title: Molecular pathogenesis of hepatocellular carcinoma publication-title: Liver Int – volume: 298 start-page: 1039 year: 2002 end-page: 1043 article-title: Role of histone H3 lysine 27 methylation in Polycomb‐group silencing publication-title: Science – volume: 12 start-page: 99 year: 2011 end-page: 110 article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay publication-title: Nat Rev Genet – volume: 9 start-page: 435 year: 2006 end-page: 443 article-title: Specific activation of microRNA‐127 with downregulation of the proto‐oncogene BCL6 by chromatin‐modifying drugs in human cancer cells publication-title: Cancer Cell – volume: 10 start-page: 593 year: 2008 end-page: 601 article-title: The miR‐200 family and miR‐205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 publication-title: Nat Cell Biol – volume: 16 start-page: 257 year: 2010 end-page: 267 article-title: Roles of small RNAs in tumor formation publication-title: Trends Mol Med – volume: 11 start-page: 441 year: 2006 end-page: 450 article-title: The diverse functions of microRNAs in animal development and disease publication-title: Dev Cell – volume: 113 start-page: 6411 year: 2009 end-page: 6418 article-title: MicroRNA‐29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1 publication-title: Blood – volume: 46 start-page: 200 year: 2007 end-page: 208 article-title: Lentivirus‐mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down‐regulation of stathmin publication-title: HEPATOLOGY – volume: 25 start-page: 1991 year: 2009 end-page: 1993 article-title: DIANA‐mirPath: integrating human and mouse microRNAs in pathways publication-title: Bioinformatics – volume: 9 start-page: 435443 year: 2006 ident: R13-26-20241201 article-title: Specific activation of microRNA127 with downregulation of the protooncogene BCL6 by chromatinmodifying drugs in human cancer cells. publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.04.020 – volume: 322 start-page: 16951699 year: 2008 ident: R18-26-20241201 article-title: Genomic loss of microRNA101 leads to overexpression of histone methyltransferase EZH2 in cancer. publication-title: Science doi: 10.1126/science.1165395 – volume: 3 start-page: e2779 year: 2008 ident: R35-26-20241201 article-title: Deleted in liver cancer 1 (DLC1) negatively regulates RhoROCKMLC pathway in hepatocellular carcinoma. publication-title: PLoS One doi: 10.1371/journal.pone.0002779 – volume: 28 start-page: 160174 year: 2008 ident: R3-26-20241201 article-title: Molecular pathogenesis of hepatocellular carcinoma. publication-title: Liver Int doi: 10.1111/j.1478-3231.2007.01637.x – volume: 88 start-page: 873882 year: 2008 ident: R5-26-20241201 article-title: The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. publication-title: Lab Invest doi: 10.1038/labinvest.2008.52 – volume: 11 start-page: 441450 year: 2006 ident: R11-26-20241201 article-title: The diverse functions of microRNAs in animal development and disease. publication-title: Dev Cell doi: 10.1016/j.devcel.2006.09.009 – volume: 25 start-page: 19911993 year: 2009 ident: R23-26-20241201 article-title: DIANAmirPath: integrating human and mouse microRNAs in pathways. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp299 – volume: 125 start-page: 301313 year: 2006 ident: R7-26-20241201 article-title: Control of developmental regulators by Polycomb in human embryonic stem cells. publication-title: Cell doi: 10.1016/j.cell.2006.02.043 – volume: 65 start-page: 88618868 year: 2005 ident: R36-26-20241201 article-title: Rho GTPaseactivating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1318 – volume: 32 start-page: 491502 year: 2008 ident: R25-26-20241201 article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. publication-title: Mol Cell doi: 10.1016/j.molcel.2008.10.016 – volume: 76 start-page: 24432448 year: 1995 ident: R20-26-20241201 article-title: Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients. publication-title: Cancer doi: 10.1002/1097-0142(19951215)76:12<2443::AID-CNCR2820761207>3.0.CO;2-F – volume: 12 start-page: 99110 year: 2011 ident: R9-26-20241201 article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. publication-title: Nat Rev Genet doi: 10.1038/nrg2936 – volume: 2 start-page: 113121 year: 2003 ident: R4-26-20241201 article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. publication-title: Mol Cancer Ther – volume: 69 start-page: 11351142 year: 2009 ident: R32-26-20241201 article-title: MicroRNA101, downregulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2886 – volume: 49 start-page: 15831594 year: 2009 ident: R21-26-20241201 article-title: Rhokinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. publication-title: HEPATOLOGY doi: 10.1002/hep.22836 – volume: 113 start-page: 64116418 year: 2009 ident: R16-26-20241201 article-title: MicroRNA29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. publication-title: Blood doi: 10.1182/blood-2008-07-170589 – volume: 16 start-page: 286294 year: 2010 ident: R27-26-20241201 article-title: An oncogenetumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factorkappaB. publication-title: Nat Med doi: 10.1038/nm.2100 – volume: 120 start-page: 635647 year: 2005 ident: R30-26-20241201 article-title: RAS is regulated by the let7 microRNA family. publication-title: Cell doi: 10.1016/j.cell.2005.01.014 – volume: 21 start-page: 10501063 year: 2007 ident: R29-26-20241201 article-title: Pharmacologic disruption of Polycombrepressive complex 2mediated gene repression selectively induces apoptosis in cancer cells. publication-title: Genes Dev doi: 10.1101/gad.1524107 – volume: 455 start-page: 5863 year: 2008 ident: R34-26-20241201 article-title: Widespread changes in protein synthesis induced by microRNAs. publication-title: Nature doi: 10.1038/nature07228 – volume: 39 start-page: 761772 year: 2010 ident: R43-26-20241201 article-title: Loss of miR200 inhibition of Suz12 leads to polycombmediated repression required for the formation and maintenance of cancer stem cells. publication-title: Mol Cell doi: 10.1016/j.molcel.2010.08.013 – volume: 455 start-page: 6471 year: 2008 ident: R33-26-20241201 article-title: The impact of microRNAs on protein output. publication-title: Nature doi: 10.1038/nature07242 – volume: 52 start-page: 17311740 year: 2010 ident: R28-26-20241201 article-title: MicroRNA125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. publication-title: HEPATOLOGY doi: 10.1002/hep.23904 – volume: 68 start-page: 20942105 year: 2008 ident: R14-26-20241201 article-title: Exploration of tumorsuppressive microRNAs silenced by DNA hypermethylation in oral cancer. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-5194 – volume: 20 start-page: 6573 year: 2007 ident: R37-26-20241201 article-title: DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. publication-title: Int J Mol Med – volume: 16 start-page: 257267 year: 2010 ident: R12-26-20241201 article-title: Roles of small RNAs in tumor formation. publication-title: Trends Mol Med doi: 10.1016/j.molmed.2010.04.001 – volume: 92 start-page: 17541758 year: 2005 ident: R40-26-20241201 article-title: Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. publication-title: Br J Cancer doi: 10.1038/sj.bjc.6602531 – volume: 17 start-page: 1220 year: 2011 ident: R39-26-20241201 article-title: High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. publication-title: Mol Med doi: 10.2119/molmed.2010.00103 – volume: 112 start-page: 42024212 year: 2008 ident: R17-26-20241201 article-title: MYC stimulates EZH2 expression by repression of its negative regulator miR26a. publication-title: Blood doi: 10.1182/blood-2008-03-147645 – volume: 20 start-page: 187199 year: 2011 ident: R44-26-20241201 article-title: Coordinated regulation of polycomb group complexes through microRNAs in cancer. publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.06.016 – volume: 298 start-page: 10391043 year: 2002 ident: R8-26-20241201 article-title: Role of histone H3 lysine 27 methylation in Polycombgroup silencing. publication-title: Science doi: 10.1126/science.1076997 – volume: 419 start-page: 624629 year: 2002 ident: R6-26-20241201 article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer. publication-title: Nature doi: 10.1038/nature01075 – volume: 136 start-page: 215233 year: 2009 ident: R10-26-20241201 article-title: MicroRNAs: target recognition and regulatory functions. publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 10 start-page: 593601 year: 2008 ident: R31-26-20241201 article-title: The miR200 family and miR205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. publication-title: Nat Cell Biol doi: 10.1038/ncb1722 – volume: 55 start-page: 74108 year: 2005 ident: R1-26-20241201 article-title: Global cancer statistics, 2002. publication-title: CA Cancer J Clin doi: 10.3322/canjclin.55.2.74 – volume: 105 start-page: 1355613561 year: 2008 ident: R15-26-20241201 article-title: A microRNA DNA methylation signature for human cancer metastasis. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0803055105 – volume: 27 start-page: 72747284 year: 2008 ident: R26-26-20241201 article-title: Repression of Ecadherin by the polycomb group protein EZH2 in cancer. publication-title: Oncogene doi: 10.1038/onc.2008.333 – volume: 117 start-page: 27132722 year: 2007 ident: R38-26-20241201 article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. publication-title: J Clin Invest doi: 10.1172/JCI31457 – volume: 46 start-page: 200208 year: 2007 ident: R41-26-20241201 article-title: Lentivirusmediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through downregulation of stathmin. publication-title: HEPATOLOGY doi: 10.1002/hep.21668 – volume: 140 start-page: 322331 year: 2011 ident: R22-26-20241201 article-title: The microRNA miR139 suppresses metastasis and progression of hepatocellular carcinoma by downregulating Rhokinase 2. publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.10.006 – volume: 15 start-page: 5767 year: 2004 ident: R24-26-20241201 article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EEDEZH2 complex. publication-title: Mol Cell doi: 10.1016/j.molcel.2004.06.020 – volume: 137 start-page: 10051017 year: 2009 ident: R45-26-20241201 article-title: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. publication-title: Cell doi: 10.1016/j.cell.2009.04.021 – volume: 69 start-page: 11351142 year: 2009 ident: R42-26-20241201 article-title: MicroRNA101, downregulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2886 – volume: 35 start-page: 13241331 year: 2004 ident: R19-26-20241201 article-title: Highthroughput tissue microarray analysis of cmyc activation in chronic liver diseases and hepatocellular carcinoma. publication-title: Hum Pathol doi: 10.1016/j.humpath.2004.06.012 |
SSID | ssj0009428 |
Score | 2.5144644 |
Snippet | Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme,... Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme,... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 622 |
SubjectTerms | Animals Biological and medical sciences Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - secondary Cell Movement - physiology Computer Simulation DNA-Binding Proteins - genetics Enhancer of Zeste Homolog 2 Protein Epigenesis, Genetic - genetics Epigenetics Gastroenterology. Liver. Pancreas. Abdomen Gene expression Gene Knockdown Techniques Gene Silencing - physiology Hep G2 Cells Hepatology Humans Liver cancer Liver Neoplasms - genetics Liver Neoplasms - pathology Liver. Biliary tract. Portal circulation. Exocrine pancreas Male Medical sciences Metastasis Mice Mice, Inbred BALB C Mice, Nude MicroRNAs - genetics Motility Neoplasm Transplantation Polycomb Repressive Complex 2 Polycomb-Group Proteins Repressor Proteins - genetics Transcription Factors - genetics Transplantation, Heterologous Tumors |
Title | Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis |
URI | https://api.istex.fr/ark:/67375/WNG-XRB38JSM-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.25679 https://www.ncbi.nlm.nih.gov/pubmed/22370893 https://www.proquest.com/docview/1766825978 https://www.proquest.com/docview/1030075887 https://www.proquest.com/docview/1776672942 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelhbGXrfv21hVtjLEXp65kWxF76ka6EEgY2cryMBCWIpHSJDaxDVv--p0k2yGjG2MPAUPOHzqf7n5nnX6H0BsuWaY0JDm2mYhtYTYPZcR1CMGbREqlkjuegvEkHV7Fo1kyO0Dv270wnh-i--BmZ4bz13aCZ7I825GGLnTRg3jN7OY9W6tlAdF0Rx3FY9dXFbKuyK4u85ZVKCJn3Zl7sejIqvWHrY3MSlCP8X0tbgOe-zjWBaLL--h7OwRff3LTqyvZU9vf2B3_c4zH6F4DUPGFt6gH6ECvH6I742YJ_hHaDtYLaykbnBu8tV9L8SJfWReKCdaFJff0-yKXP3F57bY0lbgtW8RVvco3uKwLV38LhytbEDidXJS4ynHhagM1XtpiEaz8bVa6ygDCltflY3R1Ofj6cRg2DRxClUCmEhpGUqoBwaWUycgQBm6ZM0WUYTKlss9ZlijX_GPOqJFJJiPN48joiDEaw-8JOlzna_0MYWZSpTnkP-eJjg2jfaPUnMwzTrkkcUYD9K59lUI17Oa2ycZSeF5mIkCXwukyQK870cJTetwm9NbZQyeRbW5sDRxLxLfJJzGbfqD90ZexGAXodM9guhMIZJYJI_BkJ60FicY_lMLSckJuDil8gF51f8PMtss12VrnNciA_wVAB1HgLzIMLgT5UUwC9NRb5-4BCGURwFFQjbOxPw9WDAef3cHzfxd9ge4CdiS-FvIEHVabWr8EfFbJUzcRfwEA1TYf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVoJeeD8CpRgEqJekW-_D8YFDoSlp2kQotCI3s3a8StUku8puBM1v4q_wnxh7H1FQQVx64BBppUw2Xs-MZ8b7-RuA11yyUGksckwzEdPCbFiXDtd1DN7UUSqQ3PIUdHtB-8zrDPzBGvwoz8Lk_BDVhpvxDLteGwc3G9K7S9bQkU4aGLAZLyCVx_ryGxZs6bujA9TuG0oPW6cf2vWip0Bd-Zg81yNGA1ebdvMuk05EGa4UnCmqIiYDVzY5C31l-1EMmRtJP5SO5p4TaYcx18MP3vcGbJgO4oap_6C_JKvinu3kinWeY95n85LHyKG71VBXot-GUeR3g8YMU1RIlHfSuCrVXc2cbeg7vAM_y0nLES8XjXkmG2rxG5_k_zKrd-F2kYOT_dxp7sGant6Hm90CZfAAFq3pyDjDjMQRWZgNYTKKJyZKEEp0YvhL86Of40uSnttTWykpkZkkm0_iGUnniYUY4-XEYB77vf2UZDFJLPxRk7HBwxCV_81EZyFm6el5-hDOruXJH8H6NJ7qJ0BYFCjNscTb87UXMbcZKTWkw5C7XFIvdGuwU9qOUAWBu-kjMhY59TQVqDthdVeDV5VokrOWXCX01hpgJRHOLgzMj_niS--jGPTfu83O567o1GB7xUKrH1Asnn1GcWRbpcmKYglMhWEebWJxzZo1eFl9jYuXeSMVTnU8RxkMMZizYqD7iwzDG2EJ6NEaPM7dYTkA6jIHM26cGmvUf35Y0W59shdP_130Bdxqn3ZPxMlR7_gZbGKqTHPo5xasZ7O5fo7paCa37SpA4Ot1O8gvhxaQ1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVqq48H4ESlkQIC5Jzfqx3gOHQhLSlERVoCK3xbvZVaomsRXbguYv8Vf4UcyuH1FQQVx64GDJkifOemdmZ8b-9huEXjBBI6mgyDHNREwLs0lTOEw1IXgTR8pAMMtTMBgGvVOvP_bHW-hHtRem4IeoX7gZz7DrtXHwZKIP1qShU5W0IF5TViIqj9XFN6jX0rdHbVDuS0K6nc_ve82ypUBT-pA7NzUlgatMt3mXCkcTCgsFo5JITUXgipDRyJe2HcWEulr4kXAU8xytHEpdDw647zW04wUOM30i2qM1VxXzbCNXKPMc8zmbVTRGDjmoh7oR_HaMHr8bMGaUgj500Ujjskx3M3G2ka97E_2s5qwAvJy38ky05Oo3Osn_ZFJvoRtlBo4PC5e5jbbU4g7aHZQYg7to1VlMjSsscazxyrwOxtN4bmIEJlglhr202Pg5u8Dpmd2zleIKl4mzfB4vcZonFmAMp3ODeBwND1OcxTix4EeFZwYNg2XxN3OVRZCjp2fpPXR6JU9-H20v4oV6iDDVgVQMCrw3vvI0dUMt5YRMIuYyQbzIbaDXlelwWdK3my4iM14QTxMOuuNWdw30vBZNCs6Sy4ReWfurJaLluQH5UZ9_GX7g49E7N-x_GvB-A-1vGGj9AwKls08JjGyvslheLoApN7yjIZTWNGygZ_VlWLrM96hooeIcZCDAQMYKYe4vMhRuBAWgRxroQeEN6wEQlzqQb8PUWJv-88PyXufEnjz6d9GnaPek3eUfj4bHj9F1yJNJgfvcQ9vZMldPIBfNxL5dAzD6etX-8QsvA4-G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancer+of+zeste+homolog+2+epigenetically+silences+multiple+tumor+suppressor+microRNAs+to+promote+liver+cancer+metastasis&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Au%2C+Sandy+Leung-Kuen&rft.au=Wong%2C+Carmen+Chak-Lui&rft.au=Lee%2C+Joyce+Man-Fong&rft.au=Fan%2C+Dorothy+Ngo-Yin&rft.date=2012-08-01&rft.eissn=1527-3350&rft.volume=56&rft.issue=2&rft.spage=622&rft_id=info:doi/10.1002%2Fhep.25679&rft_id=info%3Apmid%2F22370893&rft.externalDocID=22370893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |