Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest-Savanna Transition in Brazil
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest,...
Saved in:
Published in | Biotropica Vol. 42; no. 1; pp. 112 - 118 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Malden, USA : Blackwell Publishing Inc
2010
Blackwell Publishing Inc Wiley Subscription Services Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp. |
---|---|
AbstractList | This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp. This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap‐sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. O presente estudo tem como objetivos comparar a comunidade de herbívoros juntamente com os danos causados por esses insetos entre dois ecossistemas, uma floresta decídua e o cerrado (savanna) ecossistemas que ocorrem juntos em uma região transição no sudeste do Brasil. Na floresta decídua, o dossel foi acessado utilizando uma técnica de escalada em corda simples, já o dossel do cerrado foi acessado utilizando uma escada de sete metros de altura. Os insetos foram amostrados utilizando a técnica de batimento entomológico nas folhas, além disso, 20 folhas de cada árvore foram coletadas para o calculo da massa foliar específica e a área foliar perdida por ação de insetos herbívoros. Também coletamos em cada ecossistema dez amostras de solo de para determinação da concentração de nutrientes. Nós amostramos 118 insetos herbívoros distribuídos em dez famílias; a floresta decídua apresentou uma maior diversidade (96 indivíduos distribuídos em 31 espécies). Uma maior abundância de insetos herbívoros por árvore foi amostrada na floresta decidua, se comparada a árvores presentes no cerrado. O mesmo padrão foi observado para a riqueza de mastigadores, com uma maior riqueza de mastigadores amostrada em árvores presentes na floresta decídua. Os insetos herbívoros de ambas as guildas e ecossistemas não foram afetados pela massa foliar específica. Entretanto, nós observamos uma correlação negativa entre a taxa de herbivoria foliar e a massa foliar específica. árvores do cerrado apresentam uma maior massa foliar específica e uma menor taxa de herbivoria se comparadas a árvores presentes na floresta decídua. Os resultados encontrados sugerem que as taxas de herbivoria em uma na transição entre florestas deciduas‐cerrado podem ser dirigidas pelos nutrientes presentes no solo, que também podem influenciar na esclerofilia foliar. This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. ABSTRACTThis study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp. ABSTRACT This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap‐sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. RESUMO O presente estudo tem como objetivos comparar a comunidade de herbívoros juntamente com os danos causados por esses insetos entre dois ecossistemas, uma floresta decídua e o cerrado (savanna) ecossistemas que ocorrem juntos em uma região transição no sudeste do Brasil. Na floresta decídua, o dossel foi acessado utilizando uma técnica de escalada em corda simples, já o dossel do cerrado foi acessado utilizando uma escada de sete metros de altura. Os insetos foram amostrados utilizando a técnica de batimento entomológico nas folhas, além disso, 20 folhas de cada árvore foram coletadas para o calculo da massa foliar específica e a área foliar perdida por ação de insetos herbívoros. Também coletamos em cada ecossistema dez amostras de solo de para determinação da concentração de nutrientes. Nós amostramos 118 insetos herbívoros distribuídos em dez famílias; a floresta decídua apresentou uma maior diversidade (96 indivíduos distribuídos em 31 espécies). Uma maior abundância de insetos herbívoros por árvore foi amostrada na floresta decidua, se comparada a árvores presentes no cerrado. O mesmo padrão foi observado para a riqueza de mastigadores, com uma maior riqueza de mastigadores amostrada em árvores presentes na floresta decídua. Os insetos herbívoros de ambas as guildas e ecossistemas não foram afetados pela massa foliar específica. Entretanto, nós observamos uma correlação negativa entre a taxa de herbivoria foliar e a massa foliar específica. árvores do cerrado apresentam uma maior massa foliar específica e uma menor taxa de herbivoria se comparadas a árvores presentes na floresta decídua. Os resultados encontrados sugerem que as taxas de herbivoria em uma na transição entre florestas deciduas‐cerrado podem ser dirigidas pelos nutrientes presentes no solo, que também podem influenciar na esclerofilia foliar. |
Author | Quesada, Mauricio Fernandes, G. Wilson Sanchez-Azofeifa, G. Arturo Fagundes, Marcílio Espírito-Santo, Mário M. Neves, Frederico S. Araújo, Lucimar S. |
Author_xml | – sequence: 1 fullname: Neves, Frederico S – sequence: 2 fullname: Araújo, Lucimar S – sequence: 3 fullname: Espírito-Santo, Mário M – sequence: 4 fullname: Fagundes, Marcílio – sequence: 5 fullname: Fernandes, G. Wilson – sequence: 6 fullname: Sanchez-Azofeifa, G. Arturo – sequence: 7 fullname: Quesada, Mauricio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22259907$$DView record in Pascal Francis |
BookMark | eNqNkVtv0zAUxy00JLrCR0DkBXhK8d2JhJDWjl1EuUjr4AXJOnUc5JI5xc5Kw6fHIVOReEDzg2_n9z8-Pv9jdORbbxHKCJ6RNF5tZkRxnitOyxnFuJxhLDiZ7R-gySFwhCYYY5kzieUjdBzjJh1LgfkEfV2Ab7d9dmHD2u3a0Gfgq-zSR2u6w6XNTt3Ohui6PnM-g-w0cWfpPnb5FezAe8hWAXwCXOsHZB7gl2seo4c1NNE-uVun6Prs7WpxkS8_nl8uTpa5EUKQvKorJTlATQlT1hSylOuiJlBXQlDDCSlLXPA1qwq6ZopIa7kEgbEi3AhVYTZFL8e829D-uE1V6RsXjW0a8La9jbrElDFSpHmKXvyX5JIXhZID-PwOhGigqdPvjIt6G9wNhF5TSkWqSiWuGDkT2hiDrQ8IwXowSG_04IMefNCDQfqPQXqfpG_-kRrXwdDBLoBr7pPg9Zjgp2tsf--H9Xz1KW2S_Oko38SuDX-_ppKiUENX8zHuYmf3hziE71oqpoT-8uFcl-_fLT_PC6GXiX828jW0Gr6F1K7rK4oJw0RRpphgvwEp-Mxw |
CODEN | BTROAZ |
CitedBy_id | crossref_primary_10_1017_S026646741100006X crossref_primary_10_1093_jpe_rtw038 crossref_primary_10_3759_tropics_MS18_13 crossref_primary_10_2110_palo_2017_100 crossref_primary_10_1007_s40415_013_0038_x crossref_primary_10_1590_S1519_69842012000300006 crossref_primary_10_1590_0102_33062016abb0236 crossref_primary_10_1093_ee_nvaa072 crossref_primary_10_1080_17550874_2020_1744760 crossref_primary_10_7717_peerj_18262 crossref_primary_10_1603_EN11259 crossref_primary_10_1007_s10841_016_9930_6 crossref_primary_10_1007_s11829_014_9341_0 crossref_primary_10_1590_bjb_2014_0093 crossref_primary_10_1007_s00114_019_1614_0 crossref_primary_10_3390_agriculture11090830 crossref_primary_10_14411_eje_2018_035 crossref_primary_10_1139_b11_087 crossref_primary_10_3390_insects12050407 crossref_primary_10_1007_s10682_021_10144_7 crossref_primary_10_3389_ffgc_2021_709403 crossref_primary_10_1007_s10841_021_00340_9 crossref_primary_10_1007_s11829_011_9160_5 crossref_primary_10_1016_j_ecolmodel_2021_109628 crossref_primary_10_1007_s11258_021_01131_7 crossref_primary_10_1007_s11258_014_0328_9 crossref_primary_10_1016_j_actao_2023_103961 crossref_primary_10_1071_ZO12080 crossref_primary_10_1016_j_envexpbot_2011_07_010 crossref_primary_10_1017_S0266467417000086 crossref_primary_10_1007_s11258_018_0804_8 crossref_primary_10_1016_j_foreco_2019_117738 crossref_primary_10_1007_s11829_012_9224_1 crossref_primary_10_1590_2236_8906_21_2021 crossref_primary_10_1007_s11829_015_9359_y crossref_primary_10_1007_s00442_024_05536_9 crossref_primary_10_1590_1678_4766e2017042 crossref_primary_10_18502_espoch_v3i1_14491 crossref_primary_10_1007_s11258_015_0464_x crossref_primary_10_1016_j_palaeo_2017_12_006 crossref_primary_10_1007_s11258_017_0778_y crossref_primary_10_1080_17550874_2021_2022798 crossref_primary_10_1111_icad_12605 crossref_primary_10_1007_s11829_015_9362_3 crossref_primary_10_1111_j_1654_1103_2012_01424_x crossref_primary_10_1007_s11829_010_9111_6 crossref_primary_10_1093_aesa_saw034 crossref_primary_10_1007_s00114_015_1320_5 crossref_primary_10_1093_jpe_rtx037 crossref_primary_10_1111_een_12808 |
Cites_doi | 10.1126/science.230.4728.895 10.2307/2388522 10.2307/2387934 10.2307/2258321 10.1590/S1519-69842006000400011 10.1046/j.1442-9993.2002.01165.x 10.1093/oxfordjournals.aob.a083814 10.1046/j.1466-822X.1999.00142.x 10.1111/j.2006.0906-7590.04520.x 10.1046/j.1095-8312.2002.00091.x 10.1006/anbo.2000.1261 10.2307/1942495 10.1007/s00442-006-0462-8 10.2307/1933707 10.2307/2388019 10.2307/4325 10.1046/j.1365-2435.2001.00522.x 10.1590/S1519-566X2006000200005 10.1071/BT9900459 10.1111/j.1442-9993.1983.tb01515.x 10.1007/BF01022528 10.1046/j.1365-2435.2002.00631.x 10.1007/s00442-007-0737-8 10.1017/CBO9780511753398.012 10.1016/0378-1127(91)90179-Y 10.1007/BF00344738 10.1093/oxfordjournals.aob.a083740 10.1017/S0266467401001080 10.3398/1527-0904(2006)66[473:SHIAOC]2.0.CO;2 |
ContentType | Journal Article |
Copyright | Copyright 2009 Association for Tropical Biology and Conservation Inc. 2009 The Author(s). Journal compilation © 2009 by The Association for Tropical Biology and Conservation 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright 2009 Association for Tropical Biology and Conservation Inc. – notice: 2009 The Author(s). Journal compilation © 2009 by The Association for Tropical Biology and Conservation – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7S9 L.6 7SN 7SS 7ST 7U6 C1K |
DOI | 10.1111/j.1744-7429.2009.00541.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1744-7429 |
EndPage | 118 |
ExternalDocumentID | 22259907 10_1111_j_1744_7429_2009_00541_x BTP541 27742870 ark_67375_WNG_9MKLVB85_L US201301723735 |
Genre | article |
GeographicLocations | South America Brazil America |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | -DZ -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23N 2AX 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AAPSS AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABPLY ABPPZ ABPVW ABTAH ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACHIC ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFIJ AFFPM AFGKR AFNWH AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DC7 DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TN5 UB1 V8K VH1 VQA W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ZCA ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB ABSQW ADXHL AEFGJ AEYWJ AGHNM AGQPQ AGUYK AGXDD AGYGG AIDQK AIDYY BSCLL AEUQT AFPWT DOOOF JSODD WRC AAYXX CITATION IQODW 7S9 L.6 7SN 7SS 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c5551-dfd764aaf2137ec8696b8f1afd552c41199084b3d82b3716ee46a500714c57d03 |
IEDL.DBID | DR2 |
ISSN | 0006-3606 |
IngestDate | Thu Jul 10 18:40:57 EDT 2025 Fri Jul 11 11:50:44 EDT 2025 Mon Jul 21 09:16:19 EDT 2025 Tue Jul 01 02:22:44 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 Wed Jan 22 16:38:26 EST 2025 Thu Jul 03 21:21:06 EDT 2025 Thu Aug 21 01:26:54 EDT 2025 Tue Mar 04 00:58:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dry forest habitat transition Herbivorous Savannah Insecta Tropical zone Diversity Soil quality Plant leaf Guild Canopy insect Sclerophylly Biome Phytophagous Arthropoda Transition insect guild Habitat Invertebrata Cerrado leaf sclerophylly Canopy(vegetation) |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5551-dfd764aaf2137ec8696b8f1afd552c41199084b3d82b3716ee46a500714c57d03 |
Notes | http://dx.doi.org/10.1111/j.1744-7429.2009.00541.x istex:34CADB85AF43F5169BF2EA4E4D8DB6757C38B09C ArticleID:BTP541 ark:/67375/WNG-9MKLVB85-L 5 Corresponding author; e‐mail frederico.neves@unimontes.br ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 46488762 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_902331802 proquest_miscellaneous_46488762 pascalfrancis_primary_22259907 crossref_primary_10_1111_j_1744_7429_2009_00541_x crossref_citationtrail_10_1111_j_1744_7429_2009_00541_x wiley_primary_10_1111_j_1744_7429_2009_00541_x_BTP541 jstor_primary_27742870 istex_primary_ark_67375_WNG_9MKLVB85_L fao_agris_US201301723735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010 2010-01 20100101 January 2010 2010-01-00 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: Hoboken, NJ |
PublicationTitle | Biotropica |
PublicationYear | 2010 |
Publisher | Malden, USA : Blackwell Publishing Inc Blackwell Publishing Inc Wiley Subscription Services Wiley |
Publisher_xml | – name: Malden, USA : Blackwell Publishing Inc – name: Blackwell Publishing Inc – name: Wiley Subscription Services – name: Wiley |
References | Lowman, M. D. 1984. An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica 16: 264-268. Rasband, W. S. 2006. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland. Available at http://rsb.info.nih.gov/ij (accessed July 2005). Specht, R. L., and P. W. Rundel. 1990. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38: 459-474. Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77: 43-65. White, T. C. R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in plantation of Pinus radiata in New Zealand. Oecologia 16: 279-301. Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in lowland tropical rain forest. Ecol. Monogr. 53: 209-233. Read, J., and G. D. Sanson. 2003. Characterizing sclerophylly: The mechanical properties of a diverse range of leaf types. New Phytol. 160: 81-99. Price, P. W. 1997. Insect ecology. John Wiley & Sons, New York, New York. Bendicho-Lopez, A., H. C. Morais, J. D. Hay, and I. R. Diniz. 2006. Lepidópteros folívoros em Roupala montana Aubl. (Proteaceae) no Cerrado Sensu Stricto. Neotrop. Entomol. 35: 182-191. Lamont, B. B., P. K. Groom, and R. M. Cowling. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations. Funct. Ecol. 16: 403-412. Franco, A. C., and U. Luttge. 2002. Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131: 356-365. Loveless, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551-561. Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899. Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 2002. An introduction to the study of insects. Saunders College Publishing, New York, New York. Furley, P. A. 1999. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob. Ecol. Biogeogr. 8: 223-241. Goodland, R. 1971. A Physiognomic analysis of the Cerrado vegetation of central Brasil. J. Ecol. 59: 411-419. Basset, Y. 2001. Invertebrates in the canopy of tropical rain forests: How much do we really know? Plant Ecol. 153: 87-107. Espírito-Santo, M. M., F. S. Neves, F. R. Andrade-Neto, and G. W. Fernandes. 2007. Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153: 353-364. R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.r-project.org (accessed July 2005). Wright, I. J., and K. Cannon. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351-359. Lowman, M. D. 2009. Canopy research in the twenty-first century: A review of Arboreal Ecology. J. Trop. Ecol. 50: 125-136. White, T. C. R. 1969. An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia. Ecology 50: 905-909. Wright, I. J., and M. Westoby. 2002. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155: 103-116. Gonçalves-Alvim, S. J., G. Korndorf, and G. W. Fernades. 2006. Sclerophylly in Qualea parviflora (Vochysiaceae): Influence of herbivory, mineral nutrients, and water status. Plant Ecol. 187: 153-162. Pinheiro, F., I. R. Diniz, D. Coelho, and M. P. S. Bandeira. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Aust. Ecol. 27: 132-136. Goodland, R., and M. G. Ferri. 1979. Ecologia do Cerrado. Editora da Universidade de São Paulo, São Paulo, Brazil. Lowman, M. D., and J. D. Box. 1983. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Aust. J. Ecol. 8: 17-25. Salatino, A. 1993. Chemical ecology and the theory of oligotrophic scleromorphism. An. Acad. Bras. Ciênc. 65: 1-13. Campos, R., H. L. Vasconcelos, S. P. Ribeiro, F. S. Neves, and J. P. Soares. 2006. Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29: 442-450. Price, P. W. 1992. The resource-based organization of communities. Biotropica 24: 273-282. Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67: 283-335. Strong, D. R., J. H. Lawton, and T. R. E. Southwood. 1984. Insects on plant. Community patterns and mechanisms. Blackwell, Oxford, UK. Crawley, M. J. 2002. Statistical computing-an introduction to data analysis using s-plus. John Wiley & Sons, London, UK. Perry, D. R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155-157. Huberty, A. F., and R. F. Denno. 2006. Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149: 444-455. Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672. Varanda, E. M., and M. P. Pais. 2006. Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian cerrado. Braz. J. Biol. 66: 671-680. Choong, M. F., P. W. Lucas, J. S. Y. Ong, P. Pereira, H. T. W. Tan, and I. M. Turner. 1992. Leaf structure toughness and sclerophylly: Their correlations and ecological implications. New Phytol. 121: 497-610. Lucas, P. W., I. M. Turner, N. J. Dominy, and N. Yamashita. 2000. Mechanical defenses to herbivory. Ann. Bot. 86: 913-920. Shaw, D. C., K. A. Ernest, H. B. Rinker, and M. D. Lowman. 2006. Stand-Level herbivory in an old-growth conifer forest canopy. West. N. Am. Nat. 66: 473-481. Turner, I. M.1994. Sclerophylly: Primarily protective. Funct. Ecol. 8: 669-675. Loveless, A. R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-184. Marquis, R. J., I. R. Diniz, and H. C. Morais. 2001. Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J. Trop. Ecol. 17: 127-148. Moran, V. C., and T. R. E. Southwood. 1982. The guild composition of arthropod communities in trees. J. Anim. Ecol. 51: 289-306. Mole, S., and P. G. Waterman. 1988. Light-induced variation in phenolic levels in foliage of rain-forest plants. II. Potential significance to herbivores. J. Chem. Ecol. 14: 23-34. Fernandes, G. W. 1994. Plant mechanical defenses against insect herbivory. Rev. Bras. Entomol. 38: 421-433. Haukioja, E., K. RuohomÄki, J. Suomela, and T. Vuorisalo. 1991. Nutritional quality as a defense against herbivores. For. Ecol. Manage. 39: 237-245. 2002; 16 1974; 16 2006; 35 1992; 121 1982; 51 1993; 65 2002; 155 2000; 86 1983; 53 1983; 8 2007; 30 1979 1984; 16 2009; 50 2006; 66 1971; 59 2006; 29 2003; 160 1984 1994; 38 2001; 15 2001; 17 1989 1991; 39 2002; 131 1990; 38 1978; 10 1969; 50 1988; 14 2002; 77 1998 1997 2008 1995 2006 2005 2004 2003 2002 1991 1999; 8 2002; 27 1994; 8 2001; 153 2007; 153 2006; 187 1962; 26 1992; 24 2006; 149 1992; 67 1961; 25 1985; 230 e_1_2_6_53_1 Choong M. F. (e_1_2_6_7_1) 1992; 121 Fernandes G. W. (e_1_2_6_14_1) 1991 e_1_2_6_32_1 e_1_2_6_30_1 R Development Core Team. (e_1_2_6_44_1) 2005 Franco A. C. (e_1_2_6_15_1) 2002; 131 e_1_2_6_19_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 Wright I. J. (e_1_2_6_62_1) 2002; 155 e_1_2_6_17_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_41_1 e_1_2_6_60_1 Rinker H. B. (e_1_2_6_50_1) 2004 Borror D. J. (e_1_2_6_5_1) 2002 Basset Y. (e_1_2_6_3_1) 2003 e_1_2_6_9_1 Reatto A. (e_1_2_6_46_1) 1998 Strong D. R. (e_1_2_6_55_1) 1984 Ribeiro J. P. (e_1_2_6_47_1) 1998 Ribeiro S. P. (e_1_2_6_49_1) 2007; 30 e_1_2_6_28_1 e_1_2_6_26_1 Herms D. A. (e_1_2_6_22_1) 1992; 67 e_1_2_6_54_1 e_1_2_6_31_1 Fernandes G. W (e_1_2_6_13_1) 1994; 38 Basset Y (e_1_2_6_2_1) 2001; 153 Kitching R. L. (e_1_2_6_24_1) 1997 Rasband W. S (e_1_2_6_43_1) 2006 Oliveira P. E (e_1_2_6_36_1) 1998 Salatino A (e_1_2_6_51_1) 1993; 65 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Gonçalves‐Alvim S. J. (e_1_2_6_18_1) 2006; 187 Goodland R. (e_1_2_6_20_1) 1979 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Scariot A. (e_1_2_6_52_1) 2005 Crawley M. J (e_1_2_6_10_1) 2002 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Lowman M. D (e_1_2_6_29_1) 2009; 50 Ribeiro S. P (e_1_2_6_48_1) 2003 e_1_2_6_8_1 Price P. W (e_1_2_6_42_1) 1997 e_1_2_6_4_1 Weis A. E. (e_1_2_6_58_1) 1989 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 Read J. (e_1_2_6_45_1) 2003; 160 e_1_2_6_27_1 Turner I. M. (e_1_2_6_56_1) 1994; 8 |
References_xml | – reference: Marquis, R. J., I. R. Diniz, and H. C. Morais. 2001. Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J. Trop. Ecol. 17: 127-148. – reference: Strong, D. R., J. H. Lawton, and T. R. E. Southwood. 1984. Insects on plant. Community patterns and mechanisms. Blackwell, Oxford, UK. – reference: Huberty, A. F., and R. F. Denno. 2006. Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149: 444-455. – reference: White, T. C. R. 1969. An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia. Ecology 50: 905-909. – reference: Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67: 283-335. – reference: Price, P. W. 1992. The resource-based organization of communities. Biotropica 24: 273-282. – reference: Furley, P. A. 1999. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob. Ecol. Biogeogr. 8: 223-241. – reference: Goodland, R., and M. G. Ferri. 1979. Ecologia do Cerrado. Editora da Universidade de São Paulo, São Paulo, Brazil. – reference: Lowman, M. D. 2009. Canopy research in the twenty-first century: A review of Arboreal Ecology. J. Trop. Ecol. 50: 125-136. – reference: Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672. – reference: R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.r-project.org (accessed July 2005). – reference: Pinheiro, F., I. R. Diniz, D. Coelho, and M. P. S. Bandeira. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Aust. Ecol. 27: 132-136. – reference: White, T. C. R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in plantation of Pinus radiata in New Zealand. Oecologia 16: 279-301. – reference: Goodland, R. 1971. A Physiognomic analysis of the Cerrado vegetation of central Brasil. J. Ecol. 59: 411-419. – reference: Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in lowland tropical rain forest. Ecol. Monogr. 53: 209-233. – reference: Lowman, M. D., and J. D. Box. 1983. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Aust. J. Ecol. 8: 17-25. – reference: Mole, S., and P. G. Waterman. 1988. Light-induced variation in phenolic levels in foliage of rain-forest plants. II. Potential significance to herbivores. J. Chem. Ecol. 14: 23-34. – reference: Wright, I. J., and K. Cannon. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351-359. – reference: Lucas, P. W., I. M. Turner, N. J. Dominy, and N. Yamashita. 2000. Mechanical defenses to herbivory. Ann. Bot. 86: 913-920. – reference: Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77: 43-65. – reference: Shaw, D. C., K. A. Ernest, H. B. Rinker, and M. D. Lowman. 2006. Stand-Level herbivory in an old-growth conifer forest canopy. West. N. Am. Nat. 66: 473-481. – reference: Perry, D. R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155-157. – reference: Price, P. W. 1997. Insect ecology. John Wiley & Sons, New York, New York. – reference: Turner, I. M.1994. Sclerophylly: Primarily protective. Funct. Ecol. 8: 669-675. – reference: Read, J., and G. D. Sanson. 2003. Characterizing sclerophylly: The mechanical properties of a diverse range of leaf types. New Phytol. 160: 81-99. – reference: Wright, I. J., and M. Westoby. 2002. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155: 103-116. – reference: Lamont, B. B., P. K. Groom, and R. M. Cowling. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations. Funct. Ecol. 16: 403-412. – reference: Moran, V. C., and T. R. E. Southwood. 1982. The guild composition of arthropod communities in trees. J. Anim. Ecol. 51: 289-306. – reference: Salatino, A. 1993. Chemical ecology and the theory of oligotrophic scleromorphism. An. Acad. Bras. Ciênc. 65: 1-13. – reference: Fernandes, G. W. 1994. Plant mechanical defenses against insect herbivory. Rev. Bras. Entomol. 38: 421-433. – reference: Haukioja, E., K. RuohomÄki, J. Suomela, and T. Vuorisalo. 1991. Nutritional quality as a defense against herbivores. For. Ecol. Manage. 39: 237-245. – reference: Specht, R. L., and P. W. Rundel. 1990. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38: 459-474. – reference: Basset, Y. 2001. Invertebrates in the canopy of tropical rain forests: How much do we really know? Plant Ecol. 153: 87-107. – reference: Crawley, M. J. 2002. Statistical computing-an introduction to data analysis using s-plus. John Wiley & Sons, London, UK. – reference: Espírito-Santo, M. M., F. S. Neves, F. R. Andrade-Neto, and G. W. Fernandes. 2007. Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153: 353-364. – reference: Gonçalves-Alvim, S. J., G. Korndorf, and G. W. Fernades. 2006. Sclerophylly in Qualea parviflora (Vochysiaceae): Influence of herbivory, mineral nutrients, and water status. Plant Ecol. 187: 153-162. – reference: Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899. – reference: Varanda, E. M., and M. P. Pais. 2006. Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian cerrado. Braz. J. Biol. 66: 671-680. – reference: Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 2002. An introduction to the study of insects. Saunders College Publishing, New York, New York. – reference: Loveless, A. R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-184. – reference: Rasband, W. S. 2006. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland. Available at http://rsb.info.nih.gov/ij (accessed July 2005). – reference: Choong, M. F., P. W. Lucas, J. S. Y. Ong, P. Pereira, H. T. W. Tan, and I. M. Turner. 1992. Leaf structure toughness and sclerophylly: Their correlations and ecological implications. New Phytol. 121: 497-610. – reference: Lowman, M. D. 1984. An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica 16: 264-268. – reference: Loveless, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551-561. – reference: Campos, R., H. L. Vasconcelos, S. P. Ribeiro, F. S. Neves, and J. P. Soares. 2006. Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29: 442-450. – reference: Franco, A. C., and U. Luttge. 2002. Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131: 356-365. – reference: Bendicho-Lopez, A., H. C. Morais, J. D. Hay, and I. R. Diniz. 2006. Lepidópteros folívoros em Roupala montana Aubl. (Proteaceae) no Cerrado Sensu Stricto. Neotrop. Entomol. 35: 182-191. – volume: 153 start-page: 353 year: 2007 end-page: 364 article-title: Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall‐inducing insects publication-title: Oecologia – year: 2005 – start-page: 7 year: 2003 end-page: 16 – volume: 38 start-page: 459 year: 1990 end-page: 474 article-title: Sclerophylly and foliar nutrient status of Mediterranean‐climate plant communities in southern Australia publication-title: Aust. J. Bot. – volume: 67 start-page: 283 year: 1992 end-page: 335 article-title: The dilemma of plants publication-title: To grow or defend – start-page: 348 year: 2003 end-page: 359 – volume: 66 start-page: 473 year: 2006 end-page: 481 article-title: Stand‐Level herbivory in an old‐growth conifer forest canopy publication-title: West. N. Am. Nat. – volume: 153 start-page: 87 year: 2001 end-page: 107 article-title: Invertebrates in the canopy of tropical rain forests publication-title: How much do we really know? – volume: 16 start-page: 403 year: 2002 end-page: 412 article-title: High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations publication-title: Funct. Ecol. – start-page: 91 year: 1991 end-page: 115 – volume: 51 start-page: 289 year: 1982 end-page: 306 article-title: The guild composition of arthropod communities in trees publication-title: J. Anim. Ecol. – year: 1979 – volume: 29 start-page: 442 year: 2006 end-page: 450 article-title: Relationship between tree size and insect assemblages associated with publication-title: Ecography – start-page: 379 year: 2004 end-page: 393 – volume: 16 start-page: 264 year: 1984 end-page: 268 article-title: An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? publication-title: Biotropica – volume: 16 start-page: 279 year: 1974 end-page: 301 article-title: A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of in plantation of in New Zealand publication-title: Oecologia – volume: 26 start-page: 551 year: 1962 end-page: 561 article-title: Further evidence to support a nutritional interpretation of sclerophylly publication-title: Ann. Bot. – volume: 50 start-page: 905 year: 1969 end-page: 909 article-title: An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia publication-title: Ecology – volume: 17 start-page: 127 year: 2001 end-page: 148 article-title: Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado publication-title: J. Trop. Ecol. – volume: 131 start-page: 356 year: 2002 end-page: 365 article-title: Midday depression in savanna trees publication-title: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency – year: 2008 – volume: 25 start-page: 168 year: 1961 end-page: 184 article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves publication-title: Ann. Bot. – year: 2004 – volume: 160 start-page: 81 year: 2003 end-page: 99 article-title: Characterizing sclerophylly publication-title: The mechanical properties of a diverse range of leaf types – year: 1997 – start-page: 169 year: 1998 end-page: 192 – volume: 39 start-page: 237 year: 1991 end-page: 245 article-title: Nutritional quality as a defense against herbivores publication-title: For. Ecol. Manage. – start-page: 123 year: 1989 end-page: 162 – start-page: 123 year: 2005 end-page: 139 – start-page: 131 year: 1997 end-page: 150 – volume: 24 start-page: 273 year: 1992 end-page: 282 article-title: The resource‐based organization of communities publication-title: Biotropica – volume: 35 start-page: 182 year: 2006 end-page: 191 article-title: Lepidópteros folívoros em Aubl. (Proteaceae) no Cerrado Sensu Stricto publication-title: Neotrop. Entomol. – volume: 30 start-page: 663 year: 2007 end-page: 672 article-title: Gall‐forming and free‐feeding herbivory along vertical gradients in a lowland tropical rainforest publication-title: The importance of leaf sclerophylly – volume: 8 start-page: 17 year: 1983 end-page: 25 article-title: Variation in leaf toughness and phenolic content among five species of Australian rain forest trees publication-title: Aust. J. Ecol. – volume: 121 start-page: 497 year: 1992 end-page: 610 article-title: Leaf structure toughness and sclerophylly publication-title: Their correlations and ecological implications – volume: 149 start-page: 444 year: 2006 end-page: 455 article-title: Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life‐history strategies publication-title: Oecologia – volume: 10 start-page: 155 year: 1978 end-page: 157 article-title: A method of access into the crowns of emergent and canopy trees publication-title: Biotropica – volume: 27 start-page: 132 year: 2002 end-page: 136 article-title: Seasonal pattern of insect abundance in the Brazilian cerrado publication-title: Aust. Ecol. – volume: 230 start-page: 895 year: 1985 end-page: 899 article-title: Resource availability and plant antiherbivore defense publication-title: Science – start-page: 89 year: 1998 end-page: 166 – start-page: 304 year: 1995 end-page: 325 – volume: 66 start-page: 671 year: 2006 end-page: 680 article-title: Insect folivory in (Apiaceae) in a vegetation mosaic of Brazilian cerrado publication-title: Braz. J. Biol. – volume: 187 start-page: 153 year: 2006 end-page: 162 article-title: Sclerophylly in (Vochysiaceae) publication-title: Influence of herbivory, mineral nutrients, and water status – year: 1984 – volume: 59 start-page: 411 year: 1971 end-page: 419 article-title: A Physiognomic analysis of the Cerrado vegetation of central Brasil publication-title: J. Ecol. – volume: 50 start-page: 125 year: 2009 end-page: 136 article-title: Canopy research in the twenty‐first century: A review of Arboreal Ecology publication-title: J. Trop. Ecol. – volume: 8 start-page: 669 year: 1994 end-page: 675 article-title: Sclerophylly publication-title: Primarily protective – volume: 77 start-page: 43 year: 2002 end-page: 65 article-title: Correlations between leaf structural traits and the densities of herbivorous insect guilds publication-title: Biol. J. Linn. Soc. – volume: 14 start-page: 23 year: 1988 end-page: 34 article-title: Light‐induced variation in phenolic levels in foliage of rain‐forest plants. II. Potential significance to herbivores publication-title: J. Chem. Ecol. – volume: 65 start-page: 1 year: 1993 end-page: 13 article-title: Chemical ecology and the theory of oligotrophic scleromorphism publication-title: An. Acad. Bras. Ciênc. – year: 2002 – volume: 86 start-page: 913 year: 2000 end-page: 920 article-title: Mechanical defenses to herbivory publication-title: Ann. Bot. – year: 2006 – volume: 155 start-page: 103 year: 2002 end-page: 116 article-title: Leaves at low versus high rainfall publication-title: Coordination of structure, lifespan and physiology – volume: 15 start-page: 351 year: 2001 end-page: 359 article-title: Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora publication-title: Funct. Ecol. – start-page: 47 year: 1998 end-page: 86 – volume: 38 start-page: 421 year: 1994 end-page: 433 article-title: Plant mechanical defenses against insect herbivory publication-title: Rev. Bras. Entomol. – volume: 53 start-page: 209 year: 1983 end-page: 233 article-title: Herbivory and defensive characteristics of tree species in lowland tropical rain forest publication-title: Ecol. Monogr. – volume: 8 start-page: 223 year: 1999 end-page: 241 article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados publication-title: Glob. Ecol. Biogeogr. – volume-title: An introduction to the study of insects year: 2002 ident: e_1_2_6_5_1 – ident: e_1_2_6_9_1 doi: 10.1126/science.230.4728.895 – ident: e_1_2_6_41_1 doi: 10.2307/2388522 – start-page: 348 volume-title: Arthropods of tropical forests: Spatio‐temporal dynamics and resource use in the canopy year: 2003 ident: e_1_2_6_48_1 – ident: e_1_2_6_28_1 doi: 10.2307/2387934 – volume-title: R: A language and environment for statistical computing year: 2005 ident: e_1_2_6_44_1 – volume: 121 start-page: 497 year: 1992 ident: e_1_2_6_7_1 article-title: Leaf structure toughness and sclerophylly publication-title: Their correlations and ecological implications – ident: e_1_2_6_19_1 doi: 10.2307/2258321 – volume: 187 start-page: 153 year: 2006 ident: e_1_2_6_18_1 article-title: Sclerophylly in Qualea parviflora (Vochysiaceae) publication-title: Influence of herbivory, mineral nutrients, and water status – ident: e_1_2_6_57_1 doi: 10.1590/S1519-69842006000400011 – ident: e_1_2_6_40_1 doi: 10.1046/j.1442-9993.2002.01165.x – start-page: 89 volume-title: Cerrado: Ambiente e Flora year: 1998 ident: e_1_2_6_47_1 – ident: e_1_2_6_27_1 doi: 10.1093/oxfordjournals.aob.a083814 – volume: 30 start-page: 663 year: 2007 ident: e_1_2_6_49_1 article-title: Gall‐forming and free‐feeding herbivory along vertical gradients in a lowland tropical rainforest publication-title: The importance of leaf sclerophylly – ident: e_1_2_6_16_1 doi: 10.1046/j.1466-822X.1999.00142.x – ident: e_1_2_6_6_1 doi: 10.1111/j.2006.0906-7590.04520.x – start-page: 379 volume-title: Forest canopies year: 2004 ident: e_1_2_6_50_1 – start-page: 131 volume-title: Canopy arthropods year: 1997 ident: e_1_2_6_24_1 – volume-title: Ecologia do Cerrado year: 1979 ident: e_1_2_6_20_1 – volume: 65 start-page: 1 year: 1993 ident: e_1_2_6_51_1 article-title: Chemical ecology and the theory of oligotrophic scleromorphism publication-title: An. Acad. Bras. Ciênc. – start-page: 123 volume-title: Plant–animal interactions year: 1989 ident: e_1_2_6_58_1 – ident: e_1_2_6_37_1 doi: 10.1046/j.1095-8312.2002.00091.x – volume: 160 start-page: 81 year: 2003 ident: e_1_2_6_45_1 article-title: Characterizing sclerophylly publication-title: The mechanical properties of a diverse range of leaf types – ident: e_1_2_6_31_1 doi: 10.1006/anbo.2000.1261 – volume: 67 start-page: 283 year: 1992 ident: e_1_2_6_22_1 article-title: The dilemma of plants publication-title: To grow or defend – ident: e_1_2_6_8_1 doi: 10.2307/1942495 – ident: e_1_2_6_23_1 doi: 10.1007/s00442-006-0462-8 – volume: 50 start-page: 125 year: 2009 ident: e_1_2_6_29_1 article-title: Canopy research in the twenty‐first century: A review of Arboreal Ecology publication-title: J. Trop. Ecol. – volume: 38 start-page: 421 year: 1994 ident: e_1_2_6_13_1 article-title: Plant mechanical defenses against insect herbivory publication-title: Rev. Bras. Entomol. – ident: e_1_2_6_59_1 doi: 10.2307/1933707 – ident: e_1_2_6_38_1 doi: 10.2307/2388019 – volume-title: Insects on plant. Community patterns and mechanisms year: 1984 ident: e_1_2_6_55_1 – volume-title: Statistical computing—an introduction to data analysis using s‐plus year: 2002 ident: e_1_2_6_10_1 – ident: e_1_2_6_34_1 doi: 10.2307/4325 – ident: e_1_2_6_61_1 doi: 10.1046/j.1365-2435.2001.00522.x – volume-title: Insect ecology year: 1997 ident: e_1_2_6_42_1 – volume: 155 start-page: 103 year: 2002 ident: e_1_2_6_62_1 article-title: Leaves at low versus high rainfall publication-title: Coordination of structure, lifespan and physiology – volume: 153 start-page: 87 year: 2001 ident: e_1_2_6_2_1 article-title: Invertebrates in the canopy of tropical rain forests publication-title: How much do we really know? – ident: e_1_2_6_4_1 doi: 10.1590/S1519-566X2006000200005 – ident: e_1_2_6_54_1 doi: 10.1071/BT9900459 – ident: e_1_2_6_30_1 doi: 10.1111/j.1442-9993.1983.tb01515.x – volume: 131 start-page: 356 year: 2002 ident: e_1_2_6_15_1 article-title: Midday depression in savanna trees publication-title: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency – ident: e_1_2_6_33_1 doi: 10.1007/BF01022528 – ident: e_1_2_6_39_1 – ident: e_1_2_6_25_1 doi: 10.1046/j.1365-2435.2002.00631.x – ident: e_1_2_6_12_1 doi: 10.1007/s00442-007-0737-8 – ident: e_1_2_6_17_1 – start-page: 91 volume-title: Plant–animal interactions. Evolutionary ecology in tropical and temperate regions year: 1991 ident: e_1_2_6_14_1 – ident: e_1_2_6_11_1 doi: 10.1017/CBO9780511753398.012 – start-page: 7 volume-title: Arthopods of tropical forests—spatio‐temporal dynamics and resource use in the canopy year: 2003 ident: e_1_2_6_3_1 – ident: e_1_2_6_21_1 doi: 10.1016/0378-1127(91)90179-Y – start-page: 169 volume-title: Cerrado: Ambiente e Flora year: 1998 ident: e_1_2_6_36_1 – start-page: 123 volume-title: Cerrado: Ecologia, Biodiversidade e Conservação year: 2005 ident: e_1_2_6_52_1 – ident: e_1_2_6_60_1 doi: 10.1007/BF00344738 – ident: e_1_2_6_26_1 doi: 10.1093/oxfordjournals.aob.a083740 – ident: e_1_2_6_35_1 – ident: e_1_2_6_32_1 doi: 10.1017/S0266467401001080 – ident: e_1_2_6_53_1 doi: 10.3398/1527-0904(2006)66[473:SHIAOC]2.0.CO;2 – volume-title: ImageJ year: 2006 ident: e_1_2_6_43_1 – start-page: 47 volume-title: Cerrado: Ambiente e Flora year: 1998 ident: e_1_2_6_46_1 – volume: 8 start-page: 669 year: 1994 ident: e_1_2_6_56_1 article-title: Sclerophylly publication-title: Primarily protective |
SSID | ssj0009504 |
Score | 2.1688838 |
Snippet | This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry... ABSTRACT This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically... ABSTRACTThis study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically... |
SourceID | proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112 |
SubjectTerms | Abundance Animal, plant and microbial ecology Applied ecology Biological and medical sciences Brazil canopy Canopy insect Cerrado Conservation, protection and management of environment and wildlife Dry forests ecosystems Forest canopy Forest habitats Forest insects Forest trees Fundamental and applied biological sciences. Psychology General aspects habitat transition habitats Herbivores insect guild Insecta Invertebrates leaf area leaf sclerophylly Leaves mastication nutrient content Phytophagous insects savannas soil nutrients soil quality soil sampling Trees Tropical Biology |
Title | Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest-Savanna Transition in Brazil |
URI | https://api.istex.fr/ark:/67375/WNG-9MKLVB85-L/fulltext.pdf https://www.jstor.org/stable/27742870 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1744-7429.2009.00541.x https://www.proquest.com/docview/46488762 https://www.proquest.com/docview/902331802 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BJSQuvKuaR9kD4uYotvdhH0kfBGgrRBvoidXY3q2iVHYVJ6jpif_AP-SXMGPHJqlAqhA3y5q15NnZmW-9n79h7FUEQoFW1teqr31ExH0fElC-sAFk4DKnYvp3-PBIDUfi_ak8XfKf6F-YRh-i--BGK6PO17TAIa3WF7kWwsetXdLKTkoR9AhPEnWL8NGncEV_t98IMhPVC0H7dVLPHx60VqluOygRv5LrL1vqIvEooUJXuqYHxhpIXYW6da3av88m7Vs2FJVJbz5Le9nVNQHI_-OGB-zeEtLyN00MPmS3bPGI3WmaXC7waq8Wxl48Zl93oCgvFnyIUzn-Vk4XHIqcvysqTLrdTct3W6oIHxcc-C7aUQPRavbz-49jQORfAK9LbM02I6PBFK7G50_YaH_vZGfoL_s7-JlEoObnLtdKALgwiLTNYpWoNHYBuFzKMBNBgJUyFmmUx2Ea4b7OWowrSaBIZFLn_WiTbRRlYbcYl7mIRR6AcnEqnHQJQpEUhJVBmoUuTz2m27k02VL8nHpwnJuVTRD60ZAfqTVnYmo_mkuPBd3Ii0YA5AZjtjBcDJxhnjaj45BOhxEoRjqSHntdx1D3LJhOiFunpfly9NYkhx8OPg9iaQ48tlkHWWcYIlCnU2mPba9F3W8DTM3oMe2xl20YGswVdAAEhS3nlREK0zVWP4_xv1iQ3yISBfSYrKPuxu9sBicf8eLpP457xu42vAz6uPWcbcymc_sC4d4s3a4X8i9hIUIB |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL76rm0e4BcXMU27te-0j6IKVJhGgCPbEa27soauRUeaCmJ_4D_5Bfwsw6DkkFUoW4WdasJY9nZ77d_fwNY68jEDGo2PgqbiofEXHThxRiX5gAcrC5jRP6d7jbi9sD8f5Mni3bAdG_MJU-xGrDjWaGy9c0wWlDenOWKyF8XNulte6kFEEDAeUdavDt1lcfwzUF3mYlyUxkL4Tt12k9f3jSRq26bWGMCJacf1mTF4lJCVN0pq26YGzA1HWw66rV0UM2qt-zIqmcN-azrJFfXZOA_E-OeMQeLFEtf1uF4WN2y5RP2N2qz-UCrw6dNvbiKfuyD-X4YsHb-DWH38aTBYey4MflFPPu6qbhBzVbhA9LDvwA7aiH6HT28_uPU0DwXwJ3VdYRzsioNYGr4egZGxwd9vfb_rLFg59LxGp-YQsVCwAbBpEyeRKncZbYAGwhZZiLIMBimYgsKpIwi3BpZwyGliRcJHKpima0zbbKcWl2GJeFSEQRQGyTTFhpU0QjGQgjgywPbZF5TNUfU-dL_XNqwzHSa-sg9KMmP1J3zlQ7P-pLjwWrkReVBsgNxuxgvGj4iqlaD05DOiBGrBipSHrsjQui1bNgck70OiX15947nXZPOp9aidQdj227KFsZhojV6WDaY7sbYffbALMzekx5bK-OQ43pgs6AoDTj-VSLGDM2FkCP8b9YkN8i0gX0mHRhd-N31q3-B7x4_o_j9ti9dr_b0Z3j3skLdr-iadBe10u2NZvMzStEf7Ns183qX3_lRhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYgL76rm0e4BcXPkxz7sI2kaUppGFW2gJ1Zje7eKUtlRHqjpif_AP-SXMGvHJqlAqhA3y5q15NlvZ771fp4h5G0ITIAU2pXCky4yYs-FGITLtA8pmNSIyP47fDwQvSH7eM7PV_on-y9MVR-i-eBmV0YZr-0Cn2Rmc5FLxlzc2sV12UnO_BbyyXtMeJFFeOdTsFaA16sqMlutF7L2m6qePzxpI1XdNVAggbW-v6q1i1ZICTP0pamaYGyw1HWuWyar7mMyrl-z0qiMW4t50kqvb1SA_D9-eEIerTgtfV-B8Cm5o_Nn5H7V5XKJVwdlZezlc_J1H_JisqQ9nMvRt2K6pJBn9DCfYdRtbmraqbUidJRToB20sx1EZ_Of33-cAlL_HGiZY0u5mTVqT-F6dPmCDLsHZ_s9d9XgwU05MjU3M5kUDMAEfih1GolYJJHxwWScBynzfUyVEUvCLAqSEDd2WiOwuGVFLOUy88JtspUXud4hlGcsYpkPwkQJM9zEyEUSYJr7SRqYLHGIrOdSpavq57YJx6Va2wWhH5X1o-3NGavSj-rKIX4zclJVALnFmB2Ei4ILDNRqeBrY42FkiqEMuUPelRhqngXTsRXXSa6-DD6o-Pio_7kdcdV3yHYJssYwQKZuj6UdsruBut8GGJvRY9IhezUMFQYLewIEuS4WM8UExmtMfw6hf7GwfgttVUCH8BJ1t35n1T47wYuX_zhujzw46XRV_3Bw9Io8rDQa9kPXa7I1ny70G6R-82S3XNO_AHyyRNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canopy+Herbivory+and+Insect+Herbivore+Diversity+in+a+Dry+Forest-Savanna+Transition+in+Brazil&rft.jtitle=Biotropica&rft.au=Neves%2C+Frederico+S&rft.au=Ara%C3%BAjo%2C+Lucimar+S&rft.au=Esp%C3%ADrito-Santo%2C+M%C3%A1rio+M&rft.au=Fagundes%2C+Marc%C3%ADlio&rft.date=2010&rft.pub=Malden%2C+USA+%3A+Blackwell+Publishing+Inc&rft.issn=0006-3606&rft.volume=42&rft.issue=1&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1111%2Fj.1744-7429.2009.00541.x&rft.externalDocID=US201301723735 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon |