Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis

Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up‐regulated in human cancers. In this...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 56; no. 2; pp. 622 - 631
Main Authors Au, Sandy Leung-Kuen, Wong, Carmen Chak-Lui, Lee, Joyce Man-Fong, Fan, Dorothy Ngo-Yin, Tsang, Felice Hoching, Ng, Irene Oi-Lin, Wong, Chun-Ming
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2012
Wiley
Wolters Kluwer Health, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up‐regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up‐regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up‐regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up‐regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri‐methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2‐knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well‐characterized tumor‐suppressor miRNAs, such as miR‐139‐5p, miR‐125b, miR‐101, let‐7c, and miR‐200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2‐silenced miRNAs in modulating cell motility and metastasis‐related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Conclusion: Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. (HEPATOLOGY 2012)
AbstractList Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs.UNLABELLEDEpigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs.Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis.CONCLUSIONOur study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis.
Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Conclusion: Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis. (HEPATOLOGY 2012)
Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and is frequently up-regulated in human cancers. In this study we aimed to delineate the implications of EZH2 up-regulation in miRNA deregulation and HCC metastasis. Expressions of a total of 90 epigenetic regulators were first determined in 38 pairs of primary HCCs and their corresponding nontumorous livers. We identified EZH2 and its associated polycomb repressive complex 2 (PRC2) as one of the most significantly deregulated epigenetic regulators in primary HCC samples. Up-regulation of EZH2 was next confirmed in 69.5% (41/59) of primary HCCs. Clinicopathologically, EZH2 up-regulation was associated with HCC progression and multiple HCC metastatic features, including venous invasion (P = 0.043), direct liver invasion (P = 0.014), and absence of tumor encapsulation (P = 0.043). We further demonstrated that knockdown of EZH2 in HCC cell lines reduced the global levels of tri-methylated H3K27, and suppressed HCC motility in vitro and pulmonary metastasis in a nude mouse model. By interrogating the miRNA expression profile in EZH2-knockdown cell lines and primary HCC samples, we identified a subset of miRNA that was epigenetically suppressed by EZH2 in human HCC. These included well-characterized tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, miR-101, let-7c, and miR-200b. Pathway enrichment analysis revealed a common regulatory role of these EZH2-silenced miRNAs in modulating cell motility and metastasis-related pathways. Our findings suggest that EZH2 exerts its prometastatic function by way of epigenetic silencing of multiple tumor suppressor miRNAs. Our study demonstrated that EZH2 epigenetically silenced multiple miRNAs that negatively regulate HCC metastasis.
Author Wong, Chun-Ming
Fan, Dorothy Ngo-Yin
Lee, Joyce Man-Fong
Wong, Carmen Chak-Lui
Tsang, Felice Hoching
Ng, Irene Oi-Lin
Au, Sandy Leung-Kuen
Author_xml – sequence: 1
  givenname: Sandy Leung-Kuen
  surname: Au
  fullname: Au, Sandy Leung-Kuen
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Carmen Chak-Lui
  surname: Wong
  fullname: Wong, Carmen Chak-Lui
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Joyce Man-Fong
  surname: Lee
  fullname: Lee, Joyce Man-Fong
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Dorothy Ngo-Yin
  surname: Fan
  fullname: Fan, Dorothy Ngo-Yin
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Felice Hoching
  surname: Tsang
  fullname: Tsang, Felice Hoching
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Irene Oi-Lin
  surname: Ng
  fullname: Ng, Irene Oi-Lin
  email: iolng@hkucc.hku.hk
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Chun-Ming
  surname: Wong
  fullname: Wong, Chun-Ming
  email: jackwong@pathology.hku.hk
  organization: State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26255723$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22370893$$D View this record in MEDLINE/PubMed
BookMark eNqFklFPFDEUhRuDkQV98A-YJsZEHgY67bZ35hHIChJAgxp9azpDhy12pmM7oyy_3rvuAgmJmrRpH75z2nvu3SIbXegsIS9ztpszxvfmtt_lUkH5hExyySETQrINMmEcWFbmotwkWyldM8bKKS-ekU3OBbCiFBNyO-vmpqttpKGhtzYNls5DG3y4opza3l3Zzg6uNt4vaHLeIppoO_rB9d7SYWxDpGns-2hTwmvr6hguzvcTHQLtIzqhoXc_0b9ePdPawSRcLj0nTxvjk32xPrfJl3ezz4fH2emHo_eH-6dZLaUsswa4EjZnUgmoWMMhn6oSal43UClRFSUYWTNVsOISRFNJUzFbTlljGYCY4t4mb1e--J8fI5aoW5dq673pbBiTzgGUAo7R_B9lgjGQRbF0ff0IvQ5j7LAQNFSq4LKEAqlXa2qsWnup--haExf6rgEIvFkDJmHKTcSUXHrgFJcS-JLbWXGYb0rRNvdIzvRyCDQOgf4zBMjuPWJrN5jBhW6Ixvl_KX5hixd_t9bHs493imylcDgyN_cKE79rBQKk_np-pL9dHIji5NOZPhG_AXpN0R8
CODEN HPTLD9
CitedBy_id crossref_primary_10_1007_s12072_016_9743_4
crossref_primary_10_1158_0008_5472_CAN_18_1659
crossref_primary_10_1158_1535_7163_MCT_14_0971
crossref_primary_10_1007_s13277_015_4410_2
crossref_primary_10_2144_fsoa_2019_0017
crossref_primary_10_5858_arpa_2012_0525_OA
crossref_primary_10_1002_hep_26083
crossref_primary_10_3390_ijms19123978
crossref_primary_10_1038_cddis_2013_197
crossref_primary_10_1038_s41389_020_00284_w
crossref_primary_10_1080_01635581_2016_1180410
crossref_primary_10_3892_ol_2017_6312
crossref_primary_10_1097_CAD_0000000000000746
crossref_primary_10_1016_j_jhepr_2020_100167
crossref_primary_10_4137_BMI_S29512
crossref_primary_10_1158_1541_7786_MCR_14_0034
crossref_primary_10_1186_s12935_020_01622_z
crossref_primary_10_3390_v10100531
crossref_primary_10_1002_cnr2_2152
crossref_primary_10_1007_s11434_014_0273_y
crossref_primary_10_1016_j_jhep_2014_05_015
crossref_primary_10_3389_fphys_2018_01019
crossref_primary_10_1186_1756_9966_32_96
crossref_primary_10_1038_s41597_023_02493_5
crossref_primary_10_32604_biocell_2024_055505
crossref_primary_10_1016_j_bbagrm_2016_03_005
crossref_primary_10_1016_j_jcmgh_2018_09_005
crossref_primary_10_1016_j_bmcl_2016_11_080
crossref_primary_10_3389_fonc_2021_691115
crossref_primary_10_4155_fsoa_2019_0017
crossref_primary_10_1016_j_yexcr_2020_112277
crossref_primary_10_1093_carcin_bgs381
crossref_primary_10_1002_smll_201703152
crossref_primary_10_1016_j_gendis_2020_11_014
crossref_primary_10_1016_j_prp_2018_08_005
crossref_primary_10_1111_hepr_12386
crossref_primary_10_1186_s12951_024_02349_z
crossref_primary_10_1186_1476_4598_13_124
crossref_primary_10_2217_epi_2016_0061
crossref_primary_10_1016_j_yexcr_2014_09_013
crossref_primary_10_1155_2016_3956485
crossref_primary_10_1016_j_biocel_2014_05_003
crossref_primary_10_3390_livers2030017
crossref_primary_10_3390_cells8091015
crossref_primary_10_3390_diseases5010011
crossref_primary_10_1038_s41388_017_0057_3
crossref_primary_10_1093_nar_gkac1251
crossref_primary_10_3389_fimmu_2024_1400744
crossref_primary_10_1097_MD_0000000000027117
crossref_primary_10_3892_ijo_2020_5047
crossref_primary_10_1111_his_12436
crossref_primary_10_1016_j_cmi_2015_12_024
crossref_primary_10_3892_ol_2017_6351
crossref_primary_10_1002_jcp_27080
crossref_primary_10_1371_journal_pone_0123987
crossref_primary_10_1136_gutjnl_2015_311292
crossref_primary_10_3748_wjg_v27_i36_6004
crossref_primary_10_18632_oncotarget_15531
crossref_primary_10_1517_14728222_2014_941285
crossref_primary_10_18632_oncotarget_3969
crossref_primary_10_1016_j_bbcan_2022_188806
crossref_primary_10_1016_j_ejphar_2017_09_023
crossref_primary_10_3390_medicina58020155
crossref_primary_10_18632_oncotarget_25484
crossref_primary_10_1096_fj_14_261537
crossref_primary_10_1128_mbio_00245_24
crossref_primary_10_1093_nar_gkv574
crossref_primary_10_1042_CS20190666
crossref_primary_10_1007_s11684_013_0253_7
crossref_primary_10_1016_j_bbrc_2015_05_062
crossref_primary_10_1186_s12935_023_03002_9
crossref_primary_10_1002_iub_2423
crossref_primary_10_3390_cancers13061333
crossref_primary_10_2147_OTT_S264600
crossref_primary_10_1007_s00204_014_1435_z
crossref_primary_10_1002_path_4688
crossref_primary_10_1002_cam4_70093
crossref_primary_10_1038_nrgastro_2017_169
crossref_primary_10_3390_ijms25020975
crossref_primary_10_3892_or_2012_2105
crossref_primary_10_3892_ol_2019_11031
crossref_primary_10_18632_oncotarget_19597
crossref_primary_10_4254_wjh_v16_i5_703
crossref_primary_10_18632_oncotarget_2435
crossref_primary_10_1093_jmcb_mjw010
crossref_primary_10_1186_s40164_023_00405_2
crossref_primary_10_1186_s13046_023_02855_2
crossref_primary_10_5306_wjco_v7_i2_135
crossref_primary_10_1007_s00109_016_1442_z
crossref_primary_10_1186_s41065_021_00212_x
crossref_primary_10_1007_s40495_015_0016_z
crossref_primary_10_4254_wjh_v9_i36_1305
crossref_primary_10_4161_cc_26539
crossref_primary_10_1038_s41388_023_02646_1
crossref_primary_10_1074_jbc_M115_658237
crossref_primary_10_3892_or_2014_3032
crossref_primary_10_1002_pros_22652
crossref_primary_10_1002_hep_31141
crossref_primary_10_1038_ncomms9494
crossref_primary_10_3892_or_2015_4467
crossref_primary_10_1016_j_cbi_2021_109530
crossref_primary_10_1186_s12943_018_0847_4
crossref_primary_10_1369_0022155413503662
crossref_primary_10_3390_ijms241914653
crossref_primary_10_1016_j_abb_2019_01_023
crossref_primary_10_1016_j_pharmthera_2014_09_005
crossref_primary_10_3390_genes9030137
crossref_primary_10_18632_oncoscience_420
crossref_primary_10_18632_oncotarget_1902
crossref_primary_10_18632_oncotarget_5724
crossref_primary_10_18632_oncotarget_6135
crossref_primary_10_1186_s13046_017_0670_6
crossref_primary_10_1016_j_omtn_2021_10_004
crossref_primary_10_3390_cancers11121906
crossref_primary_10_1002_hep_28304
crossref_primary_10_1007_s13277_016_4999_9
crossref_primary_10_1002_jcb_25110
crossref_primary_10_3390_cancers13030514
crossref_primary_10_1002_1878_0261_12038
crossref_primary_10_12688_f1000research_6946_1
crossref_primary_10_3390_ijms19020459
crossref_primary_10_3390_cancers12051243
crossref_primary_10_1038_cdd_2017_34
crossref_primary_10_1038_s41419_018_0286_6
crossref_primary_10_1016_j_canlet_2018_08_024
crossref_primary_10_1038_cdd_2014_142
crossref_primary_10_1016_j_cmi_2016_07_019
crossref_primary_10_1186_s12935_018_0538_7
crossref_primary_10_3390_ijms22063137
crossref_primary_10_3389_fgene_2022_957059
crossref_primary_10_3390_ijms21228617
crossref_primary_10_3389_fimmu_2021_661204
crossref_primary_10_1016_j_tranon_2020_01_002
crossref_primary_10_3892_mmr_2017_7828
crossref_primary_10_1016_j_jhep_2017_08_016
crossref_primary_10_3390_cancers12071781
crossref_primary_10_1186_1752_0509_7_104
crossref_primary_10_1016_j_toxlet_2015_10_016
crossref_primary_10_1517_14728222_2012_714774
crossref_primary_10_1002_path_4373
crossref_primary_10_1038_s42003_021_02405_6
crossref_primary_10_1038_s41419_020_03381_1
crossref_primary_10_1080_14728222_2019_1696309
crossref_primary_10_1155_2022_4889807
crossref_primary_10_3389_fphar_2015_00236
crossref_primary_10_1021_acs_jmedchem_2c01607
crossref_primary_10_1186_s12885_016_2273_6
crossref_primary_10_3389_fonc_2020_608393
crossref_primary_10_1097_HEP_0000000000001177
crossref_primary_10_3390_cells8121504
crossref_primary_10_4161_cc_23598
crossref_primary_10_1016_j_ctarc_2017_06_003
crossref_primary_10_1517_14728222_2016_1134490
crossref_primary_10_1016_j_canlet_2014_11_003
crossref_primary_10_1016_j_bioorg_2024_107698
crossref_primary_10_3390_jmp3020009
crossref_primary_10_1073_pnas_1210371110
crossref_primary_10_1038_s41598_021_00889_0
crossref_primary_10_1016_j_trecan_2017_01_002
crossref_primary_10_1158_0008_5472_CAN_19_2060
crossref_primary_10_1242_jcs_122275
crossref_primary_10_1002_mc_22955
crossref_primary_10_1007_s13277_015_3199_3
crossref_primary_10_1186_s13046_019_1213_0
crossref_primary_10_1016_j_heliyon_2024_e38562
crossref_primary_10_3892_ol_2015_3759
crossref_primary_10_1007_s00535_013_0909_8
crossref_primary_10_18632_oncotarget_20996
crossref_primary_10_1002_hep_27131
crossref_primary_10_1002_jcp_28540
crossref_primary_10_1186_s12943_020_01172_y
crossref_primary_10_1586_17474124_2016_1133291
crossref_primary_10_1002_hep_26720
crossref_primary_10_3390_v12070746
crossref_primary_10_3892_ijmm_2017_3084
crossref_primary_10_1016_j_biopha_2016_04_019
crossref_primary_10_1038_s41419_019_1671_5
crossref_primary_10_1155_2013_924206
crossref_primary_10_1155_2015_473942
crossref_primary_10_1002_hep_30414
crossref_primary_10_1155_2018_8126208
crossref_primary_10_1016_j_bbrc_2013_03_037
crossref_primary_10_4251_wjgo_v14_i9_1856
crossref_primary_10_1002_hep_29683
crossref_primary_10_3390_ijms141224154
crossref_primary_10_3390_cells11050769
crossref_primary_10_3390_biology9050093
crossref_primary_10_1016_j_ajpath_2013_01_045
crossref_primary_10_3390_ijms18020310
crossref_primary_10_1111_cas_12132
crossref_primary_10_1016_j_mam_2012_06_005
crossref_primary_10_1016_j_jhep_2013_10_028
crossref_primary_10_1016_j_lfs_2014_01_073
crossref_primary_10_1016_j_lfs_2019_117215
crossref_primary_10_1016_S1001_9294_13_60013_9
crossref_primary_10_3390_ijms161126000
crossref_primary_10_1371_journal_pone_0068226
crossref_primary_10_1038_onc_2013_53
crossref_primary_10_1038_srep17675
crossref_primary_10_1016_j_canlet_2015_08_008
crossref_primary_10_1038_cddis_2014_256
crossref_primary_10_1016_j_cancergen_2020_04_077
crossref_primary_10_1016_j_cellsig_2023_110730
crossref_primary_10_1111_jvh_14044
crossref_primary_10_1038_s41416_025_02969_8
crossref_primary_10_1016_j_jhep_2017_05_015
crossref_primary_10_1002_hep_27046
crossref_primary_10_1080_1354750X_2019_1691267
crossref_primary_10_1038_cddis_2015_150
crossref_primary_10_4254_wjh_v7_i11_1530
crossref_primary_10_1007_s13258_023_01468_5
crossref_primary_10_1016_j_nbt_2013_01_007
crossref_primary_10_1007_s10585_022_10188_1
crossref_primary_10_3748_wjg_v20_i37_13477
crossref_primary_10_3892_or_2014_3322
Cites_doi 10.1016/j.ccr.2006.04.020
10.1126/science.1165395
10.1371/journal.pone.0002779
10.1111/j.1478-3231.2007.01637.x
10.1038/labinvest.2008.52
10.1016/j.devcel.2006.09.009
10.1093/bioinformatics/btp299
10.1016/j.cell.2006.02.043
10.1158/0008-5472.CAN-05-1318
10.1016/j.molcel.2008.10.016
10.1002/1097-0142(19951215)76:12<2443::AID-CNCR2820761207>3.0.CO;2-F
10.1038/nrg2936
10.1158/0008-5472.CAN-08-2886
10.1002/hep.22836
10.1182/blood-2008-07-170589
10.1038/nm.2100
10.1016/j.cell.2005.01.014
10.1101/gad.1524107
10.1038/nature07228
10.1016/j.molcel.2010.08.013
10.1038/nature07242
10.1002/hep.23904
10.1158/0008-5472.CAN-07-5194
10.1016/j.molmed.2010.04.001
10.1038/sj.bjc.6602531
10.2119/molmed.2010.00103
10.1182/blood-2008-03-147645
10.1016/j.ccr.2011.06.016
10.1126/science.1076997
10.1038/nature01075
10.1016/j.cell.2009.01.002
10.1038/ncb1722
10.3322/canjclin.55.2.74
10.1073/pnas.0803055105
10.1038/onc.2008.333
10.1172/JCI31457
10.1002/hep.21668
10.1053/j.gastro.2010.10.006
10.1016/j.molcel.2004.06.020
10.1016/j.cell.2009.04.021
10.1016/j.humpath.2004.06.012
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Study of Liver Diseases
2015 INIST-CNRS
Copyright © 2012 American Association for the Study of Liver Diseases.
Copyright_xml – notice: Copyright © 2012 American Association for the Study of Liver Diseases
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 American Association for the Study of Liver Diseases.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.25679
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Oncogenes and Growth Factors Abstracts

AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 631
ExternalDocumentID 3958155691
22370893
26255723
10_1002_hep_25679
HEP25679
ark_67375_WNG_XRB38JSM_J
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council Collaborative Research Fund
  funderid: HKU 1/06C; HKU 7/CRG/09
– fundername: Loke Yew Professor in Pathology
– fundername: Hong Kong Research Grants Council General Research Fund
  funderid: HKU 778508M; HKU 782411M
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OC
1ZS
1~5
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ACZKN
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFFNX
AFGKR
AFNMH
AFUWQ
AFZJQ
AGQPQ
AHMBA
AHQVU
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
ROL
RPZ
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
1OB
24P
AEUQT
AFPWT
RGB
RWI
WIN
WRC
WUP
AAYXX
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c5559-f7263e105637b0f2714697c2cf7b63b897a5c06808d73fb5ab0e940fe07734773
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Fri Jul 11 00:00:04 EDT 2025
Fri Jul 11 00:30:26 EDT 2025
Sun Jul 13 05:07:01 EDT 2025
Wed Feb 19 01:55:40 EST 2025
Mon Jul 21 09:14:20 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Tue Jul 01 03:33:31 EDT 2025
Wed Jan 22 17:10:53 EST 2025
Thu Apr 24 03:19:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Liver cancer
Silence
Multiple
Gastroenterology
Digestive diseases
Hepatic disease
Suppressor
Malignant tumor
Liver metastasis
Cancer
Language English
License CC BY 4.0
Copyright © 2012 American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5559-f7263e105637b0f2714697c2cf7b63b897a5c06808d73fb5ab0e940fe07734773
Notes Potential conflict of interest: Nothing to report.
istex:5D0B4699892A09B2A65ABEF8823BC537849A7710
ark:/67375/WNG-XRB38JSM-J
ArticleID:HEP25679
Loke Yew Professor in Pathology
Hong Kong Research Grants Council General Research Fund - No. HKU 778508M; No. HKU 782411M
Hong Kong Research Grants Council Collaborative Research Fund - No. HKU 1/06C; No. HKU 7/CRG/09
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep.25679
PMID 22370893
PQID 1766825978
PQPubID 996352
PageCount 10
ParticipantIDs proquest_miscellaneous_1776672942
proquest_miscellaneous_1030075887
proquest_journals_1766825978
pubmed_primary_22370893
pascalfrancis_primary_26255723
crossref_primary_10_1002_hep_25679
crossref_citationtrail_10_1002_hep_25679
wiley_primary_10_1002_hep_25679_HEP25679
istex_primary_ark_67375_WNG_XRB38JSM_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wolters Kluwer Health, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wolters Kluwer Health, Inc
References Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71.
Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 2005; 65: 8861-8868.
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491-502.
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050-1063.
Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005; 9: 191-211, v.
Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005-1017.
Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25: 1991-1993.
Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105: 13556-13561.
Wong CC, Wong CM, Tung EK, Man K, Ng IO. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. HEPATOLOGY 2009; 49: 1583-1594.
Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011; 20: 187-199.
Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57-67.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441-450.
Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16: 257-267.
Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695-1699.
Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69: 1135-1142.
Wong CM, Ng IO. Molecular pathogenesis of hepatocellular carcinoma. Liver Int 2008; 28: 160-174.
Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011; 17: 12-20.
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039-1043.
Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 2007; 20: 65-73.
Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274-7284.
Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88: 873-882.
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-313.
Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094-2105.
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411-6418.
Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92: 1754-1758.
Wong CC, Wong CM, Ko FC, Chan LK, Ching YP, Yam JW, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One 2008; 3: e2779.
Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2: 113-121.
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435-443.
Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. HEPATOLOGY 2007; 46: 200-208.
Chan KL, Guan XY, Ng IO. High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol 2004; 35: 1324-1331.
Ng IO, Lai EC, Fan ST, Ng MM, So MK. Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients. Cancer 1995; 76: 2443-2448.
Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286-294.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58-63.
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624-629.
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601.
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722.
Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 2011; 140: 322-331.
Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. HEPATOLOGY 2010; 52: 1731-1740.
Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761-772.
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-647.
Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202-4212.
2009; 25
2009; 69
2010; 16
2006; 11
2010; 39
2002; 298
2006; 9
1995; 76
2009; 113
2005; 65
2008; 105
2008; 32
2008; 10
2002; 419
2011; 12
2008; 3
2008; 322
2011; 17
2009; 136
2009; 49
2009; 137
2005; 120
2007; 117
2005; 9
2004; 15
2008; 27
2008; 28
2004; 35
2003; 2
2011; 20
2008; 68
2008; 88
2005; 92
2008; 455
2008; 112
2007; 20
2011; 140
2007; 21
2005; 55
2010; 52
2007; 46
2006; 125
Baek (R33-26-20241201) 2008; 455
Cao (R44-26-20241201) 2011; 20
Sudo (R40-26-20241201) 2005; 92
Shen (R25-26-20241201) 2008; 32
Calvisi (R38-26-20241201) 2007; 117
Kirmizis (R4-26-20241201) 2003; 2
Garzon (R16-26-20241201) 2009; 113
Wong (R22-26-20241201) 2011; 140
Su (R32-26-20241201) 2009; 69
Huntzinger (R9-26-20241201) 2011; 12
Lee (R7-26-20241201) 2006; 125
Papadopoulos (R23-26-20241201) 2009; 25
Liang (R28-26-20241201) 2010; 52
Varambally (R6-26-20241201) 2002; 419
Varambally (R18-26-20241201) 2008; 322
Chan (R19-26-20241201) 2004; 35
Selbach (R34-26-20241201) 2008; 455
Cao (R26-26-20241201) 2008; 27
Wong (R36-26-20241201) 2005; 65
Lujambio (R15-26-20241201) 2008; 105
Di Leva (R12-26-20241201) 2010; 16
Ng (R20-26-20241201) 1995; 76
Johnson (R30-26-20241201) 2005; 120
Sander (R17-26-20241201) 2008; 112
Gregory (R31-26-20241201) 2008; 10
Cao (R24-26-20241201) 2004; 15
Wong (R35-26-20241201) 2008; 3
Tan (R29-26-20241201) 2007; 21
Wong (R3-26-20241201) 2008; 28
Min (R27-26-20241201) 2010; 16
Parkin (R1-26-20241201) 2005; 55
Cao (R8-26-20241201) 2002; 298
Oh (R37-26-20241201) 2007; 20
Saito (R13-26-20241201) 2006; 9
Sasaki (R5-26-20241201) 2008; 88
Chen (R41-26-20241201) 2007; 46
Su (R42-26-20241201) 2009; 69
Kloosterman (R11-26-20241201) 2006; 11
Kota (R45-26-20241201) 2009; 137
Bartel (R10-26-20241201) 2009; 136
Kozaki (R14-26-20241201) 2008; 68
Cai (R39-26-20241201) 2011; 17
Iliopoulos (R43-26-20241201) 2010; 39
Wong (R21-26-20241201) 2009; 49
References_xml – reference: Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411-6418.
– reference: Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094-2105.
– reference: Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71.
– reference: Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761-772.
– reference: Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005-1017.
– reference: Wong CC, Wong CM, Tung EK, Man K, Ng IO. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. HEPATOLOGY 2009; 49: 1583-1594.
– reference: Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58-63.
– reference: Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92: 1754-1758.
– reference: Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. HEPATOLOGY 2007; 46: 200-208.
– reference: Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
– reference: Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624-629.
– reference: Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441-450.
– reference: Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88: 873-882.
– reference: Wong CC, Wong CM, Ko FC, Chan LK, Ching YP, Yam JW, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One 2008; 3: e2779.
– reference: Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105: 13556-13561.
– reference: Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695-1699.
– reference: Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435-443.
– reference: Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202-4212.
– reference: Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050-1063.
– reference: Ng IO, Lai EC, Fan ST, Ng MM, So MK. Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients. Cancer 1995; 76: 2443-2448.
– reference: Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
– reference: Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 2007; 20: 65-73.
– reference: Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722.
– reference: Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274-7284.
– reference: Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286-294.
– reference: Wong CM, Yam JW, Ching YP, Yau TO, Leung TH, Jin DY, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 2005; 65: 8861-8868.
– reference: Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601.
– reference: Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15: 57-67.
– reference: Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011; 20: 187-199.
– reference: Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008; 32: 491-502.
– reference: Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298: 1039-1043.
– reference: Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 2011; 140: 322-331.
– reference: Chan KL, Guan XY, Ng IO. High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol 2004; 35: 1324-1331.
– reference: Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2: 113-121.
– reference: Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635-647.
– reference: Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25: 1991-1993.
– reference: Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011; 17: 12-20.
– reference: Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. HEPATOLOGY 2010; 52: 1731-1740.
– reference: Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-313.
– reference: Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69: 1135-1142.
– reference: Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis 2005; 9: 191-211, v.
– reference: Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med 2010; 16: 257-267.
– reference: Wong CM, Ng IO. Molecular pathogenesis of hepatocellular carcinoma. Liver Int 2008; 28: 160-174.
– reference: Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
– volume: 125
  start-page: 301
  year: 2006
  end-page: 313
  article-title: Control of developmental regulators by Polycomb in human embryonic stem cells
  publication-title: Cell
– volume: 112
  start-page: 4202
  year: 2008
  end-page: 4212
  article-title: MYC stimulates EZH2 expression by repression of its negative regulator miR‐26a
  publication-title: Blood
– volume: 27
  start-page: 7274
  year: 2008
  end-page: 7284
  article-title: Repression of E‐cadherin by the polycomb group protein EZH2 in cancer
  publication-title: Oncogene
– volume: 419
  start-page: 624
  year: 2002
  end-page: 629
  article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer
  publication-title: Nature
– volume: 68
  start-page: 2094
  year: 2008
  end-page: 2105
  article-title: Exploration of tumor‐suppressive microRNAs silenced by DNA hypermethylation in oral cancer
  publication-title: Cancer Res
– volume: 9
  start-page: 191
  year: 2005
  end-page: 211
  article-title: Epidemiology of hepatocellular carcinoma
  publication-title: Clin Liver Dis
– volume: 455
  start-page: 58
  year: 2008
  end-page: 63
  article-title: Widespread changes in protein synthesis induced by microRNAs
  publication-title: Nature
– volume: 88
  start-page: 873
  year: 2008
  end-page: 882
  article-title: The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma
  publication-title: Lab Invest
– volume: 32
  start-page: 491
  year: 2008
  end-page: 502
  article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency
  publication-title: Mol Cell
– volume: 105
  start-page: 13556
  year: 2008
  end-page: 13561
  article-title: A microRNA DNA methylation signature for human cancer metastasis
  publication-title: Proc Natl Acad Sci U S A
– volume: 49
  start-page: 1583
  year: 2009
  end-page: 1594
  article-title: Rho‐kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion
  publication-title: HEPATOLOGY
– volume: 65
  start-page: 8861
  year: 2005
  end-page: 8868
  article-title: Rho GTPase‐activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 55
  start-page: 74
  year: 2005
  end-page: 108
  article-title: Global cancer statistics, 2002
  publication-title: CA Cancer J Clin
– volume: 140
  start-page: 322
  year: 2011
  end-page: 331
  article-title: The microRNA miR‐139 suppresses metastasis and progression of hepatocellular carcinoma by down‐regulating Rho‐kinase 2
  publication-title: Gastroenterology
– volume: 117
  start-page: 2713
  year: 2007
  end-page: 2722
  article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma
  publication-title: J Clin Invest
– volume: 69
  start-page: 1135
  year: 2009
  end-page: 1142
  article-title: MicroRNA‐101, down‐regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity
  publication-title: Cancer Res
– volume: 3
  start-page: e2779
  year: 2008
  article-title: Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma
  publication-title: PLoS One
– volume: 39
  start-page: 761
  year: 2010
  end-page: 772
  article-title: Loss of miR‐200 inhibition of Suz12 leads to polycomb‐mediated repression required for the formation and maintenance of cancer stem cells
  publication-title: Mol Cell
– volume: 2
  start-page: 113
  year: 2003
  end-page: 121
  article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy
  publication-title: Mol Cancer Ther
– volume: 15
  start-page: 57
  year: 2004
  end-page: 67
  article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED‐EZH2 complex
  publication-title: Mol Cell
– volume: 455
  start-page: 64
  year: 2008
  end-page: 71
  article-title: The impact of microRNAs on protein output
  publication-title: Nature
– volume: 16
  start-page: 286
  year: 2010
  end-page: 294
  article-title: An oncogene‐tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor‐kappaB
  publication-title: Nat Med
– volume: 21
  start-page: 1050
  year: 2007
  end-page: 1063
  article-title: Pharmacologic disruption of Polycomb‐repressive complex 2‐mediated gene repression selectively induces apoptosis in cancer cells
  publication-title: Genes Dev
– volume: 136
  start-page: 215
  year: 2009
  end-page: 233
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
– volume: 20
  start-page: 65
  year: 2007
  end-page: 73
  article-title: DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation
  publication-title: Int J Mol Med
– volume: 76
  start-page: 2443
  year: 1995
  end-page: 2448
  article-title: Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients
  publication-title: Cancer
– volume: 120
  start-page: 635
  year: 2005
  end-page: 647
  article-title: RAS is regulated by the let‐7 microRNA family
  publication-title: Cell
– volume: 35
  start-page: 1324
  year: 2004
  end-page: 1331
  article-title: High‐throughput tissue microarray analysis of c‐myc activation in chronic liver diseases and hepatocellular carcinoma
  publication-title: Hum Pathol
– volume: 20
  start-page: 187
  year: 2011
  end-page: 199
  article-title: Coordinated regulation of polycomb group complexes through microRNAs in cancer
  publication-title: Cancer Cell
– volume: 137
  start-page: 1005
  year: 2009
  end-page: 1017
  article-title: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model
  publication-title: Cell
– volume: 92
  start-page: 1754
  year: 2005
  end-page: 1758
  article-title: Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma
  publication-title: Br J Cancer
– volume: 52
  start-page: 1731
  year: 2010
  end-page: 1740
  article-title: MicroRNA‐125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2
  publication-title: HEPATOLOGY
– volume: 322
  start-page: 1695
  year: 2008
  end-page: 1699
  article-title: Genomic loss of microRNA‐101 leads to overexpression of histone methyltransferase EZH2 in cancer
  publication-title: Science
– volume: 17
  start-page: 12
  year: 2011
  end-page: 20
  article-title: High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients
  publication-title: Mol Med
– volume: 28
  start-page: 160
  year: 2008
  end-page: 174
  article-title: Molecular pathogenesis of hepatocellular carcinoma
  publication-title: Liver Int
– volume: 298
  start-page: 1039
  year: 2002
  end-page: 1043
  article-title: Role of histone H3 lysine 27 methylation in Polycomb‐group silencing
  publication-title: Science
– volume: 12
  start-page: 99
  year: 2011
  end-page: 110
  article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay
  publication-title: Nat Rev Genet
– volume: 9
  start-page: 435
  year: 2006
  end-page: 443
  article-title: Specific activation of microRNA‐127 with downregulation of the proto‐oncogene BCL6 by chromatin‐modifying drugs in human cancer cells
  publication-title: Cancer Cell
– volume: 10
  start-page: 593
  year: 2008
  end-page: 601
  article-title: The miR‐200 family and miR‐205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 257
  year: 2010
  end-page: 267
  article-title: Roles of small RNAs in tumor formation
  publication-title: Trends Mol Med
– volume: 11
  start-page: 441
  year: 2006
  end-page: 450
  article-title: The diverse functions of microRNAs in animal development and disease
  publication-title: Dev Cell
– volume: 113
  start-page: 6411
  year: 2009
  end-page: 6418
  article-title: MicroRNA‐29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1
  publication-title: Blood
– volume: 46
  start-page: 200
  year: 2007
  end-page: 208
  article-title: Lentivirus‐mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down‐regulation of stathmin
  publication-title: HEPATOLOGY
– volume: 25
  start-page: 1991
  year: 2009
  end-page: 1993
  article-title: DIANA‐mirPath: integrating human and mouse microRNAs in pathways
  publication-title: Bioinformatics
– volume: 9
  start-page: 435443
  year: 2006
  ident: R13-26-20241201
  article-title: Specific activation of microRNA127 with downregulation of the protooncogene BCL6 by chromatinmodifying drugs in human cancer cells.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.04.020
– volume: 322
  start-page: 16951699
  year: 2008
  ident: R18-26-20241201
  article-title: Genomic loss of microRNA101 leads to overexpression of histone methyltransferase EZH2 in cancer.
  publication-title: Science
  doi: 10.1126/science.1165395
– volume: 3
  start-page: e2779
  year: 2008
  ident: R35-26-20241201
  article-title: Deleted in liver cancer 1 (DLC1) negatively regulates RhoROCKMLC pathway in hepatocellular carcinoma.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002779
– volume: 28
  start-page: 160174
  year: 2008
  ident: R3-26-20241201
  article-title: Molecular pathogenesis of hepatocellular carcinoma.
  publication-title: Liver Int
  doi: 10.1111/j.1478-3231.2007.01637.x
– volume: 88
  start-page: 873882
  year: 2008
  ident: R5-26-20241201
  article-title: The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma.
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2008.52
– volume: 11
  start-page: 441450
  year: 2006
  ident: R11-26-20241201
  article-title: The diverse functions of microRNAs in animal development and disease.
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.09.009
– volume: 25
  start-page: 19911993
  year: 2009
  ident: R23-26-20241201
  article-title: DIANAmirPath: integrating human and mouse microRNAs in pathways.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp299
– volume: 125
  start-page: 301313
  year: 2006
  ident: R7-26-20241201
  article-title: Control of developmental regulators by Polycomb in human embryonic stem cells.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.043
– volume: 65
  start-page: 88618868
  year: 2005
  ident: R36-26-20241201
  article-title: Rho GTPaseactivating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1318
– volume: 32
  start-page: 491502
  year: 2008
  ident: R25-26-20241201
  article-title: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.10.016
– volume: 76
  start-page: 24432448
  year: 1995
  ident: R20-26-20241201
  article-title: Prognostic significance of pathologic features of hepatocellular carcinoma. A multivariate analysis of 278 patients.
  publication-title: Cancer
  doi: 10.1002/1097-0142(19951215)76:12<2443::AID-CNCR2820761207>3.0.CO;2-F
– volume: 12
  start-page: 99110
  year: 2011
  ident: R9-26-20241201
  article-title: Gene silencing by microRNAs: contributions of translational repression and mRNA decay.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2936
– volume: 2
  start-page: 113121
  year: 2003
  ident: R4-26-20241201
  article-title: Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy.
  publication-title: Mol Cancer Ther
– volume: 69
  start-page: 11351142
  year: 2009
  ident: R32-26-20241201
  article-title: MicroRNA101, downregulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2886
– volume: 49
  start-page: 15831594
  year: 2009
  ident: R21-26-20241201
  article-title: Rhokinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion.
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.22836
– volume: 113
  start-page: 64116418
  year: 2009
  ident: R16-26-20241201
  article-title: MicroRNA29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1.
  publication-title: Blood
  doi: 10.1182/blood-2008-07-170589
– volume: 16
  start-page: 286294
  year: 2010
  ident: R27-26-20241201
  article-title: An oncogenetumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factorkappaB.
  publication-title: Nat Med
  doi: 10.1038/nm.2100
– volume: 120
  start-page: 635647
  year: 2005
  ident: R30-26-20241201
  article-title: RAS is regulated by the let7 microRNA family.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.01.014
– volume: 21
  start-page: 10501063
  year: 2007
  ident: R29-26-20241201
  article-title: Pharmacologic disruption of Polycombrepressive complex 2mediated gene repression selectively induces apoptosis in cancer cells.
  publication-title: Genes Dev
  doi: 10.1101/gad.1524107
– volume: 455
  start-page: 5863
  year: 2008
  ident: R34-26-20241201
  article-title: Widespread changes in protein synthesis induced by microRNAs.
  publication-title: Nature
  doi: 10.1038/nature07228
– volume: 39
  start-page: 761772
  year: 2010
  ident: R43-26-20241201
  article-title: Loss of miR200 inhibition of Suz12 leads to polycombmediated repression required for the formation and maintenance of cancer stem cells.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.08.013
– volume: 455
  start-page: 6471
  year: 2008
  ident: R33-26-20241201
  article-title: The impact of microRNAs on protein output.
  publication-title: Nature
  doi: 10.1038/nature07242
– volume: 52
  start-page: 17311740
  year: 2010
  ident: R28-26-20241201
  article-title: MicroRNA125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2.
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.23904
– volume: 68
  start-page: 20942105
  year: 2008
  ident: R14-26-20241201
  article-title: Exploration of tumorsuppressive microRNAs silenced by DNA hypermethylation in oral cancer.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5194
– volume: 20
  start-page: 6573
  year: 2007
  ident: R37-26-20241201
  article-title: DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation.
  publication-title: Int J Mol Med
– volume: 16
  start-page: 257267
  year: 2010
  ident: R12-26-20241201
  article-title: Roles of small RNAs in tumor formation.
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2010.04.001
– volume: 92
  start-page: 17541758
  year: 2005
  ident: R40-26-20241201
  article-title: Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma.
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6602531
– volume: 17
  start-page: 1220
  year: 2011
  ident: R39-26-20241201
  article-title: High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients.
  publication-title: Mol Med
  doi: 10.2119/molmed.2010.00103
– volume: 112
  start-page: 42024212
  year: 2008
  ident: R17-26-20241201
  article-title: MYC stimulates EZH2 expression by repression of its negative regulator miR26a.
  publication-title: Blood
  doi: 10.1182/blood-2008-03-147645
– volume: 20
  start-page: 187199
  year: 2011
  ident: R44-26-20241201
  article-title: Coordinated regulation of polycomb group complexes through microRNAs in cancer.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.06.016
– volume: 298
  start-page: 10391043
  year: 2002
  ident: R8-26-20241201
  article-title: Role of histone H3 lysine 27 methylation in Polycombgroup silencing.
  publication-title: Science
  doi: 10.1126/science.1076997
– volume: 419
  start-page: 624629
  year: 2002
  ident: R6-26-20241201
  article-title: The polycomb group protein EZH2 is involved in progression of prostate cancer.
  publication-title: Nature
  doi: 10.1038/nature01075
– volume: 136
  start-page: 215233
  year: 2009
  ident: R10-26-20241201
  article-title: MicroRNAs: target recognition and regulatory functions.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 10
  start-page: 593601
  year: 2008
  ident: R31-26-20241201
  article-title: The miR200 family and miR205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1722
– volume: 55
  start-page: 74108
  year: 2005
  ident: R1-26-20241201
  article-title: Global cancer statistics, 2002.
  publication-title: CA Cancer J Clin
  doi: 10.3322/canjclin.55.2.74
– volume: 105
  start-page: 1355613561
  year: 2008
  ident: R15-26-20241201
  article-title: A microRNA DNA methylation signature for human cancer metastasis.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0803055105
– volume: 27
  start-page: 72747284
  year: 2008
  ident: R26-26-20241201
  article-title: Repression of Ecadherin by the polycomb group protein EZH2 in cancer.
  publication-title: Oncogene
  doi: 10.1038/onc.2008.333
– volume: 117
  start-page: 27132722
  year: 2007
  ident: R38-26-20241201
  article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.
  publication-title: J Clin Invest
  doi: 10.1172/JCI31457
– volume: 46
  start-page: 200208
  year: 2007
  ident: R41-26-20241201
  article-title: Lentivirusmediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through downregulation of stathmin.
  publication-title: HEPATOLOGY
  doi: 10.1002/hep.21668
– volume: 140
  start-page: 322331
  year: 2011
  ident: R22-26-20241201
  article-title: The microRNA miR139 suppresses metastasis and progression of hepatocellular carcinoma by downregulating Rhokinase 2.
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.10.006
– volume: 15
  start-page: 5767
  year: 2004
  ident: R24-26-20241201
  article-title: SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EEDEZH2 complex.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.06.020
– volume: 137
  start-page: 10051017
  year: 2009
  ident: R45-26-20241201
  article-title: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.021
– volume: 69
  start-page: 11351142
  year: 2009
  ident: R42-26-20241201
  article-title: MicroRNA101, downregulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2886
– volume: 35
  start-page: 13241331
  year: 2004
  ident: R19-26-20241201
  article-title: Highthroughput tissue microarray analysis of cmyc activation in chronic liver diseases and hepatocellular carcinoma.
  publication-title: Hum Pathol
  doi: 10.1016/j.humpath.2004.06.012
SSID ssj0009428
Score 2.5144644
Snippet Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri‐methylating enzyme,...
Epigenetic alterations and microRNA (miRNA) deregulation are common in hepatocellular carcinoma (HCC). The histone H3 lysine 27 (H3K27) tri-methylating enzyme,...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 622
SubjectTerms Animals
Biological and medical sciences
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - secondary
Cell Movement - physiology
Computer Simulation
DNA-Binding Proteins - genetics
Enhancer of Zeste Homolog 2 Protein
Epigenesis, Genetic - genetics
Epigenetics
Gastroenterology. Liver. Pancreas. Abdomen
Gene expression
Gene Knockdown Techniques
Gene Silencing - physiology
Hep G2 Cells
Hepatology
Humans
Liver cancer
Liver Neoplasms - genetics
Liver Neoplasms - pathology
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Male
Medical sciences
Metastasis
Mice
Mice, Inbred BALB C
Mice, Nude
MicroRNAs - genetics
Motility
Neoplasm Transplantation
Polycomb Repressive Complex 2
Polycomb-Group Proteins
Repressor Proteins - genetics
Transcription Factors - genetics
Transplantation, Heterologous
Tumors
Title Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
URI https://api.istex.fr/ark:/67375/WNG-XRB38JSM-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.25679
https://www.ncbi.nlm.nih.gov/pubmed/22370893
https://www.proquest.com/docview/1766825978
https://www.proquest.com/docview/1030075887
https://www.proquest.com/docview/1776672942
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelhbGXrfv21hVtjLEXp65kWxF76ka6EEgY2cryMBCWIpHSJDaxDVv--p0k2yGjG2MPAUPOHzqf7n5nnX6H0BsuWaY0JDm2mYhtYTYPZcR1CMGbREqlkjuegvEkHV7Fo1kyO0Dv270wnh-i--BmZ4bz13aCZ7I825GGLnTRg3jN7OY9W6tlAdF0Rx3FY9dXFbKuyK4u85ZVKCJn3Zl7sejIqvWHrY3MSlCP8X0tbgOe-zjWBaLL--h7OwRff3LTqyvZU9vf2B3_c4zH6F4DUPGFt6gH6ECvH6I742YJ_hHaDtYLaykbnBu8tV9L8SJfWReKCdaFJff0-yKXP3F57bY0lbgtW8RVvco3uKwLV38LhytbEDidXJS4ynHhagM1XtpiEaz8bVa6ygDCltflY3R1Ofj6cRg2DRxClUCmEhpGUqoBwaWUycgQBm6ZM0WUYTKlss9ZlijX_GPOqJFJJiPN48joiDEaw-8JOlzna_0MYWZSpTnkP-eJjg2jfaPUnMwzTrkkcUYD9K59lUI17Oa2ycZSeF5mIkCXwukyQK870cJTetwm9NbZQyeRbW5sDRxLxLfJJzGbfqD90ZexGAXodM9guhMIZJYJI_BkJ60FicY_lMLSckJuDil8gF51f8PMtss12VrnNciA_wVAB1HgLzIMLgT5UUwC9NRb5-4BCGURwFFQjbOxPw9WDAef3cHzfxd9ge4CdiS-FvIEHVabWr8EfFbJUzcRfwEA1TYf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVoJeeD8CpRgEqJekW-_D8YFDoSlp2kQotCI3s3a8StUku8puBM1v4q_wnxh7H1FQQVx64BBppUw2Xs-MZ8b7-RuA11yyUGksckwzEdPCbFiXDtd1DN7UUSqQ3PIUdHtB-8zrDPzBGvwoz8Lk_BDVhpvxDLteGwc3G9K7S9bQkU4aGLAZLyCVx_ryGxZs6bujA9TuG0oPW6cf2vWip0Bd-Zg81yNGA1ebdvMuk05EGa4UnCmqIiYDVzY5C31l-1EMmRtJP5SO5p4TaYcx18MP3vcGbJgO4oap_6C_JKvinu3kinWeY95n85LHyKG71VBXot-GUeR3g8YMU1RIlHfSuCrVXc2cbeg7vAM_y0nLES8XjXkmG2rxG5_k_zKrd-F2kYOT_dxp7sGant6Hm90CZfAAFq3pyDjDjMQRWZgNYTKKJyZKEEp0YvhL86Of40uSnttTWykpkZkkm0_iGUnniYUY4-XEYB77vf2UZDFJLPxRk7HBwxCV_81EZyFm6el5-hDOruXJH8H6NJ7qJ0BYFCjNscTb87UXMbcZKTWkw5C7XFIvdGuwU9qOUAWBu-kjMhY59TQVqDthdVeDV5VokrOWXCX01hpgJRHOLgzMj_niS--jGPTfu83O567o1GB7xUKrH1Asnn1GcWRbpcmKYglMhWEebWJxzZo1eFl9jYuXeSMVTnU8RxkMMZizYqD7iwzDG2EJ6NEaPM7dYTkA6jIHM26cGmvUf35Y0W59shdP_130Bdxqn3ZPxMlR7_gZbGKqTHPo5xasZ7O5fo7paCa37SpA4Ot1O8gvhxaQ1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVqq48H4ESlkQIC5Jzfqx3gOHQhLSlERVoCK3xbvZVaomsRXbguYv8Vf4UcyuH1FQQVx64GDJkifOemdmZ8b-9huEXjBBI6mgyDHNREwLs0lTOEw1IXgTR8pAMMtTMBgGvVOvP_bHW-hHtRem4IeoX7gZz7DrtXHwZKIP1qShU5W0IF5TViIqj9XFN6jX0rdHbVDuS0K6nc_ve82ypUBT-pA7NzUlgatMt3mXCkcTCgsFo5JITUXgipDRyJe2HcWEulr4kXAU8xytHEpdDw647zW04wUOM30i2qM1VxXzbCNXKPMc8zmbVTRGDjmoh7oR_HaMHr8bMGaUgj500Ujjskx3M3G2ka97E_2s5qwAvJy38ky05Oo3Osn_ZFJvoRtlBo4PC5e5jbbU4g7aHZQYg7to1VlMjSsscazxyrwOxtN4bmIEJlglhr202Pg5u8Dpmd2zleIKl4mzfB4vcZonFmAMp3ODeBwND1OcxTix4EeFZwYNg2XxN3OVRZCjp2fpPXR6JU9-H20v4oV6iDDVgVQMCrw3vvI0dUMt5YRMIuYyQbzIbaDXlelwWdK3my4iM14QTxMOuuNWdw30vBZNCs6Sy4ReWfurJaLluQH5UZ9_GX7g49E7N-x_GvB-A-1vGGj9AwKls08JjGyvslheLoApN7yjIZTWNGygZ_VlWLrM96hooeIcZCDAQMYKYe4vMhRuBAWgRxroQeEN6wEQlzqQb8PUWJv-88PyXufEnjz6d9GnaPek3eUfj4bHj9F1yJNJgfvcQ9vZMldPIBfNxL5dAzD6etX-8QsvA4-G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancer+of+zeste+homolog+2+epigenetically+silences+multiple+tumor+suppressor+microRNAs+to+promote+liver+cancer+metastasis&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Au%2C+Sandy+Leung-Kuen&rft.au=Wong%2C+Carmen+Chak-Lui&rft.au=Lee%2C+Joyce+Man-Fong&rft.au=Fan%2C+Dorothy+Ngo-Yin&rft.date=2012-08-01&rft.eissn=1527-3350&rft.volume=56&rft.issue=2&rft.spage=622&rft_id=info:doi/10.1002%2Fhep.25679&rft_id=info%3Apmid%2F22370893&rft.externalDocID=22370893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon