Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries

Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the sh...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 12; no. 24; pp. 3283 - 3291
Main Authors Hou, Ting-Zheng, Chen, Xiang, Peng, Hong-Jie, Huang, Jia-Qi, Li, Bo-Quan, Zhang, Qiang, Li, Bo
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium–sulfur (Li–S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various hetero­atoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. While B and F doping exhibit lower Eb than undoped carbon, N and O elements offer elevated binding energies with Li2Sx that form a strong anchoring effect to alleviate shuttle effect.
AbstractList Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.
Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.
Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium–sulfur (Li–S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various hetero­atoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. While B and F doping exhibit lower Eb than undoped carbon, N and O elements offer elevated binding energies with Li2Sx that form a strong anchoring effect to alleviate shuttle effect.
Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li sub(2)S sub(x), the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium-sulfur (Li-S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various hetero-atoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. While B and F doping exhibit lower E sub(b) than undoped carbon, N and O elements offer elevated binding energies with Li sub(2)S sub(x) that form a strong anchoring effect to alleviate shuttle effect.
Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.
Author Li, Bo
Li, Bo-Quan
Zhang, Qiang
Huang, Jia-Qi
Hou, Ting-Zheng
Peng, Hong-Jie
Chen, Xiang
Author_xml – sequence: 1
  givenname: Ting-Zheng
  surname: Hou
  fullname: Hou, Ting-Zheng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 2
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 3
  givenname: Hong-Jie
  surname: Peng
  fullname: Peng, Hong-Jie
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 4
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 5
  givenname: Bo-Quan
  surname: Li
  fullname: Li, Bo-Quan
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 6
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
– sequence: 7
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27168000$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9v0zAYhiM0xH7AlSOyxIVLiu3EsXMsHWyIUDZ1iKPlOl9aD8cutgOUv56MlgpNQjv5k_U87yf7Pc2OnHeQZc8JnhCM6evYWzuhmFQYC1w_yk5IRYq8ErQ-OswEH2enMd5iXBBa8ifZMeWkEhjjk-zXOUSzcugqGKfNxkJEnQ_oEhIEr5Lv83O_gRbNlfNahaV3KHk01WsD3wEtUvBuhaZOr_0YsEK-Q1febuNgO9PusxqT1mbo88V4OQT0RqUx20B8mj3ulI3wbH-eZZ_fvb2ZXebNp4v3s2mTa8ZYnbMa67bt2poTwUC0FVRlS8pO6E5gsSQUoKZMd5ovudZLokvRlrQoC1YyDUwVZ9mrXe4m-G8DxCR7EzVYqxz4IUoiKGPjx1T1wyivueCEl2REX95Db_0Q3PiQPxSloiqKkXqxp4ZlD63cBNOrsJV_CxiByQ7QwccYoDsgBMu7huVdw_LQ8CiU9wRtkkrGuxSUsf_X6p32w1jYPrBELj42zb9uvnNNTPDz4KrwVVa84Ex-mV_IZi6ub-oPM3ld_AZJHcrx
CitedBy_id crossref_primary_10_26599_NRE_2023_9120049
crossref_primary_10_1016_j_carbon_2017_11_068
crossref_primary_10_1016_j_carbon_2021_03_002
crossref_primary_10_1016_j_jpowsour_2024_234540
crossref_primary_10_1016_j_jechem_2023_08_020
crossref_primary_10_1007_s12274_017_1652_x
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1016_j_cogsc_2017_02_008
crossref_primary_10_1016_j_est_2024_112555
crossref_primary_10_1002_batt_202200097
crossref_primary_10_1021_jacs_9b11169
crossref_primary_10_1016_j_jallcom_2024_174419
crossref_primary_10_1002_adfm_202010455
crossref_primary_10_1007_s41918_018_0006_z
crossref_primary_10_1039_C9NR07809F
crossref_primary_10_1016_j_cej_2019_123734
crossref_primary_10_1021_acs_chemmater_7b02658
crossref_primary_10_1021_acsami_6b09918
crossref_primary_10_1002_celc_202001590
crossref_primary_10_1039_C8NR10025J
crossref_primary_10_1149_1945_7111_abdeee
crossref_primary_10_1002_ange_202114182
crossref_primary_10_1016_j_jallcom_2020_158287
crossref_primary_10_1002_sstr_202400311
crossref_primary_10_1016_j_commatsci_2024_113376
crossref_primary_10_1016_S1872_2067_21_63984_0
crossref_primary_10_1007_s10853_018_2566_z
crossref_primary_10_1016_j_jechem_2024_12_074
crossref_primary_10_1016_j_nantod_2018_02_006
crossref_primary_10_1016_j_jallcom_2016_09_235
crossref_primary_10_1021_acs_cgd_2c00681
crossref_primary_10_1007_s11426_017_9164_2
crossref_primary_10_1002_adfm_202008034
crossref_primary_10_1515_ijcre_2021_0256
crossref_primary_10_1016_j_jechem_2023_08_015
crossref_primary_10_1016_j_ccr_2022_214715
crossref_primary_10_1002_anie_202211448
crossref_primary_10_1039_C7RA08501J
crossref_primary_10_1007_s41918_019_00033_7
crossref_primary_10_1039_C6CC06094C
crossref_primary_10_1016_j_electacta_2018_11_013
crossref_primary_10_1002_slct_202300614
crossref_primary_10_1021_acsami_1c23837
crossref_primary_10_1021_acs_jpcc_9b10314
crossref_primary_10_1021_acsami_9b00845
crossref_primary_10_1016_j_ensm_2020_09_005
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1002_advs_202204930
crossref_primary_10_1016_j_apsusc_2025_162338
crossref_primary_10_1016_j_est_2024_114756
crossref_primary_10_1016_j_matchemphys_2019_03_019
crossref_primary_10_1007_s11581_021_04097_8
crossref_primary_10_1002_cssc_201902227
crossref_primary_10_1016_j_susc_2021_121818
crossref_primary_10_3390_polym14071342
crossref_primary_10_1002_cphc_202400406
crossref_primary_10_1021_acssuschemeng_8b04331
crossref_primary_10_1007_s12613_023_2683_9
crossref_primary_10_1016_j_comptc_2020_113110
crossref_primary_10_1002_slct_201903523
crossref_primary_10_1016_j_jelechem_2019_03_041
crossref_primary_10_1021_acsami_0c04554
crossref_primary_10_1039_D4CP01881H
crossref_primary_10_1016_j_cej_2017_03_022
crossref_primary_10_1016_j_ensm_2020_02_010
crossref_primary_10_3390_inorganics10100150
crossref_primary_10_1016_j_ensm_2023_102817
crossref_primary_10_1016_j_nanoen_2017_10_032
crossref_primary_10_1016_j_jallcom_2019_152189
crossref_primary_10_1038_s41467_017_00649_7
crossref_primary_10_1002_cssc_201801212
crossref_primary_10_1088_2053_1591_ab33ad
crossref_primary_10_1039_C7CP02853A
crossref_primary_10_26599_CF_2024_9200024
crossref_primary_10_1016_j_cej_2023_141556
crossref_primary_10_1002_adma_202412908
crossref_primary_10_1002_ente_202000302
crossref_primary_10_1016_j_apsusc_2017_10_230
crossref_primary_10_1016_j_ensm_2016_07_005
crossref_primary_10_34133_2022_9850712
crossref_primary_10_1002_aenm_202203621
crossref_primary_10_1002_cplu_202000301
crossref_primary_10_1021_acs_energyfuels_0c01859
crossref_primary_10_1016_j_apsusc_2021_149131
crossref_primary_10_1021_acs_jpclett_9b02457
crossref_primary_10_1007_s10853_019_03534_4
crossref_primary_10_1016_j_apsusc_2023_157963
crossref_primary_10_1016_j_electacta_2018_12_112
crossref_primary_10_1016_j_jechem_2023_02_031
crossref_primary_10_1002_aenm_202201494
crossref_primary_10_1021_acsaem_2c01459
crossref_primary_10_1002_celc_201900585
crossref_primary_10_1007_s11581_024_05808_7
crossref_primary_10_1039_D0QI01393E
crossref_primary_10_1016_j_jallcom_2020_157278
crossref_primary_10_1016_j_cej_2024_153813
crossref_primary_10_1016_j_jechem_2019_07_001
crossref_primary_10_1016_j_jechem_2020_09_032
crossref_primary_10_1016_j_carbon_2018_05_048
crossref_primary_10_1016_j_nanoen_2018_02_016
crossref_primary_10_1016_j_matre_2023_100213
crossref_primary_10_3390_ma17112689
crossref_primary_10_1016_j_jechem_2023_02_048
crossref_primary_10_1002_aenm_201901935
crossref_primary_10_1016_j_electacta_2021_139609
crossref_primary_10_1021_acssuschemeng_8b04648
crossref_primary_10_1002_celc_202100297
crossref_primary_10_1016_j_apsusc_2021_150380
crossref_primary_10_1016_j_carbon_2021_11_031
crossref_primary_10_1016_j_jcis_2024_08_184
crossref_primary_10_1021_acsami_0c14645
crossref_primary_10_1016_j_jallcom_2023_170938
crossref_primary_10_1016_j_apsusc_2021_150378
crossref_primary_10_1039_C9NR01220F
crossref_primary_10_3390_electrochem4040032
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_smll_202104469
crossref_primary_10_1016_j_mset_2022_12_009
crossref_primary_10_1016_j_chempr_2020_06_032
crossref_primary_10_1002_adma_201601759
crossref_primary_10_1002_anie_202114182
crossref_primary_10_1016_j_apsusc_2020_145639
crossref_primary_10_1002_aenm_202003599
crossref_primary_10_1016_j_cej_2019_121977
crossref_primary_10_1039_D1CP05715D
crossref_primary_10_1016_j_jssc_2022_123430
crossref_primary_10_1016_j_jcis_2022_03_135
crossref_primary_10_1002_cssc_201802698
crossref_primary_10_1021_acsami_1c16148
crossref_primary_10_1039_D4RA02704C
crossref_primary_10_1021_acsanm_3c01099
crossref_primary_10_1002_nano_202000164
crossref_primary_10_1021_acs_energyfuels_1c04231
crossref_primary_10_1016_j_nanoen_2020_105466
crossref_primary_10_1002_nano_202000168
crossref_primary_10_1016_j_jcis_2024_06_230
crossref_primary_10_1016_j_cclet_2022_02_037
crossref_primary_10_1063_5_0152737
crossref_primary_10_1002_smtd_202301401
crossref_primary_10_1016_j_electacta_2016_07_153
crossref_primary_10_1002_EXP_20210131
crossref_primary_10_1016_j_carbon_2017_08_035
crossref_primary_10_1002_cssc_201700999
crossref_primary_10_1016_j_cclet_2022_01_014
crossref_primary_10_1002_ente_201900470
crossref_primary_10_1002_adma_201907557
crossref_primary_10_1007_s11581_019_03047_9
crossref_primary_10_1021_acsami_3c06459
crossref_primary_10_1002_smll_201902719
crossref_primary_10_1016_j_poly_2018_08_067
crossref_primary_10_1038_s41524_020_0273_1
crossref_primary_10_1016_j_ensm_2017_01_003
crossref_primary_10_1016_j_electacta_2017_09_149
crossref_primary_10_1016_j_jechem_2019_08_019
crossref_primary_10_1002_adma_201703324
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1039_C9TA00535H
crossref_primary_10_1002_smm2_1186
crossref_primary_10_1007_s11581_020_03519_3
crossref_primary_10_1016_j_compositesb_2023_111050
crossref_primary_10_1149_2_0041802jes
crossref_primary_10_1038_s41598_022_08478_5
crossref_primary_10_1039_C7TA05192A
crossref_primary_10_1002_admi_201701097
crossref_primary_10_1016_j_nanoen_2018_12_019
crossref_primary_10_1039_C9TA05996B
crossref_primary_10_2139_ssrn_4098682
crossref_primary_10_1021_acs_nanolett_3c01034
crossref_primary_10_1002_cssc_201700749
crossref_primary_10_1007_s11426_023_1559_9
crossref_primary_10_1016_j_jcis_2021_11_106
crossref_primary_10_1016_j_jelechem_2022_116512
crossref_primary_10_3390_molecules26092507
crossref_primary_10_1002_cjce_25346
crossref_primary_10_1039_D2TA06807A
crossref_primary_10_1002_anie_201810579
crossref_primary_10_1016_j_est_2024_110898
crossref_primary_10_1039_C6CP07650E
crossref_primary_10_1016_j_jechem_2017_08_008
crossref_primary_10_1016_j_ensm_2017_12_024
crossref_primary_10_1016_j_mattod_2018_04_007
crossref_primary_10_1016_j_matlet_2023_135539
crossref_primary_10_1002_adfm_202100666
crossref_primary_10_1039_D3RA05741K
crossref_primary_10_1016_j_cej_2021_133683
crossref_primary_10_1021_acsami_8b02084
crossref_primary_10_1016_j_ensm_2024_103328
crossref_primary_10_1016_j_jechem_2020_05_059
crossref_primary_10_1021_acsami_3c18930
crossref_primary_10_1016_j_matchemphys_2023_127565
crossref_primary_10_1016_j_nanoen_2018_09_065
crossref_primary_10_1039_D1TA09422J
crossref_primary_10_1002_smll_202311343
crossref_primary_10_1016_j_cplett_2021_138711
crossref_primary_10_1021_acsami_0c14287
crossref_primary_10_1039_D0TA04187D
crossref_primary_10_1039_C9TA00327D
crossref_primary_10_1002_batt_201900014
crossref_primary_10_1039_D3GC03576J
crossref_primary_10_1016_j_ensm_2018_10_021
crossref_primary_10_1016_j_ijhydene_2018_09_045
crossref_primary_10_1016_j_jechem_2022_08_033
crossref_primary_10_3389_fchem_2019_00721
crossref_primary_10_1016_j_materresbull_2017_11_035
crossref_primary_10_1007_s10008_018_04166_5
crossref_primary_10_1016_j_mattod_2017_06_002
crossref_primary_10_1021_acssuschemeng_8b03193
crossref_primary_10_1002_eom2_12010
crossref_primary_10_1016_j_commatsci_2019_109228
crossref_primary_10_1016_j_electacta_2018_05_144
crossref_primary_10_3390_batteries9010027
crossref_primary_10_3390_en16010247
crossref_primary_10_1002_smll_201907464
crossref_primary_10_1039_D1CP04192D
crossref_primary_10_1002_batt_202400484
crossref_primary_10_1016_j_jechem_2020_02_050
crossref_primary_10_1039_D1TA02741G
crossref_primary_10_1002_eom2_12019
crossref_primary_10_1016_j_jpowsour_2024_235572
crossref_primary_10_1021_acsami_1c18645
crossref_primary_10_1016_j_electacta_2017_01_166
crossref_primary_10_1039_C7TA07063B
crossref_primary_10_1002_anie_201702099
crossref_primary_10_1016_j_cej_2021_130181
crossref_primary_10_1016_j_jechem_2022_05_034
crossref_primary_10_1007_s11581_020_03798_w
crossref_primary_10_1016_j_jelechem_2019_113797
crossref_primary_10_3390_nano10040705
crossref_primary_10_1002_er_5150
crossref_primary_10_1016_j_jechem_2020_01_015
crossref_primary_10_1021_acssuschemeng_0c00243
crossref_primary_10_1002_anie_201915623
crossref_primary_10_1039_D0TA04910G
crossref_primary_10_1016_j_jallcom_2020_158461
crossref_primary_10_1021_acs_energyfuels_0c01909
crossref_primary_10_1002_ange_202211448
crossref_primary_10_1016_j_ensm_2018_06_015
crossref_primary_10_1039_D1NA00409C
crossref_primary_10_1016_j_cap_2020_11_004
crossref_primary_10_3390_ijms232415608
crossref_primary_10_1002_adma_201904524
crossref_primary_10_1002_elan_202200003
crossref_primary_10_1007_s40820_019_0249_1
crossref_primary_10_1016_j_jpowsour_2024_235322
crossref_primary_10_1021_acs_energyfuels_3c01938
crossref_primary_10_1021_acsnano_0c03403
crossref_primary_10_1039_C9TA00458K
crossref_primary_10_1002_cssc_202202095
crossref_primary_10_1016_j_cej_2019_122918
crossref_primary_10_1016_j_jechem_2017_08_016
crossref_primary_10_1002_aenm_201702337
crossref_primary_10_1039_D4TC01159G
crossref_primary_10_1039_C9NR07458A
crossref_primary_10_1002_slct_201802296
crossref_primary_10_1002_ange_201710025
crossref_primary_10_1021_acs_nanolett_1c04247
crossref_primary_10_1039_C7TA06504C
crossref_primary_10_1016_j_ssi_2017_12_004
crossref_primary_10_1016_j_cplett_2020_138101
crossref_primary_10_1002_adma_201603401
crossref_primary_10_1016_j_cclet_2017_11_038
crossref_primary_10_1016_j_matt_2025_101996
crossref_primary_10_1016_j_jechem_2020_10_031
crossref_primary_10_1039_D3TA03497F
crossref_primary_10_1002_smll_202410907
crossref_primary_10_1002_adfm_202100868
crossref_primary_10_1002_qua_26661
crossref_primary_10_1016_j_jpowsour_2019_05_045
crossref_primary_10_1016_j_ensm_2018_05_025
crossref_primary_10_1016_j_ensm_2023_103011
crossref_primary_10_1002_inf2_12653
crossref_primary_10_1016_j_electacta_2017_10_076
crossref_primary_10_1002_ente_201700531
crossref_primary_10_1016_j_est_2023_108372
crossref_primary_10_1016_j_mtcomm_2024_108417
crossref_primary_10_1039_C6TA07864H
crossref_primary_10_1007_s10008_018_4141_6
crossref_primary_10_1002_chem_201802386
crossref_primary_10_1002_er_7438
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_ijbiomac_2025_141279
crossref_primary_10_1002_smtd_202000315
crossref_primary_10_1016_j_matlet_2018_08_046
crossref_primary_10_1021_acsami_1c01393
crossref_primary_10_1016_j_cej_2020_126781
crossref_primary_10_1007_s11426_022_1454_0
crossref_primary_10_1002_aenm_201700260
crossref_primary_10_1016_j_jelechem_2019_113539
crossref_primary_10_1002_adfm_201707536
crossref_primary_10_1360_TB_2022_0050
crossref_primary_10_1002_adfm_201707411
crossref_primary_10_1002_slct_202000366
crossref_primary_10_1039_C7TA03552G
crossref_primary_10_1002_ente_202300283
crossref_primary_10_1016_j_cej_2023_144888
crossref_primary_10_1088_1361_6528_ab8989
crossref_primary_10_1007_s40820_020_00477_3
crossref_primary_10_1016_j_carbon_2019_05_022
crossref_primary_10_1039_C6TA09841J
crossref_primary_10_1002_adfm_202213395
crossref_primary_10_1002_aenm_201901896
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1016_j_ensm_2018_11_028
crossref_primary_10_1016_j_jcis_2022_09_015
crossref_primary_10_1016_j_ensm_2018_11_029
crossref_primary_10_1016_j_apsusc_2021_149312
crossref_primary_10_1016_j_ccr_2022_214879
crossref_primary_10_1016_j_jallcom_2025_179118
crossref_primary_10_1002_adfm_201800508
crossref_primary_10_1016_j_ensm_2019_06_009
crossref_primary_10_1002_adma_201606802
crossref_primary_10_1002_adts_201900236
crossref_primary_10_1039_C9RA00768G
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1002_bte2_20220003
crossref_primary_10_1016_j_ceramint_2021_11_191
crossref_primary_10_1002_advs_202103798
crossref_primary_10_1016_j_jechem_2024_01_058
crossref_primary_10_1016_j_carbon_2021_08_046
crossref_primary_10_1016_j_colsurfa_2022_130881
crossref_primary_10_1016_j_nanoen_2018_09_034
crossref_primary_10_1016_j_ensm_2023_103159
crossref_primary_10_1021_acsaem_0c00444
crossref_primary_10_1038_s41467_022_32139_w
crossref_primary_10_1039_C9CE01469A
crossref_primary_10_1016_j_jpowsour_2019_05_022
crossref_primary_10_1016_j_surfin_2021_101008
crossref_primary_10_1039_C9EE02049G
crossref_primary_10_1002_adfm_202107166
crossref_primary_10_1016_j_jechem_2016_11_003
crossref_primary_10_1039_C6TA07620C
crossref_primary_10_1002_aenm_201701330
crossref_primary_10_1016_j_electacta_2018_05_180
crossref_primary_10_1002_advs_202102217
crossref_primary_10_1039_C7RA11628D
crossref_primary_10_1002_er_4389
crossref_primary_10_1039_D1MA00518A
crossref_primary_10_1016_j_cej_2018_05_096
crossref_primary_10_1016_j_jpowsour_2020_229358
crossref_primary_10_1021_acs_jpcc_7b09392
crossref_primary_10_1007_s12274_020_2677_0
crossref_primary_10_1016_j_diamond_2018_10_008
crossref_primary_10_1016_j_jcis_2023_02_127
crossref_primary_10_1002_aenm_201804000
crossref_primary_10_1002_cey2_185
crossref_primary_10_1016_j_jechem_2020_03_035
crossref_primary_10_1016_j_cej_2018_04_049
crossref_primary_10_1002_smll_202002932
crossref_primary_10_1016_j_comptc_2021_113323
crossref_primary_10_3390_nano11112954
crossref_primary_10_1002_batt_202200124
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1016_j_cej_2018_05_088
crossref_primary_10_1002_adma_201705590
crossref_primary_10_1039_D3CP02857G
crossref_primary_10_1002_celc_201801075
crossref_primary_10_2139_ssrn_4151343
crossref_primary_10_1002_chem_201801925
crossref_primary_10_1016_j_surfcoat_2020_126228
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1016_j_ensm_2022_02_036
crossref_primary_10_1016_j_apsusc_2017_06_288
crossref_primary_10_1021_acsami_7b02142
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1021_acsenergylett_2c01132
crossref_primary_10_1007_s12598_021_01821_1
crossref_primary_10_1039_C9CC06168A
crossref_primary_10_1126_sciadv_aau7728
crossref_primary_10_3389_fenrg_2020_593640
crossref_primary_10_1016_j_electacta_2019_03_190
crossref_primary_10_1088_2515_7655_abdb9a
crossref_primary_10_1039_D1TA09070D
crossref_primary_10_1002_adfm_201701971
crossref_primary_10_1002_aenm_202002893
crossref_primary_10_3390_membranes12080790
crossref_primary_10_1016_j_ssi_2019_115150
crossref_primary_10_1002_aenm_202002891
crossref_primary_10_1002_adfm_202407986
crossref_primary_10_1016_j_susmat_2020_e00158
crossref_primary_10_1016_j_apsusc_2018_01_178
crossref_primary_10_1016_j_apsusc_2024_161752
crossref_primary_10_2139_ssrn_4068166
crossref_primary_10_1021_acs_energyfuels_0c03104
crossref_primary_10_1007_s12274_018_2023_y
crossref_primary_10_1016_j_apsusc_2018_08_184
crossref_primary_10_1016_j_matt_2019_12_020
crossref_primary_10_1002_smll_202305508
crossref_primary_10_1002_anie_201704324
crossref_primary_10_1016_j_jpowsour_2018_08_055
crossref_primary_10_1002_cssc_201700050
crossref_primary_10_1039_C9NR07416C
crossref_primary_10_1039_C9NH00730J
crossref_primary_10_1021_acsaelm_0c00953
crossref_primary_10_1039_C7CS00464H
crossref_primary_10_1016_j_jpowsour_2025_236446
crossref_primary_10_1021_acsaem_4c00093
crossref_primary_10_1016_j_surfin_2023_103074
crossref_primary_10_1021_acsaem_2c04118
crossref_primary_10_1021_acs_jpclett_1c00927
crossref_primary_10_1021_acsaem_8b01914
crossref_primary_10_3390_app10041263
crossref_primary_10_1016_j_jcis_2020_06_068
crossref_primary_10_1016_j_jechem_2016_12_001
crossref_primary_10_1021_acsami_7b05798
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1039_D3DT01132A
crossref_primary_10_1016_j_jcis_2024_05_026
crossref_primary_10_1021_acsami_9b12395
crossref_primary_10_1016_j_electacta_2017_05_026
crossref_primary_10_1039_D1CP01022K
crossref_primary_10_1016_j_ensm_2020_05_023
crossref_primary_10_1002_adfm_201804520
crossref_primary_10_1016_j_jallcom_2021_161273
crossref_primary_10_1021_acsami_8b11883
crossref_primary_10_1021_acs_jpcc_7b04170
crossref_primary_10_1016_j_apsusc_2016_10_208
crossref_primary_10_1016_j_apsusc_2020_145286
crossref_primary_10_1002_chem_201703357
crossref_primary_10_1039_C6CC06680A
crossref_primary_10_1002_cctc_201900184
crossref_primary_10_1016_j_jallcom_2024_177268
crossref_primary_10_1149_1945_7111_ac0e4d
crossref_primary_10_1016_j_jallcom_2025_179844
crossref_primary_10_1039_C8TA04675A
crossref_primary_10_1007_s41918_020_00072_5
crossref_primary_10_1021_acsami_0c09567
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1039_D2NJ03894C
crossref_primary_10_1002_sus2_110
crossref_primary_10_1021_acs_jpcc_0c11235
crossref_primary_10_1016_j_cclet_2020_08_022
crossref_primary_10_1021_acsaem_7b00096
crossref_primary_10_1039_C6CC06340C
crossref_primary_10_1016_j_apsusc_2021_149928
crossref_primary_10_1016_j_electacta_2022_140267
crossref_primary_10_1002_aenm_201901796
crossref_primary_10_1007_s40843_018_9331_x
crossref_primary_10_1039_C7CS00139H
crossref_primary_10_1016_j_cej_2019_123163
crossref_primary_10_1002_adfm_202202853
crossref_primary_10_1016_j_ces_2022_118400
crossref_primary_10_1021_acs_iecr_0c04960
crossref_primary_10_1016_j_electacta_2019_03_061
crossref_primary_10_1016_j_matt_2021_01_012
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1016_j_jechem_2019_09_004
crossref_primary_10_1016_j_jpowsour_2025_236429
crossref_primary_10_1039_C8QM00645H
crossref_primary_10_1002_aenm_201902695
crossref_primary_10_1021_acsaem_9b01416
crossref_primary_10_1016_j_cej_2021_130129
crossref_primary_10_1016_j_ensm_2021_08_019
crossref_primary_10_1080_02726351_2022_2056724
crossref_primary_10_1002_adma_201901125
crossref_primary_10_1021_acsami_8b03806
crossref_primary_10_2139_ssrn_4173296
crossref_primary_10_1002_advs_201800621
crossref_primary_10_1016_j_apsusc_2020_147483
crossref_primary_10_1016_j_jpowsour_2016_12_008
crossref_primary_10_1149_2_0351904jes
crossref_primary_10_1016_j_carbon_2022_09_069
crossref_primary_10_1021_acsmaterialslett_4c01646
crossref_primary_10_1016_j_carbon_2019_04_077
crossref_primary_10_1002_eem2_12017
crossref_primary_10_1016_j_cej_2021_132679
crossref_primary_10_1016_j_cclet_2017_09_065
crossref_primary_10_1039_D2SE01164F
crossref_primary_10_1002_smll_201804578
crossref_primary_10_1039_D0PY00490A
crossref_primary_10_1016_j_ensm_2022_11_045
crossref_primary_10_1016_j_ensm_2022_11_048
crossref_primary_10_1021_acs_jpcc_1c04491
crossref_primary_10_1039_D3TA08010B
crossref_primary_10_1002_admi_201700783
crossref_primary_10_1016_j_jpowsour_2019_03_058
crossref_primary_10_1002_elsa_202100025
crossref_primary_10_1016_j_mtener_2022_101192
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1002_slct_202201484
crossref_primary_10_1016_j_mtcomm_2023_107310
crossref_primary_10_1063_5_0110449
crossref_primary_10_1002_smtd_201700134
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1021_acs_energyfuels_1c01509
crossref_primary_10_1016_j_jechem_2022_10_015
crossref_primary_10_1002_aenm_201800849
crossref_primary_10_1016_j_jpowsour_2019_02_014
crossref_primary_10_1021_acsami_3c00102
crossref_primary_10_1007_s11581_019_02847_3
crossref_primary_10_1007_s11581_019_02968_9
crossref_primary_10_1002_asia_202000904
crossref_primary_10_1016_j_apsusc_2021_149717
crossref_primary_10_1016_j_cej_2020_124789
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1016_j_ensm_2017_12_002
crossref_primary_10_1016_S1872_5805_20_60519_4
crossref_primary_10_1021_acscentsci_9b01005
crossref_primary_10_1039_D0TA06220K
crossref_primary_10_1038_s41467_021_27777_5
crossref_primary_10_1021_acsami_1c05816
crossref_primary_10_1016_j_nanoen_2024_110091
crossref_primary_10_1016_j_jallcom_2025_179646
crossref_primary_10_1021_acsami_8b03830
crossref_primary_10_1039_D0NR06732F
crossref_primary_10_1002_aenm_201801823
crossref_primary_10_1016_j_apsusc_2021_151912
crossref_primary_10_1002_ente_202000188
crossref_primary_10_1016_j_jechem_2021_02_028
crossref_primary_10_1021_acs_chemrev_7b00115
crossref_primary_10_1021_acsami_7b09808
crossref_primary_10_1021_acsami_0c03096
crossref_primary_10_1002_cssc_201900929
crossref_primary_10_1016_j_cej_2022_138287
crossref_primary_10_3390_ma13204625
crossref_primary_10_1016_j_cclet_2022_107811
crossref_primary_10_1016_j_gee_2021_04_011
crossref_primary_10_1016_j_carbon_2021_02_073
crossref_primary_10_1021_acsnano_8b05466
crossref_primary_10_1016_j_electacta_2023_141857
crossref_primary_10_1039_C9RA02037C
crossref_primary_10_1016_j_apsusc_2021_149850
crossref_primary_10_1002_admi_201701659
crossref_primary_10_1039_C8NR04182B
crossref_primary_10_1016_j_est_2023_107214
crossref_primary_10_1039_C9EE03251G
crossref_primary_10_1002_smtd_201700279
crossref_primary_10_1016_j_jelechem_2021_115362
crossref_primary_10_1002_tcr_202300330
crossref_primary_10_1016_j_cej_2017_06_164
crossref_primary_10_1021_acs_jpcc_8b07470
crossref_primary_10_1002_adfm_201603241
crossref_primary_10_1016_j_matchemphys_2022_126509
crossref_primary_10_3390_catal14050323
crossref_primary_10_1002_aenm_201800595
crossref_primary_10_1016_j_jallcom_2024_177406
crossref_primary_10_3390_batteries7040082
crossref_primary_10_1021_acsami_6b14687
crossref_primary_10_1063_5_0094905
crossref_primary_10_1021_acs_energyfuels_1c02509
crossref_primary_10_1039_D1TA08968D
crossref_primary_10_1016_j_cej_2019_123694
crossref_primary_10_1016_j_envres_2024_120549
crossref_primary_10_1016_j_cclet_2023_108190
crossref_primary_10_1016_j_carbon_2017_08_038
crossref_primary_10_1063_5_0008206
crossref_primary_10_1039_C7TA01981E
crossref_primary_10_1088_1361_6528_ab849f
crossref_primary_10_1016_j_jiec_2023_04_025
crossref_primary_10_1016_j_electacta_2021_139126
crossref_primary_10_1016_j_cej_2024_157246
crossref_primary_10_1016_j_carbon_2016_10_035
crossref_primary_10_1002_sstr_202200244
crossref_primary_10_1016_j_ensm_2023_01_002
crossref_primary_10_1002_eem2_12444
crossref_primary_10_1016_j_cej_2020_127141
crossref_primary_10_1016_j_ijhydene_2016_08_004
crossref_primary_10_1007_s42773_023_00224_y
crossref_primary_10_1016_j_mtener_2016_10_001
crossref_primary_10_1016_j_jelechem_2017_09_065
crossref_primary_10_1016_j_apsusc_2017_04_013
crossref_primary_10_1039_D3EE04358D
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1016_j_cej_2021_130744
crossref_primary_10_1021_acsaem_0c03236
crossref_primary_10_1016_j_memsci_2021_120003
crossref_primary_10_1021_acsnano_1c03183
crossref_primary_10_3389_fchem_2021_703354
crossref_primary_10_1016_j_carbon_2016_10_047
crossref_primary_10_1016_j_electacta_2019_134849
crossref_primary_10_1016_j_est_2024_115205
crossref_primary_10_1021_acsaem_1c02115
crossref_primary_10_1016_j_carbon_2019_08_031
crossref_primary_10_1016_j_jcis_2019_01_067
crossref_primary_10_1002_chem_202100693
crossref_primary_10_1016_j_est_2024_113146
crossref_primary_10_1002_asia_202300604
crossref_primary_10_1016_j_jallcom_2018_01_026
crossref_primary_10_1016_j_jpcs_2020_109791
crossref_primary_10_1016_j_carbon_2017_07_017
crossref_primary_10_1016_j_jallcom_2023_171920
crossref_primary_10_1016_j_ensm_2019_04_042
crossref_primary_10_1016_j_est_2024_113260
crossref_primary_10_1002_anie_201710025
crossref_primary_10_1016_j_matchemphys_2024_129361
crossref_primary_10_1021_acs_inorgchem_1c01241
crossref_primary_10_1039_C7RA04673A
crossref_primary_10_1002_smll_201804277
crossref_primary_10_1016_j_ensm_2019_04_038
crossref_primary_10_1021_acs_energyfuels_2c00077
crossref_primary_10_1039_C6TA05878G
crossref_primary_10_1016_j_micrna_2022_207303
crossref_primary_10_1039_C7QI00726D
crossref_primary_10_1039_D0QM00492H
crossref_primary_10_1016_j_apsusc_2022_154342
crossref_primary_10_1039_C8CP01462K
crossref_primary_10_1039_C9NJ02065A
crossref_primary_10_1039_D0TA00284D
crossref_primary_10_1007_s11581_023_05118_4
crossref_primary_10_1016_j_cej_2022_140847
crossref_primary_10_1007_s12274_017_1749_2
crossref_primary_10_1016_j_electacta_2021_139268
crossref_primary_10_1007_s42114_023_00769_3
crossref_primary_10_1016_j_energy_2022_124474
crossref_primary_10_1007_s12274_022_4225_6
crossref_primary_10_1021_acs_jpcc_7b07847
crossref_primary_10_1002_est2_70011
crossref_primary_10_1002_ange_201702099
crossref_primary_10_1021_acsenergylett_7b00164
crossref_primary_10_1039_D3TA03098A
crossref_primary_10_1002_eem2_12349
crossref_primary_10_1039_D0RA01485K
crossref_primary_10_1021_acs_jpcc_1c00467
crossref_primary_10_1002_ange_201915623
crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1016_j_jelechem_2021_115564
crossref_primary_10_1039_C9CC02134E
crossref_primary_10_1039_C9QI00278B
crossref_primary_10_1002_celc_202100462
crossref_primary_10_1002_smll_202202557
crossref_primary_10_1016_j_electacta_2019_01_024
crossref_primary_10_1002_adma_201804581
crossref_primary_10_1016_j_carbon_2018_12_113
crossref_primary_10_1016_j_matlet_2019_03_100
crossref_primary_10_1016_j_ensm_2022_12_002
crossref_primary_10_1002_smll_202006504
crossref_primary_10_1002_celc_202200191
crossref_primary_10_1002_sstr_202000047
crossref_primary_10_1007_s00339_021_05068_6
crossref_primary_10_1016_j_jallcom_2019_04_192
crossref_primary_10_1021_acsaem_8b00519
crossref_primary_10_1016_j_cej_2016_12_081
crossref_primary_10_1016_j_electacta_2024_144487
crossref_primary_10_1021_acsami_1c08113
crossref_primary_10_1021_acsnano_0c06535
crossref_primary_10_1016_j_nanoen_2018_04_045
crossref_primary_10_1016_j_jcis_2022_06_036
crossref_primary_10_1016_j_carbon_2018_09_060
crossref_primary_10_1016_j_jallcom_2017_12_110
crossref_primary_10_1039_C7TA00799J
crossref_primary_10_1002_ange_201704324
crossref_primary_10_1016_j_apsusc_2017_10_050
crossref_primary_10_1016_j_scib_2017_09_007
crossref_primary_10_1039_D0NJ00787K
crossref_primary_10_1016_j_ensm_2021_05_034
crossref_primary_10_1021_acs_accounts_3c00698
crossref_primary_10_1002_ange_201810579
crossref_primary_10_1016_j_jcis_2021_10_015
crossref_primary_10_1016_j_polymer_2024_126793
crossref_primary_10_1002_batt_201800040
crossref_primary_10_1016_j_carbon_2018_12_101
crossref_primary_10_3390_batteries9040223
crossref_primary_10_1002_aenm_202100432
crossref_primary_10_1016_j_ensm_2022_06_009
crossref_primary_10_1002_smll_201700087
crossref_primary_10_1007_s44246_023_00064_2
crossref_primary_10_1016_j_memsci_2017_11_026
crossref_primary_10_1016_j_carbon_2018_08_026
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1016_j_cattod_2017_02_012
crossref_primary_10_1016_j_apsusc_2024_160559
crossref_primary_10_1039_D1TA00959A
crossref_primary_10_1002_adfm_202107838
crossref_primary_10_1016_j_carbon_2022_05_030
crossref_primary_10_1021_acsami_9b23006
crossref_primary_10_1021_acsami_7b00065
crossref_primary_10_1016_j_apsusc_2024_159365
crossref_primary_10_2139_ssrn_4125835
crossref_primary_10_1016_S1872_5805_17_60136_7
crossref_primary_10_1039_D2CP03582K
crossref_primary_10_1016_j_jechem_2019_06_015
crossref_primary_10_1016_j_fuel_2022_125066
crossref_primary_10_1039_C7RA01946G
crossref_primary_10_1002_smll_201902688
crossref_primary_10_1016_j_jpowsour_2016_12_062
crossref_primary_10_1016_j_ensm_2020_10_018
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_jpowsour_2017_12_025
crossref_primary_10_1016_j_jpowsour_2017_12_027
crossref_primary_10_1016_j_jpowsour_2019_227658
crossref_primary_10_1021_acsami_2c07285
crossref_primary_10_1039_C9CP03419F
crossref_primary_10_1039_C9NR04854E
crossref_primary_10_1021_acsami_9b10049
crossref_primary_10_1002_adma_201807876
crossref_primary_10_1016_j_electacta_2021_139238
crossref_primary_10_1039_C7TA00445A
crossref_primary_10_1007_s12209_019_00230_x
crossref_primary_10_1021_acsanm_4c01231
crossref_primary_10_1002_aenm_201901075
crossref_primary_10_1002_batt_202100033
crossref_primary_10_1002_chem_201705211
crossref_primary_10_1016_j_electacta_2018_07_222
crossref_primary_10_1039_D0MA01016B
crossref_primary_10_1016_j_fuel_2022_127258
crossref_primary_10_1016_j_cej_2023_141907
crossref_primary_10_1021_acsami_1c20487
crossref_primary_10_1002_adfm_201604265
crossref_primary_10_1021_acsami_1c19381
crossref_primary_10_1007_s40843_022_2387_1
crossref_primary_10_1002_aenm_202300646
crossref_primary_10_1016_j_jpowsour_2019_02_089
crossref_primary_10_1021_acsaem_8b01815
crossref_primary_10_1016_j_ensm_2019_02_001
Cites_doi 10.1016/j.carbon.2008.01.006
10.1021/nl5020475
10.1002/adma.201502668
10.1002/admi.201400227
10.1021/acs.nanolett.5b03217
10.1021/am501627f
10.1038/ncomms6002
10.1080/08927020600589684
10.1002/anie.201505444
10.1038/ncomms4943
10.1088/2053-1583/2/1/014011
10.1038/ncomms5759
10.1021/nn401228t
10.1038/nmat2460
10.1021/ja206955k
10.1002/anie.201410174
10.1002/adma.201402488
10.1002/adma.201405115
10.1002/adma.201502467
10.1039/C5TA04255K
10.1002/adma.201503211
10.1016/j.nantod.2015.04.011
10.1021/acs.jpcc.5b06373
10.1021/acs.chemmater.5b02906
10.1039/c3ta15175a
10.1016/j.ensm.2015.09.008
10.1002/adfm.201302631
10.1038/ncomms8760
10.1021/ja500432h
10.1002/aenm.201500124
10.1002/aenm.201402263
10.1039/c3ra41333k
10.1039/C5EE01388G
10.1002/cssc.201402329
10.1002/aenm.201401752
10.1016/j.nanoen.2013.12.013
10.1039/C4TA04727C
10.1103/PhysRevLett.77.3865
10.1002/anie.201411109
10.1016/j.jpowsour.2015.05.048
10.1039/C4EE01377H
10.1002/adfm.201504294
10.1038/ncomms6017
10.1002/adma.201501082
10.1149/1.3148721
10.1002/adma.201405637
10.1016/j.ensm.2015.09.007
10.1038/ncomms2513
10.1063/1.458452
10.1002/aenm.201500408
10.1021/nn507178a
10.1039/P29930000799
10.1021/acs.nanolett.5b00367
10.1021/acsami.5b08129
10.1021/cr00104a007
10.1021/nn304037d
10.1021/nl502331f
10.1021/nn203393d
10.1063/1.1316015
10.1021/cr030203g
10.1016/j.electacta.2015.03.166
10.1002/adma.201401243
10.1039/c3sc52789a
10.1002/adfm.201303296
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
DOI 10.1002/smll.201600809
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 3291
ExternalDocumentID 4090368011
27168000
10_1002_smll_201600809
SMLL201600809
ark_67375_WNG_LN8QT9KC_Q
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
AFWVQ
ALVPJ
AAYXX
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
ID FETCH-LOGICAL-c5559-590cddfd97185e8d6e64d14f8cf808b12ee925cfc7b7ccb1c48d42343545ce5a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 16:25:42 EDT 2025
Thu Jul 10 16:41:48 EDT 2025
Sun Jul 13 05:26:20 EDT 2025
Mon Jul 21 05:53:39 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Tue Jul 01 02:10:23 EDT 2025
Wed Jan 22 16:34:41 EST 2025
Wed Oct 30 09:51:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords doped carbon
polysulfides
heteroatom
lithium-sulfur batteries
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5559-590cddfd97185e8d6e64d14f8cf808b12ee925cfc7b7ccb1c48d42343545ce5a3
Notes ark:/67375/WNG-LN8QT9KC-Q
istex:844532761FFC59E69DD42A80EBF92F437EC1E0D1
ArticleID:SMLL201600809
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27168000
PQID 1797228633
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_1825512469
proquest_miscellaneous_1797871741
proquest_journals_1797228633
pubmed_primary_27168000
crossref_primary_10_1002_smll_201600809
crossref_citationtrail_10_1002_smll_201600809
wiley_primary_10_1002_smll_201600809_SMLL201600809
istex_primary_ark_67375_WNG_LN8QT9KC_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jun
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051
a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394
G. M. Zhou, Y. B. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263.
b) Z. G. Wang, X. Y. Niu, J. Xiao, C. M. Wang, J. Liu, F. Gao, RSC Adv. 2013, 3, 16775
b) J. X. Song, T. Xu, M. L. Gordin, P. Y. Zhu, D. P. Lv, Y. B. Jiang, Y. S. Chen, Y. H. Duan, D. H. Wang, Adv. Funct. Mater. 2014, 24, 1243
b) Y. Xie, Z. Meng, T. Cai, W. Q. Han, ACS Appl. Mater. Interfaces 2015, 7, 25202
b) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 799.
Z. Y. Wang, Y. F. Dong, H. J. Li, Z. B. Zhao, H. B. Wu, C. Hao, S. H. Liu, J. S. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002.
Z. Lin, C. D. Liang, J. Mater. Chem. A 2015, 3, 936.
a) A. Manthiram, S. H. Chung, C. X. Zu, Adv. Mater. 2015, 27, 1980
b) H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian, F. Wei, Adv. Funct. Mater. 2014, 24, 2772.
c) T. Z. Hou, H. J. Peng, J. Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011.
Q. F. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780.
Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.
X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
H. B. Yao, G. Y. Zheng, P. C. Hsu, D. S. Kong, J. J. Cha, W. Y. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5, 3943.
c) C. Tang, Q. Zhang, M. Q. Zhao, J. Q. Huang, X. B. Cheng, G. L. Tian, H. J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100
a) H. J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018
d) X. X. Gu, C. J. Tong, C. Lai, J. X. Qiu, X. X. Huang, W. L. Yang, B. Wen, L. M. Liu, Y. L. Hou, S. Q. Zhang, J. Mater. Chem. A 2015, 3, 16670
d) Z. B. Xiao, Z. Yang, L. Wang, H. G. Nie, M. E. Zhong, Q. Q. Lai, X. J. Xu, L. J. Zhang, S. M. Huang, Adv. Mater. 2015, 27, 2891.
e) R. Xu, J. Lu, K. Amine, Adv. Energy Mater. 2015, 5, 1500408
X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3907.
a) B. Delley, Mol. Simul. 2006, 32, 117
c) L. Ma, K. E. Hendrickson, S. Y. Wei, L. A. Archer, Nano Today 2015, 10, 315
c) Y. Zhou, C. G. Zhou, Q. Y. Li, C. J. Yan, B. Han, K. S. Xia, Q. Gao, J. P. Wu, Adv. Mater. 2015, 27, 3774
a) C. P. Yang, Y. X. Yin, H. Ye, K. C. Jiang, J. Zhang, Y. G. Guo, ACS Appl. Mater. Interfaces 2014, 6, 8789
Z. W. Seh, H. Wang, N. Liu, G. Zheng, W. Li, H. Yao, Y. Cui, Chem. Sci. 2014, 5, 1396.
b) Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Adv. Energy Mater. 2015, 5, 1501355.
L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
b) B. Delley, J. Chem. Phys. 2000, 113, 7756.
L. F. Fei, X. G. Li, W. T. Bi, Z. W. Zhuo, W. F. Wei, L. Sun, W. Lu, X. J. Wu, K. Y. Xie, C. Z. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936.
G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, H.-M. Cheng, ACS Nano 2013, 7, 5367.
L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, Y. G. Zhang, J. Am. Chem. Soc. 2011, 133, 18522.
b) J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, F. Wei, ACS Nano 2015, 9, 3002.
a) L. Zhou, X. Lin, T. Huang, A. Yu, J. Mater. Chem. A 2014, 2, 5117
c) Y.-L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112.
K. Xu, Chem. Rev. 2004, 104, 4303.
J. X. Song, M. L. Gordin, T. Xu, S. R. Chen, Z. X. Yu, H. Sohn, J. Lu, Y. Ren, Y. H. Duan, D. H. Wang, Angew. Chem. Int. Ed. 2015, 54, 4325.
a) B. Delley, J. Chem. Phys. 1990, 92, 508
a) S. S. Yu, W. T. Zheng, Q. B. Wen, Q. Jiang, Carbon 2008, 46, 537
c) A. Vizintin, M. Lozinšek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryvère, R. Dominko, Chem. Mater. 2015, 27, 7070.
a) H. B. Yao, K. Yan, W. Y. Li, G. Y. Zheng, D. S. Kong, Z. W. Seh, V. K. Narasimhan, Z. Liang, Y. Cui, Energy Environ. Sci. 2014, 7, 3381
b) Q. Pang, J. T. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021.
b) A. Liu, W. Li, H. Jin, X. Yu, Y. Bu, Y. He, H. Huang, S. Wang, J. Wang, Electrochim. Acta 2015, 177, 36.
H. J. Peng, T. Z. Hou, Q. Zhang, J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L. Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227.
b) J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864
a) Z. Ji, B. Han, Q. Y. Li, C. G. Zhou, Q. Gao, K. S. Xia, J. P. Wu, J. Phys. Chem. C 2015, 119, 20495
G. M. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760.
D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694.
d) J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127
e) S. Xiao, S. Liu, J. Zhang, Y. Wang, J. Power Sources 2015, 293, 119.
a) Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759
Y. C. Qiu, W. F. Li, W. Zhao, G. Z. Li, Y. Hou, M. N. Liu, L. S. Zhou, F. M. Ye, H. F. Li, Z. H. Wei, S. H. Yang, W. H. Duan, Y. F. Ye, J. H. Guo, Y. G. Zhang, Nano Lett. 2014, 14, 4821.
b) X. Y. Tao, J. G. Wang, Z. G. Ying, Q. X. Cai, G. Y. Zheng, Y. P. Gan, H. Huang, Y. Xia, C. Liang, W. K. Zhang, Y. Cui, Nano Lett. 2014, 14, 5288
K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M. C. Kung, H. H. Kung, ChemSusChem 2014, 7, 2545.
X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, Nano Energy 2014, 4, 65.
f) J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2016, 2, 76.
M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
a) W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruna, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752
b) Z. H. Zhao, M. T. Li, L. P. Zhang, L. M. Dai, Z. H. Xia, Adv. Mater. 2015, 27, 6834.
b) M. A. Pope, I. A. Aksay, Adv. Energy Mater. 2015, 5, 1500124
a) M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, F. Wei, ACS Nano 2012, 6, 10759
A. B. Sannigrahi, T. Kar, B. G. Niyogi, P. Hobza, P. V. R. Schleyer, Chem. Rev. 1990, 90, 1061.
2015 2013 2015; 119 3 2
2015; 15
2015; 6
2015; 5
2013; 4
2014 2015; 136 177
2004; 104
2015; 3
2015 2015 2015 2015 2015 2016; 27 5 10 1 5 2
2015; 54
2014 2014; 7 5
2012 2014; 6 24
2009; 156
2013; 7
2015; 8
2006 1993; 32
2011; 133
2015 2015; 54 27
2008 2015; 46 27
1996; 77
2014; 1
2014; 5
2014; 4
2015; 27
2014 2015; 2 9
2014 2016 2016; 26 16 26
1990 2000; 92 113
2014; 14
2014 2015 2015; 6 7 27
2009; 8
2014 2014 2015 2015; 5 14 27 27
2012; 6
2015 2014 2014 2015 2015; 5 24 26 3 293
2014; 7
1990; 90
Ma (10.1002/smll.201600809-BIB0001.3|smll201600809-cit-0003) 2015; 10
Cheng (10.1002/smll.201600809-BIB0004|smll201600809-cit-0009) 2014; 4
Gu (10.1002/smll.201600809-BIB0017.4|smll201600809-cit-0028) 2015; 3
Pang (10.1002/smll.201600809-BIB0016.2|smll201600809-cit-0024) 2015; 27
Song (10.1002/smll.201600809-BIB0017.2|smll201600809-cit-0026) 2014; 24
Tang (10.1002/smll.201600809-BIB0017.3|smll201600809-cit-0027) 2014; 26
Seh (10.1002/smll.201600809-BIB0024.2|smll201600809-cit-0042) 2014; 5
Ding (10.1002/smll.201600809-BIB0029.3|smll201600809-cit-0051) 2016; 26
Zhao (10.1002/smll.201600809-BIB0010|smll201600809-cit-0015) 2012; 6
Jiao (10.1002/smll.201600809-BIB0031|smll201600809-cit-0054) 2014; 136
Xiao (10.1002/smll.201600809-BIB0023.4|smll201600809-cit-0040) 2015; 27
Wang (10.1002/smll.201600809-BIB0027.2|smll201600809-cit-0046) 2013; 3
Xie (10.1002/smll.201600809-BIB0020.2|smll201600809-cit-0033) 2015; 7
Ji (10.1002/smll.201600809-BIB0027|smll201600809-cit-0045) 2015; 119
Wang (10.1002/smll.201600809-BIB0005|smll201600809-cit-0010) 2014; 5
Yao (10.1002/smll.201600809-BIB0024|smll201600809-cit-0041) 2014; 7
Zhao (10.1002/smll.201600809-BIB0029|smll201600809-cit-0049) 2014; 26
Xu (10.1002/smll.201600809-BIB0037|smll201600809-cit-0062) 2004; 104
Liu (10.1002/smll.201600809-BIB0031.2|smll201600809-cit-0055) 2015; 177
Yang (10.1002/smll.201600809-BIB0020|smll201600809-cit-0032) 2014; 6
Zhou (10.1002/smll.201600809-BIB0023.3|smll201600809-cit-0039) 2015; 27
Fei (10.1002/smll.201600809-BIB0007|smll201600809-cit-0012) 2015; 27
Ji (10.1002/smll.201600809-BIB0002|smll201600809-cit-0007) 2009; 8
Vizintin (10.1002/smll.201600809-BIB0020.3|smll201600809-cit-0034) 2015; 27
Huang (10.1002/smll.201600809-BIB0001.4|smll201600809-cit-0004) 2015; 1
Peng (10.1002/smll.201600809-BIB0016|smll201600809-cit-0023) 2015; 54
Qiu (10.1002/smll.201600809-BIB0018|smll201600809-cit-0030) 2014; 14
Aurbach (10.1002/smll.201600809-BIB0013|smll201600809-cit-0019) 2009; 156
Zhou (10.1002/smll.201600809-BIB0006|smll201600809-cit-0011) 2015; 6
Ji (10.1002/smll.201600809-BIB0008|smll201600809-cit-0013) 2011; 133
Hou (10.1002/smll.201600809-BIB0027.3|smll201600809-cit-0047) 2015; 2
Peng (10.1002/smll.201600809-BIB0035|smll201600809-cit-0059) 2014; 1
Yu (10.1002/smll.201600809-BIB0030|smll201600809-cit-0052) 2008; 46
Tao (10.1002/smll.201600809-BIB0023.2|smll201600809-cit-0038) 2014; 14
Klamt (10.1002/smll.201600809-BIB0036.2|smll201600809-cit-0061) 1993
Perdew (10.1002/smll.201600809-BIB0039|smll201600809-cit-0065) 1996; 77
Pang (10.1002/smll.201600809-BIB0023|smll201600809-cit-0037) 2014; 5
Zhao (10.1002/smll.201600809-BIB0030.2|smll201600809-cit-0053) 2015; 27
Wild (10.1002/smll.201600809-BIB0033|smll201600809-cit-0057) 2015; 8
Yang (10.1002/smll.201600809-BIB0032|smll201600809-cit-0056) 2012; 6
Song (10.1002/smll.201600809-BIB0011|smll201600809-cit-0017) 2015; 54
Peng (10.1002/smll.201600809-BIB0010.2|smll201600809-cit-0016) 2014; 24
Zhou (10.1002/smll.201600809-BIB0017|smll201600809-cit-0025) 2015; 5
Huang (10.1002/smll.201600809-BIB0015.2|smll201600809-cit-0022) 2015; 9
Zhang (10.1002/smll.201600809-BIB0028|smll201600809-cit-0048) 2015; 15
Delley (10.1002/smll.201600809-BIB0038|smll201600809-cit-0063) 1990; 92
Liang (10.1002/smll.201600809-BIB0022|smll201600809-cit-0036) 2015; 54
Suo (10.1002/smll.201600809-BIB0014|smll201600809-cit-0020) 2013; 4
Pope (10.1002/smll.201600809-BIB0001.2|smll201600809-cit-0002) 2015; 5
Sannigrahi (10.1002/smll.201600809-BIB0034|smll201600809-cit-0058) 1990; 90
Xiao (10.1002/smll.201600809-BIB0017.5|smll201600809-cit-0029) 2015; 293
Xu (10.1002/smll.201600809-BIB0001.5|smll201600809-cit-0005) 2015; 5
Lin (10.1002/smll.201600809-BIB0012|smll201600809-cit-0018) 2015; 3
Zhou (10.1002/smll.201600809-BIB0025|smll201600809-cit-0043) 2013; 7
Zhou (10.1002/smll.201600809-BIB0015|smll201600809-cit-0021) 2014; 2
Han (10.1002/smll.201600809-BIB0019|smll201600809-cit-0031) 2014; 7
Liang (10.1002/smll.201600809-BIB0001.6|smll201600809-cit-0006) 2016; 2
Zhou (10.1002/smll.201600809-BIB0003|smll201600809-cit-0008) 2015; 5
Seh (10.1002/smll.201600809-BIB0009|smll201600809-cit-0014) 2014; 5
Zhou (10.1002/smll.201600809-BIB0021|smll201600809-cit-0035) 2015; 5
Yao (10.1002/smll.201600809-BIB0026|smll201600809-cit-0044) 2014; 5
Manthiram (10.1002/smll.201600809-BIB0001|smll201600809-cit-0001) 2015; 27
Song (10.1002/smll.201600809-BIB0029.2|smll201600809-cit-0050) 2016; 16
Delley (10.1002/smll.201600809-BIB0038.2|smll201600809-cit-0064) 2000; 113
Delley (10.1002/smll.201600809-BIB0036|smll201600809-cit-0060) 2006; 32
References_xml – reference: c) L. Ma, K. E. Hendrickson, S. Y. Wei, L. A. Archer, Nano Today 2015, 10, 315;
– reference: b) Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
– reference: G. M. Zhou, Y. B. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263.
– reference: L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
– reference: J. X. Song, M. L. Gordin, T. Xu, S. R. Chen, Z. X. Yu, H. Sohn, J. Lu, Y. Ren, Y. H. Duan, D. H. Wang, Angew. Chem. Int. Ed. 2015, 54, 4325.
– reference: b) H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian, F. Wei, Adv. Funct. Mater. 2014, 24, 2772.
– reference: c) Y. Zhou, C. G. Zhou, Q. Y. Li, C. J. Yan, B. Han, K. S. Xia, Q. Gao, J. P. Wu, Adv. Mater. 2015, 27, 3774;
– reference: b) J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, F. Wei, ACS Nano 2015, 9, 3002.
– reference: Z. Y. Wang, Y. F. Dong, H. J. Li, Z. B. Zhao, H. B. Wu, C. Hao, S. H. Liu, J. S. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002.
– reference: f) J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2016, 2, 76.
– reference: a) Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759;
– reference: b) M. A. Pope, I. A. Aksay, Adv. Energy Mater. 2015, 5, 1500124;
– reference: X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3907.
– reference: X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, Nano Energy 2014, 4, 65.
– reference: d) X. X. Gu, C. J. Tong, C. Lai, J. X. Qiu, X. X. Huang, W. L. Yang, B. Wen, L. M. Liu, Y. L. Hou, S. Q. Zhang, J. Mater. Chem. A 2015, 3, 16670;
– reference: Z. Lin, C. D. Liang, J. Mater. Chem. A 2015, 3, 936.
– reference: b) B. Delley, J. Chem. Phys. 2000, 113, 7756.
– reference: a) M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, F. Wei, ACS Nano 2012, 6, 10759;
– reference: e) S. Xiao, S. Liu, J. Zhang, Y. Wang, J. Power Sources 2015, 293, 119.
– reference: b) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 799.
– reference: Y. C. Qiu, W. F. Li, W. Zhao, G. Z. Li, Y. Hou, M. N. Liu, L. S. Zhou, F. M. Ye, H. F. Li, Z. H. Wei, S. H. Yang, W. H. Duan, Y. F. Ye, J. H. Guo, Y. G. Zhang, Nano Lett. 2014, 14, 4821.
– reference: G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Adv. Energy Mater. 2015, 5, 1501355.
– reference: Q. F. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780.
– reference: e) R. Xu, J. Lu, K. Amine, Adv. Energy Mater. 2015, 5, 1500408;
– reference: b) Z. G. Wang, X. Y. Niu, J. Xiao, C. M. Wang, J. Liu, F. Gao, RSC Adv. 2013, 3, 16775;
– reference: a) H. J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018;
– reference: A. B. Sannigrahi, T. Kar, B. G. Niyogi, P. Hobza, P. V. R. Schleyer, Chem. Rev. 1990, 90, 1061.
– reference: G. M. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760.
– reference: d) J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127;
– reference: c) Y.-L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112.
– reference: d) Z. B. Xiao, Z. Yang, L. Wang, H. G. Nie, M. E. Zhong, Q. Q. Lai, X. J. Xu, L. J. Zhang, S. M. Huang, Adv. Mater. 2015, 27, 2891.
– reference: a) B. Delley, J. Chem. Phys. 1990, 92, 508;
– reference: D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694.
– reference: a) W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruna, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752;
– reference: b) J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864;
– reference: K. Xu, Chem. Rev. 2004, 104, 4303.
– reference: c) A. Vizintin, M. Lozinšek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryvère, R. Dominko, Chem. Mater. 2015, 27, 7070.
– reference: L. F. Fei, X. G. Li, W. T. Bi, Z. W. Zhuo, W. F. Wei, L. Sun, W. Lu, X. J. Wu, K. Y. Xie, C. Z. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936.
– reference: G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, H.-M. Cheng, ACS Nano 2013, 7, 5367.
– reference: b) Q. Pang, J. T. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021.
– reference: a) S. S. Yu, W. T. Zheng, Q. B. Wen, Q. Jiang, Carbon 2008, 46, 537;
– reference: c) C. Tang, Q. Zhang, M. Q. Zhao, J. Q. Huang, X. B. Cheng, G. L. Tian, H. J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100;
– reference: a) L. Zhou, X. Lin, T. Huang, A. Yu, J. Mater. Chem. A 2014, 2, 5117;
– reference: K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M. C. Kung, H. H. Kung, ChemSusChem 2014, 7, 2545.
– reference: a) C. P. Yang, Y. X. Yin, H. Ye, K. C. Jiang, J. Zhang, Y. G. Guo, ACS Appl. Mater. Interfaces 2014, 6, 8789;
– reference: a) B. Delley, Mol. Simul. 2006, 32, 117;
– reference: b) A. Liu, W. Li, H. Jin, X. Yu, Y. Bu, Y. He, H. Huang, S. Wang, J. Wang, Electrochim. Acta 2015, 177, 36.
– reference: a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051;
– reference: M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477.
– reference: b) J. X. Song, T. Xu, M. L. Gordin, P. Y. Zhu, D. P. Lv, Y. B. Jiang, Y. S. Chen, Y. H. Duan, D. H. Wang, Adv. Funct. Mater. 2014, 24, 1243;
– reference: a) H. B. Yao, K. Yan, W. Y. Li, G. Y. Zheng, D. S. Kong, Z. W. Seh, V. K. Narasimhan, Z. Liang, Y. Cui, Energy Environ. Sci. 2014, 7, 3381;
– reference: X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
– reference: b) Z. H. Zhao, M. T. Li, L. P. Zhang, L. M. Dai, Z. H. Xia, Adv. Mater. 2015, 27, 6834.
– reference: a) Z. Ji, B. Han, Q. Y. Li, C. G. Zhou, Q. Gao, K. S. Xia, J. P. Wu, J. Phys. Chem. C 2015, 119, 20495;
– reference: a) A. Manthiram, S. H. Chung, C. X. Zu, Adv. Mater. 2015, 27, 1980;
– reference: c) T. Z. Hou, H. J. Peng, J. Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011.
– reference: H. J. Peng, T. Z. Hou, Q. Zhang, J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L. Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227.
– reference: L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, Y. G. Zhang, J. Am. Chem. Soc. 2011, 133, 18522.
– reference: Z. W. Seh, H. Wang, N. Liu, G. Zheng, W. Li, H. Yao, Y. Cui, Chem. Sci. 2014, 5, 1396.
– reference: b) Y. Xie, Z. Meng, T. Cai, W. Q. Han, ACS Appl. Mater. Interfaces 2015, 7, 25202;
– reference: b) X. Y. Tao, J. G. Wang, Z. G. Ying, Q. X. Cai, G. Y. Zheng, Y. P. Gan, H. Huang, Y. Xia, C. Liang, W. K. Zhang, Y. Cui, Nano Lett. 2014, 14, 5288;
– reference: a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394;
– reference: H. B. Yao, G. Y. Zheng, P. C. Hsu, D. S. Kong, J. J. Cha, W. Y. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5, 3943.
– reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205.
– volume: 26 16 26
  start-page: 7051 864 1112
  year: 2014 2016 2016
  publication-title: Adv. Mater. Nano Lett. Adv. Funct. Mater.
– volume: 5
  start-page: 3943
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1402263
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 5367
  year: 2013
  publication-title: ACS Nano
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 4325
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 119 3 2
  start-page: 20495 16775 014011
  year: 2015 2013 2015
  publication-title: J. Phys. Chem. C RSC Adv. 2D Mater.
– volume: 6
  start-page: 7760
  year: 2015
  publication-title: Nat. Commun.
– volume: 46 27
  start-page: 537 6834
  year: 2008 2015
  publication-title: Carbon Adv. Mater.
– volume: 90
  start-page: 1061
  year: 1990
  publication-title: Chem. Rev.
– volume: 54 27
  start-page: 11018 6021
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Adv. Mater.
– volume: 3
  start-page: 936
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6 7 27
  start-page: 8789 25202 7070
  year: 2014 2015 2015
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces Chem. Mater.
– volume: 5 14 27 27
  start-page: 4759 5288 3774 2891
  year: 2014 2014 2015 2015
  publication-title: Nat. Commun. Nano Lett. Adv. Mater. Adv. Mater.
– volume: 133
  start-page: 18522
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 4821
  year: 2014
  publication-title: Nano Lett.
– volume: 7 5
  start-page: 3381 5017
  year: 2014 2014
  publication-title: Energy Environ. Sci. Nat. Commun.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 1
  start-page: 1400227
  year: 2014
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 3477
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 65
  year: 2014
  publication-title: Nano Energy
– volume: 5
  start-page: 1396
  year: 2014
  publication-title: Chem. Sci.
– volume: 7
  start-page: 2545
  year: 2014
  publication-title: ChemSusChem
– volume: 15
  start-page: 3780
  year: 2015
  publication-title: Nano Lett.
– volume: 32
  start-page: 117 799
  year: 2006 1993
  publication-title: Mol. Simul. J. Chem. Soc. Perkin Trans.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 5 24 26 3 293
  start-page: 1401752 1243 6100 16670 119
  year: 2015 2014 2014 2015 2015
  publication-title: Adv. Energy Mater. Adv. Funct. Mater. Adv. Mater. J. Mater. Chem. A J. Power Sources
– volume: 27
  start-page: 5936
  year: 2015
  publication-title: Adv. Mater.
– volume: 136 177
  start-page: 4394 36
  year: 2014 2015
  publication-title: J. Am. Chem. Soc. Electrochim. Acta
– volume: 2 9
  start-page: 5117 3002
  year: 2014 2015
  publication-title: J. Mater. Chem. A ACS Nano
– volume: 27 5 10 1 5 2
  start-page: 1980 1500124 315 127 1500408 76
  year: 2015 2015 2015 2015 2015 2016
  publication-title: Adv. Mater. Adv. Energy Mater. Nano Today Energy Storage Mater. Adv. Energy Mater. Energy Storage Mater.
– volume: 92 113
  start-page: 508 7756
  year: 1990 2000
  publication-title: J. Chem. Phys. J. Chem. Phys.
– volume: 5
  start-page: 5002
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 6 24
  start-page: 10759 2772
  year: 2012 2014
  publication-title: ACS Nano Adv. Funct. Mater.
– volume: 5
  start-page: 1501355
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 46
  start-page: 537
  year: 2008
  ident: 10.1002/smll.201600809-BIB0030|smll201600809-cit-0052
  publication-title: Carbon
  doi: 10.1016/j.carbon.2008.01.006
– volume: 14
  start-page: 4821
  year: 2014
  ident: 10.1002/smll.201600809-BIB0018|smll201600809-cit-0030
  publication-title: Nano Lett.
  doi: 10.1021/nl5020475
– volume: 27
  start-page: 5936
  year: 2015
  ident: 10.1002/smll.201600809-BIB0007|smll201600809-cit-0012
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502668
– volume: 1
  start-page: 1400227
  year: 2014
  ident: 10.1002/smll.201600809-BIB0035|smll201600809-cit-0059
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400227
– volume: 16
  start-page: 864
  year: 2016
  ident: 10.1002/smll.201600809-BIB0029.2|smll201600809-cit-0050
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03217
– volume: 6
  start-page: 8789
  year: 2014
  ident: 10.1002/smll.201600809-BIB0020|smll201600809-cit-0032
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501627f
– volume: 5
  start-page: 5002
  year: 2014
  ident: 10.1002/smll.201600809-BIB0005|smll201600809-cit-0010
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6002
– volume: 32
  start-page: 117
  year: 2006
  ident: 10.1002/smll.201600809-BIB0036|smll201600809-cit-0060
  publication-title: Mol. Simul.
  doi: 10.1080/08927020600589684
– volume: 54
  start-page: 11018
  year: 2015
  ident: 10.1002/smll.201600809-BIB0016|smll201600809-cit-0023
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505444
– volume: 5
  start-page: 3943
  year: 2014
  ident: 10.1002/smll.201600809-BIB0026|smll201600809-cit-0044
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4943
– volume: 2
  start-page: 014011
  year: 2015
  ident: 10.1002/smll.201600809-BIB0027.3|smll201600809-cit-0047
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/2/1/014011
– volume: 5
  start-page: 4759
  year: 2014
  ident: 10.1002/smll.201600809-BIB0023|smll201600809-cit-0037
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5759
– volume: 7
  start-page: 5367
  year: 2013
  ident: 10.1002/smll.201600809-BIB0025|smll201600809-cit-0043
  publication-title: ACS Nano
  doi: 10.1021/nn401228t
– volume: 8
  start-page: 500
  year: 2009
  ident: 10.1002/smll.201600809-BIB0002|smll201600809-cit-0007
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2460
– volume: 133
  start-page: 18522
  year: 2011
  ident: 10.1002/smll.201600809-BIB0008|smll201600809-cit-0013
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206955k
– volume: 54
  start-page: 3907
  year: 2015
  ident: 10.1002/smll.201600809-BIB0022|smll201600809-cit-0036
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410174
– volume: 26
  start-page: 7051
  year: 2014
  ident: 10.1002/smll.201600809-BIB0029|smll201600809-cit-0049
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402488
– volume: 27
  start-page: 1980
  year: 2015
  ident: 10.1002/smll.201600809-BIB0001|smll201600809-cit-0001
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405115
– volume: 27
  start-page: 6021
  year: 2015
  ident: 10.1002/smll.201600809-BIB0016.2|smll201600809-cit-0024
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502467
– volume: 3
  start-page: 16670
  year: 2015
  ident: 10.1002/smll.201600809-BIB0017.4|smll201600809-cit-0028
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04255K
– volume: 27
  start-page: 6834
  year: 2015
  ident: 10.1002/smll.201600809-BIB0030.2|smll201600809-cit-0053
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503211
– volume: 5
  start-page: 1501355
  year: 2015
  ident: 10.1002/smll.201600809-BIB0021|smll201600809-cit-0035
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 315
  year: 2015
  ident: 10.1002/smll.201600809-BIB0001.3|smll201600809-cit-0003
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.011
– volume: 119
  start-page: 20495
  year: 2015
  ident: 10.1002/smll.201600809-BIB0027|smll201600809-cit-0045
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06373
– volume: 27
  start-page: 7070
  year: 2015
  ident: 10.1002/smll.201600809-BIB0020.3|smll201600809-cit-0034
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02906
– volume: 2
  start-page: 5117
  year: 2014
  ident: 10.1002/smll.201600809-BIB0015|smll201600809-cit-0021
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta15175a
– volume: 1
  start-page: 127
  year: 2015
  ident: 10.1002/smll.201600809-BIB0001.4|smll201600809-cit-0004
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.09.008
– volume: 24
  start-page: 1243
  year: 2014
  ident: 10.1002/smll.201600809-BIB0017.2|smll201600809-cit-0026
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302631
– volume: 6
  start-page: 7760
  year: 2015
  ident: 10.1002/smll.201600809-BIB0006|smll201600809-cit-0011
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8760
– volume: 136
  start-page: 4394
  year: 2014
  ident: 10.1002/smll.201600809-BIB0031|smll201600809-cit-0054
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500432h
– volume: 5
  start-page: 1500124
  year: 2015
  ident: 10.1002/smll.201600809-BIB0001.2|smll201600809-cit-0002
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500124
– volume: 5
  start-page: 1402263
  year: 2015
  ident: 10.1002/smll.201600809-BIB0003|smll201600809-cit-0008
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402263
– volume: 3
  start-page: 16775
  year: 2013
  ident: 10.1002/smll.201600809-BIB0027.2|smll201600809-cit-0046
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41333k
– volume: 8
  start-page: 3477
  year: 2015
  ident: 10.1002/smll.201600809-BIB0033|smll201600809-cit-0057
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01388G
– volume: 7
  start-page: 2545
  year: 2014
  ident: 10.1002/smll.201600809-BIB0019|smll201600809-cit-0031
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402329
– volume: 5
  start-page: 1401752
  year: 2015
  ident: 10.1002/smll.201600809-BIB0017|smll201600809-cit-0025
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401752
– volume: 4
  start-page: 65
  year: 2014
  ident: 10.1002/smll.201600809-BIB0004|smll201600809-cit-0009
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.013
– volume: 3
  start-page: 936
  year: 2015
  ident: 10.1002/smll.201600809-BIB0012|smll201600809-cit-0018
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04727C
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1002/smll.201600809-BIB0039|smll201600809-cit-0065
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 54
  start-page: 4325
  year: 2015
  ident: 10.1002/smll.201600809-BIB0011|smll201600809-cit-0017
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411109
– volume: 293
  start-page: 119
  year: 2015
  ident: 10.1002/smll.201600809-BIB0017.5|smll201600809-cit-0029
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.05.048
– volume: 7
  start-page: 3381
  year: 2014
  ident: 10.1002/smll.201600809-BIB0024|smll201600809-cit-0041
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01377H
– volume: 26
  start-page: 1112
  year: 2016
  ident: 10.1002/smll.201600809-BIB0029.3|smll201600809-cit-0051
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504294
– volume: 5
  start-page: 5017
  year: 2014
  ident: 10.1002/smll.201600809-BIB0024.2|smll201600809-cit-0042
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6017
– volume: 27
  start-page: 3774
  year: 2015
  ident: 10.1002/smll.201600809-BIB0023.3|smll201600809-cit-0039
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501082
– volume: 156
  start-page: A694
  year: 2009
  ident: 10.1002/smll.201600809-BIB0013|smll201600809-cit-0019
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3148721
– volume: 27
  start-page: 2891
  year: 2015
  ident: 10.1002/smll.201600809-BIB0023.4|smll201600809-cit-0040
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405637
– volume: 2
  start-page: 76
  year: 2016
  ident: 10.1002/smll.201600809-BIB0001.6|smll201600809-cit-0006
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.09.007
– volume: 4
  start-page: 1481
  year: 2013
  ident: 10.1002/smll.201600809-BIB0014|smll201600809-cit-0020
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2513
– volume: 92
  start-page: 508
  year: 1990
  ident: 10.1002/smll.201600809-BIB0038|smll201600809-cit-0063
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 5
  start-page: 1500408
  year: 2015
  ident: 10.1002/smll.201600809-BIB0001.5|smll201600809-cit-0005
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500408
– volume: 9
  start-page: 3002
  year: 2015
  ident: 10.1002/smll.201600809-BIB0015.2|smll201600809-cit-0022
  publication-title: ACS Nano
  doi: 10.1021/nn507178a
– start-page: 799
  year: 1993
  ident: 10.1002/smll.201600809-BIB0036.2|smll201600809-cit-0061
  publication-title: J. Chem. Soc. Perkin Trans.
  doi: 10.1039/P29930000799
– volume: 15
  start-page: 3780
  year: 2015
  ident: 10.1002/smll.201600809-BIB0028|smll201600809-cit-0048
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00367
– volume: 7
  start-page: 25202
  year: 2015
  ident: 10.1002/smll.201600809-BIB0020.2|smll201600809-cit-0033
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08129
– volume: 90
  start-page: 1061
  year: 1990
  ident: 10.1002/smll.201600809-BIB0034|smll201600809-cit-0058
  publication-title: Chem. Rev.
  doi: 10.1021/cr00104a007
– volume: 6
  start-page: 10759
  year: 2012
  ident: 10.1002/smll.201600809-BIB0010|smll201600809-cit-0015
  publication-title: ACS Nano
  doi: 10.1021/nn304037d
– volume: 14
  start-page: 5288
  year: 2014
  ident: 10.1002/smll.201600809-BIB0023.2|smll201600809-cit-0038
  publication-title: Nano Lett.
  doi: 10.1021/nl502331f
– volume: 6
  start-page: 205
  year: 2012
  ident: 10.1002/smll.201600809-BIB0032|smll201600809-cit-0056
  publication-title: ACS Nano
  doi: 10.1021/nn203393d
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1002/smll.201600809-BIB0038.2|smll201600809-cit-0064
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 104
  start-page: 4303
  year: 2004
  ident: 10.1002/smll.201600809-BIB0037|smll201600809-cit-0062
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 177
  start-page: 36
  year: 2015
  ident: 10.1002/smll.201600809-BIB0031.2|smll201600809-cit-0055
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.166
– volume: 26
  start-page: 6100
  year: 2014
  ident: 10.1002/smll.201600809-BIB0017.3|smll201600809-cit-0027
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401243
– volume: 5
  start-page: 1396
  year: 2014
  ident: 10.1002/smll.201600809-BIB0009|smll201600809-cit-0014
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc52789a
– volume: 24
  start-page: 2772
  year: 2014
  ident: 10.1002/smll.201600809-BIB0010.2|smll201600809-cit-0016
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303296
SSID ssj0031247
Score 2.6593604
Snippet Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues...
Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3283
SubjectTerms Binding energy
Carbon
Cathodes
Demand
Design engineering
doped carbon
heteroatom
Lithium
lithium-sulfur batteries
Nanostructure
Nanotechnology
Polysulfides
Principles
Title Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries
URI https://api.istex.fr/ark:/67375/WNG-LN8QT9KC-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201600809
https://www.ncbi.nlm.nih.gov/pubmed/27168000
https://www.proquest.com/docview/1797228633
https://www.proquest.com/docview/1797871741
https://www.proquest.com/docview/1825512469
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLam8TIeuMMCAxkJwVO2xInT5LHaGBV01UY3sTcrvrFqXTI1CQIepv0EJP4hv4RjOwkr4iLBW9ucWI57fM73OcefEXqWC2A3aRT6KlQZEJSU-1msiS-FDhQJOaXa7EbemySjo_j1MT2-sovf6UP0C25mZth4bSZ4zqutH6Kh1dncvDoIEwN6zA4-U7BlUNHbXj8qguRlT1eBnOUb4a1OtTEgW8u3L2Wla2aAP_4Kci4jWJuCdm-ivOu8qzw53Wxqvik-_6Tr-D9PdwvdaPEpHjqHuo1WVHEHXb-iWngXXezYqg-8363TVxiQLx6ZwpoSOPzZt8svO-W5khhCN6TKBS8LXJd4KE5m6oPCU7P6_h4PC4i8pkVcarxfzj9VzVzPZNvaeFafzBpo6usUfm4W2AmBAq-_h452Xx5uj_z2GAdfUOArPs0CIaWWGaRBqlKZqCSWYaxToVPwjZAolREqtBjwgRA8FHEqAeQBjoupUDSP7qPVoizUOsI0kYFdtU1CDsRQ5AHnVnGPk0jlGfeQ3_2NTLQa5-aojTlz6syEmXFl_bh66EVvf-7UPX5r-dx6RW-WL05NTdyAsneTV2w8SQ8Oszfb7MBDG53bsDYcVAyi3oCQNIkiDz3tL8NENm9n8kKVjbMB9goI7w82wOcBocUJ9OeBc8m-QwSYL6D_wEPEOtZfHohN98bj_tvDf7npEVozn13h3AZarReNegwQreZP7DT8DkkjNe8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKuwAWvB8DBYzEY5U2ceJMsmAx6lCmTGbUMlO1OxM_QqNOk2qSAGWB-AQkvoRf4RP4Eq7zgkE8JKQuWMa5sRzb995z7etjhB6EAqIbz7YMZSkfAhSPG74TEUOKyFTE4pRG-jTyaOwOdp3n-3R_CX1uzsJU_BDtgpvWjNJeawXXC9Lr31lDs6OZ3juwXI16_DqvcqhO3kDUlj3Z6sMQPyRk8-l0Y2DUFwsYggKCNqhvCikj6YNhpsqTrnIdaTmRJyIPWmsRpXxCRSS6vCsEt4TjSYAdgCwcKhQNbaj3DFrR14hruv7-i5axygZ3Wd7nAl7S0FRfDU-kSdYX27vgB1f0kL79FchdxMyl09u8iL403VXluhyuFTlfE-9-YpL8r_rzErpQQ3Dcq3TmMlpSyRV0_gdixqvofb9MbMHbzVZEhgHc44HOHUrDPD36-uFjPz1WEoN3AjQw52mC8xT3xEGsXis80RsMr3AvAeeia8RphLfT2UlWzKJY1rUFcX4QF1DVpwkUF3NccZ3GKruGdk-lA66j5SRN1E2EqSvNcmHatTjEviI0OS9JBTmxVejzDjKaecNETeOubxOZsYqAmjA9jqwdxw563MofVwQmv5V8VE7DViycH-q0vy5le-NnLBh7O1N_uMF2Omi1maestngZA8PeJcRzbbuD7revwVbpDagwUWlRyUCADiD2DzIeBLmgRS6050alA22DCAT3EOCYHUTKmfyXH2KTURC0T7f-5aN76OxgOgpYsDUe3kbndHmVJ7iKlvN5oe4AIs353dIGYPTytJXkG35jlTM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKKyFY8IYOFDASj1XaxIkzyYLFqMMwZaajKdOq3Zn4kTbqNBlNEqAsEJ-AxI_wK_wCX8J1XjCIh4TUBcs4N5Zj-957rn19jNDDQEB049mWoSzlQ4DiccN3QmJIEZqKWJzSUJ9G3h65_T3nxQE9WEKf67MwJT9Es-CmNaOw11rBZzLc-E4amp5M9daB5WrQ41dplQN1-gaCtvTpVhdG-BEhvWe7m32julfAEBQAtEF9U0gZSh_sMlWedJXrSMsJPRF60FiLKOUTKkLR5m0huCUcTwLqAGDhUKFoYEO959CK45q-viyi-7IhrLLBWxbXuYCTNDTTV00TaZKNxfYuuMEVPaJvf4VxFyFz4fN6l9GXurfKVJfj9Tzj6-LdT0SS_1N3XkGXKgCOO6XGXEVLKr6GLv5Ay3gdve8WaS14XG9EpBigPe7rzKEkyJKTrx8-dpOZkhh8E2CBOU9inCW4I44i9Vrhid5eOMSdGFyLrhEnIR4n09M0n4aRrGobRtlRlENVnyZQnM9xyXQaqfQG2juTDriJluMkVqsIU1eaxbK0a3GIfEVgcl5QCnJiq8DnLWTU04aJisRd3yUyZSX9NGF6HFkzji30pJGflfQlv5V8XMzCRiyYH-ukvzZl-6PnbDjydnb9wSbbaaG1epqyyt6lDMx6mxDPte0WetC8Bkult5-CWCV5KQPhOUDYP8h4EOKCErnQnlulCjQNIhDaQ3hjthApJvJffohNtofD5un2v3x0H50fd3tsuDUa3EEXdHGZJLiGlrN5ru4CHM34vcICYPTqrHXkGx45k-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Heteroatom-Doped+Nanocarbon+to+Achieve+Strong+Anchoring+of+Polysulfides+for+Lithium-Sulfur+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hou%2C+Ting-Zheng&rft.au=Chen%2C+Xiang&rft.au=Peng%2C+Hong-Jie&rft.au=Huang%2C+Jia-Qi&rft.date=2016-06-01&rft.eissn=1613-6829&rft.volume=12&rft.issue=24&rft.spage=3283&rft_id=info:doi/10.1002%2Fsmll.201600809&rft_id=info%3Apmid%2F27168000&rft.externalDocID=27168000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon