Ecosystem multifunctionality of coastal marshes is determined by key plant traits

QUESTIONS: As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple com...

Full description

Saved in:
Bibliographic Details
Published inJournal of vegetation science Vol. 26; no. 4; pp. 651 - 662
Main Authors Minden, Vanessa, Kleyer, Michael, Mason, Norman
Format Journal Article
LanguageEnglish
Published Opulus Press 01.07.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract QUESTIONS: As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. LOCATION: Salt marshes, northwest Germany. METHODS: We explored responses of morphological, chemical and biomass‐related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above‐ground biomass, above‐ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). RESULTS: Important response and effect traits were leaf dry matter content (LDMC) and below‐ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below‐ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. CONCLUSIONS: These findings demonstrate the interacting effects of non‐consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation‐based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems.
AbstractList QUESTIONS: As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. LOCATION: Salt marshes, northwest Germany. METHODS: We explored responses of morphological, chemical and biomass‐related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above‐ground biomass, above‐ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). RESULTS: Important response and effect traits were leaf dry matter content (LDMC) and below‐ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below‐ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. CONCLUSIONS: These findings demonstrate the interacting effects of non‐consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation‐based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems.
Questions As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. Location Salt marshes, northwest Germany. Methods We explored responses of morphological, chemical and biomass‐related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above‐ground biomass, above‐ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). Results Important response and effect traits were leaf dry matter content (LDMC) and below‐ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below‐ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. Conclusions These findings demonstrate the interacting effects of non‐consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation‐based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems. Studying relationships between plant traits and ecosystem properties can provide new insight into ecosystem complexity. We ask how plant species traits respond to environmental conditions and how key effect traits determine carbon related ecosystem properties in salt marshes of NW‐Germany. Our study reveals interacting effects of environmental factors on morphological, chemical and biomass traits and gives recommendations for conservation management.
Questions As biodiversity losses increase due to global change and human-induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response-effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. Location Salt marshes, northwest Germany. Methods We explored responses of morphological, chemical and biomass-related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above-ground biomass, above-ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). Results Important response and effect traits were leaf dry matter content (LDMC) and below-ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below-ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. Conclusions These findings demonstrate the interacting effects of non-consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation-based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems. Studying relationships between plant traits and ecosystem properties can provide new insight into ecosystem complexity. We ask how plant species traits respond to environmental conditions and how key effect traits determine carbon related ecosystem properties in salt marshes of NW-Germany. Our study reveals interacting effects of environmental factors on morphological, chemical and biomass traits and gives recommendations for conservation management.
Author Mason, Norman
Minden, Vanessa
Kleyer, Michael
Author_xml – sequence: 1
  fullname: Minden, Vanessa
– sequence: 2
  fullname: Kleyer, Michael
– sequence: 3
  fullname: Mason, Norman
BookMark eNqNkUFv1DAQhSNUJNrCgR-A8BEOaWfsOE6OqCot2wqEtoWj5Xon4G0Sb20vkH9fL4EekEDMZUZ63xuNnw-KvdGPVBTPEY4w1_H6WzxCzlX9qNjHWlYlIoi9PCNA2XIhnhQHMa4BULU17hcfT62PU0w0sGHbJ9dtR5ucH03v0sR8x6w3MZmeDSbErxSZi2xFicLgRlqxm4nd0sQ2vRkTS8G4FJ8WjzvTR3r2qx8W129Pr07Oy8sPZ-9O3lyWVkpZlwSyVWBIgKKODOcCTFsZJXij5KqpqQGwtZBk2k5aqive5RIIuAKL1Y04LF7NezfB320pJj24aKnPp5DfRo1KigqVavh_oICVqpsGM_p6Rm3wMQbq9Ca4_PZJI-hdwjonrH8mnNnjP1jrktmlt0ui_5fju-tp-vtqvfi0_O14MTvWMfnw4KhEi7xpdno56y7_4Y8H3YRbXSuhpP78_kwvKo7nF1dLvcj8y5nvjNfmS3BRXy85oATgnLccxT20V7EW
CitedBy_id crossref_primary_10_1007_s13157_019_01216_0
crossref_primary_10_1016_j_ecolind_2024_111582
crossref_primary_10_1111_1365_2435_13121
crossref_primary_10_1007_s10661_020_08817_x
crossref_primary_10_1098_rstb_2015_0283
crossref_primary_10_1111_gcb_14904
crossref_primary_10_1080_21513732_2017_1289245
crossref_primary_10_1098_rstb_2015_0284
crossref_primary_10_1016_j_ecss_2021_107464
crossref_primary_10_1016_j_scitotenv_2022_159660
crossref_primary_10_1111_jvs_13038
crossref_primary_10_1016_j_ecss_2022_108010
crossref_primary_10_1016_j_ecolind_2020_107036
crossref_primary_10_1139_er_2023_0128
crossref_primary_10_1016_j_landurbplan_2021_104220
crossref_primary_10_1111_1365_2435_12832
crossref_primary_10_1007_s10021_021_00724_7
crossref_primary_10_1007_s12237_023_01266_y
crossref_primary_10_1002_ecs2_3448
crossref_primary_10_1093_aob_mcaa198
crossref_primary_10_1007_s10750_024_05592_5
crossref_primary_10_1016_j_apsoil_2024_105515
crossref_primary_10_1016_j_scitotenv_2020_144867
crossref_primary_10_1111_ecog_06238
crossref_primary_10_1111_geb_13706
crossref_primary_10_1016_j_limno_2018_06_005
crossref_primary_10_3389_fpls_2023_1290776
crossref_primary_10_1002_eco_1950
crossref_primary_10_5194_bg_14_3763_2017
crossref_primary_10_1016_j_ecolind_2020_107069
crossref_primary_10_3390_f15081341
crossref_primary_10_1111_1365_2745_13011
crossref_primary_10_1016_j_ecss_2021_107391
crossref_primary_10_1111_jvs_12855
crossref_primary_10_1016_j_gecco_2024_e02946
Cites_doi 10.1007/BF00378563
10.1111/j.1469-8137.2008.02531.x
10.1126/science.1066360
10.1046/j.1365-2486.2002.00512.x
10.1007/b97397
10.1214/aos/1176344552
10.1046/j.1365-2745.1999.00368.x
10.1034/j.1600-0706.2000.890301.x
10.1111/j.1469-8137.2005.01349.x
10.1086/286156
10.1111/gcb.12147
10.1093/aob/mcr225
10.2307/3237076
10.1073/pnas.0704716104
10.1111/j.1365-2745.2010.01753.x
10.1007/978-3-540-32730-1_13
10.1111/jvs.12083
10.1016/j.agee.2011.03.015
10.1111/j.1365-2745.2009.01615.x
10.1007/BF00044777
10.1002/9781118619179
10.1038/nature05947
10.1046/j.1365-2745.1998.00306.x
10.3732/ajb.89.5.812
10.1038/250026a0
10.1016/S0065-2504(08)60016-1
10.1071/BT12225
10.1111/j.1461-0248.2008.01164.x
10.1111/j.1461-0248.2006.00958.x
10.1890/04-0922
10.1111/j.1365-2745.2011.01914.x
10.1371/journal.pbio.0040277
10.1111/1365-2435.12075
10.1111/j.1600-0587.2010.06399.x
10.1111/j.1600-0587.2000.tb00261.x
10.1890/110004
10.1890/03-0799
10.1007/s10651-007-0047-7
10.1093/aob/mcl215
10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2
10.2307/2259786
10.1016/0304-3770(90)90078-Y
10.1146/annurev.ecolsys.33.010802.150452
10.1007/BF00007263
10.1111/j.1461-0248.2007.01139.x
10.1017/CBO9780511617799
10.1016/j.ppees.2012.01.002
10.1086/285999
10.1890/09-0464.1
10.1672/08-111.1
10.1016/j.baae.2012.05.002
10.1111/j.1365-2435.2011.01913.x
10.1016/S0003-2670(00)88444-5
10.2307/2960603
10.1111/j.1654-1103.2011.01272.x
10.1111/j.0030-1299.2007.15559.x
10.1111/j.1469-8137.2011.03952.x
10.1007/s11258-008-9485-z
10.1073/pnas.94.25.13730
ContentType Journal Article
Copyright Copyright © 2015 International Association for Vegetation Science
2015 International Association for Vegetation Science
Copyright_xml – notice: Copyright © 2015 International Association for Vegetation Science
– notice: 2015 International Association for Vegetation Science
DBID FBQ
BSCLL
AAYXX
CITATION
7SN
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/jvs.12276
DatabaseName AGRIS
Istex
CrossRef
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

Ecology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-1103
Editor Mason, Norman
Editor_xml – sequence: 3
  givenname: Norman
  surname: Mason
  fullname: Mason, Norman
EndPage 662
ExternalDocumentID 10_1111_jvs_12276
JVS12276
43912886
ark_67375_WNG_J421HKTS_J
US201500222921
Genre article
GeographicLocations Germany
ANE, Germany
GeographicLocations_xml – name: Germany
– name: ANE, Germany
GrantInformation_xml – fundername: II. Oldenburgischer Deichband and the Wasserverbandstag e.V.
  funderid: NWS 10/05
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29L
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AACFU
AAESR
AAEVG
AAHHS
AAHKG
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPLY
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOYD
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEDJY
AEEJZ
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AFVGU
AGJLS
AGUYK
AI.
AICQM
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CWIXF
D-E
D-F
DATOO
DC7
DCZOG
DFEDG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IHR
ITC
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RWI
RX1
SA0
SAMSI
SUPJJ
TEORI
TUS
UB1
VH1
VOH
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~8M
~IA
~KM
~WT
AAHBH
ABXSQ
ADACV
AHBTC
AHXOZ
AITYG
AQVQM
BSCLL
H13
HGLYW
IPSME
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACHIC
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
7SN
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c5556-e05970ae307efea2230a94a732875d86e800c635ea9f5ce642ffff3101d0c14b3
IEDL.DBID DR2
ISSN 1100-9233
IngestDate Fri Jul 11 18:30:28 EDT 2025
Fri Jul 11 16:08:52 EDT 2025
Tue Jul 01 03:14:58 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Wed Jan 22 17:10:52 EST 2025
Thu Jul 03 22:32:09 EDT 2025
Wed Oct 30 10:01:08 EDT 2024
Wed Dec 27 19:20:27 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5556-e05970ae307efea2230a94a732875d86e800c635ea9f5ce642ffff3101d0c14b3
Notes http://dx.doi.org/10.1111/jvs.12276
Appendix S1. Initial model of relationships between environmental parameters, traits and ecosystem properties.
ark:/67375/WNG-J421HKTS-J
istex:CE48C759BAE398C0DF2660FA720C607798CDD372
II. Oldenburgischer Deichband and the Wasserverbandstag e.V. - No. NWS 10/05
ArticleID:JVS12276
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1701476881
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_1753417782
proquest_miscellaneous_1701476881
crossref_primary_10_1111_jvs_12276
crossref_citationtrail_10_1111_jvs_12276
wiley_primary_10_1111_jvs_12276_JVS12276
jstor_primary_43912886
istex_primary_ark_67375_WNG_J421HKTS_J
fao_agris_US201500222921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationTitle Journal of vegetation science
PublicationTitleAlternate J Veg Sci
PublicationYear 2015
Publisher Opulus Press
Blackwell Publishing Ltd
Publisher_xml – name: Opulus Press
– name: Blackwell Publishing Ltd
References Backhaus, K., Erichson, B., Plinke, W. & Weiber, R. 2003. Multivariate analysemethoden. Springer, Berlin, DE.
Grace, J., Anderson, T.M., Olff, H. & Scheiner, S.M. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80: 67-87.
Bockelmann, A.C. & Neuhaus, R. 1999. Competitive exclusion of Elymus athericus from a high stress habitat in a European salt marsh. Journal of Ecology 87: 503-513.
Frenette-Dussault, C., Shipley, B. & Hingrat, Y. 2013. Linking plant and insect traits to understand multitrophic community structure in arid steppes. Functional Ecology 27: 786-792.
Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., (...) & Toussaint, J.-P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630-2637.
van der Wal, R., van Lieshout, S., Bos, D. & Drent, R.H. 2000. Are spring staging brent geese evicted by vegetation succession? Ecography 23: 60-69.
Olff, H., de Leeuw, J., Bakker, J.P., Platerink, R.J., van Wijnen, H.J. & de Munck, W. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevation gradient. Journal of Ecology 85: 799-814.
Bollen, K.A. 1989. Structural equations with latent variables. Wiley, New York, NY, US.
Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. 2010. Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology 98: 362-373.
Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. 2012. Plant trait-environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14: 183-192.
Prins, H.H.T. & Ydenberg, R.C. 1985. Vegetation growth and a seasonal habitat shift of the Barnacle Goose (Branta leucopsis). Oecologia 66: 122-125.
Arbuckle, J.L. 2007. Amos™ 16.0 user's guide. Amos Development Corp., Chicago, IL, US.
Byrne, B.M. 2001. Structural equation modeling with AMOS - basic concepts, applications and programming. Lawrence Erlbaum Associates, Mahwah, NJ, US.
Allen, S.E. 1989. Chemical analysis of ecological materials. Blackwell Scientific, Oxford, UK.
Murphy, J. & Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
Reich, P.B., Walters, M.B. & Ellsworth, D.S. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94: 13730-13734.
De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11: 516-531.
Vile, D., Shipley, B. & Garnier, E. 2006. Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters 9: 1061-1067.
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D., Girel, J., Pellet, G. & Douzet, R. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99: 135-147.
Ad-Hoc-AG Boden 2005. Bodenkundliche Kartieranleitung. E. Schweitzerbart'sche Verlagsbuchhandlung, Hannover, DE.
Pott, R. 1995. Farbatlas Nordseeküste und Nordseeinseln. Ulmer, Stuttgart, DE.
Armstrong, W., Wright, E.J., Lythe, S. & Gaynard, T.J. 1985. Plant zonation and the effects of the spring-neap tidal cycle on the soil aeration in a Humber salt marsh. Journal of Ecology 73: 323-339.
Efron, B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics 7: 1-26.
Enquist, B.J. & Niklas, K.J. 2002. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295: 1517-1520.
Hooper, D.U., Chapin, III. F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., (...) & Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for further research. Ecological Monographs 75: 3-35.
Langley, J.A., Mozdzer, T.J., Shepard, K.A., Hagerty, S.B. & Megonigal, J.P. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology 19: 1495-1503.
Lavorel, S. & Grigulis, K. 2012. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology 100: 128-140.
Schlichting, E., Blume, H.P. & Stahr, K. 1995. Bodenkundliches Praktikum. Blackwell, Berlin, DE.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
van der Heijden, M.G.A., Bardgett, R.D. & van Straalen, N.M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
Flowers, T.J. & Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945-963.
Bakker, J.P., De Leeuw, J., Dijkema, K.S., Leendertse, P.C., Prins, H.H.T. & Rozema, J. 1993. Salt marshes along the coast of The Netherlands. Hydrobiologia 265: 73-95.
Bakker, J.P., Bos, D., Stahl, J., De Vries, Y. & Jensen, A. 2003. Biodiversität und Landnutzung in Salzwiesen. Nova Acta Leopoldina NF 87: 163-194.
Niklas, K.J. & Enquist, B.J. 2002. Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany 89: 812-819.
De Frenne, P., Graae, B.J., Kolb, A., Shevtsova, A., Baeten, L., Brunet, J., Chabrerie, O., Cousins, S.A.O., Decocq, G., (...) & Verheyen, K. 2011. An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography 34: 132-140.
Grace, J.B. & Pugesek, B.H. 1997. A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist 149: 436-460.
Cunningham, S., Summerhayes, B. & Westoby, M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs 69: 569-588.
Hodgson, J.G., Montserrat-Marti, G., Charles, M., Jones, G., Wilson, P., Shipley, B., Sharafi, M., Cerabolini, B.E.L., Cornelissen, J.H.C., (...) & Pla, F.R. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108: 1337-1345.
Knevel, I.C., Bekker, R.M., Kunzmann, D., Stadler, M. & Thompson, K. 2005. The LEDA traitbase - collecting and measuring standards of life-history traits of the Northwest European Flora. LEDA Traitbase project, University of Groningen, Community and Conservation Ecology group, Groningen, NL.
Bos, D. & Stahl, J. 2003. Creating new foraging opportunities for dark-bellied brent (Branta bernicla) and barnacle geese (Branta leucopsis) in spring: insights from a large-scale experiment. Ardea 91: 153-165.
De Leeuw, J., Olff, H. & Bakker, J.P. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquatic Botany 36: 139-151.
Grace, J.B. 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK.
Koffijberg, K., Blew, J., Eskildsen, K., Günther, K., Koks, B., Laursen, K., Rasmussen, L.-M., Südbeck, P. & Potel, P. 2003. High tide roosts in the Wadden Sea: a review of bird distribution, protection regimes and potential sources of anthropogenic disturbance. A report of the Wadden Sea Plan Project 34. Wadden Sea Ecosystems No. 16. pp. 119. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, JMMB, Wilhelmshaven, DE.
McLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Silliman, B.R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552-560.
Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., (...) & Zarovali, M. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985.
Chapin, F.S.I., Matson, P.A. & Mooney, H.A. 2002. Principles of terrestrial ecosystem ecology. Springer, New York, NY, US.
Lavorel, S., Storkey, J., Bardgett, R.D., de Bello, F., Berg, M.P., Le Roux, X., Moretti, M., Mulder, C., Pakeman, R., Díaz, S. & Harrington, R. 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science 24: 942-948.
Freschet, G.T., Aerts, R. & Cornelissen, J.H.C. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26: 56-65.
Sharpe, P.J. & Baldwin, A.H. 2009. Patterns of wetland plant species richness across estuarine gradients of Chesapeake Bay. Wetlands 29: 225-235.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., (...) & Cornelissen, J.H.C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234.
Grace, J.B. & Pugesek, B.H. 1998. On the use of path analysis and related procedures for the investigation of ecological problems. The American Naturalist 152: 151-159.
Tao, B.X. & Song, C.C. 2013. Effects of nitrogen addition, temperature and physical protection on first-phase decomposition of soil organic carbon in marshland. Fresenius Environmental Bulletin 22: 1579-1584.
Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E. & Eriksson, O. 1999. Challenging Theophrastus: a common
2007; 104
2010; 98
2013; 27
2013; 22
2000; 89
2013; 24
1997; 85
2013; 61
2011; 99
1999; 87
1972
1985; 62
2012; 14
1985; 66
2012; 13
1998; 86
1998; 152
2013; 19
1997; 149
1997; 94
2003; 91
2001
2002; 89
2005; 75
2011; 22
2009; 201
1999; 10
2012; 26
2003; 87
1989
1974; 250
1979; 7
2004; 85
2007; 448
2012; 100
1990; 36
2011
2000; 23
2002; 295
2006; 9
1999; 69
2002; 8
2002; 33
2008; 15
2007
2006
1995
2005
1993
2008; 11
2011; 34
2006; 4
2003
2002
2004; 428
2010; 80
2007; 99
2009; 29
1993; 265
1999
2011; 9
2011; 108
2007; 116
1960; 26
2000; 30
2012; 193
1962; 27
1985; 73
2014
2008; 179
2011; 145
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_33_1
e_1_2_9_54_1
Tao B.X. (e_1_2_9_74_1) 2013; 22
McCune B. (e_1_2_9_58_1) 2002
Koffijberg K. (e_1_2_9_50_1) 2003
Jäger E.J. (e_1_2_9_48_1) 2011
Chernick M.R. (e_1_2_9_19_1) 1999
Pott R. (e_1_2_9_67_1) 1995
e_1_2_9_14_1
e_1_2_9_39_1
Bakker J.P. (e_1_2_9_10_1) 2005
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
Knevel I.C. (e_1_2_9_49_1) 2005
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_60_1
Ad‐Hoc‐AG Boden (e_1_2_9_2_1) 2005
Allen S.E. (e_1_2_9_4_1) 1989
Schlichting E. (e_1_2_9_71_1) 1995
e_1_2_9_26_1
Bakker J.P. (e_1_2_9_9_1) 2003; 87
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Blew J. (e_1_2_9_12_1) 2005
Evans G.C. (e_1_2_9_29_1) 1972
Egnér H. (e_1_2_9_27_1) 1960; 26
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Backhaus K. (e_1_2_9_7_1) 2003
e_1_2_9_70_1
Byrne B.M. (e_1_2_9_17_1) 2001
Bos D. (e_1_2_9_16_1) 2003; 91
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
Bollen K.A. (e_1_2_9_15_1) 1993
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_69_1
Arbuckle J.L. (e_1_2_9_5_1) 2007
References_xml – reference: Langley, J.A., Mozdzer, T.J., Shepard, K.A., Hagerty, S.B. & Megonigal, J.P. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biology 19: 1495-1503.
– reference: McLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Silliman, B.R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552-560.
– reference: Jäger, E.J. 2011. Rothmaler Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. Spektrum Akademischer, Heidelberg, DE.
– reference: Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., (...) & Cornelissen, J.H.C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234.
– reference: Byrne, B.M. 2001. Structural equation modeling with AMOS - basic concepts, applications and programming. Lawrence Erlbaum Associates, Mahwah, NJ, US.
– reference: Knevel, I.C., Bekker, R.M., Kunzmann, D., Stadler, M. & Thompson, K. 2005. The LEDA traitbase - collecting and measuring standards of life-history traits of the Northwest European Flora. LEDA Traitbase project, University of Groningen, Community and Conservation Ecology group, Groningen, NL.
– reference: Flowers, T.J. & Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945-963.
– reference: Chernick, M.R. 1999. Bootstrap methods: a practitioner's guide. Wiley, New York, NY, US.
– reference: Frenette-Dussault, C., Shipley, B. & Hingrat, Y. 2013. Linking plant and insect traits to understand multitrophic community structure in arid steppes. Functional Ecology 27: 786-792.
– reference: Koffijberg, K., Blew, J., Eskildsen, K., Günther, K., Koks, B., Laursen, K., Rasmussen, L.-M., Südbeck, P. & Potel, P. 2003. High tide roosts in the Wadden Sea: a review of bird distribution, protection regimes and potential sources of anthropogenic disturbance. A report of the Wadden Sea Plan Project 34. Wadden Sea Ecosystems No. 16. pp. 119. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, JMMB, Wilhelmshaven, DE.
– reference: Ad-Hoc-AG Boden 2005. Bodenkundliche Kartieranleitung. E. Schweitzerbart'sche Verlagsbuchhandlung, Hannover, DE.
– reference: Armstrong, W., Wright, E.J., Lythe, S. & Gaynard, T.J. 1985. Plant zonation and the effects of the spring-neap tidal cycle on the soil aeration in a Humber salt marsh. Journal of Ecology 73: 323-339.
– reference: Díaz, S., Fargione, J., Chapin, I.F.S. & Tilman, D. 2006. Biodiversity loss threatens human well-being. PLoS Biology 4: 1300-1305.
– reference: Freschet, G.T., Aerts, R. & Cornelissen, J.H.C. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26: 56-65.
– reference: Grime, J.P. 1974. Vegetation classification by reference to strategies. Nature 250: 26-31.
– reference: Bockelmann, A.C. & Neuhaus, R. 1999. Competitive exclusion of Elymus athericus from a high stress habitat in a European salt marsh. Journal of Ecology 87: 503-513.
– reference: Evans, G.C. 1972. The quantitative analysis of plant growth. Blackwell, Oxford, UK.
– reference: Arbuckle, J.L. 2007. Amos™ 16.0 user's guide. Amos Development Corp., Chicago, IL, US.
– reference: Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D., Girel, J., Pellet, G. & Douzet, R. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99: 135-147.
– reference: Gross, K.L., Willig, M.R., Gough, L., Inouye, R. & Cox, S.B. 2000. Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89: 417-427.
– reference: Schlichting, E., Blume, H.P. & Stahr, K. 1995. Bodenkundliches Praktikum. Blackwell, Berlin, DE.
– reference: Hooper, D.U., Chapin, III. F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., (...) & Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for further research. Ecological Monographs 75: 3-35.
– reference: Díaz, S., Lavorel, S., De Bello, F., Quétier, F., Grigulis, K. & Robson, M.T. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 20684-20689.
– reference: Efron, B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics 7: 1-26.
– reference: Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P. & Mommer, L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50.
– reference: Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunell, C., Hummel, I. & Garnier, E. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
– reference: De Frenne, P., Graae, B.J., Kolb, A., Shevtsova, A., Baeten, L., Brunet, J., Chabrerie, O., Cousins, S.A.O., Decocq, G., (...) & Verheyen, K. 2011. An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography 34: 132-140.
– reference: Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., (...) & Zarovali, M. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985.
– reference: Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavenders-Bares, J., Chapin, T., Cornelissen, J.H.C., (...) & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
– reference: De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11: 516-531.
– reference: van der Heijden, M.G.A., Bardgett, R.D. & van Straalen, N.M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
– reference: Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E. & Eriksson, O. 1999. Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science 10: 609-620.
– reference: Allen, S.E. 1989. Chemical analysis of ecological materials. Blackwell Scientific, Oxford, UK.
– reference: De Leeuw, J., Olff, H. & Bakker, J.P. 1990. Year-to-year variation in peak above-ground biomass of six salt-marsh angiosperm communities as related to rainfall deficit and inundation frequency. Aquatic Botany 36: 139-151.
– reference: Hector, A. & Bagchi, R. 2007. Biodiversity and ecosystem multifunctionality. Nature 448: 188-191.
– reference: Lienin, P. & Kleyer, M. 2011. Plant leaf economics and reproductive investment are responsive to gradients of land use intensity. Agriculture, Ecosystems and Environment 145: 67-76.
– reference: Backhaus, K., Erichson, B., Plinke, W. & Weiber, R. 2003. Multivariate analysemethoden. Springer, Berlin, DE.
– reference: Grace, J.B. & Pugesek, B.H. 1998. On the use of path analysis and related procedures for the investigation of ecological problems. The American Naturalist 152: 151-159.
– reference: Vile, D., Shipley, B. & Garnier, E. 2006. Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters 9: 1061-1067.
– reference: Pott, R. 1995. Farbatlas Nordseeküste und Nordseeinseln. Ulmer, Stuttgart, DE.
– reference: Hodgson, J.G., Montserrat-Marti, G., Charles, M., Jones, G., Wilson, P., Shipley, B., Sharafi, M., Cerabolini, B.E.L., Cornelissen, J.H.C., (...) & Pla, F.R. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108: 1337-1345.
– reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
– reference: Lavorel, S., Storkey, J., Bardgett, R.D., de Bello, F., Berg, M.P., Le Roux, X., Moretti, M., Mulder, C., Pakeman, R., Díaz, S. & Harrington, R. 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science 24: 942-948.
– reference: Minden, V. & Kleyer, M. 2011. Testing the effect-response framework: key response and effect traits determining aboveground biomass of salt marshes. Journal of Vegetation Science 22: 387-401.
– reference: Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. 2010. Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology 98: 362-373.
– reference: Bakker, J.P., Bos, D., Stahl, J., De Vries, Y. & Jensen, A. 2003. Biodiversität und Landnutzung in Salzwiesen. Nova Acta Leopoldina NF 87: 163-194.
– reference: Prins, H.H.T. & Ydenberg, R.C. 1985. Vegetation growth and a seasonal habitat shift of the Barnacle Goose (Branta leucopsis). Oecologia 66: 122-125.
– reference: Scurlock, J.M.O., Johnson, K. & Olson, R.J. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology 8: 736-753.
– reference: Enquist, B.J. & Niklas, K.J. 2002. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295: 1517-1520.
– reference: Grace, J.B. & Pugesek, B.H. 1997. A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist 149: 436-460.
– reference: Grace, J.B. & Bollen, K.A. 2008. Representing general theoretical concepts in structural equation models: the role of composite variables. Environmental and Ecological Statistics 15: 191-213.
– reference: Bos, D. & Stahl, J. 2003. Creating new foraging opportunities for dark-bellied brent (Branta bernicla) and barnacle geese (Branta leucopsis) in spring: insights from a large-scale experiment. Ardea 91: 153-165.
– reference: Grace, J.B. 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK.
– reference: Egnér, H., Riehm, H. & Domingo, W.R. 1960. Untersuchungen über die Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes des Bodens II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl. Lantbrukshögskolans Annualer 26: 199-215.
– reference: Sharpe, P.J. & Baldwin, A.H. 2009. Patterns of wetland plant species richness across estuarine gradients of Chesapeake Bay. Wetlands 29: 225-235.
– reference: Lienin, P. & Kleyer, M. 2012. Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology 13: 301-311.
– reference: Rozema, J., Bijwaard, P., Prast, G. & Broekman, R. 1985. Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio 62: 499-521.
– reference: van der Wal, R., van Lieshout, S., Bos, D. & Drent, R.H. 2000. Are spring staging brent geese evicted by vegetation succession? Ecography 23: 60-69.
– reference: Lavorel, S. & Grigulis, K. 2012. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology 100: 128-140.
– reference: Bollen, K.A. 1989. Structural equations with latent variables. Wiley, New York, NY, US.
– reference: Chapin, F.S.I., Matson, P.A. & Mooney, H.A. 2002. Principles of terrestrial ecosystem ecology. Springer, New York, NY, US.
– reference: Cunningham, S., Summerhayes, B. & Westoby, M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs 69: 569-588.
– reference: Grace, J., Anderson, T.M., Olff, H. & Scheiner, S.M. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80: 67-87.
– reference: Murphy, J. & Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
– reference: Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., (...) & Toussaint, J.-P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630-2637.
– reference: Olff, H., de Leeuw, J., Bakker, J.P., Platerink, R.J., van Wijnen, H.J. & de Munck, W. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevation gradient. Journal of Ecology 85: 799-814.
– reference: Grime, J.P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 902-910.
– reference: Berendse, F. & Möller, F. 2009. Effects of competition on root-shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift? Plant Ecology 201: 567-573.
– reference: Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. 2012. Plant trait-environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspectives in Plant Ecology, Evolution and Systematics 14: 183-192.
– reference: Niklas, K.J. & Enquist, B.J. 2002. Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany 89: 812-819.
– reference: Reich, P.B., Walters, M.B. & Ellsworth, D.S. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94: 13730-13734.
– reference: Tao, B.X. & Song, C.C. 2013. Effects of nitrogen addition, temperature and physical protection on first-phase decomposition of soil organic carbon in marshland. Fresenius Environmental Bulletin 22: 1579-1584.
– reference: Bakker, J.P., De Leeuw, J., Dijkema, K.S., Leendertse, P.C., Prins, H.H.T. & Rozema, J. 1993. Salt marshes along the coast of The Netherlands. Hydrobiologia 265: 73-95.
– reference: Aerts, R. & Chapin, F.S.I. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances of Ecological Research 30: 1-67.
– year: 2011
– volume: 149
  start-page: 436
  year: 1997
  end-page: 460
  article-title: A structural equation model of plant species richness and its application to a coastal wetland
  publication-title: The American Naturalist
– start-page: 119
  year: 2003
– volume: 99
  start-page: 967
  year: 2007
  end-page: 985
  article-title: Assessing the effects of land‐use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites
  publication-title: Annals of Botany
– start-page: 163
  year: 2005
  end-page: 179
– year: 2005
– volume: 29
  start-page: 225
  year: 2009
  end-page: 235
  article-title: Patterns of wetland plant species richness across estuarine gradients of Chesapeake Bay
  publication-title: Wetlands
– volume: 15
  start-page: 191
  year: 2008
  end-page: 213
  article-title: Representing general theoretical concepts in structural equation models: the role of composite variables
  publication-title: Environmental and Ecological Statistics
– volume: 250
  start-page: 26
  year: 1974
  end-page: 31
  article-title: Vegetation classification by reference to strategies
  publication-title: Nature
– volume: 13
  start-page: 301
  year: 2012
  end-page: 311
  article-title: Plant trait responses to the environment and effects on ecosystem properties
  publication-title: Basic and Applied Ecology
– year: 2001
– year: 1989
– volume: 66
  start-page: 122
  year: 1985
  end-page: 125
  article-title: Vegetation growth and a seasonal habitat shift of the Barnacle Goose ( )
  publication-title: Oecologia
– volume: 73
  start-page: 323
  year: 1985
  end-page: 339
  article-title: Plant zonation and the effects of the spring–neap tidal cycle on the soil aeration in a Humber salt marsh
  publication-title: Journal of Ecology
– volume: 22
  start-page: 387
  year: 2011
  end-page: 401
  article-title: Testing the effect–response framework: key response and effect traits determining aboveground biomass of salt marshes
  publication-title: Journal of Vegetation Science
– volume: 448
  start-page: 188
  year: 2007
  end-page: 191
  article-title: Biodiversity and ecosystem multifunctionality
  publication-title: Nature
– year: 2014
– volume: 87
  start-page: 503
  year: 1999
  end-page: 513
  article-title: Competitive exclusion of from a high stress habitat in a European salt marsh
  publication-title: Journal of Ecology
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 87
  start-page: 163
  year: 2003
  end-page: 194
  article-title: Biodiversität und Landnutzung in Salzwiesen
  publication-title: Nova Acta Leopoldina NF
– volume: 26
  start-page: 199
  year: 1960
  end-page: 215
  article-title: Untersuchungen über die Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes des Bodens II. Chemische Extraktionsmethoden zur Phosphor‐ und Kaliumbestimmung
  publication-title: Kungl. Lantbrukshögskolans Annualer
– volume: 36
  start-page: 139
  year: 1990
  end-page: 151
  article-title: Year‐to‐year variation in peak above‐ground biomass of six salt‐marsh angiosperm communities as related to rainfall deficit and inundation frequency
  publication-title: Aquatic Botany
– volume: 85
  start-page: 2630
  year: 2004
  end-page: 2637
  article-title: Plant functional markers capture ecosystem properties during secondary succession
  publication-title: Ecology
– volume: 30
  start-page: 1
  year: 2000
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns
  publication-title: Advances of Ecological Research
– volume: 89
  start-page: 417
  year: 2000
  end-page: 427
  article-title: Patterns of species density and productivity at different spatial scales in herbaceous plant communities
  publication-title: Oikos
– year: 1972
– volume: 91
  start-page: 153
  year: 2003
  end-page: 165
  article-title: Creating new foraging opportunities for dark‐bellied brent ( ) and barnacle geese ( ) in spring: insights from a large‐scale experiment
  publication-title: Ardea
– volume: 22
  start-page: 1579
  year: 2013
  end-page: 1584
  article-title: Effects of nitrogen addition, temperature and physical protection on first‐phase decomposition of soil organic carbon in marshland
  publication-title: Fresenius Environmental Bulletin
– volume: 23
  start-page: 60
  year: 2000
  end-page: 69
  article-title: Are spring staging brent geese evicted by vegetation succession?
  publication-title: Ecography
– volume: 193
  start-page: 30
  year: 2012
  end-page: 50
  article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control
  publication-title: New Phytologist
– volume: 10
  start-page: 609
  year: 1999
  end-page: 620
  article-title: Challenging Theophrastus: a common core list of plant traits for functional ecology
  publication-title: Journal of Vegetation Science
– volume: 8
  start-page: 736
  year: 2002
  end-page: 753
  article-title: Estimating net primary productivity from grassland biomass dynamics measurements
  publication-title: Global Change Biology
– volume: 108
  start-page: 1337
  year: 2011
  end-page: 1345
  article-title: Is leaf dry matter content a better predictor of soil fertility than specific leaf area?
  publication-title: Annals of Botany
– volume: 27
  start-page: 786
  year: 2013
  end-page: 792
  article-title: Linking plant and insect traits to understand multitrophic community structure in arid steppes
  publication-title: Functional Ecology
– start-page: 233
  year: 2002
  end-page: 256
– volume: 4
  start-page: 1300
  year: 2006
  end-page: 1305
  article-title: Biodiversity loss threatens human well‐being
  publication-title: PLoS Biology
– volume: 14
  start-page: 183
  year: 2012
  end-page: 192
  article-title: Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– year: 2007
– volume: 295
  start-page: 1517
  year: 2002
  end-page: 1520
  article-title: Global allocation rules for patterns of biomass partitioning in seed plants
  publication-title: Science
– year: 2003
– start-page: 111
  year: 1993
  end-page: 135
– volume: 86
  start-page: 902
  year: 1998
  end-page: 910
  article-title: Benefits of plant diversity to ecosystems: immediate, filter and founder effects
  publication-title: Journal of Ecology
– volume: 69
  start-page: 569
  year: 1999
  end-page: 588
  article-title: Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients
  publication-title: Ecological Monographs
– volume: 94
  start-page: 13730
  year: 1997
  end-page: 13734
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 11
  start-page: 516
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  article-title: Bootstrap methods: another look at the jackknife
  publication-title: The Annals of Statistics
– volume: 80
  start-page: 67
  year: 2010
  end-page: 87
  article-title: On the specification of structural equation models for ecological systems
  publication-title: Ecological Monographs
– volume: 265
  start-page: 73
  year: 1993
  end-page: 95
  article-title: Salt marshes along the coast of The Netherlands
  publication-title: Hydrobiologia
– volume: 145
  start-page: 67
  year: 2011
  end-page: 76
  article-title: Plant leaf economics and reproductive investment are responsive to gradients of land use intensity
  publication-title: Agriculture, Ecosystems and Environment
– volume: 104
  start-page: 20684
  year: 2007
  end-page: 20689
  article-title: Incorporating plant functional diversity effects in ecosystem service assessments
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– start-page: 7
  year: 2005
  end-page: 148
– volume: 100
  start-page: 128
  year: 2012
  end-page: 140
  article-title: How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services
  publication-title: Journal of Ecology
– volume: 9
  start-page: 1061
  year: 2006
  end-page: 1067
  article-title: Ecosystem productivity can be predicted from potential relative growth rate and species abundance
  publication-title: Ecology Letters
– volume: 85
  start-page: 799
  year: 1997
  end-page: 814
  article-title: Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevation gradient
  publication-title: Journal of Ecology
– volume: 89
  start-page: 812
  year: 2002
  end-page: 819
  article-title: Canonical rules for plant organ biomass partitioning and annual allocation
  publication-title: American Journal of Botany
– year: 2002
– volume: 152
  start-page: 151
  year: 1998
  end-page: 159
  article-title: On the use of path analysis and related procedures for the investigation of ecological problems
  publication-title: The American Naturalist
– volume: 26
  start-page: 56
  year: 2012
  end-page: 65
  article-title: A plant economics spectrum of litter decomposability
  publication-title: Functional Ecology
– year: 2006
– start-page: 171
  year: 2007
  end-page: 186
– volume: 19
  start-page: 1495
  year: 2013
  end-page: 1503
  article-title: Tidal marsh plant responses to elevated CO , nitrogen fertilization, and sea level rise
  publication-title: Global Change Biology
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytica Chimica Acta
– year: 1995
– volume: 61
  start-page: 167
  year: 2013
  end-page: 234
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 201
  start-page: 567
  year: 2009
  end-page: 573
  article-title: Effects of competition on root–shoot allocation in L.: adaptive plasticity or ontogenetic drift?
  publication-title: Plant Ecology
– volume: 99
  start-page: 135
  year: 2011
  end-page: 147
  article-title: Using plant functional traits to understand the landscape distribution of multiple ecosystem services
  publication-title: Journal of Ecology
– volume: 24
  start-page: 942
  year: 2013
  end-page: 948
  article-title: A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services
  publication-title: Journal of Vegetation Science
– volume: 9
  start-page: 552
  year: 2011
  end-page: 560
  article-title: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO
  publication-title: Frontiers in Ecology and the Environment
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– volume: 62
  start-page: 499
  year: 1985
  end-page: 521
  article-title: Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes
  publication-title: Vegetatio
– year: 1999
– volume: 34
  start-page: 132
  year: 2011
  end-page: 140
  article-title: An intraspecific application of the leaf‐height‐seed ecology strategy scheme to forest herbs along a latitudinal gradient
  publication-title: Ecography
– volume: 98
  start-page: 362
  year: 2010
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for further research
  publication-title: Ecological Monographs
– ident: e_1_2_9_68_1
  doi: 10.1007/BF00378563
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1066360
– volume: 26
  start-page: 199
  year: 1960
  ident: e_1_2_9_27_1
  article-title: Untersuchungen über die Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes des Bodens II. Chemische Extraktionsmethoden zur Phosphor‐ und Kaliumbestimmung
  publication-title: Kungl. Lantbrukshögskolans Annualer
– ident: e_1_2_9_72_1
  doi: 10.1046/j.1365-2486.2002.00512.x
– ident: e_1_2_9_18_1
  doi: 10.1007/b97397
– ident: e_1_2_9_26_1
  doi: 10.1214/aos/1176344552
– ident: e_1_2_9_13_1
  doi: 10.1046/j.1365-2745.1999.00368.x
– ident: e_1_2_9_44_1
  doi: 10.1034/j.1600-0706.2000.890301.x
– ident: e_1_2_9_81_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_9_40_1
  doi: 10.1086/286156
– volume-title: Bodenkundliches Praktikum
  year: 1995
  ident: e_1_2_9_71_1
– ident: e_1_2_9_51_1
  doi: 10.1111/gcb.12147
– volume-title: Chemical analysis of ecological materials
  year: 1989
  ident: e_1_2_9_4_1
– ident: e_1_2_9_46_1
  doi: 10.1093/aob/mcr225
– ident: e_1_2_9_79_1
  doi: 10.2307/3237076
– ident: e_1_2_9_25_1
  doi: 10.1073/pnas.0704716104
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1365-2745.2010.01753.x
– ident: e_1_2_9_53_1
  doi: 10.1007/978-3-540-32730-1_13
– volume: 87
  start-page: 163
  year: 2003
  ident: e_1_2_9_9_1
  article-title: Biodiversität und Landnutzung in Salzwiesen
  publication-title: Nova Acta Leopoldina NF
– start-page: 7
  volume-title: Migratory water birds in the Wadden Sea 1980–2000
  year: 2005
  ident: e_1_2_9_12_1
– ident: e_1_2_9_55_1
  doi: 10.1111/jvs.12083
– ident: e_1_2_9_56_1
  doi: 10.1016/j.agee.2011.03.015
– volume-title: Multivariate analysemethoden
  year: 2003
  ident: e_1_2_9_7_1
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_9_70_1
  doi: 10.1007/BF00044777
– ident: e_1_2_9_14_1
  doi: 10.1002/9781118619179
– ident: e_1_2_9_45_1
  doi: 10.1038/nature05947
– start-page: 233
  volume-title: Analysis of Ecological 639 Communities
  year: 2002
  ident: e_1_2_9_58_1
– volume-title: Amos™ 16.0 user's guide
  year: 2007
  ident: e_1_2_9_5_1
– volume-title: Bootstrap methods: a practitioner's guide
  year: 1999
  ident: e_1_2_9_19_1
– ident: e_1_2_9_43_1
  doi: 10.1046/j.1365-2745.1998.00306.x
– volume-title: Rothmaler Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband
  year: 2011
  ident: e_1_2_9_48_1
– ident: e_1_2_9_63_1
  doi: 10.3732/ajb.89.5.812
– ident: e_1_2_9_42_1
  doi: 10.1038/250026a0
– ident: e_1_2_9_3_1
  doi: 10.1016/S0065-2504(08)60016-1
– ident: e_1_2_9_65_1
  doi: 10.1071/BT12225
– start-page: 163
  volume-title: Wadden sea quality status report 2004, Wadden Sea Ecosystem No. 19 – 2005
  year: 2005
  ident: e_1_2_9_10_1
– start-page: 111
  volume-title: Testing structural equation models
  year: 1993
  ident: e_1_2_9_15_1
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– ident: e_1_2_9_77_1
  doi: 10.1111/j.1461-0248.2006.00958.x
– ident: e_1_2_9_47_1
  doi: 10.1890/04-0922
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-2745.2011.01914.x
– ident: e_1_2_9_24_1
  doi: 10.1371/journal.pbio.0040277
– ident: e_1_2_9_31_1
  doi: 10.1111/1365-2435.12075
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1600-0587.2010.06399.x
– ident: e_1_2_9_76_1
  doi: 10.1111/j.1600-0587.2000.tb00261.x
– start-page: 119
  volume-title: High tide roosts in the Wadden Sea: a review of bird distribution, protection regimes and potential sources of anthropogenic disturbance. A report of the Wadden Sea Plan Project 34
  year: 2003
  ident: e_1_2_9_50_1
– volume-title: Farbatlas Nordseeküste und Nordseeinseln
  year: 1995
  ident: e_1_2_9_67_1
– ident: e_1_2_9_59_1
  doi: 10.1890/110004
– ident: e_1_2_9_34_1
  doi: 10.1890/03-0799
– ident: e_1_2_9_38_1
  doi: 10.1007/s10651-007-0047-7
– ident: e_1_2_9_35_1
  doi: 10.1093/aob/mcl215
– ident: e_1_2_9_20_1
  doi: 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2
– volume-title: Structural equation modeling with AMOS – basic concepts, applications and programming
  year: 2001
  ident: e_1_2_9_17_1
– ident: e_1_2_9_6_1
  doi: 10.2307/2259786
– ident: e_1_2_9_23_1
  doi: 10.1016/0304-3770(90)90078-Y
– ident: e_1_2_9_36_1
– ident: e_1_2_9_80_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_9_8_1
  doi: 10.1007/BF00007263
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_9_37_1
  doi: 10.1017/CBO9780511617799
– volume: 22
  start-page: 1579
  year: 2013
  ident: e_1_2_9_74_1
  article-title: Effects of nitrogen addition, temperature and physical protection on first‐phase decomposition of soil organic carbon in marshland
  publication-title: Fresenius Environmental Bulletin
– volume-title: The quantitative analysis of plant growth
  year: 1972
  ident: e_1_2_9_29_1
– ident: e_1_2_9_61_1
  doi: 10.1016/j.ppees.2012.01.002
– ident: e_1_2_9_39_1
  doi: 10.1086/285999
– ident: e_1_2_9_41_1
  doi: 10.1890/09-0464.1
– ident: e_1_2_9_73_1
  doi: 10.1672/08-111.1
– volume-title: Bodenkundliche Kartieranleitung
  year: 2005
  ident: e_1_2_9_2_1
– volume: 91
  start-page: 153
  year: 2003
  ident: e_1_2_9_16_1
  article-title: Creating new foraging opportunities for dark‐bellied brent (Branta bernicla) and barnacle geese (Branta leucopsis) in spring: insights from a large‐scale experiment
  publication-title: Ardea
– ident: e_1_2_9_57_1
  doi: 10.1016/j.baae.2012.05.002
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1365-2435.2011.01913.x
– ident: e_1_2_9_62_1
  doi: 10.1016/S0003-2670(00)88444-5
– ident: e_1_2_9_64_1
  doi: 10.2307/2960603
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1654-1103.2011.01272.x
– ident: e_1_2_9_78_1
  doi: 10.1111/j.0030-1299.2007.15559.x
– ident: e_1_2_9_66_1
  doi: 10.1111/j.1469-8137.2011.03952.x
– ident: e_1_2_9_11_1
  doi: 10.1007/s11258-008-9485-z
– volume-title: The LEDA traitbase – collecting and measuring standards of life‐history traits of the Northwest European Flora
  year: 2005
  ident: e_1_2_9_49_1
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.94.25.13730
SSID ssj0017961
Score 2.302318
Snippet QUESTIONS: As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem...
Questions: As biodiversity losses increase due to global change and human-induced habitat destruction, the relationships between plant traits and ecosystem...
Questions As biodiversity losses increase due to global change and human‐induced habitat destruction, the relationships between plant traits and ecosystem...
Questions As biodiversity losses increase due to global change and human-induced habitat destruction, the relationships between plant traits and ecosystem...
SourceID proquest
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 651
SubjectTerms aboveground biomass
belowground biomass
biodiversity
biomass production
canopy
carbon cycle
carbon nitrogen ratio
coasts
dry matter content
ecosystems
edaphic factors
Effect traits
equations
Functional ecology
Germany
global change
habitat destruction
leaves
Multifunctionality
Path analysis
primary productivity
Productivity
Response traits
salinity
Salt marsh
salt marshes
salt stress
scanning electron microscopy
soil resources
Structural equation modelling
water table
Title Ecosystem multifunctionality of coastal marshes is determined by key plant traits
URI https://api.istex.fr/ark:/67375/WNG-J421HKTS-J/fulltext.pdf
https://www.jstor.org/stable/43912886
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12276
https://www.proquest.com/docview/1701476881
https://www.proquest.com/docview/1753417782
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9RAEMc3SHjwRUUlnApZjTG-9HIt3e1ueEIDXs5IoscpDyab7e4UCOeV0DsC_PXMbH8EjBhjn_ow_bHdmd3PbKffMvbWemWFFz7yEjBBSb2OlJQQSa1JSyYXENZ0v-zL4SQdHYrDJbbdfgtT60N0C24UGWG8pgC3eXU7yC-qfpwkGcltU60WAdG3TjoK_azWSsULRggxW42qUKjiaY-8Mxc9KGyJhEoP97ItTryDnbfhNcw-e4_Zz_a-66KT0_5invfd9W-Sjv_ZsCfsUUOlfKd2o1W2BLOnbOVDieR49Yx93XVlrfjMQ_0hzYX1EiIiPC8L7kqLkDnlvzBLPoaKn1TcN2U24Hl-xXGk4GdT7EROv6SYV8_ZZG_34OMwan7FEDkhhIwAKSwbWMARAQqwyBQDq1NLSj-Z8EoCcqdDdgGrC-EAk5oCN0TH2A9cnOZba2x5Vs5gnfFcSZ2KFNNC8GnsrJYKIc4rHQvlfSJ77H3bKcY1OuV0b1PT5SsXlQkPqMfedKZntTjHn4zWsWeNPcJB00zGCS3xUJark7jH3oXu7g6256dU6JYJ82P_kxmlSTz8fDA2ox5bC_7QGdL3yolSePLXrYMYjEt62WJnUC7w2hkmn5jLqfhvNgIhIkNIw0YHl7i_GWb0fRx2Xvy76Uv2kJpbVxe_Ysvz8wVsIEPN880QLDcMVxPu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BQkuvKsuT4MQ4pLVJo0dW-ICqGXZtivB7kIvyHLsCaAum6rZrSi_nrHzUIsAIXLKYfKwPWN_32TyGeCpcdJwx13kBBJBSZ2KpBAYCaW8lkzOMeR0D8ZiOEtHh_xwDV60_8LU-hBdws1HRpivfYD7hPT5KD-t-nGSZGIdLvkdvQOhet-JR5Gn1Wqp9MiIYMx2oysU6njaSy-sRuuFKQmj-u793pYnXgCe5-FrWH92r8On9s3rspOj_mqZ9-2PX0Qd_7dpN-BaA0zZy9qTbsIaLm7B5Vclgcez2_Bux5a16DMLJYh-OayziITiWVkwWxrCmXP2jYjyF6zY14q5ptIGHcvPGE0W7HhO48j8rhTL6g7Mdnemr4dRsxtDZDnnIkICYtnAIE0KWKAhWDEwKjVe7CfjTgok6GkJvqBRBbdIvKagg9Bj7AY2TvPtTdhYlAvcApZLoVKeEjNEl8bWKCEJxzmpYi6dS0QPnrejom0jVe7fba47ynJa6dBBPXjSmR7X-hy_M9qiodXmM82bejZJfJbHE12VxD14Fsa7u9icHPlat4zrj-M3epQm8XBvOtGjHmwGh-gM_S_LiZR088eth2gKTf-9xSywXNGzM-KfROdk_DcbTjgiI5xGjQ4-8edm6NGHSTi5---mj-DKcHqwr_ffjvfuwVXf9LrY-D5sLE9W-IAg1TJ_GCLnJ0DLGAk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIePtoEQL4zbtDIuBiHES6omsx1bPAFbKR1UQNexByTLsR1A65pqaaeNv55j56INAULkKQ8nF8fn2N9xTn4BeKqt0MwyG1nuMEGhVkaCcxdxKb2WTMZcWNN9P-KDCR0essMVeNF8C1PpQ7QLbj4ywnjtA3xu84tBflp24yRJ-SpcobwnvEvvfGq1o9DRKrFUvGKEFLNdywqFMp7m0EuT0WquC0RU_3TPmurES9x5kV7D9NNfhy_NjVdVJ0fd5SLrmh-_aDr-Z8tuwo0aS8nLyo9uwYqb3YarrwpEx_M78HHXFJXkMwkFiH4yrNYQkeFJkRNTaKTMKTnGNPmbK8n3kti6zsZZkp0THCrIfIq9SPw_KRblXZj0d_dfD6L6XwyRYYzxyCGGpT3tcEhwudMIFT0tqfZSPymzgjsET4Pw4rTMmXGY1eS4ITvGtmdimm1vwNqsmLlNIJngkjKKeaGzNDZacoEUZ4WMmbA24R143nSKMrVQub-3qWoTltNShQfUgSet6bxS5_id0Sb2rNJfcdRUk3Hi13h8miuTuAPPQne3B-uTI1_pljL1efRGDWkSD_b2x2rYgY3gD62h_2A5EQJP_rhxEIWB6d-26JkrlnjtFLNPTOZE_DcbhhSRIqVho4NL_LkZangwDjv3_t30EVz7sNNX796O9rbgum95VWl8H9YWJ0v3AHlqkT0McfMT_5QWwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecosystem+multifunctionality+of+coastal+marshes+is+determined+by+key+plant+traits&rft.jtitle=Journal+of+vegetation+science&rft.au=Minden%2C+Vanessa&rft.au=Kleyer%2C+Michael&rft.au=Mason%2C+Norman&rft.date=2015-07-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=26&rft.issue=4&rft.spage=651&rft.epage=662&rft_id=info:doi/10.1111%2Fjvs.12276&rft.externalDBID=10.1111%252Fjvs.12276&rft.externalDocID=JVS12276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon