Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia

RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 121; no. 9; pp. 1058 - 1068
Main Authors D’Souza, Alicia, Pearman, Charles M., Wang, Yanwen, Nakao, Shu, Logantha, Sunil Jit R.J., Cox, Charlotte, Bennett, Hayley, Zhang, Yu, Johnsen, Anne Berit, Linscheid, Nora, Poulsen, Pi Camilla, Elliott, Jonathan, Coulson, Jessica, McPhee, Jamie, Robertson, Abigail, da Costa Martins, Paula A., Kitmitto, Ashraf, Wisløff, Ulrik, Cartwright, Elizabeth J., Monfredi, Oliver, Lundby, Alicia, Dobrzynski, Halina, Oceandy, Delvac, Morris, Gwilym M., Boyett, Mark R.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 13.10.2017
Lippincott Williams & Wilkins Ovid Technologies
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.
AbstractList Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, , underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and . Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.
RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. OBJECTIVE:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. METHODS AND RESULTS:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. CONCLUSIONS:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.
Supplemental Digital Content is available in the text.
Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.RATIONALEDownregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.OBJECTIVETo test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.METHODS AND RESULTSAs in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.CONCLUSIONSHCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.
Rationale:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes.Objective:To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4.Methods and Results:As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5.Conclusions:HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes.
Author Cox, Charlotte
Lundby, Alicia
Zhang, Yu
Nakao, Shu
Wisløff, Ulrik
Morris, Gwilym M.
da Costa Martins, Paula A.
Dobrzynski, Halina
Poulsen, Pi Camilla
Linscheid, Nora
Coulson, Jessica
Logantha, Sunil Jit R.J.
McPhee, Jamie
Cartwright, Elizabeth J.
Robertson, Abigail
Oceandy, Delvac
Pearman, Charles M.
Bennett, Hayley
Boyett, Mark R.
Wang, Yanwen
Kitmitto, Ashraf
Monfredi, Oliver
Elliott, Jonathan
Johnsen, Anne Berit
D’Souza, Alicia
AuthorAffiliation From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.)
AuthorAffiliation_xml – name: From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.)
Author_xml – sequence: 1
  givenname: Alicia
  surname: D’Souza
  fullname: D’Souza, Alicia
  organization: From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (A.D., C.M.P., Y.W., S.N., S.J.R.J.L., C.C., H.B., Y.Z., J.E., A.R., A.K., E.J.C., O.M., H.D., D.O., G.M.M., M.R.B.); K.G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway (A.B.J., U.W.); Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Denmark (N.L., P.C.P., A.L.); School of Healthcare Science, Manchester Metropolitan University, United Kingdom (J.C., J.M.); Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Netherlands (P.A.d.C.M.); and School of Human Movement & Nutrition Sciences, University of Queensland, Australia (U.W.)
– sequence: 2
  givenname: Charles
  surname: Pearman
  middlename: M.
  fullname: Pearman, Charles M.
– sequence: 3
  givenname: Yanwen
  surname: Wang
  fullname: Wang, Yanwen
– sequence: 4
  givenname: Shu
  surname: Nakao
  fullname: Nakao, Shu
– sequence: 5
  givenname: Sunil Jit
  surname: Logantha
  middlename: R.J.
  fullname: Logantha, Sunil Jit R.J.
– sequence: 6
  givenname: Charlotte
  surname: Cox
  fullname: Cox, Charlotte
– sequence: 7
  givenname: Hayley
  surname: Bennett
  fullname: Bennett, Hayley
– sequence: 8
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 9
  givenname: Anne
  surname: Johnsen
  middlename: Berit
  fullname: Johnsen, Anne Berit
– sequence: 10
  givenname: Nora
  surname: Linscheid
  fullname: Linscheid, Nora
– sequence: 11
  givenname: Pi
  surname: Poulsen
  middlename: Camilla
  fullname: Poulsen, Pi Camilla
– sequence: 12
  givenname: Jonathan
  surname: Elliott
  fullname: Elliott, Jonathan
– sequence: 13
  givenname: Jessica
  surname: Coulson
  fullname: Coulson, Jessica
– sequence: 14
  givenname: Jamie
  surname: McPhee
  fullname: McPhee, Jamie
– sequence: 15
  givenname: Abigail
  surname: Robertson
  fullname: Robertson, Abigail
– sequence: 16
  givenname: Paula
  surname: da Costa Martins
  middlename: A.
  fullname: da Costa Martins, Paula A.
– sequence: 17
  givenname: Ashraf
  surname: Kitmitto
  fullname: Kitmitto, Ashraf
– sequence: 18
  givenname: Ulrik
  surname: Wisløff
  fullname: Wisløff, Ulrik
– sequence: 19
  givenname: Elizabeth
  surname: Cartwright
  middlename: J.
  fullname: Cartwright, Elizabeth J.
– sequence: 20
  givenname: Oliver
  surname: Monfredi
  fullname: Monfredi, Oliver
– sequence: 21
  givenname: Alicia
  surname: Lundby
  fullname: Lundby, Alicia
– sequence: 22
  givenname: Halina
  surname: Dobrzynski
  fullname: Dobrzynski, Halina
– sequence: 23
  givenname: Delvac
  surname: Oceandy
  fullname: Oceandy, Delvac
– sequence: 24
  givenname: Gwilym
  surname: Morris
  middlename: M.
  fullname: Morris, Gwilym M.
– sequence: 25
  givenname: Mark
  surname: Boyett
  middlename: R.
  fullname: Boyett, Mark R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28821541$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCI4BGYsNmin_GMx4hIYVRIJEqkNKwtjzjO4mLY6f2TEt3vANvyJPgKC0_3XRlXft8x-fqnKAj5x0g9JLgM0JK8rZZLJvl7GI6n6a5OmPpEldP0IRwWuQFr8gRmmCM67xiDB-jkxgvMSYFo_UzdEyFoIQXZILWKxXWMBi3zrZmmReU5XyXLeEaQoSYzb5D6EyEbBWUcUn168fPhdNjBzqbN5-LrNko58AmYus12L2Pcjq7MG6M2Yeg9G2ngjbqOXraKxvhxd15ir5-nK2aeX7-5dOimZ7nHee8ysuWVi3VBNpSVLTQuO8LoRnuK017zSpetjXFPVcC075uO9JSznsiMLQ4LVqyU_T-4Lsb2y3oDtwQlJW7YLYq3EqvjPz_xZmNXPtryUtWklokgzd3BsFfjRAHuTWxA2uVAz9GSWqGC0E5Jkn6-oH00o_BpfUkxbgUIlWyV736N9GfKPcdJMG7g6ALPsYAvezMoAbj9wGNlQTLfePyb-NpruSh8UTzB_T9B49x9YG78XZIZX-z4w0EuQFlh80j7G84C8HH
CitedBy_id crossref_primary_10_1038_s41598_019_48276_0
crossref_primary_10_1016_j_hlc_2018_04_295
crossref_primary_10_1093_ehjcr_ytac190
crossref_primary_10_1515_mr_2021_0001
crossref_primary_10_1016_j_jacbts_2022_05_008
crossref_primary_10_1080_00913847_2019_1568769
crossref_primary_10_1007_s12020_021_02907_7
crossref_primary_10_1097_MPH_0000000000002372
crossref_primary_10_1016_j_toxlet_2020_03_017
crossref_primary_10_1146_annurev_pharmtox_031120_115815
crossref_primary_10_1186_s12957_021_02350_y
crossref_primary_10_1111_jcmm_15431
crossref_primary_10_3390_hearts2030026
crossref_primary_10_1016_j_yjmcc_2022_02_007
crossref_primary_10_1007_s11886_023_01885_8
crossref_primary_10_1007_s11936_018_0678_z
crossref_primary_10_1371_journal_pone_0219281
crossref_primary_10_3389_fmolb_2021_723858
crossref_primary_10_3389_fphys_2019_00826
crossref_primary_10_3389_fphys_2019_00827
crossref_primary_10_1007_s00246_018_2008_3
crossref_primary_10_1016_j_pbiomolbio_2022_11_005
crossref_primary_10_7554_eLife_54298
crossref_primary_10_1093_eurheartj_ehy365
crossref_primary_10_1038_s41598_020_68567_1
crossref_primary_10_1161_CIRCRESAHA_117_311922
crossref_primary_10_1007_s12033_023_00721_2
crossref_primary_10_1097_CAD_0000000000001068
crossref_primary_10_3390_ijms19102941
crossref_primary_10_1038_s41598_021_82202_7
crossref_primary_10_1177_2047487320925635
crossref_primary_10_1136_openhrt_2021_001771
crossref_primary_10_1113_JP277501
crossref_primary_10_1080_21655979_2022_2053803
crossref_primary_10_1007_s11010_022_04635_6
crossref_primary_10_1016_j_hrthm_2024_02_050
crossref_primary_10_1111_jvim_16427
crossref_primary_10_1016_j_pbiomolbio_2021_06_008
crossref_primary_10_1139_cjpp_2018_0115
crossref_primary_10_1186_s40104_023_00960_y
crossref_primary_10_1161_CIRCRESAHA_119_316386
crossref_primary_10_1038_s41598_021_98580_x
crossref_primary_10_3389_fbioe_2021_673477
crossref_primary_10_1038_s41419_021_03949_5
crossref_primary_10_1111_apha_13564
crossref_primary_10_3389_fphys_2021_759035
crossref_primary_10_1016_j_repbio_2021_100600
crossref_primary_10_3103_S0096392520010058
crossref_primary_10_3390_jcdd12030102
crossref_primary_10_1007_s10517_022_05454_x
crossref_primary_10_1088_1361_6579_ac2130
crossref_primary_10_1007_s12265_023_10378_6
crossref_primary_10_3390_ijms242216207
crossref_primary_10_1089_dna_2019_4998
crossref_primary_10_1152_physiol_00009_2019
crossref_primary_10_1016_j_tria_2021_100131
crossref_primary_10_4049_jimmunol_2000887
crossref_primary_10_3390_cimb46090559
crossref_primary_10_1093_europace_euad047
crossref_primary_10_1080_14728222_2024_2351501
crossref_primary_10_1093_cvr_cvad115
crossref_primary_10_1186_s13287_025_04157_0
crossref_primary_10_1161_JAHA_120_016590
crossref_primary_10_1097_CAD_0000000000001087
crossref_primary_10_1016_j_scispo_2021_02_001
crossref_primary_10_3389_fphys_2022_913506
Cites_doi 10.1371/journal.pone.0142904
10.1136/bmj.298.6668.231
10.1093/eurheartj/ehm555
10.1038/ncomms4775
10.1038/nm1569
10.1113/jphysiol.2014.284364
10.1152/japplphysiol.01111.2014
10.1152/ajpheart.1997.272.6.H2782
10.7554/eLife.05005
10.1016/j.hrthm.2009.08.035
10.3892/mmr.2015.3491
10.1152/japplphysiol.00268.2017
10.1136/hrt.61.2.155
10.1016/j.cardiores.2005.02.011
10.1038/90123
10.1038/ncb2866
10.1152/japplphysiol.01126.2012
10.1093/cvr/4.2.160
10.1016/j.pharmthera.2013.04.010
10.1016/j.jacc.2013.01.091
10.1038/nrg2290
10.1038/sj.emboj.7601512
10.1074/jbc.M110.101063
10.1161/01.CIR.0000083719.51661.B9
10.1016/j.cell.2005.11.023
10.1016/j.cell.2006.07.031
10.1038/ng2135
10.1172/JCI106167
10.1007/s00246-014-0901-y
10.1101/gad.1929210
10.1249/00149619-200204000-00004
10.1161/CIRCULATIONAHA.110.958967
10.1038/cr.2014.113
10.1161/HYPERTENSIONAHA.114.03782
10.1038/ncomms7018
10.1261/rna.7240905
10.1002/iub.1079
10.1113/jphysiol.2014.284356
10.3109/1354750X.2013.870605
10.1111/jcmm.12288
10.3892/mmr.2016.5344
10.1161/res.117.suppl_1.220
ContentType Journal Article
Copyright 2017 American Heart Association, Inc.
2017 The Authors.
Copyright Lippincott Williams & Wilkins Ovid Technologies Oct 13, 2017
2017 The Authors. 2017
Copyright_xml – notice: 2017 American Heart Association, Inc.
– notice: 2017 The Authors.
– notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Oct 13, 2017
– notice: 2017 The Authors. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
H94
K9.
7X8
5PM
DOI 10.1161/CIRCRESAHA.117.311607
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 1068
ExternalDocumentID PMC5636198
28821541
10_1161_CIRCRESAHA_117_311607
10.1161/CIRCRESAHA.117.311607
Genre Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/13/99/30233
– fundername: British Heart Foundation
  grantid: PG/16/77/32400
GroupedDBID ---
-~X
.-D
.3C
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DIWNM
DU5
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
YFH
YOC
ZFV
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
ADSXY
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5557-6b27b2d1eb68724d0ff48d30f7d2fd3756b920f5a802f9bc1b255f180eb073363
ISSN 0009-7330
1524-4571
IngestDate Thu Aug 21 18:34:45 EDT 2025
Fri Jul 11 02:09:58 EDT 2025
Wed Aug 13 04:28:57 EDT 2025
Mon Jul 21 05:51:12 EDT 2025
Tue Jul 01 04:27:48 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Fri May 16 03:42:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords sinoatrial node
ion channel remodeling
athletes
micro-RNAs
sinus bradycardia
exercise training
Language English
License 2017 The Authors.
Circulation Research is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5557-6b27b2d1eb68724d0ff48d30f7d2fd3756b920f5a802f9bc1b255f180eb073363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5636198
PMID 28821541
PQID 2006881601
PQPubID 41518
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5636198
proquest_miscellaneous_1930482501
proquest_journals_2006881601
pubmed_primary_28821541
crossref_citationtrail_10_1161_CIRCRESAHA_117_311607
crossref_primary_10_1161_CIRCRESAHA_117_311607
wolterskluwer_health_10_1161_CIRCRESAHA_117_311607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-October-13
PublicationDateYYYYMMDD 2017-10-13
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-October-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hagerstown
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2017
Publisher American Heart Association, Inc
Lippincott Williams & Wilkins Ovid Technologies
Lippincott Williams & Wilkins
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott Williams & Wilkins Ovid Technologies
– name: Lippincott Williams & Wilkins
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
Li QX (e_1_3_4_23_2) 2016; 9
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
Katona PG (e_1_3_4_14_2) 1982; 52
e_1_3_4_30_2
Nabiałek E (e_1_3_4_41_2) 2013; 61
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
Yanni J (e_1_3_4_46_2) 2015; 34
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
29025753 - Circ Res. 2017 Oct 13;121(9):1027-1028. doi: 10.1161/CIRCRESAHA.117.311922.
References_xml – ident: e_1_3_4_42_2
  doi: 10.1371/journal.pone.0142904
– ident: e_1_3_4_4_2
  doi: 10.1136/bmj.298.6668.231
– volume: 34
  start-page: PC158
  year: 2015
  ident: e_1_3_4_46_2
  article-title: microRNA 370-3p could explain the dysfunction of the cardiac conduction system in heart failure.
  publication-title: Proc Physiol Soc
– ident: e_1_3_4_5_2
  doi: 10.1093/eurheartj/ehm555
– ident: e_1_3_4_6_2
  doi: 10.1038/ncomms4775
– ident: e_1_3_4_8_2
  doi: 10.1038/nm1569
– ident: e_1_3_4_11_2
  doi: 10.1113/jphysiol.2014.284364
– ident: e_1_3_4_33_2
  doi: 10.1152/japplphysiol.01111.2014
– ident: e_1_3_4_25_2
  doi: 10.1152/ajpheart.1997.272.6.H2782
– ident: e_1_3_4_21_2
  doi: 10.7554/eLife.05005
– ident: e_1_3_4_10_2
  doi: 10.1016/j.hrthm.2009.08.035
– ident: e_1_3_4_22_2
  doi: 10.3892/mmr.2015.3491
– ident: e_1_3_4_35_2
  doi: 10.1152/japplphysiol.00268.2017
– ident: e_1_3_4_3_2
  doi: 10.1136/hrt.61.2.155
– ident: e_1_3_4_44_2
  doi: 10.1016/j.cardiores.2005.02.011
– ident: e_1_3_4_28_2
  doi: 10.1038/90123
– ident: e_1_3_4_7_2
  doi: 10.1038/ncb2866
– ident: e_1_3_4_16_2
  doi: 10.1152/japplphysiol.01126.2012
– ident: e_1_3_4_15_2
  doi: 10.1093/cvr/4.2.160
– ident: e_1_3_4_17_2
  doi: 10.1016/j.pharmthera.2013.04.010
– ident: e_1_3_4_37_2
  doi: 10.1016/j.jacc.2013.01.091
– volume: 61
  start-page: 627
  year: 2013
  ident: e_1_3_4_41_2
  article-title: Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease.
  publication-title: Minerva Cardioangiol
– ident: e_1_3_4_18_2
  doi: 10.1038/nrg2290
– ident: e_1_3_4_27_2
  doi: 10.1038/sj.emboj.7601512
– ident: e_1_3_4_30_2
  doi: 10.1074/jbc.M110.101063
– ident: e_1_3_4_45_2
  doi: 10.1161/01.CIR.0000083719.51661.B9
– ident: e_1_3_4_47_2
  doi: 10.1016/j.cell.2005.11.023
– ident: e_1_3_4_19_2
  doi: 10.1016/j.cell.2006.07.031
– ident: e_1_3_4_20_2
  doi: 10.1038/ng2135
– ident: e_1_3_4_13_2
  doi: 10.1172/JCI106167
– ident: e_1_3_4_40_2
  doi: 10.1007/s00246-014-0901-y
– ident: e_1_3_4_29_2
  doi: 10.1101/gad.1929210
– ident: e_1_3_4_2_2
  doi: 10.1249/00149619-200204000-00004
– ident: e_1_3_4_9_2
  doi: 10.1161/CIRCULATIONAHA.110.958967
– ident: e_1_3_4_31_2
  doi: 10.1038/cr.2014.113
– ident: e_1_3_4_12_2
  doi: 10.1161/HYPERTENSIONAHA.114.03782
– ident: e_1_3_4_36_2
  doi: 10.1038/ncomms7018
– ident: e_1_3_4_26_2
  doi: 10.1261/rna.7240905
– ident: e_1_3_4_32_2
  doi: 10.1002/iub.1079
– ident: e_1_3_4_34_2
  doi: 10.1113/jphysiol.2014.284356
– ident: e_1_3_4_43_2
  doi: 10.3109/1354750X.2013.870605
– volume: 9
  start-page: 8953
  year: 2016
  ident: e_1_3_4_23_2
  article-title: MiR-423-5p inhibits human cardiomyoblast proliferation and induces cell apoptosis by targeting Gab 1.
  publication-title: Int J Clin Exp Patho
– ident: e_1_3_4_39_2
  doi: 10.1111/jcmm.12288
– ident: e_1_3_4_24_2
  doi: 10.3892/mmr.2016.5344
– volume: 52
  start-page: 1652
  year: 1982
  ident: e_1_3_4_14_2
  article-title: Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest.
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– ident: e_1_3_4_38_2
  doi: 10.1161/res.117.suppl_1.220
– reference: 29025753 - Circ Res. 2017 Oct 13;121(9):1027-1028. doi: 10.1161/CIRCRESAHA.117.311922.
SSID ssj0014329
Score 2.50216
Snippet RATIONALE:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic...
Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, ,...
Rationale:Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic...
Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If,...
Supplemental Digital Content is available in the text.
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1058
SubjectTerms Adolescent
Adult
Animal models
Animals
Bradycardia
Bradycardia - genetics
Bradycardia - metabolism
Bradycardia - physiopathology
Cardiac arrhythmia
Computer applications
Exercise - physiology
Fitness training programs
Gene Knockdown Techniques - methods
Gene Targeting - methods
Heart rate
Humans
Hyperpolarization
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism
Ion channels (cyclic nucleotide-gated)
Male
Mice
Mice, Inbred C57BL
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Molecular Medicine
Muscle Proteins - genetics
Muscle Proteins - metabolism
Nkx2.5 protein
Physical Conditioning, Animal - methods
Physical Conditioning, Animal - physiology
Physical training
Polymerase chain reaction
Potassium Channels - genetics
Potassium Channels - metabolism
Reverse transcription
Sinoatrial Node - metabolism
Sinoatrial Node - physiopathology
Sinus
Sinuses
Young Adult
Title Targeting miR-423-5p Reverses Exercise Training–Induced HCN4 Channel Remodeling and Sinus Bradycardia
URI https://www.ncbi.nlm.nih.gov/pubmed/28821541
https://www.proquest.com/docview/2006881601
https://www.proquest.com/docview/1930482501
https://pubmed.ncbi.nlm.nih.gov/PMC5636198
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBDShLhTGMhIvFUpcZyL81iVQUFqH9ZNKk9RbCes2kinttG0PfEf-CP8Jn4J5yTOpWrFYC9RFce20vPF534OIe8Yl4nWwrfcxNGWK5SyhOC2JVOVKmFzN05RURxP_NGJ-2XmzTqdX62opXwt--p6Z17JbagK94CumCX7H5StF4Ub8BvoC1egMFz_jcZFGDcq-9_nRxaILJZ3gdb-BAMzeoemmxIWMC_aQFSBDRz7daDffzScuEV-QZZgif2iK06VtDidZ_mqh672K1WgqC3GDudLZfp-9Uy5oNqs_KHaJpwu8uvSbHuOxpPWKbw0dlfj7O-N-41hvzx8vsbZZZOlNonP4sKmOz3N23YK4H0Y9sEbZFUOqBFssm6DbyvoE-U-K-DGX1Od0mUitYFj2DpzQUIULf4NOq7YzRt85A3Dz0dDwPZgNEB_dZ8zrLDXMMM6RPGGGXfIXQcUE-yZ8WlWBxWB8OmEVe8-fAOTMwYLvd-5zKY0tKXibEfq7l8uMIpidVYkUbREoeOH5IHRYeigBOQj0kmyx-Te2ERpPCHfalzSBpe0wiWtcEkrXP7-8dMgkiIiqUEkbRBJAZG0QCRtIfIpOfl4eDwcWaahh6U8zwssXzqBdDRLpC8Cx9V2mrpCczsNtJNqHni-DB079WJhO2koFZOg8KZM2InE3qI-f0b2skWWvCDU9VQQhlpzxbibcrQ6uCxgsZIaeL_WXeJWf2ykTLV7bLpyHhVar8-ihh5Y8D4q6dEl_XraRVnu5aYJBxXVInMyrLC1qy8EDLMueVsPw7mNzrg4Sxb5KgLFCZgnKCDwzPOSyPWODqi9oNrASLBB_voBrAm_OZLNT4va8J7PfRaKLnE2gBKVWdV_f5eXt5n0itxvvvYDsrde5slrkNPX8k3xafwB7GfgJA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+miR-423-5p+Reverses+Exercise+Training%E2%80%93Induced+HCN4+Channel+Remodeling+and+Sinus+Bradycardia&rft.jtitle=Circulation+research&rft.au=D%E2%80%99Souza%2C+Alicia&rft.au=Pearman%2C+Charles+M.&rft.au=Wang%2C+Yanwen&rft.au=Nakao%2C+Shu&rft.date=2017-10-13&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0009-7330&rft.volume=121&rft.issue=9&rft.spage=1058&rft.epage=1068&rft_id=info:doi/10.1161%2FCIRCRESAHA.117.311607&rft.externalDocID=10.1161%2FCIRCRESAHA.117.311607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon