Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries
Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the sh...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 12; no. 24; pp. 3283 - 3291 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.
Lithium–sulfur (Li–S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. While B and F doping exhibit lower Eb than undoped carbon, N and O elements offer elevated binding energies with Li2Sx that form a strong anchoring effect to alleviate shuttle effect. |
---|---|
AbstractList | Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides.Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole–dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong‐couple effect toward Li2Sx, the principles for rational design of doped carbon scaffolds in Li–S batteries to achieve a strong electrostatic dipole–dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium–sulfur (Li–S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various heteroatoms‐doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li–S cathode for better performance. While B and F doping exhibit lower Eb than undoped carbon, N and O elements offer elevated binding energies with Li2Sx that form a strong anchoring effect to alleviate shuttle effect. Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li sub(2)S sub(x), the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. Lithium-sulfur (Li-S) batteries have been intensively studied to fulfill the urgent demands of high capacity energy storage. A systematic density functional theory calculation of various hetero-atoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. While B and F doping exhibit lower E sub(b) than undoped carbon, N and O elements offer elevated binding energies with Li sub(2)S sub(x) that form a strong anchoring effect to alleviate shuttle effect. Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues is the complex diffusion of lithium polysulfide intermediates, which in combination with the subsequent paradox reactions is known as the shuttle effect. Nanocarbon with homogeneous nonpolar surface served as scaffolding materials in sulfur cathode basically cannot afford a sufficient binding and confining effect to maintain lithium polysulfides within the cathode. Herein, a systematical density functional theory calculation of various heteroatoms-doped nanocarbon materials is conducted to elaborate the mechanism and guide the future screening and rational design of Li-S cathode for better performance. It is proved that the chemical modification using N or O dopant significantly enhances the interaction between the carbon hosts and the polysulfide guests via dipole-dipole electrostatic interaction and thereby effectively prevents shuttle of polysulfides, allowing high capacity and high coulombic efficiency. By contrast, the introduction of B, F, S, P, and Cl monodopants into carbon matrix is unsatisfactory. To achieve the strong-couple effect toward Li2 Sx , the principles for rational design of doped carbon scaffolds in Li-S batteries to achieve a strong electrostatic dipole-dipole interaction are proposed. An implicit volcano plot is obtained to describe the dependence of binding energies on electronegativity of dopants. Moreover, the codoping strategy is predicted to achieve even stronger interfacial interaction to trap lithium polysulfides. |
Author | Li, Bo Li, Bo-Quan Zhang, Qiang Huang, Jia-Qi Hou, Ting-Zheng Peng, Hong-Jie Chen, Xiang |
Author_xml | – sequence: 1 givenname: Ting-Zheng surname: Hou fullname: Hou, Ting-Zheng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 2 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 3 givenname: Hong-Jie surname: Peng fullname: Peng, Hong-Jie organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 4 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 5 givenname: Bo-Quan surname: Li fullname: Li, Bo-Quan organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 6 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China – sequence: 7 givenname: Bo surname: Li fullname: Li, Bo email: zhang-qiang@mails.tsinghua.edu.cn organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27168000$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9v0zAYhiM0xH7AlSOyxIVLiu3EsXMsHWyIUDZ1iKPlOl9aD8cutgOUv56MlgpNQjv5k_U87yf7Pc2OnHeQZc8JnhCM6evYWzuhmFQYC1w_yk5IRYq8ErQ-OswEH2enMd5iXBBa8ifZMeWkEhjjk-zXOUSzcugqGKfNxkJEnQ_oEhIEr5Lv83O_gRbNlfNahaV3KHk01WsD3wEtUvBuhaZOr_0YsEK-Q1febuNgO9PusxqT1mbo88V4OQT0RqUx20B8mj3ulI3wbH-eZZ_fvb2ZXebNp4v3s2mTa8ZYnbMa67bt2poTwUC0FVRlS8pO6E5gsSQUoKZMd5ovudZLokvRlrQoC1YyDUwVZ9mrXe4m-G8DxCR7EzVYqxz4IUoiKGPjx1T1wyivueCEl2REX95Db_0Q3PiQPxSloiqKkXqxp4ZlD63cBNOrsJV_CxiByQ7QwccYoDsgBMu7huVdw_LQ8CiU9wRtkkrGuxSUsf_X6p32w1jYPrBELj42zb9uvnNNTPDz4KrwVVa84Ex-mV_IZi6ub-oPM3ld_AZJHcrx |
CitedBy_id | crossref_primary_10_26599_NRE_2023_9120049 crossref_primary_10_1016_j_carbon_2017_11_068 crossref_primary_10_1016_j_carbon_2021_03_002 crossref_primary_10_1016_j_jpowsour_2024_234540 crossref_primary_10_1016_j_jechem_2023_08_020 crossref_primary_10_1007_s12274_017_1652_x crossref_primary_10_1002_batt_202400544 crossref_primary_10_1016_j_cogsc_2017_02_008 crossref_primary_10_1016_j_est_2024_112555 crossref_primary_10_1002_batt_202200097 crossref_primary_10_1021_jacs_9b11169 crossref_primary_10_1016_j_jallcom_2024_174419 crossref_primary_10_1002_adfm_202010455 crossref_primary_10_1007_s41918_018_0006_z crossref_primary_10_1039_C9NR07809F crossref_primary_10_1016_j_cej_2019_123734 crossref_primary_10_1021_acs_chemmater_7b02658 crossref_primary_10_1021_acsami_6b09918 crossref_primary_10_1002_celc_202001590 crossref_primary_10_1039_C8NR10025J crossref_primary_10_1149_1945_7111_abdeee crossref_primary_10_1002_ange_202114182 crossref_primary_10_1016_j_jallcom_2020_158287 crossref_primary_10_1002_sstr_202400311 crossref_primary_10_1016_j_commatsci_2024_113376 crossref_primary_10_1016_S1872_2067_21_63984_0 crossref_primary_10_1007_s10853_018_2566_z crossref_primary_10_1016_j_jechem_2024_12_074 crossref_primary_10_1016_j_nantod_2018_02_006 crossref_primary_10_1016_j_jallcom_2016_09_235 crossref_primary_10_1021_acs_cgd_2c00681 crossref_primary_10_1007_s11426_017_9164_2 crossref_primary_10_1002_adfm_202008034 crossref_primary_10_1515_ijcre_2021_0256 crossref_primary_10_1016_j_jechem_2023_08_015 crossref_primary_10_1016_j_ccr_2022_214715 crossref_primary_10_1002_anie_202211448 crossref_primary_10_1039_C7RA08501J crossref_primary_10_1007_s41918_019_00033_7 crossref_primary_10_1039_C6CC06094C crossref_primary_10_1016_j_electacta_2018_11_013 crossref_primary_10_1002_slct_202300614 crossref_primary_10_1021_acsami_1c23837 crossref_primary_10_1021_acs_jpcc_9b10314 crossref_primary_10_1021_acsami_9b00845 crossref_primary_10_1016_j_ensm_2020_09_005 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1002_advs_202204930 crossref_primary_10_1016_j_apsusc_2025_162338 crossref_primary_10_1016_j_est_2024_114756 crossref_primary_10_1016_j_matchemphys_2019_03_019 crossref_primary_10_1007_s11581_021_04097_8 crossref_primary_10_1002_cssc_201902227 crossref_primary_10_1016_j_susc_2021_121818 crossref_primary_10_3390_polym14071342 crossref_primary_10_1002_cphc_202400406 crossref_primary_10_1021_acssuschemeng_8b04331 crossref_primary_10_1007_s12613_023_2683_9 crossref_primary_10_1016_j_comptc_2020_113110 crossref_primary_10_1002_slct_201903523 crossref_primary_10_1016_j_jelechem_2019_03_041 crossref_primary_10_1021_acsami_0c04554 crossref_primary_10_1039_D4CP01881H crossref_primary_10_1016_j_cej_2017_03_022 crossref_primary_10_1016_j_ensm_2020_02_010 crossref_primary_10_3390_inorganics10100150 crossref_primary_10_1016_j_ensm_2023_102817 crossref_primary_10_1016_j_nanoen_2017_10_032 crossref_primary_10_1016_j_jallcom_2019_152189 crossref_primary_10_1038_s41467_017_00649_7 crossref_primary_10_1002_cssc_201801212 crossref_primary_10_1088_2053_1591_ab33ad crossref_primary_10_1039_C7CP02853A crossref_primary_10_26599_CF_2024_9200024 crossref_primary_10_1016_j_cej_2023_141556 crossref_primary_10_1002_adma_202412908 crossref_primary_10_1002_ente_202000302 crossref_primary_10_1016_j_apsusc_2017_10_230 crossref_primary_10_1016_j_ensm_2016_07_005 crossref_primary_10_34133_2022_9850712 crossref_primary_10_1002_aenm_202203621 crossref_primary_10_1002_cplu_202000301 crossref_primary_10_1021_acs_energyfuels_0c01859 crossref_primary_10_1016_j_apsusc_2021_149131 crossref_primary_10_1021_acs_jpclett_9b02457 crossref_primary_10_1007_s10853_019_03534_4 crossref_primary_10_1016_j_apsusc_2023_157963 crossref_primary_10_1016_j_electacta_2018_12_112 crossref_primary_10_1016_j_jechem_2023_02_031 crossref_primary_10_1002_aenm_202201494 crossref_primary_10_1021_acsaem_2c01459 crossref_primary_10_1002_celc_201900585 crossref_primary_10_1007_s11581_024_05808_7 crossref_primary_10_1039_D0QI01393E crossref_primary_10_1016_j_jallcom_2020_157278 crossref_primary_10_1016_j_cej_2024_153813 crossref_primary_10_1016_j_jechem_2019_07_001 crossref_primary_10_1016_j_jechem_2020_09_032 crossref_primary_10_1016_j_carbon_2018_05_048 crossref_primary_10_1016_j_nanoen_2018_02_016 crossref_primary_10_1016_j_matre_2023_100213 crossref_primary_10_3390_ma17112689 crossref_primary_10_1016_j_jechem_2023_02_048 crossref_primary_10_1002_aenm_201901935 crossref_primary_10_1016_j_electacta_2021_139609 crossref_primary_10_1021_acssuschemeng_8b04648 crossref_primary_10_1002_celc_202100297 crossref_primary_10_1016_j_apsusc_2021_150380 crossref_primary_10_1016_j_carbon_2021_11_031 crossref_primary_10_1016_j_jcis_2024_08_184 crossref_primary_10_1021_acsami_0c14645 crossref_primary_10_1016_j_jallcom_2023_170938 crossref_primary_10_1016_j_apsusc_2021_150378 crossref_primary_10_1039_C9NR01220F crossref_primary_10_3390_electrochem4040032 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_smll_202104469 crossref_primary_10_1016_j_mset_2022_12_009 crossref_primary_10_1016_j_chempr_2020_06_032 crossref_primary_10_1002_adma_201601759 crossref_primary_10_1002_anie_202114182 crossref_primary_10_1016_j_apsusc_2020_145639 crossref_primary_10_1002_aenm_202003599 crossref_primary_10_1016_j_cej_2019_121977 crossref_primary_10_1039_D1CP05715D crossref_primary_10_1016_j_jssc_2022_123430 crossref_primary_10_1016_j_jcis_2022_03_135 crossref_primary_10_1002_cssc_201802698 crossref_primary_10_1021_acsami_1c16148 crossref_primary_10_1039_D4RA02704C crossref_primary_10_1021_acsanm_3c01099 crossref_primary_10_1002_nano_202000164 crossref_primary_10_1021_acs_energyfuels_1c04231 crossref_primary_10_1016_j_nanoen_2020_105466 crossref_primary_10_1002_nano_202000168 crossref_primary_10_1016_j_jcis_2024_06_230 crossref_primary_10_1016_j_cclet_2022_02_037 crossref_primary_10_1063_5_0152737 crossref_primary_10_1002_smtd_202301401 crossref_primary_10_1016_j_electacta_2016_07_153 crossref_primary_10_1002_EXP_20210131 crossref_primary_10_1016_j_carbon_2017_08_035 crossref_primary_10_1002_cssc_201700999 crossref_primary_10_1016_j_cclet_2022_01_014 crossref_primary_10_1002_ente_201900470 crossref_primary_10_1002_adma_201907557 crossref_primary_10_1007_s11581_019_03047_9 crossref_primary_10_1021_acsami_3c06459 crossref_primary_10_1002_smll_201902719 crossref_primary_10_1016_j_poly_2018_08_067 crossref_primary_10_1038_s41524_020_0273_1 crossref_primary_10_1016_j_ensm_2017_01_003 crossref_primary_10_1016_j_electacta_2017_09_149 crossref_primary_10_1016_j_jechem_2019_08_019 crossref_primary_10_1002_adma_201703324 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1039_C9TA00535H crossref_primary_10_1002_smm2_1186 crossref_primary_10_1007_s11581_020_03519_3 crossref_primary_10_1016_j_compositesb_2023_111050 crossref_primary_10_1149_2_0041802jes crossref_primary_10_1038_s41598_022_08478_5 crossref_primary_10_1039_C7TA05192A crossref_primary_10_1002_admi_201701097 crossref_primary_10_1016_j_nanoen_2018_12_019 crossref_primary_10_1039_C9TA05996B crossref_primary_10_2139_ssrn_4098682 crossref_primary_10_1021_acs_nanolett_3c01034 crossref_primary_10_1002_cssc_201700749 crossref_primary_10_1007_s11426_023_1559_9 crossref_primary_10_1016_j_jcis_2021_11_106 crossref_primary_10_1016_j_jelechem_2022_116512 crossref_primary_10_3390_molecules26092507 crossref_primary_10_1002_cjce_25346 crossref_primary_10_1039_D2TA06807A crossref_primary_10_1002_anie_201810579 crossref_primary_10_1016_j_est_2024_110898 crossref_primary_10_1039_C6CP07650E crossref_primary_10_1016_j_jechem_2017_08_008 crossref_primary_10_1016_j_ensm_2017_12_024 crossref_primary_10_1016_j_mattod_2018_04_007 crossref_primary_10_1016_j_matlet_2023_135539 crossref_primary_10_1002_adfm_202100666 crossref_primary_10_1039_D3RA05741K crossref_primary_10_1016_j_cej_2021_133683 crossref_primary_10_1021_acsami_8b02084 crossref_primary_10_1016_j_ensm_2024_103328 crossref_primary_10_1016_j_jechem_2020_05_059 crossref_primary_10_1021_acsami_3c18930 crossref_primary_10_1016_j_matchemphys_2023_127565 crossref_primary_10_1016_j_nanoen_2018_09_065 crossref_primary_10_1039_D1TA09422J crossref_primary_10_1002_smll_202311343 crossref_primary_10_1016_j_cplett_2021_138711 crossref_primary_10_1021_acsami_0c14287 crossref_primary_10_1039_D0TA04187D crossref_primary_10_1039_C9TA00327D crossref_primary_10_1002_batt_201900014 crossref_primary_10_1039_D3GC03576J crossref_primary_10_1016_j_ensm_2018_10_021 crossref_primary_10_1016_j_ijhydene_2018_09_045 crossref_primary_10_1016_j_jechem_2022_08_033 crossref_primary_10_3389_fchem_2019_00721 crossref_primary_10_1016_j_materresbull_2017_11_035 crossref_primary_10_1007_s10008_018_04166_5 crossref_primary_10_1016_j_mattod_2017_06_002 crossref_primary_10_1021_acssuschemeng_8b03193 crossref_primary_10_1002_eom2_12010 crossref_primary_10_1016_j_commatsci_2019_109228 crossref_primary_10_1016_j_electacta_2018_05_144 crossref_primary_10_3390_batteries9010027 crossref_primary_10_3390_en16010247 crossref_primary_10_1002_smll_201907464 crossref_primary_10_1039_D1CP04192D crossref_primary_10_1002_batt_202400484 crossref_primary_10_1016_j_jechem_2020_02_050 crossref_primary_10_1039_D1TA02741G crossref_primary_10_1002_eom2_12019 crossref_primary_10_1016_j_jpowsour_2024_235572 crossref_primary_10_1021_acsami_1c18645 crossref_primary_10_1016_j_electacta_2017_01_166 crossref_primary_10_1039_C7TA07063B crossref_primary_10_1002_anie_201702099 crossref_primary_10_1016_j_cej_2021_130181 crossref_primary_10_1016_j_jechem_2022_05_034 crossref_primary_10_1007_s11581_020_03798_w crossref_primary_10_1016_j_jelechem_2019_113797 crossref_primary_10_3390_nano10040705 crossref_primary_10_1002_er_5150 crossref_primary_10_1016_j_jechem_2020_01_015 crossref_primary_10_1021_acssuschemeng_0c00243 crossref_primary_10_1002_anie_201915623 crossref_primary_10_1039_D0TA04910G crossref_primary_10_1016_j_jallcom_2020_158461 crossref_primary_10_1021_acs_energyfuels_0c01909 crossref_primary_10_1002_ange_202211448 crossref_primary_10_1016_j_ensm_2018_06_015 crossref_primary_10_1039_D1NA00409C crossref_primary_10_1016_j_cap_2020_11_004 crossref_primary_10_3390_ijms232415608 crossref_primary_10_1002_adma_201904524 crossref_primary_10_1002_elan_202200003 crossref_primary_10_1007_s40820_019_0249_1 crossref_primary_10_1016_j_jpowsour_2024_235322 crossref_primary_10_1021_acs_energyfuels_3c01938 crossref_primary_10_1021_acsnano_0c03403 crossref_primary_10_1039_C9TA00458K crossref_primary_10_1002_cssc_202202095 crossref_primary_10_1016_j_cej_2019_122918 crossref_primary_10_1016_j_jechem_2017_08_016 crossref_primary_10_1002_aenm_201702337 crossref_primary_10_1039_D4TC01159G crossref_primary_10_1039_C9NR07458A crossref_primary_10_1002_slct_201802296 crossref_primary_10_1002_ange_201710025 crossref_primary_10_1021_acs_nanolett_1c04247 crossref_primary_10_1039_C7TA06504C crossref_primary_10_1016_j_ssi_2017_12_004 crossref_primary_10_1016_j_cplett_2020_138101 crossref_primary_10_1002_adma_201603401 crossref_primary_10_1016_j_cclet_2017_11_038 crossref_primary_10_1016_j_matt_2025_101996 crossref_primary_10_1016_j_jechem_2020_10_031 crossref_primary_10_1039_D3TA03497F crossref_primary_10_1002_smll_202410907 crossref_primary_10_1002_adfm_202100868 crossref_primary_10_1002_qua_26661 crossref_primary_10_1016_j_jpowsour_2019_05_045 crossref_primary_10_1016_j_ensm_2018_05_025 crossref_primary_10_1016_j_ensm_2023_103011 crossref_primary_10_1002_inf2_12653 crossref_primary_10_1016_j_electacta_2017_10_076 crossref_primary_10_1002_ente_201700531 crossref_primary_10_1016_j_est_2023_108372 crossref_primary_10_1016_j_mtcomm_2024_108417 crossref_primary_10_1039_C6TA07864H crossref_primary_10_1007_s10008_018_4141_6 crossref_primary_10_1002_chem_201802386 crossref_primary_10_1002_er_7438 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_ijbiomac_2025_141279 crossref_primary_10_1002_smtd_202000315 crossref_primary_10_1016_j_matlet_2018_08_046 crossref_primary_10_1021_acsami_1c01393 crossref_primary_10_1016_j_cej_2020_126781 crossref_primary_10_1007_s11426_022_1454_0 crossref_primary_10_1002_aenm_201700260 crossref_primary_10_1016_j_jelechem_2019_113539 crossref_primary_10_1002_adfm_201707536 crossref_primary_10_1360_TB_2022_0050 crossref_primary_10_1002_adfm_201707411 crossref_primary_10_1002_slct_202000366 crossref_primary_10_1039_C7TA03552G crossref_primary_10_1002_ente_202300283 crossref_primary_10_1016_j_cej_2023_144888 crossref_primary_10_1088_1361_6528_ab8989 crossref_primary_10_1007_s40820_020_00477_3 crossref_primary_10_1016_j_carbon_2019_05_022 crossref_primary_10_1039_C6TA09841J crossref_primary_10_1002_adfm_202213395 crossref_primary_10_1002_aenm_201901896 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1016_j_ensm_2018_11_028 crossref_primary_10_1016_j_jcis_2022_09_015 crossref_primary_10_1016_j_ensm_2018_11_029 crossref_primary_10_1016_j_apsusc_2021_149312 crossref_primary_10_1016_j_ccr_2022_214879 crossref_primary_10_1016_j_jallcom_2025_179118 crossref_primary_10_1002_adfm_201800508 crossref_primary_10_1016_j_ensm_2019_06_009 crossref_primary_10_1002_adma_201606802 crossref_primary_10_1002_adts_201900236 crossref_primary_10_1039_C9RA00768G crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1002_bte2_20220003 crossref_primary_10_1016_j_ceramint_2021_11_191 crossref_primary_10_1002_advs_202103798 crossref_primary_10_1016_j_jechem_2024_01_058 crossref_primary_10_1016_j_carbon_2021_08_046 crossref_primary_10_1016_j_colsurfa_2022_130881 crossref_primary_10_1016_j_nanoen_2018_09_034 crossref_primary_10_1016_j_ensm_2023_103159 crossref_primary_10_1021_acsaem_0c00444 crossref_primary_10_1038_s41467_022_32139_w crossref_primary_10_1039_C9CE01469A crossref_primary_10_1016_j_jpowsour_2019_05_022 crossref_primary_10_1016_j_surfin_2021_101008 crossref_primary_10_1039_C9EE02049G crossref_primary_10_1002_adfm_202107166 crossref_primary_10_1016_j_jechem_2016_11_003 crossref_primary_10_1039_C6TA07620C crossref_primary_10_1002_aenm_201701330 crossref_primary_10_1016_j_electacta_2018_05_180 crossref_primary_10_1002_advs_202102217 crossref_primary_10_1039_C7RA11628D crossref_primary_10_1002_er_4389 crossref_primary_10_1039_D1MA00518A crossref_primary_10_1016_j_cej_2018_05_096 crossref_primary_10_1016_j_jpowsour_2020_229358 crossref_primary_10_1021_acs_jpcc_7b09392 crossref_primary_10_1007_s12274_020_2677_0 crossref_primary_10_1016_j_diamond_2018_10_008 crossref_primary_10_1016_j_jcis_2023_02_127 crossref_primary_10_1002_aenm_201804000 crossref_primary_10_1002_cey2_185 crossref_primary_10_1016_j_jechem_2020_03_035 crossref_primary_10_1016_j_cej_2018_04_049 crossref_primary_10_1002_smll_202002932 crossref_primary_10_1016_j_comptc_2021_113323 crossref_primary_10_3390_nano11112954 crossref_primary_10_1002_batt_202200124 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1016_j_cej_2018_05_088 crossref_primary_10_1002_adma_201705590 crossref_primary_10_1039_D3CP02857G crossref_primary_10_1002_celc_201801075 crossref_primary_10_2139_ssrn_4151343 crossref_primary_10_1002_chem_201801925 crossref_primary_10_1016_j_surfcoat_2020_126228 crossref_primary_10_1002_adma_201905923 crossref_primary_10_1016_j_ensm_2022_02_036 crossref_primary_10_1016_j_apsusc_2017_06_288 crossref_primary_10_1021_acsami_7b02142 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1021_acsenergylett_2c01132 crossref_primary_10_1007_s12598_021_01821_1 crossref_primary_10_1039_C9CC06168A crossref_primary_10_1126_sciadv_aau7728 crossref_primary_10_3389_fenrg_2020_593640 crossref_primary_10_1016_j_electacta_2019_03_190 crossref_primary_10_1088_2515_7655_abdb9a crossref_primary_10_1039_D1TA09070D crossref_primary_10_1002_adfm_201701971 crossref_primary_10_1002_aenm_202002893 crossref_primary_10_3390_membranes12080790 crossref_primary_10_1016_j_ssi_2019_115150 crossref_primary_10_1002_aenm_202002891 crossref_primary_10_1002_adfm_202407986 crossref_primary_10_1016_j_susmat_2020_e00158 crossref_primary_10_1016_j_apsusc_2018_01_178 crossref_primary_10_1016_j_apsusc_2024_161752 crossref_primary_10_2139_ssrn_4068166 crossref_primary_10_1021_acs_energyfuels_0c03104 crossref_primary_10_1007_s12274_018_2023_y crossref_primary_10_1016_j_apsusc_2018_08_184 crossref_primary_10_1016_j_matt_2019_12_020 crossref_primary_10_1002_smll_202305508 crossref_primary_10_1002_anie_201704324 crossref_primary_10_1016_j_jpowsour_2018_08_055 crossref_primary_10_1002_cssc_201700050 crossref_primary_10_1039_C9NR07416C crossref_primary_10_1039_C9NH00730J crossref_primary_10_1021_acsaelm_0c00953 crossref_primary_10_1039_C7CS00464H crossref_primary_10_1016_j_jpowsour_2025_236446 crossref_primary_10_1021_acsaem_4c00093 crossref_primary_10_1016_j_surfin_2023_103074 crossref_primary_10_1021_acsaem_2c04118 crossref_primary_10_1021_acs_jpclett_1c00927 crossref_primary_10_1021_acsaem_8b01914 crossref_primary_10_3390_app10041263 crossref_primary_10_1016_j_jcis_2020_06_068 crossref_primary_10_1016_j_jechem_2016_12_001 crossref_primary_10_1021_acsami_7b05798 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1039_D3DT01132A crossref_primary_10_1016_j_jcis_2024_05_026 crossref_primary_10_1021_acsami_9b12395 crossref_primary_10_1016_j_electacta_2017_05_026 crossref_primary_10_1039_D1CP01022K crossref_primary_10_1016_j_ensm_2020_05_023 crossref_primary_10_1002_adfm_201804520 crossref_primary_10_1016_j_jallcom_2021_161273 crossref_primary_10_1021_acsami_8b11883 crossref_primary_10_1021_acs_jpcc_7b04170 crossref_primary_10_1016_j_apsusc_2016_10_208 crossref_primary_10_1016_j_apsusc_2020_145286 crossref_primary_10_1002_chem_201703357 crossref_primary_10_1039_C6CC06680A crossref_primary_10_1002_cctc_201900184 crossref_primary_10_1016_j_jallcom_2024_177268 crossref_primary_10_1149_1945_7111_ac0e4d crossref_primary_10_1016_j_jallcom_2025_179844 crossref_primary_10_1039_C8TA04675A crossref_primary_10_1007_s41918_020_00072_5 crossref_primary_10_1021_acsami_0c09567 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1039_D2NJ03894C crossref_primary_10_1002_sus2_110 crossref_primary_10_1021_acs_jpcc_0c11235 crossref_primary_10_1016_j_cclet_2020_08_022 crossref_primary_10_1021_acsaem_7b00096 crossref_primary_10_1039_C6CC06340C crossref_primary_10_1016_j_apsusc_2021_149928 crossref_primary_10_1016_j_electacta_2022_140267 crossref_primary_10_1002_aenm_201901796 crossref_primary_10_1007_s40843_018_9331_x crossref_primary_10_1039_C7CS00139H crossref_primary_10_1016_j_cej_2019_123163 crossref_primary_10_1002_adfm_202202853 crossref_primary_10_1016_j_ces_2022_118400 crossref_primary_10_1021_acs_iecr_0c04960 crossref_primary_10_1016_j_electacta_2019_03_061 crossref_primary_10_1016_j_matt_2021_01_012 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1016_j_jechem_2019_09_004 crossref_primary_10_1016_j_jpowsour_2025_236429 crossref_primary_10_1039_C8QM00645H crossref_primary_10_1002_aenm_201902695 crossref_primary_10_1021_acsaem_9b01416 crossref_primary_10_1016_j_cej_2021_130129 crossref_primary_10_1016_j_ensm_2021_08_019 crossref_primary_10_1080_02726351_2022_2056724 crossref_primary_10_1002_adma_201901125 crossref_primary_10_1021_acsami_8b03806 crossref_primary_10_2139_ssrn_4173296 crossref_primary_10_1002_advs_201800621 crossref_primary_10_1016_j_apsusc_2020_147483 crossref_primary_10_1016_j_jpowsour_2016_12_008 crossref_primary_10_1149_2_0351904jes crossref_primary_10_1016_j_carbon_2022_09_069 crossref_primary_10_1021_acsmaterialslett_4c01646 crossref_primary_10_1016_j_carbon_2019_04_077 crossref_primary_10_1002_eem2_12017 crossref_primary_10_1016_j_cej_2021_132679 crossref_primary_10_1016_j_cclet_2017_09_065 crossref_primary_10_1039_D2SE01164F crossref_primary_10_1002_smll_201804578 crossref_primary_10_1039_D0PY00490A crossref_primary_10_1016_j_ensm_2022_11_045 crossref_primary_10_1016_j_ensm_2022_11_048 crossref_primary_10_1021_acs_jpcc_1c04491 crossref_primary_10_1039_D3TA08010B crossref_primary_10_1002_admi_201700783 crossref_primary_10_1016_j_jpowsour_2019_03_058 crossref_primary_10_1002_elsa_202100025 crossref_primary_10_1016_j_mtener_2022_101192 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1002_slct_202201484 crossref_primary_10_1016_j_mtcomm_2023_107310 crossref_primary_10_1063_5_0110449 crossref_primary_10_1002_smtd_201700134 crossref_primary_10_1016_j_ensm_2021_08_012 crossref_primary_10_1021_acs_energyfuels_1c01509 crossref_primary_10_1016_j_jechem_2022_10_015 crossref_primary_10_1002_aenm_201800849 crossref_primary_10_1016_j_jpowsour_2019_02_014 crossref_primary_10_1021_acsami_3c00102 crossref_primary_10_1007_s11581_019_02847_3 crossref_primary_10_1007_s11581_019_02968_9 crossref_primary_10_1002_asia_202000904 crossref_primary_10_1016_j_apsusc_2021_149717 crossref_primary_10_1016_j_cej_2020_124789 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1016_j_ensm_2017_12_002 crossref_primary_10_1016_S1872_5805_20_60519_4 crossref_primary_10_1021_acscentsci_9b01005 crossref_primary_10_1039_D0TA06220K crossref_primary_10_1038_s41467_021_27777_5 crossref_primary_10_1021_acsami_1c05816 crossref_primary_10_1016_j_nanoen_2024_110091 crossref_primary_10_1016_j_jallcom_2025_179646 crossref_primary_10_1021_acsami_8b03830 crossref_primary_10_1039_D0NR06732F crossref_primary_10_1002_aenm_201801823 crossref_primary_10_1016_j_apsusc_2021_151912 crossref_primary_10_1002_ente_202000188 crossref_primary_10_1016_j_jechem_2021_02_028 crossref_primary_10_1021_acs_chemrev_7b00115 crossref_primary_10_1021_acsami_7b09808 crossref_primary_10_1021_acsami_0c03096 crossref_primary_10_1002_cssc_201900929 crossref_primary_10_1016_j_cej_2022_138287 crossref_primary_10_3390_ma13204625 crossref_primary_10_1016_j_cclet_2022_107811 crossref_primary_10_1016_j_gee_2021_04_011 crossref_primary_10_1016_j_carbon_2021_02_073 crossref_primary_10_1021_acsnano_8b05466 crossref_primary_10_1016_j_electacta_2023_141857 crossref_primary_10_1039_C9RA02037C crossref_primary_10_1016_j_apsusc_2021_149850 crossref_primary_10_1002_admi_201701659 crossref_primary_10_1039_C8NR04182B crossref_primary_10_1016_j_est_2023_107214 crossref_primary_10_1039_C9EE03251G crossref_primary_10_1002_smtd_201700279 crossref_primary_10_1016_j_jelechem_2021_115362 crossref_primary_10_1002_tcr_202300330 crossref_primary_10_1016_j_cej_2017_06_164 crossref_primary_10_1021_acs_jpcc_8b07470 crossref_primary_10_1002_adfm_201603241 crossref_primary_10_1016_j_matchemphys_2022_126509 crossref_primary_10_3390_catal14050323 crossref_primary_10_1002_aenm_201800595 crossref_primary_10_1016_j_jallcom_2024_177406 crossref_primary_10_3390_batteries7040082 crossref_primary_10_1021_acsami_6b14687 crossref_primary_10_1063_5_0094905 crossref_primary_10_1021_acs_energyfuels_1c02509 crossref_primary_10_1039_D1TA08968D crossref_primary_10_1016_j_cej_2019_123694 crossref_primary_10_1016_j_envres_2024_120549 crossref_primary_10_1016_j_cclet_2023_108190 crossref_primary_10_1016_j_carbon_2017_08_038 crossref_primary_10_1063_5_0008206 crossref_primary_10_1039_C7TA01981E crossref_primary_10_1088_1361_6528_ab849f crossref_primary_10_1016_j_jiec_2023_04_025 crossref_primary_10_1016_j_electacta_2021_139126 crossref_primary_10_1016_j_cej_2024_157246 crossref_primary_10_1016_j_carbon_2016_10_035 crossref_primary_10_1002_sstr_202200244 crossref_primary_10_1016_j_ensm_2023_01_002 crossref_primary_10_1002_eem2_12444 crossref_primary_10_1016_j_cej_2020_127141 crossref_primary_10_1016_j_ijhydene_2016_08_004 crossref_primary_10_1007_s42773_023_00224_y crossref_primary_10_1016_j_mtener_2016_10_001 crossref_primary_10_1016_j_jelechem_2017_09_065 crossref_primary_10_1016_j_apsusc_2017_04_013 crossref_primary_10_1039_D3EE04358D crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1016_j_cej_2021_130744 crossref_primary_10_1021_acsaem_0c03236 crossref_primary_10_1016_j_memsci_2021_120003 crossref_primary_10_1021_acsnano_1c03183 crossref_primary_10_3389_fchem_2021_703354 crossref_primary_10_1016_j_carbon_2016_10_047 crossref_primary_10_1016_j_electacta_2019_134849 crossref_primary_10_1016_j_est_2024_115205 crossref_primary_10_1021_acsaem_1c02115 crossref_primary_10_1016_j_carbon_2019_08_031 crossref_primary_10_1016_j_jcis_2019_01_067 crossref_primary_10_1002_chem_202100693 crossref_primary_10_1016_j_est_2024_113146 crossref_primary_10_1002_asia_202300604 crossref_primary_10_1016_j_jallcom_2018_01_026 crossref_primary_10_1016_j_jpcs_2020_109791 crossref_primary_10_1016_j_carbon_2017_07_017 crossref_primary_10_1016_j_jallcom_2023_171920 crossref_primary_10_1016_j_ensm_2019_04_042 crossref_primary_10_1016_j_est_2024_113260 crossref_primary_10_1002_anie_201710025 crossref_primary_10_1016_j_matchemphys_2024_129361 crossref_primary_10_1021_acs_inorgchem_1c01241 crossref_primary_10_1039_C7RA04673A crossref_primary_10_1002_smll_201804277 crossref_primary_10_1016_j_ensm_2019_04_038 crossref_primary_10_1021_acs_energyfuels_2c00077 crossref_primary_10_1039_C6TA05878G crossref_primary_10_1016_j_micrna_2022_207303 crossref_primary_10_1039_C7QI00726D crossref_primary_10_1039_D0QM00492H crossref_primary_10_1016_j_apsusc_2022_154342 crossref_primary_10_1039_C8CP01462K crossref_primary_10_1039_C9NJ02065A crossref_primary_10_1039_D0TA00284D crossref_primary_10_1007_s11581_023_05118_4 crossref_primary_10_1016_j_cej_2022_140847 crossref_primary_10_1007_s12274_017_1749_2 crossref_primary_10_1016_j_electacta_2021_139268 crossref_primary_10_1007_s42114_023_00769_3 crossref_primary_10_1016_j_energy_2022_124474 crossref_primary_10_1007_s12274_022_4225_6 crossref_primary_10_1021_acs_jpcc_7b07847 crossref_primary_10_1002_est2_70011 crossref_primary_10_1002_ange_201702099 crossref_primary_10_1021_acsenergylett_7b00164 crossref_primary_10_1039_D3TA03098A crossref_primary_10_1002_eem2_12349 crossref_primary_10_1039_D0RA01485K crossref_primary_10_1021_acs_jpcc_1c00467 crossref_primary_10_1002_ange_201915623 crossref_primary_10_1039_D4QM00180J crossref_primary_10_1016_j_jelechem_2021_115564 crossref_primary_10_1039_C9CC02134E crossref_primary_10_1039_C9QI00278B crossref_primary_10_1002_celc_202100462 crossref_primary_10_1002_smll_202202557 crossref_primary_10_1016_j_electacta_2019_01_024 crossref_primary_10_1002_adma_201804581 crossref_primary_10_1016_j_carbon_2018_12_113 crossref_primary_10_1016_j_matlet_2019_03_100 crossref_primary_10_1016_j_ensm_2022_12_002 crossref_primary_10_1002_smll_202006504 crossref_primary_10_1002_celc_202200191 crossref_primary_10_1002_sstr_202000047 crossref_primary_10_1007_s00339_021_05068_6 crossref_primary_10_1016_j_jallcom_2019_04_192 crossref_primary_10_1021_acsaem_8b00519 crossref_primary_10_1016_j_cej_2016_12_081 crossref_primary_10_1016_j_electacta_2024_144487 crossref_primary_10_1021_acsami_1c08113 crossref_primary_10_1021_acsnano_0c06535 crossref_primary_10_1016_j_nanoen_2018_04_045 crossref_primary_10_1016_j_jcis_2022_06_036 crossref_primary_10_1016_j_carbon_2018_09_060 crossref_primary_10_1016_j_jallcom_2017_12_110 crossref_primary_10_1039_C7TA00799J crossref_primary_10_1002_ange_201704324 crossref_primary_10_1016_j_apsusc_2017_10_050 crossref_primary_10_1016_j_scib_2017_09_007 crossref_primary_10_1039_D0NJ00787K crossref_primary_10_1016_j_ensm_2021_05_034 crossref_primary_10_1021_acs_accounts_3c00698 crossref_primary_10_1002_ange_201810579 crossref_primary_10_1016_j_jcis_2021_10_015 crossref_primary_10_1016_j_polymer_2024_126793 crossref_primary_10_1002_batt_201800040 crossref_primary_10_1016_j_carbon_2018_12_101 crossref_primary_10_3390_batteries9040223 crossref_primary_10_1002_aenm_202100432 crossref_primary_10_1016_j_ensm_2022_06_009 crossref_primary_10_1002_smll_201700087 crossref_primary_10_1007_s44246_023_00064_2 crossref_primary_10_1016_j_memsci_2017_11_026 crossref_primary_10_1016_j_carbon_2018_08_026 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1016_j_cattod_2017_02_012 crossref_primary_10_1016_j_apsusc_2024_160559 crossref_primary_10_1039_D1TA00959A crossref_primary_10_1002_adfm_202107838 crossref_primary_10_1016_j_carbon_2022_05_030 crossref_primary_10_1021_acsami_9b23006 crossref_primary_10_1021_acsami_7b00065 crossref_primary_10_1016_j_apsusc_2024_159365 crossref_primary_10_2139_ssrn_4125835 crossref_primary_10_1016_S1872_5805_17_60136_7 crossref_primary_10_1039_D2CP03582K crossref_primary_10_1016_j_jechem_2019_06_015 crossref_primary_10_1016_j_fuel_2022_125066 crossref_primary_10_1039_C7RA01946G crossref_primary_10_1002_smll_201902688 crossref_primary_10_1016_j_jpowsour_2016_12_062 crossref_primary_10_1016_j_ensm_2020_10_018 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1016_j_jpowsour_2017_12_025 crossref_primary_10_1016_j_jpowsour_2017_12_027 crossref_primary_10_1016_j_jpowsour_2019_227658 crossref_primary_10_1021_acsami_2c07285 crossref_primary_10_1039_C9CP03419F crossref_primary_10_1039_C9NR04854E crossref_primary_10_1021_acsami_9b10049 crossref_primary_10_1002_adma_201807876 crossref_primary_10_1016_j_electacta_2021_139238 crossref_primary_10_1039_C7TA00445A crossref_primary_10_1007_s12209_019_00230_x crossref_primary_10_1021_acsanm_4c01231 crossref_primary_10_1002_aenm_201901075 crossref_primary_10_1002_batt_202100033 crossref_primary_10_1002_chem_201705211 crossref_primary_10_1016_j_electacta_2018_07_222 crossref_primary_10_1039_D0MA01016B crossref_primary_10_1016_j_fuel_2022_127258 crossref_primary_10_1016_j_cej_2023_141907 crossref_primary_10_1021_acsami_1c20487 crossref_primary_10_1002_adfm_201604265 crossref_primary_10_1021_acsami_1c19381 crossref_primary_10_1007_s40843_022_2387_1 crossref_primary_10_1002_aenm_202300646 crossref_primary_10_1016_j_jpowsour_2019_02_089 crossref_primary_10_1021_acsaem_8b01815 crossref_primary_10_1016_j_ensm_2019_02_001 |
Cites_doi | 10.1016/j.carbon.2008.01.006 10.1021/nl5020475 10.1002/adma.201502668 10.1002/admi.201400227 10.1021/acs.nanolett.5b03217 10.1021/am501627f 10.1038/ncomms6002 10.1080/08927020600589684 10.1002/anie.201505444 10.1038/ncomms4943 10.1088/2053-1583/2/1/014011 10.1038/ncomms5759 10.1021/nn401228t 10.1038/nmat2460 10.1021/ja206955k 10.1002/anie.201410174 10.1002/adma.201402488 10.1002/adma.201405115 10.1002/adma.201502467 10.1039/C5TA04255K 10.1002/adma.201503211 10.1016/j.nantod.2015.04.011 10.1021/acs.jpcc.5b06373 10.1021/acs.chemmater.5b02906 10.1039/c3ta15175a 10.1016/j.ensm.2015.09.008 10.1002/adfm.201302631 10.1038/ncomms8760 10.1021/ja500432h 10.1002/aenm.201500124 10.1002/aenm.201402263 10.1039/c3ra41333k 10.1039/C5EE01388G 10.1002/cssc.201402329 10.1002/aenm.201401752 10.1016/j.nanoen.2013.12.013 10.1039/C4TA04727C 10.1103/PhysRevLett.77.3865 10.1002/anie.201411109 10.1016/j.jpowsour.2015.05.048 10.1039/C4EE01377H 10.1002/adfm.201504294 10.1038/ncomms6017 10.1002/adma.201501082 10.1149/1.3148721 10.1002/adma.201405637 10.1016/j.ensm.2015.09.007 10.1038/ncomms2513 10.1063/1.458452 10.1002/aenm.201500408 10.1021/nn507178a 10.1039/P29930000799 10.1021/acs.nanolett.5b00367 10.1021/acsami.5b08129 10.1021/cr00104a007 10.1021/nn304037d 10.1021/nl502331f 10.1021/nn203393d 10.1063/1.1316015 10.1021/cr030203g 10.1016/j.electacta.2015.03.166 10.1002/adma.201401243 10.1039/c3sc52789a 10.1002/adfm.201303296 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
DOI | 10.1002/smll.201600809 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 3291 |
ExternalDocumentID | 4090368011 27168000 10_1002_smll_201600809 SMLL201600809 ark_67375_WNG_LN8QT9KC_Q |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA AFWVQ ALVPJ AAYXX ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c5559-590cddfd97185e8d6e64d14f8cf808b12ee925cfc7b7ccb1c48d42343545ce5a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 16:25:42 EDT 2025 Thu Jul 10 16:41:48 EDT 2025 Sun Jul 13 05:26:20 EDT 2025 Mon Jul 21 05:53:39 EDT 2025 Thu Apr 24 22:54:19 EDT 2025 Tue Jul 01 02:10:23 EDT 2025 Wed Jan 22 16:34:41 EST 2025 Wed Oct 30 09:51:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | doped carbon polysulfides heteroatom lithium-sulfur batteries |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5559-590cddfd97185e8d6e64d14f8cf808b12ee925cfc7b7ccb1c48d42343545ce5a3 |
Notes | ark:/67375/WNG-LN8QT9KC-Q istex:844532761FFC59E69DD42A80EBF92F437EC1E0D1 ArticleID:SMLL201600809 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27168000 |
PQID | 1797228633 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1825512469 proquest_miscellaneous_1797871741 proquest_journals_1797228633 pubmed_primary_27168000 crossref_primary_10_1002_smll_201600809 crossref_citationtrail_10_1002_smll_201600809 wiley_primary_10_1002_smll_201600809_SMLL201600809 istex_primary_ark_67375_WNG_LN8QT9KC_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jun |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051 a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394 G. M. Zhou, Y. B. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263. b) Z. G. Wang, X. Y. Niu, J. Xiao, C. M. Wang, J. Liu, F. Gao, RSC Adv. 2013, 3, 16775 b) J. X. Song, T. Xu, M. L. Gordin, P. Y. Zhu, D. P. Lv, Y. B. Jiang, Y. S. Chen, Y. H. Duan, D. H. Wang, Adv. Funct. Mater. 2014, 24, 1243 b) Y. Xie, Z. Meng, T. Cai, W. Q. Han, ACS Appl. Mater. Interfaces 2015, 7, 25202 b) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 799. Z. Y. Wang, Y. F. Dong, H. J. Li, Z. B. Zhao, H. B. Wu, C. Hao, S. H. Liu, J. S. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002. Z. Lin, C. D. Liang, J. Mater. Chem. A 2015, 3, 936. a) A. Manthiram, S. H. Chung, C. X. Zu, Adv. Mater. 2015, 27, 1980 b) H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian, F. Wei, Adv. Funct. Mater. 2014, 24, 2772. c) T. Z. Hou, H. J. Peng, J. Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011. Q. F. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205. X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500. H. B. Yao, G. Y. Zheng, P. C. Hsu, D. S. Kong, J. J. Cha, W. Y. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5, 3943. c) C. Tang, Q. Zhang, M. Q. Zhao, J. Q. Huang, X. B. Cheng, G. L. Tian, H. J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100 a) H. J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018 d) X. X. Gu, C. J. Tong, C. Lai, J. X. Qiu, X. X. Huang, W. L. Yang, B. Wen, L. M. Liu, Y. L. Hou, S. Q. Zhang, J. Mater. Chem. A 2015, 3, 16670 d) Z. B. Xiao, Z. Yang, L. Wang, H. G. Nie, M. E. Zhong, Q. Q. Lai, X. J. Xu, L. J. Zhang, S. M. Huang, Adv. Mater. 2015, 27, 2891. e) R. Xu, J. Lu, K. Amine, Adv. Energy Mater. 2015, 5, 1500408 X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3907. a) B. Delley, Mol. Simul. 2006, 32, 117 c) L. Ma, K. E. Hendrickson, S. Y. Wei, L. A. Archer, Nano Today 2015, 10, 315 c) Y. Zhou, C. G. Zhou, Q. Y. Li, C. J. Yan, B. Han, K. S. Xia, Q. Gao, J. P. Wu, Adv. Mater. 2015, 27, 3774 a) C. P. Yang, Y. X. Yin, H. Ye, K. C. Jiang, J. Zhang, Y. G. Guo, ACS Appl. Mater. Interfaces 2014, 6, 8789 Z. W. Seh, H. Wang, N. Liu, G. Zheng, W. Li, H. Yao, Y. Cui, Chem. Sci. 2014, 5, 1396. b) Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017. G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Adv. Energy Mater. 2015, 5, 1501355. L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481. b) B. Delley, J. Chem. Phys. 2000, 113, 7756. L. F. Fei, X. G. Li, W. T. Bi, Z. W. Zhuo, W. F. Wei, L. Sun, W. Lu, X. J. Wu, K. Y. Xie, C. Z. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936. G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, H.-M. Cheng, ACS Nano 2013, 7, 5367. L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, Y. G. Zhang, J. Am. Chem. Soc. 2011, 133, 18522. b) J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, F. Wei, ACS Nano 2015, 9, 3002. a) L. Zhou, X. Lin, T. Huang, A. Yu, J. Mater. Chem. A 2014, 2, 5117 c) Y.-L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112. K. Xu, Chem. Rev. 2004, 104, 4303. J. X. Song, M. L. Gordin, T. Xu, S. R. Chen, Z. X. Yu, H. Sohn, J. Lu, Y. Ren, Y. H. Duan, D. H. Wang, Angew. Chem. Int. Ed. 2015, 54, 4325. a) B. Delley, J. Chem. Phys. 1990, 92, 508 a) S. S. Yu, W. T. Zheng, Q. B. Wen, Q. Jiang, Carbon 2008, 46, 537 c) A. Vizintin, M. Lozinšek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryvère, R. Dominko, Chem. Mater. 2015, 27, 7070. a) H. B. Yao, K. Yan, W. Y. Li, G. Y. Zheng, D. S. Kong, Z. W. Seh, V. K. Narasimhan, Z. Liang, Y. Cui, Energy Environ. Sci. 2014, 7, 3381 b) Q. Pang, J. T. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021. b) A. Liu, W. Li, H. Jin, X. Yu, Y. Bu, Y. He, H. Huang, S. Wang, J. Wang, Electrochim. Acta 2015, 177, 36. H. J. Peng, T. Z. Hou, Q. Zhang, J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L. Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227. b) J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864 a) Z. Ji, B. Han, Q. Y. Li, C. G. Zhou, Q. Gao, K. S. Xia, J. P. Wu, J. Phys. Chem. C 2015, 119, 20495 G. M. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760. D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694. d) J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127 e) S. Xiao, S. Liu, J. Zhang, Y. Wang, J. Power Sources 2015, 293, 119. a) Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759 Y. C. Qiu, W. F. Li, W. Zhao, G. Z. Li, Y. Hou, M. N. Liu, L. S. Zhou, F. M. Ye, H. F. Li, Z. H. Wei, S. H. Yang, W. H. Duan, Y. F. Ye, J. H. Guo, Y. G. Zhang, Nano Lett. 2014, 14, 4821. b) X. Y. Tao, J. G. Wang, Z. G. Ying, Q. X. Cai, G. Y. Zheng, Y. P. Gan, H. Huang, Y. Xia, C. Liang, W. K. Zhang, Y. Cui, Nano Lett. 2014, 14, 5288 K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M. C. Kung, H. H. Kung, ChemSusChem 2014, 7, 2545. X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, Nano Energy 2014, 4, 65. f) J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2016, 2, 76. M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. a) W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruna, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752 b) Z. H. Zhao, M. T. Li, L. P. Zhang, L. M. Dai, Z. H. Xia, Adv. Mater. 2015, 27, 6834. b) M. A. Pope, I. A. Aksay, Adv. Energy Mater. 2015, 5, 1500124 a) M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, F. Wei, ACS Nano 2012, 6, 10759 A. B. Sannigrahi, T. Kar, B. G. Niyogi, P. Hobza, P. V. R. Schleyer, Chem. Rev. 1990, 90, 1061. 2015 2013 2015; 119 3 2 2015; 15 2015; 6 2015; 5 2013; 4 2014 2015; 136 177 2004; 104 2015; 3 2015 2015 2015 2015 2015 2016; 27 5 10 1 5 2 2015; 54 2014 2014; 7 5 2012 2014; 6 24 2009; 156 2013; 7 2015; 8 2006 1993; 32 2011; 133 2015 2015; 54 27 2008 2015; 46 27 1996; 77 2014; 1 2014; 5 2014; 4 2015; 27 2014 2015; 2 9 2014 2016 2016; 26 16 26 1990 2000; 92 113 2014; 14 2014 2015 2015; 6 7 27 2009; 8 2014 2014 2015 2015; 5 14 27 27 2012; 6 2015 2014 2014 2015 2015; 5 24 26 3 293 2014; 7 1990; 90 Ma (10.1002/smll.201600809-BIB0001.3|smll201600809-cit-0003) 2015; 10 Cheng (10.1002/smll.201600809-BIB0004|smll201600809-cit-0009) 2014; 4 Gu (10.1002/smll.201600809-BIB0017.4|smll201600809-cit-0028) 2015; 3 Pang (10.1002/smll.201600809-BIB0016.2|smll201600809-cit-0024) 2015; 27 Song (10.1002/smll.201600809-BIB0017.2|smll201600809-cit-0026) 2014; 24 Tang (10.1002/smll.201600809-BIB0017.3|smll201600809-cit-0027) 2014; 26 Seh (10.1002/smll.201600809-BIB0024.2|smll201600809-cit-0042) 2014; 5 Ding (10.1002/smll.201600809-BIB0029.3|smll201600809-cit-0051) 2016; 26 Zhao (10.1002/smll.201600809-BIB0010|smll201600809-cit-0015) 2012; 6 Jiao (10.1002/smll.201600809-BIB0031|smll201600809-cit-0054) 2014; 136 Xiao (10.1002/smll.201600809-BIB0023.4|smll201600809-cit-0040) 2015; 27 Wang (10.1002/smll.201600809-BIB0027.2|smll201600809-cit-0046) 2013; 3 Xie (10.1002/smll.201600809-BIB0020.2|smll201600809-cit-0033) 2015; 7 Ji (10.1002/smll.201600809-BIB0027|smll201600809-cit-0045) 2015; 119 Wang (10.1002/smll.201600809-BIB0005|smll201600809-cit-0010) 2014; 5 Yao (10.1002/smll.201600809-BIB0024|smll201600809-cit-0041) 2014; 7 Zhao (10.1002/smll.201600809-BIB0029|smll201600809-cit-0049) 2014; 26 Xu (10.1002/smll.201600809-BIB0037|smll201600809-cit-0062) 2004; 104 Liu (10.1002/smll.201600809-BIB0031.2|smll201600809-cit-0055) 2015; 177 Yang (10.1002/smll.201600809-BIB0020|smll201600809-cit-0032) 2014; 6 Zhou (10.1002/smll.201600809-BIB0023.3|smll201600809-cit-0039) 2015; 27 Fei (10.1002/smll.201600809-BIB0007|smll201600809-cit-0012) 2015; 27 Ji (10.1002/smll.201600809-BIB0002|smll201600809-cit-0007) 2009; 8 Vizintin (10.1002/smll.201600809-BIB0020.3|smll201600809-cit-0034) 2015; 27 Huang (10.1002/smll.201600809-BIB0001.4|smll201600809-cit-0004) 2015; 1 Peng (10.1002/smll.201600809-BIB0016|smll201600809-cit-0023) 2015; 54 Qiu (10.1002/smll.201600809-BIB0018|smll201600809-cit-0030) 2014; 14 Aurbach (10.1002/smll.201600809-BIB0013|smll201600809-cit-0019) 2009; 156 Zhou (10.1002/smll.201600809-BIB0006|smll201600809-cit-0011) 2015; 6 Ji (10.1002/smll.201600809-BIB0008|smll201600809-cit-0013) 2011; 133 Hou (10.1002/smll.201600809-BIB0027.3|smll201600809-cit-0047) 2015; 2 Peng (10.1002/smll.201600809-BIB0035|smll201600809-cit-0059) 2014; 1 Yu (10.1002/smll.201600809-BIB0030|smll201600809-cit-0052) 2008; 46 Tao (10.1002/smll.201600809-BIB0023.2|smll201600809-cit-0038) 2014; 14 Klamt (10.1002/smll.201600809-BIB0036.2|smll201600809-cit-0061) 1993 Perdew (10.1002/smll.201600809-BIB0039|smll201600809-cit-0065) 1996; 77 Pang (10.1002/smll.201600809-BIB0023|smll201600809-cit-0037) 2014; 5 Zhao (10.1002/smll.201600809-BIB0030.2|smll201600809-cit-0053) 2015; 27 Wild (10.1002/smll.201600809-BIB0033|smll201600809-cit-0057) 2015; 8 Yang (10.1002/smll.201600809-BIB0032|smll201600809-cit-0056) 2012; 6 Song (10.1002/smll.201600809-BIB0011|smll201600809-cit-0017) 2015; 54 Peng (10.1002/smll.201600809-BIB0010.2|smll201600809-cit-0016) 2014; 24 Zhou (10.1002/smll.201600809-BIB0017|smll201600809-cit-0025) 2015; 5 Huang (10.1002/smll.201600809-BIB0015.2|smll201600809-cit-0022) 2015; 9 Zhang (10.1002/smll.201600809-BIB0028|smll201600809-cit-0048) 2015; 15 Delley (10.1002/smll.201600809-BIB0038|smll201600809-cit-0063) 1990; 92 Liang (10.1002/smll.201600809-BIB0022|smll201600809-cit-0036) 2015; 54 Suo (10.1002/smll.201600809-BIB0014|smll201600809-cit-0020) 2013; 4 Pope (10.1002/smll.201600809-BIB0001.2|smll201600809-cit-0002) 2015; 5 Sannigrahi (10.1002/smll.201600809-BIB0034|smll201600809-cit-0058) 1990; 90 Xiao (10.1002/smll.201600809-BIB0017.5|smll201600809-cit-0029) 2015; 293 Xu (10.1002/smll.201600809-BIB0001.5|smll201600809-cit-0005) 2015; 5 Lin (10.1002/smll.201600809-BIB0012|smll201600809-cit-0018) 2015; 3 Zhou (10.1002/smll.201600809-BIB0025|smll201600809-cit-0043) 2013; 7 Zhou (10.1002/smll.201600809-BIB0015|smll201600809-cit-0021) 2014; 2 Han (10.1002/smll.201600809-BIB0019|smll201600809-cit-0031) 2014; 7 Liang (10.1002/smll.201600809-BIB0001.6|smll201600809-cit-0006) 2016; 2 Zhou (10.1002/smll.201600809-BIB0003|smll201600809-cit-0008) 2015; 5 Seh (10.1002/smll.201600809-BIB0009|smll201600809-cit-0014) 2014; 5 Zhou (10.1002/smll.201600809-BIB0021|smll201600809-cit-0035) 2015; 5 Yao (10.1002/smll.201600809-BIB0026|smll201600809-cit-0044) 2014; 5 Manthiram (10.1002/smll.201600809-BIB0001|smll201600809-cit-0001) 2015; 27 Song (10.1002/smll.201600809-BIB0029.2|smll201600809-cit-0050) 2016; 16 Delley (10.1002/smll.201600809-BIB0038.2|smll201600809-cit-0064) 2000; 113 Delley (10.1002/smll.201600809-BIB0036|smll201600809-cit-0060) 2006; 32 |
References_xml | – reference: c) L. Ma, K. E. Hendrickson, S. Y. Wei, L. A. Archer, Nano Today 2015, 10, 315; – reference: b) Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017. – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. – reference: G. M. Zhou, Y. B. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263. – reference: L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481. – reference: J. X. Song, M. L. Gordin, T. Xu, S. R. Chen, Z. X. Yu, H. Sohn, J. Lu, Y. Ren, Y. H. Duan, D. H. Wang, Angew. Chem. Int. Ed. 2015, 54, 4325. – reference: b) H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian, F. Wei, Adv. Funct. Mater. 2014, 24, 2772. – reference: c) Y. Zhou, C. G. Zhou, Q. Y. Li, C. J. Yan, B. Han, K. S. Xia, Q. Gao, J. P. Wu, Adv. Mater. 2015, 27, 3774; – reference: b) J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, F. Wei, ACS Nano 2015, 9, 3002. – reference: Z. Y. Wang, Y. F. Dong, H. J. Li, Z. B. Zhao, H. B. Wu, C. Hao, S. H. Liu, J. S. Qiu, X. W. Lou, Nat. Commun. 2014, 5, 5002. – reference: f) J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2016, 2, 76. – reference: a) Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759; – reference: b) M. A. Pope, I. A. Aksay, Adv. Energy Mater. 2015, 5, 1500124; – reference: X. Liang, A. Garsuch, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3907. – reference: X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, Nano Energy 2014, 4, 65. – reference: d) X. X. Gu, C. J. Tong, C. Lai, J. X. Qiu, X. X. Huang, W. L. Yang, B. Wen, L. M. Liu, Y. L. Hou, S. Q. Zhang, J. Mater. Chem. A 2015, 3, 16670; – reference: Z. Lin, C. D. Liang, J. Mater. Chem. A 2015, 3, 936. – reference: b) B. Delley, J. Chem. Phys. 2000, 113, 7756. – reference: a) M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, F. Wei, ACS Nano 2012, 6, 10759; – reference: e) S. Xiao, S. Liu, J. Zhang, Y. Wang, J. Power Sources 2015, 293, 119. – reference: b) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 1993, 799. – reference: Y. C. Qiu, W. F. Li, W. Zhao, G. Z. Li, Y. Hou, M. N. Liu, L. S. Zhou, F. M. Ye, H. F. Li, Z. H. Wei, S. H. Yang, W. H. Duan, Y. F. Ye, J. H. Guo, Y. G. Zhang, Nano Lett. 2014, 14, 4821. – reference: G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Adv. Energy Mater. 2015, 5, 1501355. – reference: Q. F. Zhang, Y. P. Wang, Z. W. Seh, Z. H. Fu, R. F. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780. – reference: e) R. Xu, J. Lu, K. Amine, Adv. Energy Mater. 2015, 5, 1500408; – reference: b) Z. G. Wang, X. Y. Niu, J. Xiao, C. M. Wang, J. Liu, F. Gao, RSC Adv. 2013, 3, 16775; – reference: a) H. J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018; – reference: A. B. Sannigrahi, T. Kar, B. G. Niyogi, P. Hobza, P. V. R. Schleyer, Chem. Rev. 1990, 90, 1061. – reference: G. M. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760. – reference: d) J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127; – reference: c) Y.-L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112. – reference: d) Z. B. Xiao, Z. Yang, L. Wang, H. G. Nie, M. E. Zhong, Q. Q. Lai, X. J. Xu, L. J. Zhang, S. M. Huang, Adv. Mater. 2015, 27, 2891. – reference: a) B. Delley, J. Chem. Phys. 1990, 92, 508; – reference: D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A694. – reference: a) W. D. Zhou, C. M. Wang, Q. L. Zhang, H. D. Abruna, Y. He, J. W. Wang, S. X. Mao, X. C. Xiao, Adv. Energy Mater. 2015, 5, 1401752; – reference: b) J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864; – reference: K. Xu, Chem. Rev. 2004, 104, 4303. – reference: c) A. Vizintin, M. Lozinšek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryvère, R. Dominko, Chem. Mater. 2015, 27, 7070. – reference: L. F. Fei, X. G. Li, W. T. Bi, Z. W. Zhuo, W. F. Wei, L. Sun, W. Lu, X. J. Wu, K. Y. Xie, C. Z. Wu, H. L. W. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936. – reference: G. Zhou, L.-C. Yin, D.-W. Wang, L. Li, S. Pei, I. R. Gentle, F. Li, H.-M. Cheng, ACS Nano 2013, 7, 5367. – reference: b) Q. Pang, J. T. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021. – reference: a) S. S. Yu, W. T. Zheng, Q. B. Wen, Q. Jiang, Carbon 2008, 46, 537; – reference: c) C. Tang, Q. Zhang, M. Q. Zhao, J. Q. Huang, X. B. Cheng, G. L. Tian, H. J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100; – reference: a) L. Zhou, X. Lin, T. Huang, A. Yu, J. Mater. Chem. A 2014, 2, 5117; – reference: K. Han, J. Shen, S. Hao, H. Ye, C. Wolverton, M. C. Kung, H. H. Kung, ChemSusChem 2014, 7, 2545. – reference: a) C. P. Yang, Y. X. Yin, H. Ye, K. C. Jiang, J. Zhang, Y. G. Guo, ACS Appl. Mater. Interfaces 2014, 6, 8789; – reference: a) B. Delley, Mol. Simul. 2006, 32, 117; – reference: b) A. Liu, W. Li, H. Jin, X. Yu, Y. Bu, Y. He, H. Huang, S. Wang, J. Wang, Electrochim. Acta 2015, 177, 36. – reference: a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051; – reference: M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477. – reference: b) J. X. Song, T. Xu, M. L. Gordin, P. Y. Zhu, D. P. Lv, Y. B. Jiang, Y. S. Chen, Y. H. Duan, D. H. Wang, Adv. Funct. Mater. 2014, 24, 1243; – reference: a) H. B. Yao, K. Yan, W. Y. Li, G. Y. Zheng, D. S. Kong, Z. W. Seh, V. K. Narasimhan, Z. Liang, Y. Cui, Energy Environ. Sci. 2014, 7, 3381; – reference: X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500. – reference: b) Z. H. Zhao, M. T. Li, L. P. Zhang, L. M. Dai, Z. H. Xia, Adv. Mater. 2015, 27, 6834. – reference: a) Z. Ji, B. Han, Q. Y. Li, C. G. Zhou, Q. Gao, K. S. Xia, J. P. Wu, J. Phys. Chem. C 2015, 119, 20495; – reference: a) A. Manthiram, S. H. Chung, C. X. Zu, Adv. Mater. 2015, 27, 1980; – reference: c) T. Z. Hou, H. J. Peng, J. Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011. – reference: H. J. Peng, T. Z. Hou, Q. Zhang, J. Q. Huang, X. B. Cheng, M. Q. Guo, Z. Yuan, L. Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227. – reference: L. W. Ji, M. M. Rao, H. M. Zheng, L. Zhang, Y. C. Li, W. H. Duan, J. H. Guo, E. J. Cairns, Y. G. Zhang, J. Am. Chem. Soc. 2011, 133, 18522. – reference: Z. W. Seh, H. Wang, N. Liu, G. Zheng, W. Li, H. Yao, Y. Cui, Chem. Sci. 2014, 5, 1396. – reference: b) Y. Xie, Z. Meng, T. Cai, W. Q. Han, ACS Appl. Mater. Interfaces 2015, 7, 25202; – reference: b) X. Y. Tao, J. G. Wang, Z. G. Ying, Q. X. Cai, G. Y. Zheng, Y. P. Gan, H. Huang, Y. Xia, C. Liang, W. K. Zhang, Y. Cui, Nano Lett. 2014, 14, 5288; – reference: a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394; – reference: H. B. Yao, G. Y. Zheng, P. C. Hsu, D. S. Kong, J. J. Cha, W. Y. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5, 3943. – reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, ACS Nano 2012, 6, 205. – volume: 26 16 26 start-page: 7051 864 1112 year: 2014 2016 2016 publication-title: Adv. Mater. Nano Lett. Adv. Funct. Mater. – volume: 5 start-page: 3943 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 1402263 year: 2015 publication-title: Adv. Energy Mater. – volume: 7 start-page: 5367 year: 2013 publication-title: ACS Nano – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 4325 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 119 3 2 start-page: 20495 16775 014011 year: 2015 2013 2015 publication-title: J. Phys. Chem. C RSC Adv. 2D Mater. – volume: 6 start-page: 7760 year: 2015 publication-title: Nat. Commun. – volume: 46 27 start-page: 537 6834 year: 2008 2015 publication-title: Carbon Adv. Mater. – volume: 90 start-page: 1061 year: 1990 publication-title: Chem. Rev. – volume: 54 27 start-page: 11018 6021 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Adv. Mater. – volume: 3 start-page: 936 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 7 27 start-page: 8789 25202 7070 year: 2014 2015 2015 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces Chem. Mater. – volume: 5 14 27 27 start-page: 4759 5288 3774 2891 year: 2014 2014 2015 2015 publication-title: Nat. Commun. Nano Lett. Adv. Mater. Adv. Mater. – volume: 133 start-page: 18522 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 4821 year: 2014 publication-title: Nano Lett. – volume: 7 5 start-page: 3381 5017 year: 2014 2014 publication-title: Energy Environ. Sci. Nat. Commun. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 1 start-page: 1400227 year: 2014 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 3477 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 65 year: 2014 publication-title: Nano Energy – volume: 5 start-page: 1396 year: 2014 publication-title: Chem. Sci. – volume: 7 start-page: 2545 year: 2014 publication-title: ChemSusChem – volume: 15 start-page: 3780 year: 2015 publication-title: Nano Lett. – volume: 32 start-page: 117 799 year: 2006 1993 publication-title: Mol. Simul. J. Chem. Soc. Perkin Trans. – volume: 104 start-page: 4303 year: 2004 publication-title: Chem. Rev. – volume: 5 24 26 3 293 start-page: 1401752 1243 6100 16670 119 year: 2015 2014 2014 2015 2015 publication-title: Adv. Energy Mater. Adv. Funct. Mater. Adv. Mater. J. Mater. Chem. A J. Power Sources – volume: 27 start-page: 5936 year: 2015 publication-title: Adv. Mater. – volume: 136 177 start-page: 4394 36 year: 2014 2015 publication-title: J. Am. Chem. Soc. Electrochim. Acta – volume: 2 9 start-page: 5117 3002 year: 2014 2015 publication-title: J. Mater. Chem. A ACS Nano – volume: 27 5 10 1 5 2 start-page: 1980 1500124 315 127 1500408 76 year: 2015 2015 2015 2015 2015 2016 publication-title: Adv. Mater. Adv. Energy Mater. Nano Today Energy Storage Mater. Adv. Energy Mater. Energy Storage Mater. – volume: 92 113 start-page: 508 7756 year: 1990 2000 publication-title: J. Chem. Phys. J. Chem. Phys. – volume: 5 start-page: 5002 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 205 year: 2012 publication-title: ACS Nano – volume: 6 24 start-page: 10759 2772 year: 2012 2014 publication-title: ACS Nano Adv. Funct. Mater. – volume: 5 start-page: 1501355 year: 2015 publication-title: Adv. Energy Mater. – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – volume: 46 start-page: 537 year: 2008 ident: 10.1002/smll.201600809-BIB0030|smll201600809-cit-0052 publication-title: Carbon doi: 10.1016/j.carbon.2008.01.006 – volume: 14 start-page: 4821 year: 2014 ident: 10.1002/smll.201600809-BIB0018|smll201600809-cit-0030 publication-title: Nano Lett. doi: 10.1021/nl5020475 – volume: 27 start-page: 5936 year: 2015 ident: 10.1002/smll.201600809-BIB0007|smll201600809-cit-0012 publication-title: Adv. Mater. doi: 10.1002/adma.201502668 – volume: 1 start-page: 1400227 year: 2014 ident: 10.1002/smll.201600809-BIB0035|smll201600809-cit-0059 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400227 – volume: 16 start-page: 864 year: 2016 ident: 10.1002/smll.201600809-BIB0029.2|smll201600809-cit-0050 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03217 – volume: 6 start-page: 8789 year: 2014 ident: 10.1002/smll.201600809-BIB0020|smll201600809-cit-0032 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501627f – volume: 5 start-page: 5002 year: 2014 ident: 10.1002/smll.201600809-BIB0005|smll201600809-cit-0010 publication-title: Nat. Commun. doi: 10.1038/ncomms6002 – volume: 32 start-page: 117 year: 2006 ident: 10.1002/smll.201600809-BIB0036|smll201600809-cit-0060 publication-title: Mol. Simul. doi: 10.1080/08927020600589684 – volume: 54 start-page: 11018 year: 2015 ident: 10.1002/smll.201600809-BIB0016|smll201600809-cit-0023 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505444 – volume: 5 start-page: 3943 year: 2014 ident: 10.1002/smll.201600809-BIB0026|smll201600809-cit-0044 publication-title: Nat. Commun. doi: 10.1038/ncomms4943 – volume: 2 start-page: 014011 year: 2015 ident: 10.1002/smll.201600809-BIB0027.3|smll201600809-cit-0047 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/1/014011 – volume: 5 start-page: 4759 year: 2014 ident: 10.1002/smll.201600809-BIB0023|smll201600809-cit-0037 publication-title: Nat. Commun. doi: 10.1038/ncomms5759 – volume: 7 start-page: 5367 year: 2013 ident: 10.1002/smll.201600809-BIB0025|smll201600809-cit-0043 publication-title: ACS Nano doi: 10.1021/nn401228t – volume: 8 start-page: 500 year: 2009 ident: 10.1002/smll.201600809-BIB0002|smll201600809-cit-0007 publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 133 start-page: 18522 year: 2011 ident: 10.1002/smll.201600809-BIB0008|smll201600809-cit-0013 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206955k – volume: 54 start-page: 3907 year: 2015 ident: 10.1002/smll.201600809-BIB0022|smll201600809-cit-0036 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410174 – volume: 26 start-page: 7051 year: 2014 ident: 10.1002/smll.201600809-BIB0029|smll201600809-cit-0049 publication-title: Adv. Mater. doi: 10.1002/adma.201402488 – volume: 27 start-page: 1980 year: 2015 ident: 10.1002/smll.201600809-BIB0001|smll201600809-cit-0001 publication-title: Adv. Mater. doi: 10.1002/adma.201405115 – volume: 27 start-page: 6021 year: 2015 ident: 10.1002/smll.201600809-BIB0016.2|smll201600809-cit-0024 publication-title: Adv. Mater. doi: 10.1002/adma.201502467 – volume: 3 start-page: 16670 year: 2015 ident: 10.1002/smll.201600809-BIB0017.4|smll201600809-cit-0028 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04255K – volume: 27 start-page: 6834 year: 2015 ident: 10.1002/smll.201600809-BIB0030.2|smll201600809-cit-0053 publication-title: Adv. Mater. doi: 10.1002/adma.201503211 – volume: 5 start-page: 1501355 year: 2015 ident: 10.1002/smll.201600809-BIB0021|smll201600809-cit-0035 publication-title: Adv. Energy Mater. – volume: 10 start-page: 315 year: 2015 ident: 10.1002/smll.201600809-BIB0001.3|smll201600809-cit-0003 publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.011 – volume: 119 start-page: 20495 year: 2015 ident: 10.1002/smll.201600809-BIB0027|smll201600809-cit-0045 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06373 – volume: 27 start-page: 7070 year: 2015 ident: 10.1002/smll.201600809-BIB0020.3|smll201600809-cit-0034 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02906 – volume: 2 start-page: 5117 year: 2014 ident: 10.1002/smll.201600809-BIB0015|smll201600809-cit-0021 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta15175a – volume: 1 start-page: 127 year: 2015 ident: 10.1002/smll.201600809-BIB0001.4|smll201600809-cit-0004 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.09.008 – volume: 24 start-page: 1243 year: 2014 ident: 10.1002/smll.201600809-BIB0017.2|smll201600809-cit-0026 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302631 – volume: 6 start-page: 7760 year: 2015 ident: 10.1002/smll.201600809-BIB0006|smll201600809-cit-0011 publication-title: Nat. Commun. doi: 10.1038/ncomms8760 – volume: 136 start-page: 4394 year: 2014 ident: 10.1002/smll.201600809-BIB0031|smll201600809-cit-0054 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500432h – volume: 5 start-page: 1500124 year: 2015 ident: 10.1002/smll.201600809-BIB0001.2|smll201600809-cit-0002 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500124 – volume: 5 start-page: 1402263 year: 2015 ident: 10.1002/smll.201600809-BIB0003|smll201600809-cit-0008 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402263 – volume: 3 start-page: 16775 year: 2013 ident: 10.1002/smll.201600809-BIB0027.2|smll201600809-cit-0046 publication-title: RSC Adv. doi: 10.1039/c3ra41333k – volume: 8 start-page: 3477 year: 2015 ident: 10.1002/smll.201600809-BIB0033|smll201600809-cit-0057 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01388G – volume: 7 start-page: 2545 year: 2014 ident: 10.1002/smll.201600809-BIB0019|smll201600809-cit-0031 publication-title: ChemSusChem doi: 10.1002/cssc.201402329 – volume: 5 start-page: 1401752 year: 2015 ident: 10.1002/smll.201600809-BIB0017|smll201600809-cit-0025 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401752 – volume: 4 start-page: 65 year: 2014 ident: 10.1002/smll.201600809-BIB0004|smll201600809-cit-0009 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.013 – volume: 3 start-page: 936 year: 2015 ident: 10.1002/smll.201600809-BIB0012|smll201600809-cit-0018 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04727C – volume: 77 start-page: 3865 year: 1996 ident: 10.1002/smll.201600809-BIB0039|smll201600809-cit-0065 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 54 start-page: 4325 year: 2015 ident: 10.1002/smll.201600809-BIB0011|smll201600809-cit-0017 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411109 – volume: 293 start-page: 119 year: 2015 ident: 10.1002/smll.201600809-BIB0017.5|smll201600809-cit-0029 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.05.048 – volume: 7 start-page: 3381 year: 2014 ident: 10.1002/smll.201600809-BIB0024|smll201600809-cit-0041 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01377H – volume: 26 start-page: 1112 year: 2016 ident: 10.1002/smll.201600809-BIB0029.3|smll201600809-cit-0051 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504294 – volume: 5 start-page: 5017 year: 2014 ident: 10.1002/smll.201600809-BIB0024.2|smll201600809-cit-0042 publication-title: Nat. Commun. doi: 10.1038/ncomms6017 – volume: 27 start-page: 3774 year: 2015 ident: 10.1002/smll.201600809-BIB0023.3|smll201600809-cit-0039 publication-title: Adv. Mater. doi: 10.1002/adma.201501082 – volume: 156 start-page: A694 year: 2009 ident: 10.1002/smll.201600809-BIB0013|smll201600809-cit-0019 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3148721 – volume: 27 start-page: 2891 year: 2015 ident: 10.1002/smll.201600809-BIB0023.4|smll201600809-cit-0040 publication-title: Adv. Mater. doi: 10.1002/adma.201405637 – volume: 2 start-page: 76 year: 2016 ident: 10.1002/smll.201600809-BIB0001.6|smll201600809-cit-0006 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.09.007 – volume: 4 start-page: 1481 year: 2013 ident: 10.1002/smll.201600809-BIB0014|smll201600809-cit-0020 publication-title: Nat. Commun. doi: 10.1038/ncomms2513 – volume: 92 start-page: 508 year: 1990 ident: 10.1002/smll.201600809-BIB0038|smll201600809-cit-0063 publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 5 start-page: 1500408 year: 2015 ident: 10.1002/smll.201600809-BIB0001.5|smll201600809-cit-0005 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500408 – volume: 9 start-page: 3002 year: 2015 ident: 10.1002/smll.201600809-BIB0015.2|smll201600809-cit-0022 publication-title: ACS Nano doi: 10.1021/nn507178a – start-page: 799 year: 1993 ident: 10.1002/smll.201600809-BIB0036.2|smll201600809-cit-0061 publication-title: J. Chem. Soc. Perkin Trans. doi: 10.1039/P29930000799 – volume: 15 start-page: 3780 year: 2015 ident: 10.1002/smll.201600809-BIB0028|smll201600809-cit-0048 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00367 – volume: 7 start-page: 25202 year: 2015 ident: 10.1002/smll.201600809-BIB0020.2|smll201600809-cit-0033 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08129 – volume: 90 start-page: 1061 year: 1990 ident: 10.1002/smll.201600809-BIB0034|smll201600809-cit-0058 publication-title: Chem. Rev. doi: 10.1021/cr00104a007 – volume: 6 start-page: 10759 year: 2012 ident: 10.1002/smll.201600809-BIB0010|smll201600809-cit-0015 publication-title: ACS Nano doi: 10.1021/nn304037d – volume: 14 start-page: 5288 year: 2014 ident: 10.1002/smll.201600809-BIB0023.2|smll201600809-cit-0038 publication-title: Nano Lett. doi: 10.1021/nl502331f – volume: 6 start-page: 205 year: 2012 ident: 10.1002/smll.201600809-BIB0032|smll201600809-cit-0056 publication-title: ACS Nano doi: 10.1021/nn203393d – volume: 113 start-page: 7756 year: 2000 ident: 10.1002/smll.201600809-BIB0038.2|smll201600809-cit-0064 publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 104 start-page: 4303 year: 2004 ident: 10.1002/smll.201600809-BIB0037|smll201600809-cit-0062 publication-title: Chem. Rev. doi: 10.1021/cr030203g – volume: 177 start-page: 36 year: 2015 ident: 10.1002/smll.201600809-BIB0031.2|smll201600809-cit-0055 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.166 – volume: 26 start-page: 6100 year: 2014 ident: 10.1002/smll.201600809-BIB0017.3|smll201600809-cit-0027 publication-title: Adv. Mater. doi: 10.1002/adma.201401243 – volume: 5 start-page: 1396 year: 2014 ident: 10.1002/smll.201600809-BIB0009|smll201600809-cit-0014 publication-title: Chem. Sci. doi: 10.1039/c3sc52789a – volume: 24 start-page: 2772 year: 2014 ident: 10.1002/smll.201600809-BIB0010.2|smll201600809-cit-0016 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303296 |
SSID | ssj0031247 |
Score | 2.6593604 |
Snippet | Lithium–sulfur (Li–S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues... Lithium-sulfur (Li-S) batteries have been intensively concerned to fulfill the urgent demands of high capacity energy storage. One of the major unsolved issues... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3283 |
SubjectTerms | Binding energy Carbon Cathodes Demand Design engineering doped carbon heteroatom Lithium lithium-sulfur batteries Nanostructure Nanotechnology Polysulfides Principles |
Title | Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-LN8QT9KC-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201600809 https://www.ncbi.nlm.nih.gov/pubmed/27168000 https://www.proquest.com/docview/1797228633 https://www.proquest.com/docview/1797871741 https://www.proquest.com/docview/1825512469 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLam8TIeuMMCAxkJwVO2xInT5LHaGBV01UY3sTcrvrFqXTI1CQIepv0EJP4hv4RjOwkr4iLBW9ucWI57fM73OcefEXqWC2A3aRT6KlQZEJSU-1msiS-FDhQJOaXa7EbemySjo_j1MT2-sovf6UP0C25mZth4bSZ4zqutH6Kh1dncvDoIEwN6zA4-U7BlUNHbXj8qguRlT1eBnOUb4a1OtTEgW8u3L2Wla2aAP_4Kci4jWJuCdm-ivOu8qzw53Wxqvik-_6Tr-D9PdwvdaPEpHjqHuo1WVHEHXb-iWngXXezYqg-8363TVxiQLx6ZwpoSOPzZt8svO-W5khhCN6TKBS8LXJd4KE5m6oPCU7P6_h4PC4i8pkVcarxfzj9VzVzPZNvaeFafzBpo6usUfm4W2AmBAq-_h452Xx5uj_z2GAdfUOArPs0CIaWWGaRBqlKZqCSWYaxToVPwjZAolREqtBjwgRA8FHEqAeQBjoupUDSP7qPVoizUOsI0kYFdtU1CDsRQ5AHnVnGPk0jlGfeQ3_2NTLQa5-aojTlz6syEmXFl_bh66EVvf-7UPX5r-dx6RW-WL05NTdyAsneTV2w8SQ8Oszfb7MBDG53bsDYcVAyi3oCQNIkiDz3tL8NENm9n8kKVjbMB9goI7w82wOcBocUJ9OeBc8m-QwSYL6D_wEPEOtZfHohN98bj_tvDf7npEVozn13h3AZarReNegwQreZP7DT8DkkjNe8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKuwAWvB8DBYzEY5U2ceJMsmAx6lCmTGbUMlO1OxM_QqNOk2qSAGWB-AQkvoRf4RP4Eq7zgkE8JKQuWMa5sRzb995z7etjhB6EAqIbz7YMZSkfAhSPG74TEUOKyFTE4pRG-jTyaOwOdp3n-3R_CX1uzsJU_BDtgpvWjNJeawXXC9Lr31lDs6OZ3juwXI16_DqvcqhO3kDUlj3Z6sMQPyRk8-l0Y2DUFwsYggKCNqhvCikj6YNhpsqTrnIdaTmRJyIPWmsRpXxCRSS6vCsEt4TjSYAdgCwcKhQNbaj3DFrR14hruv7-i5axygZ3Wd7nAl7S0FRfDU-kSdYX27vgB1f0kL79FchdxMyl09u8iL403VXluhyuFTlfE-9-YpL8r_rzErpQQ3Dcq3TmMlpSyRV0_gdixqvofb9MbMHbzVZEhgHc44HOHUrDPD36-uFjPz1WEoN3AjQw52mC8xT3xEGsXis80RsMr3AvAeeia8RphLfT2UlWzKJY1rUFcX4QF1DVpwkUF3NccZ3GKruGdk-lA66j5SRN1E2EqSvNcmHatTjEviI0OS9JBTmxVejzDjKaecNETeOubxOZsYqAmjA9jqwdxw563MofVwQmv5V8VE7DViycH-q0vy5le-NnLBh7O1N_uMF2Omi1maestngZA8PeJcRzbbuD7revwVbpDagwUWlRyUCADiD2DzIeBLmgRS6050alA22DCAT3EOCYHUTKmfyXH2KTURC0T7f-5aN76OxgOgpYsDUe3kbndHmVJ7iKlvN5oe4AIs353dIGYPTytJXkG35jlTM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKKyFY8IYOFDASj1XaxIkzyYLFqMMwZaajKdOq3Zn4kTbqNBlNEqAsEJ-AxI_wK_wCX8J1XjCIh4TUBcs4N5Zj-957rn19jNDDQEB049mWoSzlQ4DiccN3QmJIEZqKWJzSUJ9G3h65_T3nxQE9WEKf67MwJT9Es-CmNaOw11rBZzLc-E4amp5M9daB5WrQ41dplQN1-gaCtvTpVhdG-BEhvWe7m32julfAEBQAtEF9U0gZSh_sMlWedJXrSMsJPRF60FiLKOUTKkLR5m0huCUcTwLqAGDhUKFoYEO959CK45q-viyi-7IhrLLBWxbXuYCTNDTTV00TaZKNxfYuuMEVPaJvf4VxFyFz4fN6l9GXurfKVJfj9Tzj6-LdT0SS_1N3XkGXKgCOO6XGXEVLKr6GLv5Ay3gdve8WaS14XG9EpBigPe7rzKEkyJKTrx8-dpOZkhh8E2CBOU9inCW4I44i9Vrhid5eOMSdGFyLrhEnIR4n09M0n4aRrGobRtlRlENVnyZQnM9xyXQaqfQG2juTDriJluMkVqsIU1eaxbK0a3GIfEVgcl5QCnJiq8DnLWTU04aJisRd3yUyZSX9NGF6HFkzji30pJGflfQlv5V8XMzCRiyYH-ukvzZl-6PnbDjydnb9wSbbaaG1epqyyt6lDMx6mxDPte0WetC8Bkult5-CWCV5KQPhOUDYP8h4EOKCErnQnlulCjQNIhDaQ3hjthApJvJffohNtofD5un2v3x0H50fd3tsuDUa3EEXdHGZJLiGlrN5ru4CHM34vcICYPTqrHXkGx45k-I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Heteroatom-Doped+Nanocarbon+to+Achieve+Strong+Anchoring+of+Polysulfides+for+Lithium-Sulfur+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hou%2C+Ting-Zheng&rft.au=Chen%2C+Xiang&rft.au=Peng%2C+Hong-Jie&rft.au=Huang%2C+Jia-Qi&rft.date=2016-06-01&rft.eissn=1613-6829&rft.volume=12&rft.issue=24&rft.spage=3283&rft_id=info:doi/10.1002%2Fsmll.201600809&rft_id=info%3Apmid%2F27168000&rft.externalDocID=27168000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |