Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest-Savanna Transition in Brazil

This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest,...

Full description

Saved in:
Bibliographic Details
Published inBiotropica Vol. 42; no. 1; pp. 112 - 118
Main Authors Neves, Frederico S, Araújo, Lucimar S, Espírito-Santo, Mário M, Fagundes, Marcílio, Fernandes, G. Wilson, Sanchez-Azofeifa, G. Arturo, Quesada, Mauricio
Format Journal Article
LanguageEnglish
Published Malden, USA Malden, USA : Blackwell Publishing Inc 2010
Blackwell Publishing Inc
Wiley Subscription Services
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp.
AbstractList This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp.
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap‐sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. O presente estudo tem como objetivos comparar a comunidade de herbívoros juntamente com os danos causados por esses insetos entre dois ecossistemas, uma floresta decídua e o cerrado (savanna) ecossistemas que ocorrem juntos em uma região transição no sudeste do Brasil. Na floresta decídua, o dossel foi acessado utilizando uma técnica de escalada em corda simples, já o dossel do cerrado foi acessado utilizando uma escada de sete metros de altura. Os insetos foram amostrados utilizando a técnica de batimento entomológico nas folhas, além disso, 20 folhas de cada árvore foram coletadas para o calculo da massa foliar específica e a área foliar perdida por ação de insetos herbívoros. Também coletamos em cada ecossistema dez amostras de solo de para determinação da concentração de nutrientes. Nós amostramos 118 insetos herbívoros distribuídos em dez famílias; a floresta decídua apresentou uma maior diversidade (96 indivíduos distribuídos em 31 espécies). Uma maior abundância de insetos herbívoros por árvore foi amostrada na floresta decidua, se comparada a árvores presentes no cerrado. O mesmo padrão foi observado para a riqueza de mastigadores, com uma maior riqueza de mastigadores amostrada em árvores presentes na floresta decídua. Os insetos herbívoros de ambas as guildas e ecossistemas não foram afetados pela massa foliar específica. Entretanto, nós observamos uma correlação negativa entre a taxa de herbivoria foliar e a massa foliar específica. árvores do cerrado apresentam uma maior massa foliar específica e uma menor taxa de herbivoria se comparadas a árvores presentes na floresta decídua. Os resultados encontrados sugerem que as taxas de herbivoria em uma na transição entre florestas deciduas‐cerrado podem ser dirigidas pelos nutrientes presentes no solo, que também podem influenciar na esclerofilia foliar.
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.
ABSTRACTThis study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest-cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp.
ABSTRACT This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap‐sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly. RESUMO O presente estudo tem como objetivos comparar a comunidade de herbívoros juntamente com os danos causados por esses insetos entre dois ecossistemas, uma floresta decídua e o cerrado (savanna) ecossistemas que ocorrem juntos em uma região transição no sudeste do Brasil. Na floresta decídua, o dossel foi acessado utilizando uma técnica de escalada em corda simples, já o dossel do cerrado foi acessado utilizando uma escada de sete metros de altura. Os insetos foram amostrados utilizando a técnica de batimento entomológico nas folhas, além disso, 20 folhas de cada árvore foram coletadas para o calculo da massa foliar específica e a área foliar perdida por ação de insetos herbívoros. Também coletamos em cada ecossistema dez amostras de solo de para determinação da concentração de nutrientes. Nós amostramos 118 insetos herbívoros distribuídos em dez famílias; a floresta decídua apresentou uma maior diversidade (96 indivíduos distribuídos em 31 espécies). Uma maior abundância de insetos herbívoros por árvore foi amostrada na floresta decidua, se comparada a árvores presentes no cerrado. O mesmo padrão foi observado para a riqueza de mastigadores, com uma maior riqueza de mastigadores amostrada em árvores presentes na floresta decídua. Os insetos herbívoros de ambas as guildas e ecossistemas não foram afetados pela massa foliar específica. Entretanto, nós observamos uma correlação negativa entre a taxa de herbivoria foliar e a massa foliar específica. árvores do cerrado apresentam uma maior massa foliar específica e uma menor taxa de herbivoria se comparadas a árvores presentes na floresta decídua. Os resultados encontrados sugerem que as taxas de herbivoria em uma na transição entre florestas deciduas‐cerrado podem ser dirigidas pelos nutrientes presentes no solo, que também podem influenciar na esclerofilia foliar.
Author Quesada, Mauricio
Fernandes, G. Wilson
Sanchez-Azofeifa, G. Arturo
Fagundes, Marcílio
Espírito-Santo, Mário M.
Neves, Frederico S.
Araújo, Lucimar S.
Author_xml – sequence: 1
  fullname: Neves, Frederico S
– sequence: 2
  fullname: Araújo, Lucimar S
– sequence: 3
  fullname: Espírito-Santo, Mário M
– sequence: 4
  fullname: Fagundes, Marcílio
– sequence: 5
  fullname: Fernandes, G. Wilson
– sequence: 6
  fullname: Sanchez-Azofeifa, G. Arturo
– sequence: 7
  fullname: Quesada, Mauricio
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22259907$$DView record in Pascal Francis
BookMark eNqNkVtv0zAUxy00JLrCR0DkBXhK8d2JhJDWjl1EuUjr4AXJOnUc5JI5xc5Kw6fHIVOReEDzg2_n9z8-Pv9jdORbbxHKCJ6RNF5tZkRxnitOyxnFuJxhLDiZ7R-gySFwhCYYY5kzieUjdBzjJh1LgfkEfV2Ab7d9dmHD2u3a0Gfgq-zSR2u6w6XNTt3Ohui6PnM-g-w0cWfpPnb5FezAe8hWAXwCXOsHZB7gl2seo4c1NNE-uVun6Prs7WpxkS8_nl8uTpa5EUKQvKorJTlATQlT1hSylOuiJlBXQlDDCSlLXPA1qwq6ZopIa7kEgbEi3AhVYTZFL8e829D-uE1V6RsXjW0a8La9jbrElDFSpHmKXvyX5JIXhZID-PwOhGigqdPvjIt6G9wNhF5TSkWqSiWuGDkT2hiDrQ8IwXowSG_04IMefNCDQfqPQXqfpG_-kRrXwdDBLoBr7pPg9Zjgp2tsf--H9Xz1KW2S_Oko38SuDX-_ppKiUENX8zHuYmf3hziE71oqpoT-8uFcl-_fLT_PC6GXiX828jW0Gr6F1K7rK4oJw0RRpphgvwEp-Mxw
CODEN BTROAZ
CitedBy_id crossref_primary_10_1017_S026646741100006X
crossref_primary_10_1093_jpe_rtw038
crossref_primary_10_3759_tropics_MS18_13
crossref_primary_10_2110_palo_2017_100
crossref_primary_10_1007_s40415_013_0038_x
crossref_primary_10_1590_S1519_69842012000300006
crossref_primary_10_1590_0102_33062016abb0236
crossref_primary_10_1093_ee_nvaa072
crossref_primary_10_1080_17550874_2020_1744760
crossref_primary_10_7717_peerj_18262
crossref_primary_10_1603_EN11259
crossref_primary_10_1007_s10841_016_9930_6
crossref_primary_10_1007_s11829_014_9341_0
crossref_primary_10_1590_bjb_2014_0093
crossref_primary_10_1007_s00114_019_1614_0
crossref_primary_10_3390_agriculture11090830
crossref_primary_10_14411_eje_2018_035
crossref_primary_10_1139_b11_087
crossref_primary_10_3390_insects12050407
crossref_primary_10_1007_s10682_021_10144_7
crossref_primary_10_3389_ffgc_2021_709403
crossref_primary_10_1007_s10841_021_00340_9
crossref_primary_10_1007_s11829_011_9160_5
crossref_primary_10_1016_j_ecolmodel_2021_109628
crossref_primary_10_1007_s11258_021_01131_7
crossref_primary_10_1007_s11258_014_0328_9
crossref_primary_10_1016_j_actao_2023_103961
crossref_primary_10_1071_ZO12080
crossref_primary_10_1016_j_envexpbot_2011_07_010
crossref_primary_10_1017_S0266467417000086
crossref_primary_10_1007_s11258_018_0804_8
crossref_primary_10_1016_j_foreco_2019_117738
crossref_primary_10_1007_s11829_012_9224_1
crossref_primary_10_1590_2236_8906_21_2021
crossref_primary_10_1007_s11829_015_9359_y
crossref_primary_10_1007_s00442_024_05536_9
crossref_primary_10_1590_1678_4766e2017042
crossref_primary_10_18502_espoch_v3i1_14491
crossref_primary_10_1007_s11258_015_0464_x
crossref_primary_10_1016_j_palaeo_2017_12_006
crossref_primary_10_1007_s11258_017_0778_y
crossref_primary_10_1080_17550874_2021_2022798
crossref_primary_10_1111_icad_12605
crossref_primary_10_1007_s11829_015_9362_3
crossref_primary_10_1111_j_1654_1103_2012_01424_x
crossref_primary_10_1007_s11829_010_9111_6
crossref_primary_10_1093_aesa_saw034
crossref_primary_10_1007_s00114_015_1320_5
crossref_primary_10_1093_jpe_rtx037
crossref_primary_10_1111_een_12808
Cites_doi 10.1126/science.230.4728.895
10.2307/2388522
10.2307/2387934
10.2307/2258321
10.1590/S1519-69842006000400011
10.1046/j.1442-9993.2002.01165.x
10.1093/oxfordjournals.aob.a083814
10.1046/j.1466-822X.1999.00142.x
10.1111/j.2006.0906-7590.04520.x
10.1046/j.1095-8312.2002.00091.x
10.1006/anbo.2000.1261
10.2307/1942495
10.1007/s00442-006-0462-8
10.2307/1933707
10.2307/2388019
10.2307/4325
10.1046/j.1365-2435.2001.00522.x
10.1590/S1519-566X2006000200005
10.1071/BT9900459
10.1111/j.1442-9993.1983.tb01515.x
10.1007/BF01022528
10.1046/j.1365-2435.2002.00631.x
10.1007/s00442-007-0737-8
10.1017/CBO9780511753398.012
10.1016/0378-1127(91)90179-Y
10.1007/BF00344738
10.1093/oxfordjournals.aob.a083740
10.1017/S0266467401001080
10.3398/1527-0904(2006)66[473:SHIAOC]2.0.CO;2
ContentType Journal Article
Copyright Copyright 2009 Association for Tropical Biology and Conservation Inc.
2009 The Author(s). Journal compilation © 2009 by The Association for Tropical Biology and Conservation
2015 INIST-CNRS
Copyright_xml – notice: Copyright 2009 Association for Tropical Biology and Conservation Inc.
– notice: 2009 The Author(s). Journal compilation © 2009 by The Association for Tropical Biology and Conservation
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
7SN
7SS
7ST
7U6
C1K
DOI 10.1111/j.1744-7429.2009.00541.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
AGRICOLA

Entomology Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1744-7429
EndPage 118
ExternalDocumentID 22259907
10_1111_j_1744_7429_2009_00541_x
BTP541
27742870
ark_67375_WNG_9MKLVB85_L
US201301723735
Genre article
GeographicLocations South America
Brazil
America
GeographicLocations_xml – name: Brazil
GroupedDBID -DZ
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
2AX
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABPLY
ABPPZ
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFIJ
AFFPM
AFGKR
AFNWH
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DC7
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RX1
SA0
SUPJJ
TN5
UB1
V8K
VH1
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZCA
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
ABSQW
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
BSCLL
AEUQT
AFPWT
DOOOF
JSODD
WRC
AAYXX
CITATION
IQODW
7S9
L.6
7SN
7SS
7ST
7U6
C1K
ID FETCH-LOGICAL-c5551-dfd764aaf2137ec8696b8f1afd552c41199084b3d82b3716ee46a500714c57d03
IEDL.DBID DR2
ISSN 0006-3606
IngestDate Thu Jul 10 18:40:57 EDT 2025
Fri Jul 11 11:50:44 EDT 2025
Mon Jul 21 09:16:19 EDT 2025
Tue Jul 01 02:22:44 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Wed Jan 22 16:38:26 EST 2025
Thu Jul 03 21:21:06 EDT 2025
Thu Aug 21 01:26:54 EDT 2025
Tue Mar 04 00:58:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dry forest
habitat transition
Herbivorous
Savannah
Insecta
Tropical zone
Diversity
Soil quality
Plant leaf
Guild
Canopy insect
Sclerophylly
Biome
Phytophagous
Arthropoda
Transition
insect guild
Habitat
Invertebrata
Cerrado
leaf sclerophylly
Canopy(vegetation)
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5551-dfd764aaf2137ec8696b8f1afd552c41199084b3d82b3716ee46a500714c57d03
Notes http://dx.doi.org/10.1111/j.1744-7429.2009.00541.x
istex:34CADB85AF43F5169BF2EA4E4D8DB6757C38B09C
ArticleID:BTP541
ark:/67375/WNG-9MKLVB85-L
5
Corresponding author; e‐mail
frederico.neves@unimontes.br
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 46488762
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_902331802
proquest_miscellaneous_46488762
pascalfrancis_primary_22259907
crossref_primary_10_1111_j_1744_7429_2009_00541_x
crossref_citationtrail_10_1111_j_1744_7429_2009_00541_x
wiley_primary_10_1111_j_1744_7429_2009_00541_x_BTP541
jstor_primary_27742870
istex_primary_ark_67375_WNG_9MKLVB85_L
fao_agris_US201301723735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010
2010-01
20100101
January 2010
2010-01-00
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Hoboken, NJ
PublicationTitle Biotropica
PublicationYear 2010
Publisher Malden, USA : Blackwell Publishing Inc
Blackwell Publishing Inc
Wiley Subscription Services
Wiley
Publisher_xml – name: Malden, USA : Blackwell Publishing Inc
– name: Blackwell Publishing Inc
– name: Wiley Subscription Services
– name: Wiley
References Lowman, M. D. 1984. An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica 16: 264-268.
Rasband, W. S. 2006. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland. Available at http://rsb.info.nih.gov/ij (accessed July 2005).
Specht, R. L., and P. W. Rundel. 1990. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38: 459-474.
Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77: 43-65.
White, T. C. R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in plantation of Pinus radiata in New Zealand. Oecologia 16: 279-301.
Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in lowland tropical rain forest. Ecol. Monogr. 53: 209-233.
Read, J., and G. D. Sanson. 2003. Characterizing sclerophylly: The mechanical properties of a diverse range of leaf types. New Phytol. 160: 81-99.
Price, P. W. 1997. Insect ecology. John Wiley & Sons, New York, New York.
Bendicho-Lopez, A., H. C. Morais, J. D. Hay, and I. R. Diniz. 2006. Lepidópteros folívoros em Roupala montana Aubl. (Proteaceae) no Cerrado Sensu Stricto. Neotrop. Entomol. 35: 182-191.
Lamont, B. B., P. K. Groom, and R. M. Cowling. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations. Funct. Ecol. 16: 403-412.
Franco, A. C., and U. Luttge. 2002. Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131: 356-365.
Loveless, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551-561.
Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899.
Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 2002. An introduction to the study of insects. Saunders College Publishing, New York, New York.
Furley, P. A. 1999. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob. Ecol. Biogeogr. 8: 223-241.
Goodland, R. 1971. A Physiognomic analysis of the Cerrado vegetation of central Brasil. J. Ecol. 59: 411-419.
Basset, Y. 2001. Invertebrates in the canopy of tropical rain forests: How much do we really know? Plant Ecol. 153: 87-107.
Espírito-Santo, M. M., F. S. Neves, F. R. Andrade-Neto, and G. W. Fernandes. 2007. Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153: 353-364.
R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.r-project.org (accessed July 2005).
Wright, I. J., and K. Cannon. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351-359.
Lowman, M. D. 2009. Canopy research in the twenty-first century: A review of Arboreal Ecology. J. Trop. Ecol. 50: 125-136.
White, T. C. R. 1969. An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia. Ecology 50: 905-909.
Wright, I. J., and M. Westoby. 2002. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155: 103-116.
Gonçalves-Alvim, S. J., G. Korndorf, and G. W. Fernades. 2006. Sclerophylly in Qualea parviflora (Vochysiaceae): Influence of herbivory, mineral nutrients, and water status. Plant Ecol. 187: 153-162.
Pinheiro, F., I. R. Diniz, D. Coelho, and M. P. S. Bandeira. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Aust. Ecol. 27: 132-136.
Goodland, R., and M. G. Ferri. 1979. Ecologia do Cerrado. Editora da Universidade de São Paulo, São Paulo, Brazil.
Lowman, M. D., and J. D. Box. 1983. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Aust. J. Ecol. 8: 17-25.
Salatino, A. 1993. Chemical ecology and the theory of oligotrophic scleromorphism. An. Acad. Bras. Ciênc. 65: 1-13.
Campos, R., H. L. Vasconcelos, S. P. Ribeiro, F. S. Neves, and J. P. Soares. 2006. Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29: 442-450.
Price, P. W. 1992. The resource-based organization of communities. Biotropica 24: 273-282.
Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67: 283-335.
Strong, D. R., J. H. Lawton, and T. R. E. Southwood. 1984. Insects on plant. Community patterns and mechanisms. Blackwell, Oxford, UK.
Crawley, M. J. 2002. Statistical computing-an introduction to data analysis using s-plus. John Wiley & Sons, London, UK.
Perry, D. R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155-157.
Huberty, A. F., and R. F. Denno. 2006. Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149: 444-455.
Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672.
Varanda, E. M., and M. P. Pais. 2006. Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian cerrado. Braz. J. Biol. 66: 671-680.
Choong, M. F., P. W. Lucas, J. S. Y. Ong, P. Pereira, H. T. W. Tan, and I. M. Turner. 1992. Leaf structure toughness and sclerophylly: Their correlations and ecological implications. New Phytol. 121: 497-610.
Lucas, P. W., I. M. Turner, N. J. Dominy, and N. Yamashita. 2000. Mechanical defenses to herbivory. Ann. Bot. 86: 913-920.
Shaw, D. C., K. A. Ernest, H. B. Rinker, and M. D. Lowman. 2006. Stand-Level herbivory in an old-growth conifer forest canopy. West. N. Am. Nat. 66: 473-481.
Turner, I. M.1994. Sclerophylly: Primarily protective. Funct. Ecol. 8: 669-675.
Loveless, A. R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-184.
Marquis, R. J., I. R. Diniz, and H. C. Morais. 2001. Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J. Trop. Ecol. 17: 127-148.
Moran, V. C., and T. R. E. Southwood. 1982. The guild composition of arthropod communities in trees. J. Anim. Ecol. 51: 289-306.
Mole, S., and P. G. Waterman. 1988. Light-induced variation in phenolic levels in foliage of rain-forest plants. II. Potential significance to herbivores. J. Chem. Ecol. 14: 23-34.
Fernandes, G. W. 1994. Plant mechanical defenses against insect herbivory. Rev. Bras. Entomol. 38: 421-433.
Haukioja, E., K. RuohomÄki, J. Suomela, and T. Vuorisalo. 1991. Nutritional quality as a defense against herbivores. For. Ecol. Manage. 39: 237-245.
2002; 16
1974; 16
2006; 35
1992; 121
1982; 51
1993; 65
2002; 155
2000; 86
1983; 53
1983; 8
2007; 30
1979
1984; 16
2009; 50
2006; 66
1971; 59
2006; 29
2003; 160
1984
1994; 38
2001; 15
2001; 17
1989
1991; 39
2002; 131
1990; 38
1978; 10
1969; 50
1988; 14
2002; 77
1998
1997
2008
1995
2006
2005
2004
2003
2002
1991
1999; 8
2002; 27
1994; 8
2001; 153
2007; 153
2006; 187
1962; 26
1992; 24
2006; 149
1992; 67
1961; 25
1985; 230
e_1_2_6_53_1
Choong M. F. (e_1_2_6_7_1) 1992; 121
Fernandes G. W. (e_1_2_6_14_1) 1991
e_1_2_6_32_1
e_1_2_6_30_1
R Development Core Team. (e_1_2_6_44_1) 2005
Franco A. C. (e_1_2_6_15_1) 2002; 131
e_1_2_6_19_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
Wright I. J. (e_1_2_6_62_1) 2002; 155
e_1_2_6_17_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_41_1
e_1_2_6_60_1
Rinker H. B. (e_1_2_6_50_1) 2004
Borror D. J. (e_1_2_6_5_1) 2002
Basset Y. (e_1_2_6_3_1) 2003
e_1_2_6_9_1
Reatto A. (e_1_2_6_46_1) 1998
Strong D. R. (e_1_2_6_55_1) 1984
Ribeiro J. P. (e_1_2_6_47_1) 1998
Ribeiro S. P. (e_1_2_6_49_1) 2007; 30
e_1_2_6_28_1
e_1_2_6_26_1
Herms D. A. (e_1_2_6_22_1) 1992; 67
e_1_2_6_54_1
e_1_2_6_31_1
Fernandes G. W (e_1_2_6_13_1) 1994; 38
Basset Y (e_1_2_6_2_1) 2001; 153
Kitching R. L. (e_1_2_6_24_1) 1997
Rasband W. S (e_1_2_6_43_1) 2006
Oliveira P. E (e_1_2_6_36_1) 1998
Salatino A (e_1_2_6_51_1) 1993; 65
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Gonçalves‐Alvim S. J. (e_1_2_6_18_1) 2006; 187
Goodland R. (e_1_2_6_20_1) 1979
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Scariot A. (e_1_2_6_52_1) 2005
Crawley M. J (e_1_2_6_10_1) 2002
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Lowman M. D (e_1_2_6_29_1) 2009; 50
Ribeiro S. P (e_1_2_6_48_1) 2003
e_1_2_6_8_1
Price P. W (e_1_2_6_42_1) 1997
e_1_2_6_4_1
Weis A. E. (e_1_2_6_58_1) 1989
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
Read J. (e_1_2_6_45_1) 2003; 160
e_1_2_6_27_1
Turner I. M. (e_1_2_6_56_1) 1994; 8
References_xml – reference: Marquis, R. J., I. R. Diniz, and H. C. Morais. 2001. Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J. Trop. Ecol. 17: 127-148.
– reference: Strong, D. R., J. H. Lawton, and T. R. E. Southwood. 1984. Insects on plant. Community patterns and mechanisms. Blackwell, Oxford, UK.
– reference: Huberty, A. F., and R. F. Denno. 2006. Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149: 444-455.
– reference: White, T. C. R. 1969. An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia. Ecology 50: 905-909.
– reference: Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67: 283-335.
– reference: Price, P. W. 1992. The resource-based organization of communities. Biotropica 24: 273-282.
– reference: Furley, P. A. 1999. The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob. Ecol. Biogeogr. 8: 223-241.
– reference: Goodland, R., and M. G. Ferri. 1979. Ecologia do Cerrado. Editora da Universidade de São Paulo, São Paulo, Brazil.
– reference: Lowman, M. D. 2009. Canopy research in the twenty-first century: A review of Arboreal Ecology. J. Trop. Ecol. 50: 125-136.
– reference: Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672.
– reference: R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.r-project.org (accessed July 2005).
– reference: Pinheiro, F., I. R. Diniz, D. Coelho, and M. P. S. Bandeira. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Aust. Ecol. 27: 132-136.
– reference: White, T. C. R. 1974. A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of Selidosema suavis in plantation of Pinus radiata in New Zealand. Oecologia 16: 279-301.
– reference: Goodland, R. 1971. A Physiognomic analysis of the Cerrado vegetation of central Brasil. J. Ecol. 59: 411-419.
– reference: Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in lowland tropical rain forest. Ecol. Monogr. 53: 209-233.
– reference: Lowman, M. D., and J. D. Box. 1983. Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Aust. J. Ecol. 8: 17-25.
– reference: Mole, S., and P. G. Waterman. 1988. Light-induced variation in phenolic levels in foliage of rain-forest plants. II. Potential significance to herbivores. J. Chem. Ecol. 14: 23-34.
– reference: Wright, I. J., and K. Cannon. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol. 15: 351-359.
– reference: Lucas, P. W., I. M. Turner, N. J. Dominy, and N. Yamashita. 2000. Mechanical defenses to herbivory. Ann. Bot. 86: 913-920.
– reference: Peeters, P. J. 2002. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77: 43-65.
– reference: Shaw, D. C., K. A. Ernest, H. B. Rinker, and M. D. Lowman. 2006. Stand-Level herbivory in an old-growth conifer forest canopy. West. N. Am. Nat. 66: 473-481.
– reference: Perry, D. R. 1978. A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155-157.
– reference: Price, P. W. 1997. Insect ecology. John Wiley & Sons, New York, New York.
– reference: Turner, I. M.1994. Sclerophylly: Primarily protective. Funct. Ecol. 8: 669-675.
– reference: Read, J., and G. D. Sanson. 2003. Characterizing sclerophylly: The mechanical properties of a diverse range of leaf types. New Phytol. 160: 81-99.
– reference: Wright, I. J., and M. Westoby. 2002. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155: 103-116.
– reference: Lamont, B. B., P. K. Groom, and R. M. Cowling. 2002. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations. Funct. Ecol. 16: 403-412.
– reference: Moran, V. C., and T. R. E. Southwood. 1982. The guild composition of arthropod communities in trees. J. Anim. Ecol. 51: 289-306.
– reference: Salatino, A. 1993. Chemical ecology and the theory of oligotrophic scleromorphism. An. Acad. Bras. Ciênc. 65: 1-13.
– reference: Fernandes, G. W. 1994. Plant mechanical defenses against insect herbivory. Rev. Bras. Entomol. 38: 421-433.
– reference: Haukioja, E., K. RuohomÄki, J. Suomela, and T. Vuorisalo. 1991. Nutritional quality as a defense against herbivores. For. Ecol. Manage. 39: 237-245.
– reference: Specht, R. L., and P. W. Rundel. 1990. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38: 459-474.
– reference: Basset, Y. 2001. Invertebrates in the canopy of tropical rain forests: How much do we really know? Plant Ecol. 153: 87-107.
– reference: Crawley, M. J. 2002. Statistical computing-an introduction to data analysis using s-plus. John Wiley & Sons, London, UK.
– reference: Espírito-Santo, M. M., F. S. Neves, F. R. Andrade-Neto, and G. W. Fernandes. 2007. Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153: 353-364.
– reference: Gonçalves-Alvim, S. J., G. Korndorf, and G. W. Fernades. 2006. Sclerophylly in Qualea parviflora (Vochysiaceae): Influence of herbivory, mineral nutrients, and water status. Plant Ecol. 187: 153-162.
– reference: Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899.
– reference: Varanda, E. M., and M. P. Pais. 2006. Insect folivory in Didymopanax vinosum (Apiaceae) in a vegetation mosaic of Brazilian cerrado. Braz. J. Biol. 66: 671-680.
– reference: Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 2002. An introduction to the study of insects. Saunders College Publishing, New York, New York.
– reference: Loveless, A. R. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 168-184.
– reference: Rasband, W. S. 2006. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland. Available at http://rsb.info.nih.gov/ij (accessed July 2005).
– reference: Choong, M. F., P. W. Lucas, J. S. Y. Ong, P. Pereira, H. T. W. Tan, and I. M. Turner. 1992. Leaf structure toughness and sclerophylly: Their correlations and ecological implications. New Phytol. 121: 497-610.
– reference: Lowman, M. D. 1984. An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica 16: 264-268.
– reference: Loveless, A. R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551-561.
– reference: Campos, R., H. L. Vasconcelos, S. P. Ribeiro, F. S. Neves, and J. P. Soares. 2006. Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29: 442-450.
– reference: Franco, A. C., and U. Luttge. 2002. Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131: 356-365.
– reference: Bendicho-Lopez, A., H. C. Morais, J. D. Hay, and I. R. Diniz. 2006. Lepidópteros folívoros em Roupala montana Aubl. (Proteaceae) no Cerrado Sensu Stricto. Neotrop. Entomol. 35: 182-191.
– volume: 153
  start-page: 353
  year: 2007
  end-page: 364
  article-title: Plant architecture and merystem dynamics as the mechanisms determining the diversity of gall‐inducing insects
  publication-title: Oecologia
– year: 2005
– start-page: 7
  year: 2003
  end-page: 16
– volume: 38
  start-page: 459
  year: 1990
  end-page: 474
  article-title: Sclerophylly and foliar nutrient status of Mediterranean‐climate plant communities in southern Australia
  publication-title: Aust. J. Bot.
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  article-title: The dilemma of plants
  publication-title: To grow or defend
– start-page: 348
  year: 2003
  end-page: 359
– volume: 66
  start-page: 473
  year: 2006
  end-page: 481
  article-title: Stand‐Level herbivory in an old‐growth conifer forest canopy
  publication-title: West. N. Am. Nat.
– volume: 153
  start-page: 87
  year: 2001
  end-page: 107
  article-title: Invertebrates in the canopy of tropical rain forests
  publication-title: How much do we really know?
– volume: 16
  start-page: 403
  year: 2002
  end-page: 412
  article-title: High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorous and nitrogen concentrations
  publication-title: Funct. Ecol.
– start-page: 91
  year: 1991
  end-page: 115
– volume: 51
  start-page: 289
  year: 1982
  end-page: 306
  article-title: The guild composition of arthropod communities in trees
  publication-title: J. Anim. Ecol.
– year: 1979
– volume: 29
  start-page: 442
  year: 2006
  end-page: 450
  article-title: Relationship between tree size and insect assemblages associated with
  publication-title: Ecography
– start-page: 379
  year: 2004
  end-page: 393
– volume: 16
  start-page: 264
  year: 1984
  end-page: 268
  article-title: An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought?
  publication-title: Biotropica
– volume: 16
  start-page: 279
  year: 1974
  end-page: 301
  article-title: A hypothesis to explain outbreaks of looper caterpillars, with special reference to populations of in plantation of in New Zealand
  publication-title: Oecologia
– volume: 26
  start-page: 551
  year: 1962
  end-page: 561
  article-title: Further evidence to support a nutritional interpretation of sclerophylly
  publication-title: Ann. Bot.
– volume: 50
  start-page: 905
  year: 1969
  end-page: 909
  article-title: An index to measure weather induced stress of trees associated with outbreak of psyllids in Australia
  publication-title: Ecology
– volume: 17
  start-page: 127
  year: 2001
  end-page: 148
  article-title: Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado
  publication-title: J. Trop. Ecol.
– volume: 131
  start-page: 356
  year: 2002
  end-page: 365
  article-title: Midday depression in savanna trees
  publication-title: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency
– year: 2008
– volume: 25
  start-page: 168
  year: 1961
  end-page: 184
  article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves
  publication-title: Ann. Bot.
– year: 2004
– volume: 160
  start-page: 81
  year: 2003
  end-page: 99
  article-title: Characterizing sclerophylly
  publication-title: The mechanical properties of a diverse range of leaf types
– year: 1997
– start-page: 169
  year: 1998
  end-page: 192
– volume: 39
  start-page: 237
  year: 1991
  end-page: 245
  article-title: Nutritional quality as a defense against herbivores
  publication-title: For. Ecol. Manage.
– start-page: 123
  year: 1989
  end-page: 162
– start-page: 123
  year: 2005
  end-page: 139
– start-page: 131
  year: 1997
  end-page: 150
– volume: 24
  start-page: 273
  year: 1992
  end-page: 282
  article-title: The resource‐based organization of communities
  publication-title: Biotropica
– volume: 35
  start-page: 182
  year: 2006
  end-page: 191
  article-title: Lepidópteros folívoros em Aubl. (Proteaceae) no Cerrado Sensu Stricto
  publication-title: Neotrop. Entomol.
– volume: 30
  start-page: 663
  year: 2007
  end-page: 672
  article-title: Gall‐forming and free‐feeding herbivory along vertical gradients in a lowland tropical rainforest
  publication-title: The importance of leaf sclerophylly
– volume: 8
  start-page: 17
  year: 1983
  end-page: 25
  article-title: Variation in leaf toughness and phenolic content among five species of Australian rain forest trees
  publication-title: Aust. J. Ecol.
– volume: 121
  start-page: 497
  year: 1992
  end-page: 610
  article-title: Leaf structure toughness and sclerophylly
  publication-title: Their correlations and ecological implications
– volume: 149
  start-page: 444
  year: 2006
  end-page: 455
  article-title: Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life‐history strategies
  publication-title: Oecologia
– volume: 10
  start-page: 155
  year: 1978
  end-page: 157
  article-title: A method of access into the crowns of emergent and canopy trees
  publication-title: Biotropica
– volume: 27
  start-page: 132
  year: 2002
  end-page: 136
  article-title: Seasonal pattern of insect abundance in the Brazilian cerrado
  publication-title: Aust. Ecol.
– volume: 230
  start-page: 895
  year: 1985
  end-page: 899
  article-title: Resource availability and plant antiherbivore defense
  publication-title: Science
– start-page: 89
  year: 1998
  end-page: 166
– start-page: 304
  year: 1995
  end-page: 325
– volume: 66
  start-page: 671
  year: 2006
  end-page: 680
  article-title: Insect folivory in (Apiaceae) in a vegetation mosaic of Brazilian cerrado
  publication-title: Braz. J. Biol.
– volume: 187
  start-page: 153
  year: 2006
  end-page: 162
  article-title: Sclerophylly in (Vochysiaceae)
  publication-title: Influence of herbivory, mineral nutrients, and water status
– year: 1984
– volume: 59
  start-page: 411
  year: 1971
  end-page: 419
  article-title: A Physiognomic analysis of the Cerrado vegetation of central Brasil
  publication-title: J. Ecol.
– volume: 50
  start-page: 125
  year: 2009
  end-page: 136
  article-title: Canopy research in the twenty‐first century: A review of Arboreal Ecology
  publication-title: J. Trop. Ecol.
– volume: 8
  start-page: 669
  year: 1994
  end-page: 675
  article-title: Sclerophylly
  publication-title: Primarily protective
– volume: 77
  start-page: 43
  year: 2002
  end-page: 65
  article-title: Correlations between leaf structural traits and the densities of herbivorous insect guilds
  publication-title: Biol. J. Linn. Soc.
– volume: 14
  start-page: 23
  year: 1988
  end-page: 34
  article-title: Light‐induced variation in phenolic levels in foliage of rain‐forest plants. II. Potential significance to herbivores
  publication-title: J. Chem. Ecol.
– volume: 65
  start-page: 1
  year: 1993
  end-page: 13
  article-title: Chemical ecology and the theory of oligotrophic scleromorphism
  publication-title: An. Acad. Bras. Ciênc.
– year: 2002
– volume: 86
  start-page: 913
  year: 2000
  end-page: 920
  article-title: Mechanical defenses to herbivory
  publication-title: Ann. Bot.
– year: 2006
– volume: 155
  start-page: 103
  year: 2002
  end-page: 116
  article-title: Leaves at low versus high rainfall
  publication-title: Coordination of structure, lifespan and physiology
– volume: 15
  start-page: 351
  year: 2001
  end-page: 359
  article-title: Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora
  publication-title: Funct. Ecol.
– start-page: 47
  year: 1998
  end-page: 86
– volume: 38
  start-page: 421
  year: 1994
  end-page: 433
  article-title: Plant mechanical defenses against insect herbivory
  publication-title: Rev. Bras. Entomol.
– volume: 53
  start-page: 209
  year: 1983
  end-page: 233
  article-title: Herbivory and defensive characteristics of tree species in lowland tropical rain forest
  publication-title: Ecol. Monogr.
– volume: 8
  start-page: 223
  year: 1999
  end-page: 241
  article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados
  publication-title: Glob. Ecol. Biogeogr.
– volume-title: An introduction to the study of insects
  year: 2002
  ident: e_1_2_6_5_1
– ident: e_1_2_6_9_1
  doi: 10.1126/science.230.4728.895
– ident: e_1_2_6_41_1
  doi: 10.2307/2388522
– start-page: 348
  volume-title: Arthropods of tropical forests: Spatio‐temporal dynamics and resource use in the canopy
  year: 2003
  ident: e_1_2_6_48_1
– ident: e_1_2_6_28_1
  doi: 10.2307/2387934
– volume-title: R: A language and environment for statistical computing
  year: 2005
  ident: e_1_2_6_44_1
– volume: 121
  start-page: 497
  year: 1992
  ident: e_1_2_6_7_1
  article-title: Leaf structure toughness and sclerophylly
  publication-title: Their correlations and ecological implications
– ident: e_1_2_6_19_1
  doi: 10.2307/2258321
– volume: 187
  start-page: 153
  year: 2006
  ident: e_1_2_6_18_1
  article-title: Sclerophylly in Qualea parviflora (Vochysiaceae)
  publication-title: Influence of herbivory, mineral nutrients, and water status
– ident: e_1_2_6_57_1
  doi: 10.1590/S1519-69842006000400011
– ident: e_1_2_6_40_1
  doi: 10.1046/j.1442-9993.2002.01165.x
– start-page: 89
  volume-title: Cerrado: Ambiente e Flora
  year: 1998
  ident: e_1_2_6_47_1
– ident: e_1_2_6_27_1
  doi: 10.1093/oxfordjournals.aob.a083814
– volume: 30
  start-page: 663
  year: 2007
  ident: e_1_2_6_49_1
  article-title: Gall‐forming and free‐feeding herbivory along vertical gradients in a lowland tropical rainforest
  publication-title: The importance of leaf sclerophylly
– ident: e_1_2_6_16_1
  doi: 10.1046/j.1466-822X.1999.00142.x
– ident: e_1_2_6_6_1
  doi: 10.1111/j.2006.0906-7590.04520.x
– start-page: 379
  volume-title: Forest canopies
  year: 2004
  ident: e_1_2_6_50_1
– start-page: 131
  volume-title: Canopy arthropods
  year: 1997
  ident: e_1_2_6_24_1
– volume-title: Ecologia do Cerrado
  year: 1979
  ident: e_1_2_6_20_1
– volume: 65
  start-page: 1
  year: 1993
  ident: e_1_2_6_51_1
  article-title: Chemical ecology and the theory of oligotrophic scleromorphism
  publication-title: An. Acad. Bras. Ciênc.
– start-page: 123
  volume-title: Plant–animal interactions
  year: 1989
  ident: e_1_2_6_58_1
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1095-8312.2002.00091.x
– volume: 160
  start-page: 81
  year: 2003
  ident: e_1_2_6_45_1
  article-title: Characterizing sclerophylly
  publication-title: The mechanical properties of a diverse range of leaf types
– ident: e_1_2_6_31_1
  doi: 10.1006/anbo.2000.1261
– volume: 67
  start-page: 283
  year: 1992
  ident: e_1_2_6_22_1
  article-title: The dilemma of plants
  publication-title: To grow or defend
– ident: e_1_2_6_8_1
  doi: 10.2307/1942495
– ident: e_1_2_6_23_1
  doi: 10.1007/s00442-006-0462-8
– volume: 50
  start-page: 125
  year: 2009
  ident: e_1_2_6_29_1
  article-title: Canopy research in the twenty‐first century: A review of Arboreal Ecology
  publication-title: J. Trop. Ecol.
– volume: 38
  start-page: 421
  year: 1994
  ident: e_1_2_6_13_1
  article-title: Plant mechanical defenses against insect herbivory
  publication-title: Rev. Bras. Entomol.
– ident: e_1_2_6_59_1
  doi: 10.2307/1933707
– ident: e_1_2_6_38_1
  doi: 10.2307/2388019
– volume-title: Insects on plant. Community patterns and mechanisms
  year: 1984
  ident: e_1_2_6_55_1
– volume-title: Statistical computing—an introduction to data analysis using s‐plus
  year: 2002
  ident: e_1_2_6_10_1
– ident: e_1_2_6_34_1
  doi: 10.2307/4325
– ident: e_1_2_6_61_1
  doi: 10.1046/j.1365-2435.2001.00522.x
– volume-title: Insect ecology
  year: 1997
  ident: e_1_2_6_42_1
– volume: 155
  start-page: 103
  year: 2002
  ident: e_1_2_6_62_1
  article-title: Leaves at low versus high rainfall
  publication-title: Coordination of structure, lifespan and physiology
– volume: 153
  start-page: 87
  year: 2001
  ident: e_1_2_6_2_1
  article-title: Invertebrates in the canopy of tropical rain forests
  publication-title: How much do we really know?
– ident: e_1_2_6_4_1
  doi: 10.1590/S1519-566X2006000200005
– ident: e_1_2_6_54_1
  doi: 10.1071/BT9900459
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1442-9993.1983.tb01515.x
– volume: 131
  start-page: 356
  year: 2002
  ident: e_1_2_6_15_1
  article-title: Midday depression in savanna trees
  publication-title: Coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency
– ident: e_1_2_6_33_1
  doi: 10.1007/BF01022528
– ident: e_1_2_6_39_1
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-2435.2002.00631.x
– ident: e_1_2_6_12_1
  doi: 10.1007/s00442-007-0737-8
– ident: e_1_2_6_17_1
– start-page: 91
  volume-title: Plant–animal interactions. Evolutionary ecology in tropical and temperate regions
  year: 1991
  ident: e_1_2_6_14_1
– ident: e_1_2_6_11_1
  doi: 10.1017/CBO9780511753398.012
– start-page: 7
  volume-title: Arthopods of tropical forests—spatio‐temporal dynamics and resource use in the canopy
  year: 2003
  ident: e_1_2_6_3_1
– ident: e_1_2_6_21_1
  doi: 10.1016/0378-1127(91)90179-Y
– start-page: 169
  volume-title: Cerrado: Ambiente e Flora
  year: 1998
  ident: e_1_2_6_36_1
– start-page: 123
  volume-title: Cerrado: Ecologia, Biodiversidade e Conservação
  year: 2005
  ident: e_1_2_6_52_1
– ident: e_1_2_6_60_1
  doi: 10.1007/BF00344738
– ident: e_1_2_6_26_1
  doi: 10.1093/oxfordjournals.aob.a083740
– ident: e_1_2_6_35_1
– ident: e_1_2_6_32_1
  doi: 10.1017/S0266467401001080
– ident: e_1_2_6_53_1
  doi: 10.3398/1527-0904(2006)66[473:SHIAOC]2.0.CO;2
– volume-title: ImageJ
  year: 2006
  ident: e_1_2_6_43_1
– start-page: 47
  volume-title: Cerrado: Ambiente e Flora
  year: 1998
  ident: e_1_2_6_46_1
– volume: 8
  start-page: 669
  year: 1994
  ident: e_1_2_6_56_1
  article-title: Sclerophylly
  publication-title: Primarily protective
SSID ssj0009504
Score 2.1688838
Snippet This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry...
ABSTRACT This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically...
ABSTRACTThis study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Abundance
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Brazil
canopy
Canopy insect
Cerrado
Conservation, protection and management of environment and wildlife
Dry forests
ecosystems
Forest canopy
Forest habitats
Forest insects
Forest trees
Fundamental and applied biological sciences. Psychology
General aspects
habitat transition
habitats
Herbivores
insect guild
Insecta
Invertebrates
leaf area
leaf sclerophylly
Leaves
mastication
nutrient content
Phytophagous insects
savannas
soil nutrients
soil quality
soil sampling
Trees
Tropical Biology
Title Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest-Savanna Transition in Brazil
URI https://api.istex.fr/ark:/67375/WNG-9MKLVB85-L/fulltext.pdf
https://www.jstor.org/stable/27742870
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1744-7429.2009.00541.x
https://www.proquest.com/docview/46488762
https://www.proquest.com/docview/902331802
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BJSQuvKuaR9kD4uYotvdhH0kfBGgrRBvoidXY3q2iVHYVJ6jpif_AP-SXMGPHJqlAqhA3y5q15NnZmW-9n79h7FUEQoFW1teqr31ExH0fElC-sAFk4DKnYvp3-PBIDUfi_ak8XfKf6F-YRh-i--BGK6PO17TAIa3WF7kWwsetXdLKTkoR9AhPEnWL8NGncEV_t98IMhPVC0H7dVLPHx60VqluOygRv5LrL1vqIvEooUJXuqYHxhpIXYW6da3av88m7Vs2FJVJbz5Le9nVNQHI_-OGB-zeEtLyN00MPmS3bPGI3WmaXC7waq8Wxl48Zl93oCgvFnyIUzn-Vk4XHIqcvysqTLrdTct3W6oIHxcc-C7aUQPRavbz-49jQORfAK9LbM02I6PBFK7G50_YaH_vZGfoL_s7-JlEoObnLtdKALgwiLTNYpWoNHYBuFzKMBNBgJUyFmmUx2Ea4b7OWowrSaBIZFLn_WiTbRRlYbcYl7mIRR6AcnEqnHQJQpEUhJVBmoUuTz2m27k02VL8nHpwnJuVTRD60ZAfqTVnYmo_mkuPBd3Ii0YA5AZjtjBcDJxhnjaj45BOhxEoRjqSHntdx1D3LJhOiFunpfly9NYkhx8OPg9iaQ48tlkHWWcYIlCnU2mPba9F3W8DTM3oMe2xl20YGswVdAAEhS3nlREK0zVWP4_xv1iQ3yISBfSYrKPuxu9sBicf8eLpP457xu42vAz6uPWcbcymc_sC4d4s3a4X8i9hIUIB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL76rm0e4BcXMU27te-0j6IKVJhGgCPbEa27soauRUeaCmJ_4D_5Bfwsw6DkkFUoW4WdasJY9nZ77d_fwNY68jEDGo2PgqbiofEXHThxRiX5gAcrC5jRP6d7jbi9sD8f5Mni3bAdG_MJU-xGrDjWaGy9c0wWlDenOWKyF8XNulte6kFEEDAeUdavDt1lcfwzUF3mYlyUxkL4Tt12k9f3jSRq26bWGMCJacf1mTF4lJCVN0pq26YGzA1HWw66rV0UM2qt-zIqmcN-azrJFfXZOA_E-OeMQeLFEtf1uF4WN2y5RP2N2qz-UCrw6dNvbiKfuyD-X4YsHb-DWH38aTBYey4MflFPPu6qbhBzVbhA9LDvwA7aiH6HT28_uPU0DwXwJ3VdYRzsioNYGr4egZGxwd9vfb_rLFg59LxGp-YQsVCwAbBpEyeRKncZbYAGwhZZiLIMBimYgsKpIwi3BpZwyGliRcJHKpima0zbbKcWl2GJeFSEQRQGyTTFhpU0QjGQgjgywPbZF5TNUfU-dL_XNqwzHSa-sg9KMmP1J3zlQ7P-pLjwWrkReVBsgNxuxgvGj4iqlaD05DOiBGrBipSHrsjQui1bNgck70OiX15947nXZPOp9aidQdj227KFsZhojV6WDaY7sbYffbALMzekx5bK-OQ43pgs6AoDTj-VSLGDM2FkCP8b9YkN8i0gX0mHRhd-N31q3-B7x4_o_j9ti9dr_b0Z3j3skLdr-iadBe10u2NZvMzStEf7Ns183qX3_lRhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYgL76rm0e4BcXPkxz7sI2kaUppGFW2gJ1Zje7eKUtlRHqjpif_AP-SXMGvHJqlAqhA3y5q15NlvZ771fp4h5G0ITIAU2pXCky4yYs-FGITLtA8pmNSIyP47fDwQvSH7eM7PV_on-y9MVR-i-eBmV0YZr-0Cn2Rmc5FLxlzc2sV12UnO_BbyyXtMeJFFeOdTsFaA16sqMlutF7L2m6qePzxpI1XdNVAggbW-v6q1i1ZICTP0pamaYGyw1HWuWyar7mMyrl-z0qiMW4t50kqvb1SA_D9-eEIerTgtfV-B8Cm5o_Nn5H7V5XKJVwdlZezlc_J1H_JisqQ9nMvRt2K6pJBn9DCfYdRtbmraqbUidJRToB20sx1EZ_Of33-cAlL_HGiZY0u5mTVqT-F6dPmCDLsHZ_s9d9XgwU05MjU3M5kUDMAEfih1GolYJJHxwWScBynzfUyVEUvCLAqSEDd2WiOwuGVFLOUy88JtspUXud4hlGcsYpkPwkQJM9zEyEUSYJr7SRqYLHGIrOdSpavq57YJx6Va2wWhH5X1o-3NGavSj-rKIX4zclJVALnFmB2Ei4ILDNRqeBrY42FkiqEMuUPelRhqngXTsRXXSa6-DD6o-Pio_7kdcdV3yHYJssYwQKZuj6UdsruBut8GGJvRY9IhezUMFQYLewIEuS4WM8UExmtMfw6hf7GwfgttVUCH8BJ1t35n1T47wYuX_zhujzw46XRV_3Bw9Io8rDQa9kPXa7I1ny70G6R-82S3XNO_AHyyRNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canopy+Herbivory+and+Insect+Herbivore+Diversity+in+a+Dry+Forest-Savanna+Transition+in+Brazil&rft.jtitle=Biotropica&rft.au=Neves%2C+Frederico+S&rft.au=Ara%C3%BAjo%2C+Lucimar+S&rft.au=Esp%C3%ADrito-Santo%2C+M%C3%A1rio+M&rft.au=Fagundes%2C+Marc%C3%ADlio&rft.date=2010&rft.pub=Malden%2C+USA+%3A+Blackwell+Publishing+Inc&rft.issn=0006-3606&rft.volume=42&rft.issue=1&rft.spage=112&rft.epage=118&rft_id=info:doi/10.1111%2Fj.1744-7429.2009.00541.x&rft.externalDocID=US201301723735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon