Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia
RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence...
Saved in:
Published in | Circulation research Vol. 121; no. 9; pp. 1058 - 1068 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
13.10.2017
Lippincott Williams & Wilkins Ovid Technologies Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.
OBJECTIVE:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.
METHODS AND RESULTS:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.
CONCLUSIONS:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. |
---|---|
AbstractList | Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current,
, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.
To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.
As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and
. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.
HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. Supplemental Digital Content is available in the text. Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.RATIONALEDownregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.OBJECTIVETo test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.METHODS AND RESULTSAs in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.CONCLUSIONSHCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. Rationale:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.Objective:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.Methods and Results:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.Conclusions:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. |
Author | Cox, Charlotte Lundby, Alicia Zhang, Yu Nakao, Shu Wisløff, Ulrik Morris, Gwilym M. da Costa Martins, Paula A. Dobrzynski, Halina Poulsen, Pi Camilla Linscheid, Nora Coulson, Jessica Logantha, Sunil Jit R.J. McPhee, Jamie Cartwright, Elizabeth J. Robertson, Abigail Oceandy, Delvac Pearman, Charles M. Bennett, Hayley Boyett, Mark R. Wang, Yanwen Kitmitto, Ashraf Monfredi, Oliver Elliott, Jonathan Johnsen, Anne Berit D’Souza, Alicia |
AuthorAffiliation | From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.) |
AuthorAffiliation_xml | – name: From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.) |
Author_xml | – sequence: 1 givenname: Alicia surname: D’Souza fullname: D’Souza, Alicia organization: From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.) – sequence: 2 givenname: Charles surname: Pearman middlename: M. fullname: Pearman, Charles M. – sequence: 3 givenname: Yanwen surname: Wang fullname: Wang, Yanwen – sequence: 4 givenname: Shu surname: Nakao fullname: Nakao, Shu – sequence: 5 givenname: Sunil Jit surname: Logantha middlename: R.J. fullname: Logantha, Sunil Jit R.J. – sequence: 6 givenname: Charlotte surname: Cox fullname: Cox, Charlotte – sequence: 7 givenname: Hayley surname: Bennett fullname: Bennett, Hayley – sequence: 8 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 9 givenname: Anne surname: Johnsen middlename: Berit fullname: Johnsen, Anne Berit – sequence: 10 givenname: Nora surname: Linscheid fullname: Linscheid, Nora – sequence: 11 givenname: Pi surname: Poulsen middlename: Camilla fullname: Poulsen, Pi Camilla – sequence: 12 givenname: Jonathan surname: Elliott fullname: Elliott, Jonathan – sequence: 13 givenname: Jessica surname: Coulson fullname: Coulson, Jessica – sequence: 14 givenname: Jamie surname: McPhee fullname: McPhee, Jamie – sequence: 15 givenname: Abigail surname: Robertson fullname: Robertson, Abigail – sequence: 16 givenname: Paula surname: da Costa Martins middlename: A. fullname: da Costa Martins, Paula A. – sequence: 17 givenname: Ashraf surname: Kitmitto fullname: Kitmitto, Ashraf – sequence: 18 givenname: Ulrik surname: Wisløff fullname: Wisløff, Ulrik – sequence: 19 givenname: Elizabeth surname: Cartwright middlename: J. fullname: Cartwright, Elizabeth J. – sequence: 20 givenname: Oliver surname: Monfredi fullname: Monfredi, Oliver – sequence: 21 givenname: Alicia surname: Lundby fullname: Lundby, Alicia – sequence: 22 givenname: Halina surname: Dobrzynski fullname: Dobrzynski, Halina – sequence: 23 givenname: Delvac surname: Oceandy fullname: Oceandy, Delvac – sequence: 24 givenname: Gwilym surname: Morris middlename: M. fullname: Morris, Gwilym M. – sequence: 25 givenname: Mark surname: Boyett middlename: R. fullname: Boyett, Mark R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28821541$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCI4BGYsNmin_GMx4hIYVRIJEqkNKwtjzjO4mLY6f2TEt3vANvyJPgKC0_3XRlXft8x-fqnKAj5x0g9JLgM0JK8rZZLJvl7GI6n6a5OmPpEldP0IRwWuQFr8gRmmCM67xiDB-jkxgvMSYFo_UzdEyFoIQXZILWKxXWMBi3zrZmmReU5XyXLeEaQoSYzb5D6EyEbBWUcUn168fPhdNjBzqbN5-LrNko58AmYus12L2Pcjq7MG6M2Yeg9G2ngjbqOXraKxvhxd15ir5-nK2aeX7-5dOimZ7nHee8ysuWVi3VBNpSVLTQuO8LoRnuK017zSpetjXFPVcC075uO9JSznsiMLQ4LVqyU_T-4Lsb2y3oDtwQlJW7YLYq3EqvjPz_xZmNXPtryUtWklokgzd3BsFfjRAHuTWxA2uVAz9GSWqGC0E5Jkn6-oH00o_BpfUkxbgUIlWyV736N9GfKPcdJMG7g6ALPsYAvezMoAbj9wGNlQTLfePyb-NpruSh8UTzB_T9B49x9YG78XZIZX-z4w0EuQFlh80j7G84C8HH |
CitedBy_id | crossref_primary_10_1038_s41598_019_48276_0 crossref_primary_10_1016_j_hlc_2018_04_295 crossref_primary_10_1093_ehjcr_ytac190 crossref_primary_10_1515_mr_2021_0001 crossref_primary_10_1016_j_jacbts_2022_05_008 crossref_primary_10_1080_00913847_2019_1568769 crossref_primary_10_1007_s12020_021_02907_7 crossref_primary_10_1097_MPH_0000000000002372 crossref_primary_10_1016_j_toxlet_2020_03_017 crossref_primary_10_1146_annurev_pharmtox_031120_115815 crossref_primary_10_1186_s12957_021_02350_y crossref_primary_10_1111_jcmm_15431 crossref_primary_10_3390_hearts2030026 crossref_primary_10_1016_j_yjmcc_2022_02_007 crossref_primary_10_1007_s11886_023_01885_8 crossref_primary_10_1007_s11936_018_0678_z crossref_primary_10_1371_journal_pone_0219281 crossref_primary_10_3389_fmolb_2021_723858 crossref_primary_10_3389_fphys_2019_00826 crossref_primary_10_3389_fphys_2019_00827 crossref_primary_10_1007_s00246_018_2008_3 crossref_primary_10_1016_j_pbiomolbio_2022_11_005 crossref_primary_10_7554_eLife_54298 crossref_primary_10_1093_eurheartj_ehy365 crossref_primary_10_1038_s41598_020_68567_1 crossref_primary_10_1161_CIRCRESAHA_117_311922 crossref_primary_10_1007_s12033_023_00721_2 crossref_primary_10_1097_CAD_0000000000001068 crossref_primary_10_3390_ijms19102941 crossref_primary_10_1038_s41598_021_82202_7 crossref_primary_10_1177_2047487320925635 crossref_primary_10_1136_openhrt_2021_001771 crossref_primary_10_1113_JP277501 crossref_primary_10_1080_21655979_2022_2053803 crossref_primary_10_1007_s11010_022_04635_6 crossref_primary_10_1016_j_hrthm_2024_02_050 crossref_primary_10_1111_jvim_16427 crossref_primary_10_1016_j_pbiomolbio_2021_06_008 crossref_primary_10_1139_cjpp_2018_0115 crossref_primary_10_1186_s40104_023_00960_y crossref_primary_10_1161_CIRCRESAHA_119_316386 crossref_primary_10_1038_s41598_021_98580_x crossref_primary_10_3389_fbioe_2021_673477 crossref_primary_10_1038_s41419_021_03949_5 crossref_primary_10_1111_apha_13564 crossref_primary_10_3389_fphys_2021_759035 crossref_primary_10_1016_j_repbio_2021_100600 crossref_primary_10_3103_S0096392520010058 crossref_primary_10_3390_jcdd12030102 crossref_primary_10_1007_s10517_022_05454_x crossref_primary_10_1088_1361_6579_ac2130 crossref_primary_10_1007_s12265_023_10378_6 crossref_primary_10_3390_ijms242216207 crossref_primary_10_1089_dna_2019_4998 crossref_primary_10_1152_physiol_00009_2019 crossref_primary_10_1016_j_tria_2021_100131 crossref_primary_10_4049_jimmunol_2000887 crossref_primary_10_3390_cimb46090559 crossref_primary_10_1093_europace_euad047 crossref_primary_10_1080_14728222_2024_2351501 crossref_primary_10_1093_cvr_cvad115 crossref_primary_10_1186_s13287_025_04157_0 crossref_primary_10_1161_JAHA_120_016590 crossref_primary_10_1097_CAD_0000000000001087 crossref_primary_10_1016_j_scispo_2021_02_001 crossref_primary_10_3389_fphys_2022_913506 |
Cites_doi | 10.1371/journal.pone.0142904 10.1136/bmj.298.6668.231 10.1093/eurheartj/ehm555 10.1038/ncomms4775 10.1038/nm1569 10.1113/jphysiol.2014.284364 10.1152/japplphysiol.01111.2014 10.1152/ajpheart.1997.272.6.H2782 10.7554/eLife.05005 10.1016/j.hrthm.2009.08.035 10.3892/mmr.2015.3491 10.1152/japplphysiol.00268.2017 10.1136/hrt.61.2.155 10.1016/j.cardiores.2005.02.011 10.1038/90123 10.1038/ncb2866 10.1152/japplphysiol.01126.2012 10.1093/cvr/4.2.160 10.1016/j.pharmthera.2013.04.010 10.1016/j.jacc.2013.01.091 10.1038/nrg2290 10.1038/sj.emboj.7601512 10.1074/jbc.M110.101063 10.1161/01.CIR.0000083719.51661.B9 10.1016/j.cell.2005.11.023 10.1016/j.cell.2006.07.031 10.1038/ng2135 10.1172/JCI106167 10.1007/s00246-014-0901-y 10.1101/gad.1929210 10.1249/00149619-200204000-00004 10.1161/CIRCULATIONAHA.110.958967 10.1038/cr.2014.113 10.1161/HYPERTENSIONAHA.114.03782 10.1038/ncomms7018 10.1261/rna.7240905 10.1002/iub.1079 10.1113/jphysiol.2014.284356 10.3109/1354750X.2013.870605 10.1111/jcmm.12288 10.3892/mmr.2016.5344 10.1161/res.117.suppl_1.220 |
ContentType | Journal Article |
Copyright | 2017 American Heart Association, Inc. 2017 The Authors. Copyright Lippincott Williams & Wilkins Ovid Technologies Oct 13, 2017 2017 The Authors. 2017 |
Copyright_xml | – notice: 2017 American Heart Association, Inc. – notice: 2017 The Authors. – notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Oct 13, 2017 – notice: 2017 The Authors. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK H94 K9. 7X8 5PM |
DOI | 10.1161/CIRCRESAHA.117.311607 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 1068 |
ExternalDocumentID | PMC5636198 28821541 10_1161_CIRCRESAHA_117_311607 10.1161/CIRCRESAHA.117.311607 |
Genre | Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/13/99/30233 – fundername: British Heart Foundation grantid: PG/16/77/32400 |
GroupedDBID | --- -~X .-D .3C .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADGGA ADHPY AE3 AE6 AEETU AENEX AFBFQ AFDTB AFUWQ AGINI AHMBA AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BOYCO BQLVK C45 CS3 DIK DIWNM DU5 E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W YFH YOC ZFV AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK ADSXY H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5557-6b27b2d1eb68724d0ff48d30f7d2fd3756b920f5a802f9bc1b255f180eb073363 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Aug 21 18:34:45 EDT 2025 Fri Jul 11 02:09:58 EDT 2025 Wed Aug 13 04:28:57 EDT 2025 Mon Jul 21 05:51:12 EDT 2025 Tue Jul 01 04:27:48 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri May 16 03:42:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | sinoatrial node ion channel remodeling athletes micro-RNAs sinus bradycardia exercise training |
Language | English |
License | 2017 The Authors. Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5557-6b27b2d1eb68724d0ff48d30f7d2fd3756b920f5a802f9bc1b255f180eb073363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5636198 |
PMID | 28821541 |
PQID | 2006881601 |
PQPubID | 41518 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5636198 proquest_miscellaneous_1930482501 proquest_journals_2006881601 pubmed_primary_28821541 crossref_citationtrail_10_1161_CIRCRESAHA_117_311607 crossref_primary_10_1161_CIRCRESAHA_117_311607 wolterskluwer_health_10_1161_CIRCRESAHA_117_311607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-October-13 |
PublicationDateYYYYMMDD | 2017-10-13 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-October-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hagerstown |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2017 |
Publisher | American Heart Association, Inc Lippincott Williams & Wilkins Ovid Technologies Lippincott Williams & Wilkins |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott Williams & Wilkins Ovid Technologies – name: Lippincott Williams & Wilkins |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 Li QX (e_1_3_4_23_2) 2016; 9 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 Katona PG (e_1_3_4_14_2) 1982; 52 e_1_3_4_30_2 Nabiałek E (e_1_3_4_41_2) 2013; 61 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 Yanni J (e_1_3_4_46_2) 2015; 34 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 29025753 - Circ Res. 2017 Oct 13;121(9):1027-1028. doi: 10.1161/CIRCRESAHA.117.311922. |
References_xml | – ident: e_1_3_4_42_2 doi: 10.1371/journal.pone.0142904 – ident: e_1_3_4_4_2 doi: 10.1136/bmj.298.6668.231 – volume: 34 start-page: PC158 year: 2015 ident: e_1_3_4_46_2 article-title: microRNA 370-3p could explain the dysfunction of the cardiac conduction system in heart failure. publication-title: Proc Physiol Soc – ident: e_1_3_4_5_2 doi: 10.1093/eurheartj/ehm555 – ident: e_1_3_4_6_2 doi: 10.1038/ncomms4775 – ident: e_1_3_4_8_2 doi: 10.1038/nm1569 – ident: e_1_3_4_11_2 doi: 10.1113/jphysiol.2014.284364 – ident: e_1_3_4_33_2 doi: 10.1152/japplphysiol.01111.2014 – ident: e_1_3_4_25_2 doi: 10.1152/ajpheart.1997.272.6.H2782 – ident: e_1_3_4_21_2 doi: 10.7554/eLife.05005 – ident: e_1_3_4_10_2 doi: 10.1016/j.hrthm.2009.08.035 – ident: e_1_3_4_22_2 doi: 10.3892/mmr.2015.3491 – ident: e_1_3_4_35_2 doi: 10.1152/japplphysiol.00268.2017 – ident: e_1_3_4_3_2 doi: 10.1136/hrt.61.2.155 – ident: e_1_3_4_44_2 doi: 10.1016/j.cardiores.2005.02.011 – ident: e_1_3_4_28_2 doi: 10.1038/90123 – ident: e_1_3_4_7_2 doi: 10.1038/ncb2866 – ident: e_1_3_4_16_2 doi: 10.1152/japplphysiol.01126.2012 – ident: e_1_3_4_15_2 doi: 10.1093/cvr/4.2.160 – ident: e_1_3_4_17_2 doi: 10.1016/j.pharmthera.2013.04.010 – ident: e_1_3_4_37_2 doi: 10.1016/j.jacc.2013.01.091 – volume: 61 start-page: 627 year: 2013 ident: e_1_3_4_41_2 article-title: Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. publication-title: Minerva Cardioangiol – ident: e_1_3_4_18_2 doi: 10.1038/nrg2290 – ident: e_1_3_4_27_2 doi: 10.1038/sj.emboj.7601512 – ident: e_1_3_4_30_2 doi: 10.1074/jbc.M110.101063 – ident: e_1_3_4_45_2 doi: 10.1161/01.CIR.0000083719.51661.B9 – ident: e_1_3_4_47_2 doi: 10.1016/j.cell.2005.11.023 – ident: e_1_3_4_19_2 doi: 10.1016/j.cell.2006.07.031 – ident: e_1_3_4_20_2 doi: 10.1038/ng2135 – ident: e_1_3_4_13_2 doi: 10.1172/JCI106167 – ident: e_1_3_4_40_2 doi: 10.1007/s00246-014-0901-y – ident: e_1_3_4_29_2 doi: 10.1101/gad.1929210 – ident: e_1_3_4_2_2 doi: 10.1249/00149619-200204000-00004 – ident: e_1_3_4_9_2 doi: 10.1161/CIRCULATIONAHA.110.958967 – ident: e_1_3_4_31_2 doi: 10.1038/cr.2014.113 – ident: e_1_3_4_12_2 doi: 10.1161/HYPERTENSIONAHA.114.03782 – ident: e_1_3_4_36_2 doi: 10.1038/ncomms7018 – ident: e_1_3_4_26_2 doi: 10.1261/rna.7240905 – ident: e_1_3_4_32_2 doi: 10.1002/iub.1079 – ident: e_1_3_4_34_2 doi: 10.1113/jphysiol.2014.284356 – ident: e_1_3_4_43_2 doi: 10.3109/1354750X.2013.870605 – volume: 9 start-page: 8953 year: 2016 ident: e_1_3_4_23_2 article-title: MiR-423-5p inhibits human cardiomyoblast proliferation and induces cell apoptosis by targeting Gab 1. publication-title: Int J Clin Exp Patho – ident: e_1_3_4_39_2 doi: 10.1111/jcmm.12288 – ident: e_1_3_4_24_2 doi: 10.3892/mmr.2016.5344 – volume: 52 start-page: 1652 year: 1982 ident: e_1_3_4_14_2 article-title: Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. publication-title: J Appl Physiol Respir Environ Exerc Physiol – ident: e_1_3_4_38_2 doi: 10.1161/res.117.suppl_1.220 – reference: 29025753 - Circ Res. 2017 Oct 13;121(9):1027-1028. doi: 10.1161/CIRCRESAHA.117.311922. |
SSID | ssj0014329 |
Score | 2.50216 |
Snippet | RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic... Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, ,... Rationale:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic... Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If,... Supplemental Digital Content is available in the text. |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1058 |
SubjectTerms | Adolescent Adult Animal models Animals Bradycardia Bradycardia - genetics Bradycardia - metabolism Bradycardia - physiopathology Cardiac arrhythmia Computer applications Exercise - physiology Fitness training programs Gene Knockdown Techniques - methods Gene Targeting - methods Heart rate Humans Hyperpolarization Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism Ion channels (cyclic nucleotide-gated) Male Mice Mice, Inbred C57BL MicroRNAs - genetics MicroRNAs - metabolism miRNA Molecular Medicine Muscle Proteins - genetics Muscle Proteins - metabolism Nkx2.5 protein Physical Conditioning, Animal - methods Physical Conditioning, Animal - physiology Physical training Polymerase chain reaction Potassium Channels - genetics Potassium Channels - metabolism Reverse transcription Sinoatrial Node - metabolism Sinoatrial Node - physiopathology Sinus Sinuses Young Adult |
Title | Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28821541 https://www.proquest.com/docview/2006881601 https://www.proquest.com/docview/1930482501 https://pubmed.ncbi.nlm.nih.gov/PMC5636198 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBDShLhTGMhIvFUpcZyL81iVQUFqH9ZNKk9RbCes2kinttG0PfEf-CP8Jn4J5yTOpWrFYC9RFce20vPF534OIe8Yl4nWwrfcxNGWK5SyhOC2JVOVKmFzN05RURxP_NGJ-2XmzTqdX62opXwt--p6Z17JbagK94CumCX7H5StF4Ub8BvoC1egMFz_jcZFGDcq-9_nRxaILJZ3gdb-BAMzeoemmxIWMC_aQFSBDRz7daDffzScuEV-QZZgif2iK06VtDidZ_mqh672K1WgqC3GDudLZfp-9Uy5oNqs_KHaJpwu8uvSbHuOxpPWKbw0dlfj7O-N-41hvzx8vsbZZZOlNonP4sKmOz3N23YK4H0Y9sEbZFUOqBFssm6DbyvoE-U-K-DGX1Od0mUitYFj2DpzQUIULf4NOq7YzRt85A3Dz0dDwPZgNEB_dZ8zrLDXMMM6RPGGGXfIXQcUE-yZ8WlWBxWB8OmEVe8-fAOTMwYLvd-5zKY0tKXibEfq7l8uMIpidVYkUbREoeOH5IHRYeigBOQj0kmyx-Te2ERpPCHfalzSBpe0wiWtcEkrXP7-8dMgkiIiqUEkbRBJAZG0QCRtIfIpOfl4eDwcWaahh6U8zwssXzqBdDRLpC8Cx9V2mrpCczsNtJNqHni-DB079WJhO2koFZOg8KZM2InE3qI-f0b2skWWvCDU9VQQhlpzxbibcrQ6uCxgsZIaeL_WXeJWf2ykTLV7bLpyHhVar8-ihh5Y8D4q6dEl_XraRVnu5aYJBxXVInMyrLC1qy8EDLMueVsPw7mNzrg4Sxb5KgLFCZgnKCDwzPOSyPWODqi9oNrASLBB_voBrAm_OZLNT4va8J7PfRaKLnE2gBKVWdV_f5eXt5n0itxvvvYDsrde5slrkNPX8k3xafwB7GfgJA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+miR-423-5p+Reverses+Exercise+Training%E2%80%93Induced+HCN4+Channel+Remodeling+and+Sinus+Bradycardia&rft.jtitle=Circulation+research&rft.au=D%E2%80%99Souza%2C+Alicia&rft.au=Pearman%2C+Charles+M.&rft.au=Wang%2C+Yanwen&rft.au=Nakao%2C+Shu&rft.date=2017-10-13&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0009-7330&rft.volume=121&rft.issue=9&rft.spage=1058&rft.epage=1068&rft_id=info:doi/10.1161%2FCIRCRESAHA.117.311607&rft.externalDocID=10.1161%2FCIRCRESAHA.117.311607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |