Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection

Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux through solar wind‐magnetosphere reconnection at the dayside magnetopause to the rate of closing flux through reconnection in the magnetotail. For this to occ...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Space Physics Vol. 117; no. A5
Main Authors Kissinger, J., McPherron, R. L., Hsu, T.-S., Angelopoulos, V.
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.05.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux through solar wind‐magnetosphere reconnection at the dayside magnetopause to the rate of closing flux through reconnection in the magnetotail. For this to occur, reconnected flux in the tail must return to the dayside to balance the dayside reconnection rate. Using Geotail and THEMIS data over a span of 14 years, we examine the average plasma conditions and fast Earthward flows during SMC intervals and compare them to other types of geomagnetic activity, such as quiet intervals, isolated substorm phases, and the two hours before an SMC (Pre‐SMC intervals). We show that the average total pressure in the inner magnetosphere is higher during SMC events than for other types of activity. This higher pressure region extends to larger radial distances, and causes fast Earthward flows to divert toward the dawn or dusk flanks and continue to the dayside. This pattern is contrasted to substorms, during which flows are directed toward the inner magnetosphere and flux remains there in the “pile‐up region.” We suggest that the SMC pattern of flow deflection carries enough flux from the tail to the dayside to allow for balanced reconnection. Finally, the Pre‐SMC intervals have plasma conditions that are similar to, but slightly weaker than, SMC events. Since most SMCs begin with a substorm, this indicates that preconditioning of the magnetosphere by prior geomagnetic activity is important in setting up the magnetotail for an SMC state. Key Points During SMC fast flows are diverted flankward by a broad high pressure region Magnetotail plasma shows distinct differences between SMC, substorms, and quiet Preceding substorms may precondition the magnetosphere towards the SMC state
AbstractList Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux through solar wind-magnetosphere reconnection at the dayside magnetopause to the rate of closing flux through reconnection in the magnetotail. For this to occur, reconnected flux in the tail must return to the dayside to balance the dayside reconnection rate. Using Geotail and THEMIS data over a span of 14 years, we examine the average plasma conditions and fast Earthward flows during SMC intervals and compare them to other types of geomagnetic activity, such as quiet intervals, isolated substorm phases, and the two hours before an SMC (Pre-SMC intervals). We show that the average total pressure in the inner magnetosphere is higher during SMC events than for other types of activity. This higher pressure region extends to larger radial distances, and causes fast Earthward flows to divert toward the dawn or dusk flanks and continue to the dayside. This pattern is contrasted to substorms, during which flows are directed toward the inner magnetosphere and flux remains there in the pile-up region. We suggest that the SMC pattern of flow deflection carries enough flux from the tail to the dayside to allow for balanced reconnection. Finally, the Pre-SMC intervals have plasma conditions that are similar to, but slightly weaker than, SMC events. Since most SMCs begin with a substorm, this indicates that preconditioning of the magnetosphere by prior geomagnetic activity is important in setting up the magnetotail for an SMC state.
Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux through solar wind‐magnetosphere reconnection at the dayside magnetopause to the rate of closing flux through reconnection in the magnetotail. For this to occur, reconnected flux in the tail must return to the dayside to balance the dayside reconnection rate. Using Geotail and THEMIS data over a span of 14 years, we examine the average plasma conditions and fast Earthward flows during SMC intervals and compare them to other types of geomagnetic activity, such as quiet intervals, isolated substorm phases, and the two hours before an SMC (Pre‐SMC intervals). We show that the average total pressure in the inner magnetosphere is higher during SMC events than for other types of activity. This higher pressure region extends to larger radial distances, and causes fast Earthward flows to divert toward the dawn or dusk flanks and continue to the dayside. This pattern is contrasted to substorms, during which flows are directed toward the inner magnetosphere and flux remains there in the “pile‐up region.” We suggest that the SMC pattern of flow deflection carries enough flux from the tail to the dayside to allow for balanced reconnection. Finally, the Pre‐SMC intervals have plasma conditions that are similar to, but slightly weaker than, SMC events. Since most SMCs begin with a substorm, this indicates that preconditioning of the magnetosphere by prior geomagnetic activity is important in setting up the magnetotail for an SMC state. Key Points During SMC fast flows are diverted flankward by a broad high pressure region Magnetotail plasma shows distinct differences between SMC, substorms, and quiet Preceding substorms may precondition the magnetosphere towards the SMC state
Author Hsu, T.-S.
Angelopoulos, V.
Kissinger, J.
McPherron, R. L.
Author_xml – sequence: 1
  givenname: J.
  surname: Kissinger
  fullname: Kissinger, J.
  email: jkissinger@ucla.edu, jkissinger@ucla.edu
  organization: Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
– sequence: 2
  givenname: R. L.
  surname: McPherron
  fullname: McPherron, R. L.
  organization: Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
– sequence: 3
  givenname: T.-S.
  surname: Hsu
  fullname: Hsu, T.-S.
  organization: Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
– sequence: 4
  givenname: V.
  surname: Angelopoulos
  fullname: Angelopoulos, V.
  organization: Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25982228$$DView record in Pascal Francis
BookMark eNp9kE9PGzEQxa2KSk1Tbv0AlqpKPbDUf9e7xyhAWkSpVEXq0XK8s4lhYy_2LpBvj6MgVDh0Lu8wv_dm9D6iIx88IPSZklNKWP2dEcouZ4Qqqep3aMKoLAvGCDtCE0JFVRDG1Ad0nNINySNkKQidoNszdw8xueBxaHHfmbQ1uBkBDwFv3HqD-wgpjRGw83jY7MVDxFuz9jCE1G8gr5oxOr_GaQDT7F7tnMU2-HuwQ77wCb1vTZfg-FmnaHlxvpz_KK5-L37OZ1eFlVLyQlSSM2UkbUsLVpQSVpWRgpqS25pUwMpWkmZlV8QYwaAhthJKGEGhAssrPkXfDrF9DHcjpEFvXbLQdcZDGJOmpOaCK0H36Jc36E0Yo8_PZYpyySnJ6BSdHCgbQ0oRWt1HtzVxlyG9717_233Gvz6HmmRN10bjrUsvHibrijG2P84P3IPrYPffTH25-DNjtKY8u4qDy-W6H19cJt7qUnEl9d_rhT4TC3U9_yX0kj8B2WyjIw
CitedBy_id crossref_primary_10_1029_2019JA027561
crossref_primary_10_5194_angeo_32_1233_2014
crossref_primary_10_1002_2016JA022414
crossref_primary_10_1007_s11434_014_0618_6
crossref_primary_10_1029_2021JA029152
crossref_primary_10_1029_2018JA025440
crossref_primary_10_1029_2020JA028470
crossref_primary_10_1002_2013JA018734
crossref_primary_10_1002_jgra_50592
crossref_primary_10_1029_2022JA031094
crossref_primary_10_1002_2013JA019220
crossref_primary_10_1002_2015JA022025
crossref_primary_10_1007_s11214_017_0399_8
crossref_primary_10_5194_angeo_36_641_2018
crossref_primary_10_1029_2019GL084190
crossref_primary_10_1002_2015GL066167
crossref_primary_10_1002_2014JA019948
crossref_primary_10_1029_2020JA028342
crossref_primary_10_1007_s11214_024_01067_0
crossref_primary_10_1007_s11207_014_0639_y
crossref_primary_10_1134_S1063780X15010055
crossref_primary_10_1002_2015JA021207
crossref_primary_10_3390_geosciences11070286
crossref_primary_10_5194_angeo_32_133_2014
crossref_primary_10_1002_2016JA023200
crossref_primary_10_5194_angeo_32_705_2014
crossref_primary_10_1029_2019JA027541
crossref_primary_10_1029_2018JA026113
crossref_primary_10_5194_angeo_35_505_2017
crossref_primary_10_1029_2021JA029694
crossref_primary_10_1002_2014JA020207
crossref_primary_10_1029_2018JA025852
crossref_primary_10_1103_PhysRevE_91_053104
crossref_primary_10_1029_2012JA017756
crossref_primary_10_1002_jgra_50574
crossref_primary_10_1002_2016JA022480
crossref_primary_10_1029_2021SW002989
crossref_primary_10_1002_2017JA024209
crossref_primary_10_1002_jgra_50503
crossref_primary_10_1007_s11214_014_0126_7
crossref_primary_10_3389_fspas_2022_973276
crossref_primary_10_1029_2018JA025232
crossref_primary_10_1029_2021JA030208
crossref_primary_10_1029_2012GL052599
crossref_primary_10_3389_fspas_2023_1138616
crossref_primary_10_1029_2018JA025867
crossref_primary_10_1007_s11214_014_0037_7
crossref_primary_10_1029_2021JA030057
crossref_primary_10_1029_2018JA025588
crossref_primary_10_1029_2023JA031536
crossref_primary_10_1029_2023SW003524
crossref_primary_10_1002_2015JA021104
crossref_primary_10_1002_2015JA022238
crossref_primary_10_1002_2014JA020596
crossref_primary_10_1029_2021JA029946
crossref_primary_10_1063_1_4931736
crossref_primary_10_5194_angeo_39_1037_2021
crossref_primary_10_1002_2013JA019395
Cites_doi 10.1029/91JA02701
10.1103/PhysRevLett.6.47
10.1007/BF00833344
10.1029/94JA01980
10.1029/94GL01223
10.1029/2006JA011642
10.1029/JA095iA04p03801
10.1029/97GL01062
10.1029/97JA02994
10.1016/B978‐044451881‐1/50009‐5
10.1029/2009GL038980
10.1029/2006JA012155
10.1029/2010JA016316
10.1029/93GL00847
10.1029/94JA01263
10.1029/2005JA011545
10.1029/1999GL003737
10.1029/JA094iA06p06597
10.1029/93JA01894
10.1029/91JA02802
10.1029/2010JA015923
10.1029/2010JA015763
10.1029/91JA00775
10.1029/2008JA013870
10.1029/JA078i016p03131
10.1029/2001GL014641
10.1029/2000JA900139
10.1029/2004JA010561
10.1029/JA075i028p05592
10.1029/2010GL042811
10.5194/angeo‐22‐2107‐2004
10.1029/JA094iA05p05264
10.1029/1999JA900282
10.5636/jgg.46.669
10.1016/0032‐0633(88)90124‐9
10.1016/0032‐0633(90)90101‐U
10.1029/93JA02719
10.1007/BF00169321
10.1029/JA083iA02p00663
10.5194/angeo‐26‐3897‐2008
ContentType Journal Article
Copyright Copyright 2012 by the American Geophysical Union
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2012 by the American Geophysical Union
– notice: 2015 INIST-CNRS
DBID BSCLL
24P
WIN
IQODW
AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1029/2012JA017579
DatabaseName Istex
Wiley Open Access Journals
Wiley Online Library Free Content
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Central Student

CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9402
EndPage n/a
ExternalDocumentID 2660706541
10_1029_2012JA017579
25982228
JGRA21913
ark_67375_WNG_D4G7NCM4_T
Genre article
Feature
GrantInformation_xml – fundername: National Science Foundation
  funderid: ATM‐0720422
– fundername: NASA
  funderid: NNX10AF25G ; NNX10AE61G; NAS5‐02099
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WXSBR
XSW
~OA
~~A
AITYG
WIN
08R
IQODW
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
702
7TG
7XB
8-1
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ACBWZ
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
CCPQU
D0L
D1K
DPXWK
H8D
HGLYW
HZ~
K6-
KL.
L7M
LEEKS
LK5
M7R
MY~
O9-
P2W
P62
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
Q9U
R.K
SUPJJ
WBKPD
EBS
ID FETCH-LOGICAL-c5553-485327a51f6cec465eb8a541a63c908e26f50dbcb0aa42ed0c8474a41e8ec383
IEDL.DBID 24P
ISSN 0148-0227
2169-9380
IngestDate Sat Oct 05 05:55:07 EDT 2024
Thu Oct 10 20:56:15 EDT 2024
Fri Aug 23 04:10:44 EDT 2024
Sun Oct 22 16:06:21 EDT 2023
Sat Aug 24 00:55:36 EDT 2024
Wed Jan 17 05:02:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue A5
Keywords Plasma
Deflection
Magnetopause
pressure
high pressure
solar wind
convection
Earth
magnetosphere
balance
Small Magellanic Cloud
Magnetospheric tail
piles
Geomagnetic activity
Preconditioning
flow
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5553-485327a51f6cec465eb8a541a63c908e26f50dbcb0aa42ed0c8474a41e8ec383
Notes National Science Foundation - No. ATM-0720422
ArticleID:2012JA017579
ark:/67375/WNG-D4G7NCM4-T
NASA - No. NNX10AF25G; No. NNX10AE61G; No. NAS5-02099
Tab-delimited Table 1.Tab-delimited Table 2.
istex:C52E3792C1D27B6662D5A04A230C4B337C805903
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JA017579
PQID 1013531034
PQPubID 54732
PageCount 15
ParticipantIDs proquest_miscellaneous_1093437418
proquest_journals_1013531034
crossref_primary_10_1029_2012JA017579
pascalfrancis_primary_25982228
wiley_primary_10_1029_2012JA017579_JGRA21913
istex_primary_ark_67375_WNG_D4G7NCM4_T
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Baumjohann, W., G. Paschmann, T. Nagai, and H. Luhr (1991), Superposed epoch analysis of the substorm plasma sheet, J. Geophys. Res., 96(A7), 11,605-11,608, doi:10.1029/91JA00775.
Baumjohann, W., M. Hesse, S. Kokubun, T. Mukai, T. Nagai, and A. A. Petrukovich (1999), Substorm dipolarization and recovery, J. Geophys. Res., 104(A11), 24,995-25,000, doi:10.1029/1999JA900282.
Sergeev, V. A., and W. Lennartsson (1988), Plasma sheet at X ∼ −20 RE during steady magnetospheric convection, Planet. Space Sci., 36(4), 353-370, doi:10.1016/0032-0633(88)90124-9.
Sergeev, V. A., W. Lennartsson, R. Pellinen, M. Vallinkoski, and N. I. Fedorova (1990), Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection, Planet. Space Sci., 38(3), 355-363, doi:10.1016/0032-0633(90)90101-U.
McPherron, R. L. (1970), Growth phase of magnetospheric substorms, J. Geophys. Res., 75(28), 5592-5599, doi:10.1029/JA075i028p05592.
Schödel, R., W. Baumjohann, R. Nakamura, V. A. Sergeev, and T. Mukai (2001), Rapid flux transport in the central plasma sheet, J. Geophys. Res., 106(A1), 301-313, doi:10.1029/2000JA900139.
Spence, H. E., M. G. Kivelson, R. J. Walker, and D. J. McComas (1989), Magnetotail plasma pressures in the midnight meridian: Observations, J. Geophys. Res., 94(A5), 5264, doi:10.1029/JA094iA05p05264.
Angelopoulos, V., et al. (1993), Characteristics of ion flow in the quiet state of the inner plasma sheet, Geophys. Res. Lett., 20(16), 1711-1714, doi:10.1029/93GL00847.
Sergeev, V. A., T. I. Pulkkinen, R. J. Pellinen, and N. A. Tsyganenko (1994), Hybrid state of the tail magnetic configuration during steady convection events, J. Geophys. Res., 99(A12), 23,571-23,582, doi:10.1029/94JA01980.
Baumjohann, W., G. Paschmann, and C. A. Cattell (1989), Average plasma properties in the central plasma sheet, J. Geophys. Res., 94(A6), 6597-6606, doi:10.1029/JA094iA06p06597.
Huang, C. Y., and L. A. Frank (1994), A statistical survey of the central plasma sheet, J. Geophys. Res., 99(A1), 83-95, doi:10.1029/93JA01894.
Angelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Luhr, and G. Paschmann (1992), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97(A4), 4027-4039, doi:10.1029/91JA02701.
Hori, T., K. Maezawa, Y. Saito, and T. Mukai (2000), Average profile of ion flow and convection electric field in the near-Earth plasma sheet, Geophys. Res. Lett., 27(11), 1623-1626, doi:10.1029/1999GL003737.
Wing, S., and P. T. Newell (1998), Central plasma sheet ion properties as inferred from ionospheric observations, J. Geophys. Res., 103(A4), 6785-6800, doi:10.1029/97JA02994.
Shiokawa, K., W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 24(10), 1179-1182, doi:10.1029/97GL01062.
Nishida, A. (1994), The GEOTAIL mission, Geophys. Res. Lett., 21(25), 2871-2873, doi:10.1029/94GL01223.
Dmitrieva, N. P., V. A. Sergeev, and M. A. Shukhtina (2004), Average characteristics of the midtail plasma sheet in different dynamic regimes of the magnetosphere, Ann. Geophys., 22, 2107-2113, doi:10.5194/angeo-22-2107-2004.
Russell, C. T., and R. L. McPherron (1973), The magnetotail and substorms, Space Sci. Rev., 15, 205, doi:10.1007/BF00169321.
Yang, J., F. R. Toffoletto, G. M. Erickson, and R. A. Wolf (2010), Superposed epoch study of PV5/3 during substorms, pseudobreakups and convection bays, Geophys. Res. Lett., 37, L07102, doi:10.1029/2010GL042811.
Kissinger, J., R. L. McPherron, T.-S. Hsu, and V. Angelopoulos (2011), Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle, J. Geophys. Res., 116, A00I19, doi:10.1029/2010JA015763.
McPherron, R. L., C. T. Russell, and M. Aubry (1973), Satellite studies of magnetospheric substorms on August 15, 1978: 9. Phenomenological model for substorms, J. Geophys. Res., 78(16), 3131-3149, doi:10.1029/JA078i016p03131.
Tanskanen, E. I., J. A. Slavin, D. H. Fairfield, D. G. Sibeck, J. Gjerloev, T. Mukai, A. Ieda, and T. Nagai (2005), Magnetotail response to prolonged southward IMF Bz intervals: Loading, unloading, and continuous magnetospheric dissipation, J. Geophys. Res., 110, A03216, doi:10.1029/2004JA010561.
Runov, A., V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, and J. Bonnell (2011), A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 116, A05216, doi:10.1029/2010JA016316.
Pytte, T., R. L. McPherron, E. W. Hones Jr., and H. I. West Jr. (1978), Multiple-satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection-driven negative bays, J. Geophys. Res., 83(A2), 663-679, doi:10.1029/JA083iA02p00663.
DeJong, A. D., A. J. Ridley, and C. R. Clauer (2008), Balanced reconnection intervals: Four case studies, Ann. Geophys., 26, 3897-3912, doi:10.5194/angeo-26-3897-2008.
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2), 47-48, doi:10.1103/PhysRevLett.6.47.
DeJong, A. D., A. J. Ridley, X. Cai, and C. R. Clauer (2009), A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections, J. Geophys. Res., 114, A08215, doi:10.1029/2008JA013870.
Wang, C.-P., L. R. Lyons, J. M. Weygand, T. Nagai, and R. W. McEntire (2006), Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field Bz conditions, J. Geophys. Res., 111, A04215, doi:10.1029/2005JA011545.
Milan, S. E., G. Provan, and B. Hubert (2007), Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates, J. Geophys. Res., 112, A01209, doi:10.1029/2006JA011642.
Angelopoulos, V., C. Kennel, F. Coroniti, R. Pellat, M. Kivelson, R. Walker, C. Russell, W. Baumjohann, W. Feldman, and J. Gosling (1994), Statistical characteristics of bursty bulk flow events, J. Geophys. Res., 99(A11), 21,257-21,280, doi:10.1029/94JA01263.
Kistler, L. M., E. Mobius, W. Baumjohann, G. Paschmann, and D. C. Hamilton (1992), Pressure changes in the plasma sheet during substorm injections, J. Geophys. Res., 97(A3), 2973-2983, doi:10.1029/91JA02802.
Mukai, T., S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Ejiri, and A. Nishida (1994), The Low Energy Particle (LEP) experiment onboard the GEOTAIL satellite, J. Geomagn. Geoelectr., 46, 669-692, doi:10.5636/jgg.46.669.
Baker, D. N., T. I. Pulkkinen, E. W. Hones Jr., R. D. I. Belian, R. L. McPherron, and V. Angelopoulos (1994), Signatures of the substorm recovery phase at high-altitude spacecraft, J. Geophys. Res., 99(A6), 10,967-10,979, doi:10.1029/93JA02719.
Goodrich, C. C., T. I. Pulkkinen, J. G. Lyon, and V. G. Merkin (2007), Magnetospheric convection during intermediate driving: Sawtooth events and steady convection intervals as seen in Lyon-Fedder-Mobarry global MHD simulations, J. Geophys. Res., 112, A08201, doi:10.1029/2006JA012155.
McPherron, R. L., T.-S. Hsu, J. Kissinger, X. Chu, and V. Angelopoulos (2011), Characteristics of plasma flows at the inner edge of the plasma sheet, J. Geophys. Res., 116, A00I33, doi:10.1029/2010JA015923.
Sergeev, V. A., R. J. Pellinen, and T. I. Pulkkinen (1996), Steady magnetospheric convection: A review of recent results, Space Sci. Rev., 75, 551-604, doi:10.1007/BF00833344.
Baumjohann, W., G. Paschmann, and H. Luhr (1990), Characteristics of high-speed ion flows in the plasma sheet, J. Geophys. Res., 95(A4), 3801-3809, doi:10.1029/JA095iA04p03801.
Runov, A., V. Angelopoulos, M. I. Sitnov, V. A. Sergeev, J. Bonnell, J. P. McFadden, D. Larson, K. H. Glassmeier, and U. Auster (2009), THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett., 36, L14106, doi:10.1029/2009GL038980.
O'Brien, T. P., S. M. Thompson, and R. L. McPherron (2002), Steady magnetospheric convection: Statistical signatures in the solar wind and AE, Geophys. Res. Lett., 29(7), 1130, doi:10.1029/2001GL014641.
1990; 95
2011; 116
2004; 22
2010; 37
2000; 27
2005; 110
1990; 38
1973; 78
1991; 96
1973; 15
1988; 36
1993; 20
1997; 24
1970; 75
1994; 46
2005
1992; 97
1999; 104
2009; 114
1996; 75
2006; 111
1994; 21
2001; 106
2007; 112
2009; 36
1989; 94
2002; 29
1961; 6
1978; 83
1994; 99
2008; 26
1998; 103
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 99
  start-page: 23,571
  issue: A12
  year: 1994
  end-page: 23,582
  article-title: Hybrid state of the tail magnetic configuration during steady convection events
  publication-title: J. Geophys. Res.
– volume: 38
  start-page: 355
  issue: 3
  year: 1990
  end-page: 363
  article-title: Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection
  publication-title: Planet. Space Sci.
– volume: 15
  start-page: 205
  year: 1973
  article-title: The magnetotail and substorms
  publication-title: Space Sci. Rev.
– volume: 6
  start-page: 47
  issue: 2
  year: 1961
  end-page: 48
  article-title: Interplanetary magnetic field and the auroral zones
  publication-title: Phys. Rev. Lett.
– volume: 27
  start-page: 1623
  issue: 11
  year: 2000
  end-page: 1626
  article-title: Average profile of ion flow and convection electric field in the near‐Earth plasma sheet
  publication-title: Geophys. Res. Lett.
– start-page: 113
  year: 2005
  end-page: 124
– volume: 37
  year: 2010
  article-title: Superposed epoch study of PV during substorms, pseudobreakups and convection bays
  publication-title: Geophys. Res. Lett.
– volume: 97
  start-page: 2973
  issue: A3
  year: 1992
  end-page: 2983
  article-title: Pressure changes in the plasma sheet during substorm injections
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2009
  article-title: THEMIS observations of an earthward‐propagating dipolarization front
  publication-title: Geophys. Res. Lett.
– volume: 99
  start-page: 83
  issue: A1
  year: 1994
  end-page: 95
  article-title: A statistical survey of the central plasma sheet
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 3897
  year: 2008
  end-page: 3912
  article-title: Balanced reconnection intervals: Four case studies
  publication-title: Ann. Geophys.
– volume: 114
  year: 2009
  article-title: A statistical study of BRIs (SMCs), isolated substorms, and individual sawtooth injections
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 353
  issue: 4
  year: 1988
  end-page: 370
  article-title: Plasma sheet at X ∼ −20 R during steady magnetospheric convection
  publication-title: Planet. Space Sci.
– volume: 110
  year: 2005
  article-title: Magnetotail response to prolonged southward IMF intervals: Loading, unloading, and continuous magnetospheric dissipation
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 7
  year: 2002
  article-title: Steady magnetospheric convection: Statistical signatures in the solar wind and AE
  publication-title: Geophys. Res. Lett.
– volume: 94
  start-page: 6597
  issue: A6
  year: 1989
  end-page: 6606
  article-title: Average plasma properties in the central plasma sheet
  publication-title: J. Geophys. Res.
– volume: 95
  start-page: 3801
  issue: A4
  year: 1990
  end-page: 3809
  article-title: Characteristics of high‐speed ion flows in the plasma sheet
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 301
  issue: A1
  year: 2001
  end-page: 313
  article-title: Rapid flux transport in the central plasma sheet
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Characteristics of plasma flows at the inner edge of the plasma sheet
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Magnetospheric convection during intermediate driving: Sawtooth events and steady convection intervals as seen in Lyon‐Fedder‐Mobarry global MHD simulations
  publication-title: J. Geophys. Res.
– volume: 94
  start-page: 5264
  issue: A5
  year: 1989
  article-title: Magnetotail plasma pressures in the midnight meridian: Observations
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: Equatorial distributions of the plasma sheet ions, their electric and magnetic drifts, and magnetic fields under different interplanetary magnetic field conditions
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 2871
  issue: 25
  year: 1994
  end-page: 2873
  article-title: The GEOTAIL mission
  publication-title: Geophys. Res. Lett.
– volume: 75
  start-page: 551
  year: 1996
  end-page: 604
  article-title: Steady magnetospheric convection: A review of recent results
  publication-title: Space Sci. Rev.
– volume: 99
  start-page: 21,257
  issue: A11
  year: 1994
  end-page: 21,280
  article-title: Statistical characteristics of bursty bulk flow events
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 4027
  issue: A4
  year: 1992
  end-page: 4039
  article-title: Bursty bulk flows in the inner central plasma sheet
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates
  publication-title: J. Geophys. Res.
– volume: 83
  start-page: 663
  issue: A2
  year: 1978
  end-page: 679
  article-title: Multiple‐satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection‐driven negative bays
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: 1179
  issue: 10
  year: 1997
  end-page: 1182
  article-title: Braking of high‐speed flows in the near‐Earth tail
  publication-title: Geophys. Res. Lett.
– volume: 78
  start-page: 3131
  issue: 16
  year: 1973
  end-page: 3149
  article-title: Satellite studies of magnetospheric substorms on August 15, 1978: 9. Phenomenological model for substorms
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 24,995
  issue: A11
  year: 1999
  end-page: 25,000
  article-title: Substorm dipolarization and recovery
  publication-title: J. Geophys. Res.
– volume: 46
  start-page: 669
  year: 1994
  end-page: 692
  article-title: The Low Energy Particle (LEP) experiment onboard the GEOTAIL satellite
  publication-title: J. Geomagn. Geoelectr.
– volume: 103
  start-page: 6785
  issue: A4
  year: 1998
  end-page: 6800
  article-title: Central plasma sheet ion properties as inferred from ionospheric observations
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 10,967
  issue: A6
  year: 1994
  end-page: 10,979
  article-title: Signatures of the substorm recovery phase at high‐altitude spacecraft
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Steady magnetospheric convection and stream interfaces: Relationship over a solar cycle
  publication-title: J. Geophys. Res.
– volume: 75
  start-page: 5592
  issue: 28
  year: 1970
  end-page: 5599
  article-title: Growth phase of magnetospheric substorms
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 11,605
  issue: A7
  year: 1991
  end-page: 11,608
  article-title: Superposed epoch analysis of the substorm plasma sheet
  publication-title: J. Geophys. Res.
– volume: 20
  start-page: 1711
  issue: 16
  year: 1993
  end-page: 1714
  article-title: Characteristics of ion flow in the quiet state of the inner plasma sheet
  publication-title: Geophys. Res. Lett.
– volume: 22
  start-page: 2107
  year: 2004
  end-page: 2113
  article-title: Average characteristics of the midtail plasma sheet in different dynamic regimes of the magnetosphere
  publication-title: Ann. Geophys.
– ident: e_1_2_8_2_1
  doi: 10.1029/91JA02701
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevLett.6.47
– ident: e_1_2_8_35_1
  doi: 10.1007/BF00833344
– ident: e_1_2_8_34_1
  doi: 10.1029/94JA01980
– ident: e_1_2_8_25_1
  doi: 10.1029/94GL01223
– ident: e_1_2_8_23_1
  doi: 10.1029/2006JA011642
– ident: e_1_2_8_7_1
  doi: 10.1029/JA095iA04p03801
– ident: e_1_2_8_36_1
  doi: 10.1029/97GL01062
– ident: e_1_2_8_40_1
  doi: 10.1029/97JA02994
– ident: e_1_2_8_21_1
  doi: 10.1016/B978‐044451881‐1/50009‐5
– ident: e_1_2_8_28_1
  doi: 10.1029/2009GL038980
– ident: e_1_2_8_14_1
  doi: 10.1029/2006JA012155
– ident: e_1_2_8_29_1
  doi: 10.1029/2010JA016316
– ident: e_1_2_8_3_1
  doi: 10.1029/93GL00847
– ident: e_1_2_8_4_1
  doi: 10.1029/94JA01263
– ident: e_1_2_8_39_1
  doi: 10.1029/2005JA011545
– ident: e_1_2_8_15_1
  doi: 10.1029/1999GL003737
– ident: e_1_2_8_6_1
  doi: 10.1029/JA094iA06p06597
– ident: e_1_2_8_16_1
  doi: 10.1029/93JA01894
– ident: e_1_2_8_18_1
  doi: 10.1029/91JA02802
– ident: e_1_2_8_22_1
  doi: 10.1029/2010JA015923
– ident: e_1_2_8_17_1
  doi: 10.1029/2010JA015763
– ident: e_1_2_8_8_1
  doi: 10.1029/91JA00775
– ident: e_1_2_8_11_1
  doi: 10.1029/2008JA013870
– ident: e_1_2_8_20_1
  doi: 10.1029/JA078i016p03131
– ident: e_1_2_8_26_1
  doi: 10.1029/2001GL014641
– ident: e_1_2_8_31_1
  doi: 10.1029/2000JA900139
– ident: e_1_2_8_38_1
  doi: 10.1029/2004JA010561
– ident: e_1_2_8_19_1
  doi: 10.1029/JA075i028p05592
– ident: e_1_2_8_41_1
  doi: 10.1029/2010GL042811
– ident: e_1_2_8_12_1
  doi: 10.5194/angeo‐22‐2107‐2004
– ident: e_1_2_8_37_1
  doi: 10.1029/JA094iA05p05264
– ident: e_1_2_8_9_1
  doi: 10.1029/1999JA900282
– ident: e_1_2_8_24_1
  doi: 10.5636/jgg.46.669
– ident: e_1_2_8_32_1
  doi: 10.1016/0032‐0633(88)90124‐9
– ident: e_1_2_8_33_1
  doi: 10.1016/0032‐0633(90)90101‐U
– ident: e_1_2_8_5_1
  doi: 10.1029/93JA02719
– ident: e_1_2_8_30_1
  doi: 10.1007/BF00169321
– ident: e_1_2_8_27_1
  doi: 10.1029/JA083iA02p00663
– ident: e_1_2_8_10_1
  doi: 10.5194/angeo‐26‐3897‐2008
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816915
Score 2.3878152
Snippet Steady magnetospheric convection (SMC) events in the Earth's magnetosphere are thought to result from balancing the rate of opening flux through solar...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Atmospheric sciences
balanced reconnection
Convection
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow pattern
Fluctuations
High pressure
Magnetism
magnetotail
modes of magnetospheric response
SMC
steady magnetospheric convection
substorms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb8zz2Sb11RYOtTzPo07aeRtaPlEDDKBnrm5Dl8ygldhYnsP7308lOlrz0TVgyNncn6ae7n-4I-ZyDkL4ElUplXKoCIkrLXNZpeAzeCAjrI7oGbmbZ9U81vdN3g8OtG2iV2zUxLtRV69FHHmY3VmjgTKpvyz8pVo3C6OpQQuM5GQmuMEw7-n45-3G787JgWQkTyxiI0EiNLNjAfmfChIM_F9NxsEmNTK69fWmEIv6LPEnXBVHVfY2LAxC6D2XjXnT1krwYQCQd91p_RZ5B85ocjzt0a7eLR3pGY7v3WnRvyMNFz75oG9rWdBkA88LRagN03VLMV0wjG3azAnrf0IAIaSzIRRfudwPrtsPMA0D7C400WsXjQd-9p5G8Hq9IvCXzq8v5-XU6VFlIvdZaBv1oKXKneZ158CrTUBZOK-4y6Q0rQGS1ZlXpS-acElAxHzY05RSHAnw4374jR03bwDGh0jjPgWVgnFGFq5z2VUALPBMF5CWvEvJlK2K77HNp2BgDF8buqyIhZ1H-u0Fu9YD8s1zbX7OJvVCTfHZ-o-w8IacHCtq9IGJaQlEk5GSrMTvMzc7-t6SEfNp1h1mFoRLXQLvBMUYqiZl9EvI1avrJP7bTye04rP1cvn_6ix_QLyBYz5g8IUfr1QY-BlSzLk8H0_0H4ff0HQ
  priority: 102
  providerName: ProQuest
Title Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection
URI https://api.istex.fr/ark:/67375/WNG-D4G7NCM4-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JA017579
https://www.proquest.com/docview/1013531034
https://search.proquest.com/docview/1093437418
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdbw2AMxtZt1GsXNNj6NLNYH_54zNImJZAslIz1zcjyZYQudokTaP77nSTHs18Gewm6SDKCO-l-Pp9-R8inCBjXGQifi0T5AhGRn0V85ePfoBMGeD6a0MBsHt78ENM7eVcH3MxdGMcP0QTczM6w57XZ4CqrarIBw5GJnotNh2hQMkqekh4im9hYNROLJsZiuVL-pnwEwl7idALaedwRWFvgbUG0BdkWwqMgcJ-60oci9g0rX51jj0v92l5ox_v1jCIfTTamqlAhK1dJowN124DZerzxK_Kyhqp06GzrNXkCxSk5G1YmeF5uDvSS2raLjVSn5Jmra3nA1gTqljdDUF5urYQTRr_XiJDrvhffNaiipszGSQv3oDfk_soli5QFLVf0AfH9RtF8D3RXUkOvTG3y7n4LdF1QBLDU1g-jG_WrgF1ZGaIEoO7-JbVGfOj0rTW1ufb2RsdbshxfL0c3fl0UwtdSSo7mJDmLlAxWoQYtQglZrKQIVMh1MoiBhSs5yDOdDZQSDPKBRv8rlAggBo2v4-_ISVEWcEYoT5QOYBBCohIRq1xJnSO4CUIWQ5QFuUc-H3WVPjjqj9R-smdJ2tapRy6tIptBantv0uUimf6cT9IrMYnmo5lIlx7pdzTdTGCWRZHFHrk4qj6tj5LK5OBxaarBCY98bLrxEDBfdlQB5d6MSTiaoAjwEV-syfxzxel0cjtEVxXw9_83_Jw8Nx0u4fOCnOy2e_iAoGyX9e3Ow994POmT3rfr-eL2D9-tI3U
link.rule.ids 315,786,790,11589,12792,21416,27955,27956,33406,33407,33777,33778,43633,43838,46085,46509,74390,74657
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_B9gAviE8tMIaRYE9Eir-S-AlVG20pax9QEXuzHOcyTVOT0rQS---xnbS0L3uzEudDd-fz-fzz_QA-Zci4LVDEXCgTCxcRxUXGq9hdRqsYOv_oUwPTWTr-JSbX8rpPuLU9rHLrE4OjLhvrc-RudHuGBppw8XX5J_asUX53tafQeAzHgqfc23k-HO1yLJ5UQgUSA-YaseJ50mPfE6bcsp-yycBZpPQ4rr1Z6dgL-K9HSZrWCarqGC4OQtD9QDbMRMPn8KwPIcmg0_kLeIT1SzgZtD6p3SzuyTkJ7S5n0b6Cu8sOe9HUpKnI0oXLC0PKDZJ1Q3y1YhKwsJsVktuauHiQBDousjA3Na6b1tcdQNIdZyTBJu4P7t1aEqDr4YDEa5gPv80vxnHPsRBbKSV32pGcZUbSKrVoRSqxyI0U1KTcqiRHllYyKQtbJMYIhmVi3XQmjKCYo3Wr2zdwVDc1ngDhyliKSYrKKJGb0khbuliBpizHrKBlBJ-3ItbLrpKGDjvgTOl9VURwHuS_62RWdx59lkn9ezbSl2KUzS6mQs8jODtQ0O4BFooSsjyC063GdD8yW_3fjiL4uLvtxpTfKDE1NhvfR3HBfV2fCL4ETT_4x3oy-jlwnp_ytw9_8QM8Gc-nV_rq--zHO3jq39FhJ0_haL3a4HsX36yLs2DE_wBWwvWn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BKyEuiKdqKGWRoCes2vuwvScUNSQl0AihIHqz1utxVVWxQ5xI9N-zs3ZCcult5fVLO7M7n2c_zwfwIUUubIEyFFKbUDpEFBapqEJ3GK3m6NZHSg1cTpOLX3Jypa56_lPb0yo3a6JfqMvGUo7czW5SaIgjIc-qnhbxYzj6vPgTkoIU7bT2choP4ZBANsk4ZKPxNt9CAhPaCxpw1wi1yKKeBx9xfebCIJ8MnHcq4nTtRKhDGuy_xJg0rRu0qlO72IOju6DWR6XRU3jSw0k26Oz_DB5g_RyOBi0luJv5HTtlvt3lL9oXcDvseBhNzZqKLRx0nhtWrpGtGkaVi5nnxa6XyG5q5rAh89JcbG6ua1w1LdUgQNb92si8f9zt9d1Y5mns_meJlzAbfZmdX4S93kJolVLCWUoJnhoVV4lFKxOFRWaUjE0irI4y5EmlorKwRWSM5FhG1oU2aWSMGVr3pfsKDuqmxiNgQhsbY5SgNlpmpjTKlg43xAnPMC3iMoCPmyHOF11VjdzvhnOd75oigFM__tuTzPKWmGipyn9Px_lQjtPp-aXMZwGc7BloewH3BQp5FsDxxmJ5P0vb_L9PBfB-2-3mF22amBqbNZ2jhRRU4yeAT97S975xPhn_HLgoEIvX9z_xHTxy_pt__zr99gYe0y06GuUxHKyWa3zroM6qOPE-_A_79_nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversion+of+plasma+due+to+high+pressure+in+the+inner+magnetosphere+during+steady+magnetospheric+convection&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Kissinger%2C+J&rft.au=McPherron%2C+R+L&rft.au=Hsu%2C+T-S&rft.au=Angelopoulos%2C+V&rft.date=2012-05-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=117&rft.issue=A5&rft_id=info:doi/10.1029%2F2012JA017579&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon