Biochar and Its Potential to Deliver Negative Emissions and Better Soil Quality in Europe
Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, wit...
Saved in:
Published in | Earth's future Vol. 11; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.10.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions.
Plain Language Summary
Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe.
Key Points
Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO2 yr−1
Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses
Some trade‐offs can occur in few locations, mainly for lower yields and air pollution |
---|---|
AbstractList | Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH[sub.3] volatilization (+21.7%‐24.2%), and reduces soil N[sub.2] O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Abstract Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Negative emissions are essential to limit global warming, but their large-scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially-explicit analysis of the co-benefits and trade-offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%-9%), crop production (+7.1%-8.4%), NH3 volatilization (+21.7%-24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade-offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co-deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH 3 volatilization (+21.7%‐24.2%), and reduces soil N 2 O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe. Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO 2 yr −1 Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses Some trade‐offs can occur in few locations, mainly for lower yields and air pollution Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Plain Language Summary Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe. Key Points Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO2 yr−1 Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses Some trade‐offs can occur in few locations, mainly for lower yields and air pollution |
Audience | General |
Author | Hu, Xiangping Zhao, Wenwu Xie, Zubin Cherubini, Francesco Tisserant, Alexandre Liu, Qi |
Author_xml | – sequence: 1 givenname: Alexandre orcidid: 0000-0003-4279-4446 surname: Tisserant fullname: Tisserant, Alexandre email: tisserant.alexandre@gmail.com organization: Norwegian University of Science and Technology (NTNU) – sequence: 2 givenname: Xiangping orcidid: 0000-0003-3468-8248 surname: Hu fullname: Hu, Xiangping organization: Norwegian University of Science and Technology (NTNU) – sequence: 3 givenname: Qi surname: Liu fullname: Liu, Qi organization: Nanjing Forestry University – sequence: 4 givenname: Zubin surname: Xie fullname: Xie, Zubin organization: Chinese Academy of Sciences – sequence: 5 givenname: Wenwu orcidid: 0000-0001-5342-354X surname: Zhao fullname: Zhao, Wenwu organization: Beijing Normal University – sequence: 6 givenname: Francesco surname: Cherubini fullname: Cherubini, Francesco organization: Norwegian University of Science and Technology (NTNU) |
BookMark | eNp9kt1v0zAQwC00JEbZG39AJJ6QyPBHHMePW0lHpYqBGA88WZ5zKa7SuNgO0P-eYx3SigBbss_n3519H0_JyRhGIOQ5o-eMcv2aU87bBaWCV_UjcsoFb8qKK3XyQH5CzlLaUBxaUSHVKfl86YP7YmNhx65Y5lS8DxnG7O1Q5FC8gcF_g1i8g7XNKBXt1qfkw5ju-EvIGW8_Bj8UHyY7-Lwv_Fi0Uww7eEYe93ZIcHa_z8inRXszf1uurq-W84tV6aSUtLytuWTSStHTqhFaKuVUxV2FZ6ipYLg0TaeFYu4Watc12rEKFFPQA9NOiRlZHvx2wW7MLvqtjXsTrDd3ihDXxsbs3QCm66iWAhpGpawEBdtxoWvqUFMp3QP6enHwtYvh6wQpm02Y4ojfN7xpeIWJrAVS5wdqbdGpH_uQo3U4O9h6h1XpPeovlOaqFhqjmpGXRwbIZPiR13ZKyTRXq2O2_BvrwjDAGgymbn59zPMD72JIKUJvnM9YLDSL1g-GUfOrPczD9kCjV38Y_c7bP_D7N75jYPv_sqZd3HBWcSp-AoF6xVE |
CitedBy_id | crossref_primary_10_1016_j_jafr_2025_101719 crossref_primary_10_1088_1748_9326_ad71e1 crossref_primary_10_1016_j_biombioe_2024_107187 crossref_primary_10_1080_17583004_2025_2465328 crossref_primary_10_3390_en17194852 crossref_primary_10_1016_j_rset_2024_100087 |
Cites_doi | 10.1007/s10584-005-1146-9 10.1016/j.scitotenv.2018.11.312 10.1080/09542299.2018.1544035 10.1111/gcbb.12665 10.1016/j.soilbio.2013.12.026 10.1016/j.jenvman.2021.112154 10.1007/s11367-018-1443-y 10.3390/land8120179 10.1016/j.geoderma.2020.114178 10.1038/s41598-020-67528-y 10.1080/01431160412331291297 10.1016/j.scitotenv.2018.10.060 10.1021/acs.est.7b00748 10.1126/science.1176985 10.1039/c2ee21592f 10.1088/1748-9326/aabb0e 10.1016/B978-1-78242-374-4.00003-3 10.1007/s11368-017-1899-6 10.1073/pnas.1710465114 10.1016/j.scitotenv.2018.07.099 10.1038/nclimate2998 10.3390/en12112166 10.1016/j.still.2020.104926 10.1080/03650340.2019.1650916 10.1016/j.scitotenv.2018.11.124 10.1088/1748-9326/7/1/014025 10.1111/gcb.14613 10.1016/j.soilbio.2019.04.018 10.4155/cmt.11.22 10.1287/trsc.25.1.83 10.1016/S0167-1987(03)00040-0 10.1088/1748-9326/aa67bd 10.2134/jeq2016.10.0396 10.1016/j.biombioe.2019.01.021 10.1038/s41558-017-0064-y 10.2172/1227072 10.1016/j.scitotenv.2019.06.277 10.1007/s11104-022-05365-w 10.1007/s11027-005-9006-5 10.1248/jhs.52.585 10.1016/j.scienta.2018.11.070 10.1016/bs.agron.2016.10.001 10.1021/es500474q 10.1088/1748-9326/aabf9b 10.1007/s00374-018-1289-2 10.1080/02827581.2016.1221128 10.1371/journal.pone.0138781 10.1038/s41467-017-02142-7 10.5194/acp-14-10363-2014 10.1016/j.fcr.2020.107763 10.1016/j.geoderma.2019.114055 10.1016/j.jclepro.2017.12.143 10.1016/j.jclepro.2014.12.038 10.1111/gcb.13068 10.1007/s10021-018-0248-y 10.1016/j.resconrec.2021.106030 10.3390/soilsystems4040060 10.1016/j.envres.2020.110697 10.1016/j.scitotenv.2020.136857 10.1111/gcbb.12449 10.5194/acp-13-2793-2013 10.5194/bg-2017-281 10.1111/gcbb.13022 10.5194/bg-14-2851-2017 10.1039/C2EE21750C 10.1016/j.envsci.2016.06.019 10.1111/gcbb.12604 10.3390/rs12091365 10.1038/s41467-021-21868-z 10.1111/sum.12546 10.1038/srep20700 10.1016/j.jenvman.2018.05.004 10.1016/j.catena.2018.10.021 10.5281/zenodo.8214764 10.1111/gcbb.12180 10.1111/gcbb.12783 10.1007/s11104-018-3619-4 10.1088/1748-9326/8/4/044008 10.1016/j.scitotenv.2020.137335 10.1016/j.biombioe.2010.03.004 10.1111/gcbb.12889 10.1111/ejss.12074 10.1029/2003JD003697 10.1111/gcbb.12765 10.1038/ncomms1053 10.1016/j.agee.2020.107109 10.1016/j.apenergy.2017.02.004 10.1111/gcb.13178 10.1186/s40663-019-0163-5 10.1111/gcbb.12553 10.1007/s11367-016-1087-8 10.1111/gcb.14466 10.3390/ijerph8051491 10.1038/nclimate2870 10.5194/acp-16-7451-2016 10.1016/j.jclepro.2020.120998 10.1021/acs.est.9b01615 |
ClassificationCodes | 4954000 9106410 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union. COPYRIGHT 2023 John Wiley & Sons, Inc. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: COPYRIGHT 2023 John Wiley & Sons, Inc. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8GL 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI DOA |
DOI | 10.1029/2022EF003246 |
DatabaseName | Wiley Online Library Open Access CrossRef Gale In Context: High School Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2328-4277 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_dd0953e81055430ead23960ce81479fe A792763948 10_1029_2022EF003246 EFT21420 |
Genre | researchArticle |
GeographicLocations | United States Europe |
GeographicLocations_xml | – name: United States – name: Europe |
GrantInformation_xml | – fundername: Norges Forskningsråd funderid: 281113 |
GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN ITC LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAYXX CITATION PHGZM PHGZT PMFND 7ST 7TG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c5550-b62515a53f04839577c742c43f0e6031e6088d9371cbe6cd89c14e717efe19c73 |
IEDL.DBID | 24P |
ISSN | 2328-4277 |
IngestDate | Wed Aug 27 01:23:34 EDT 2025 Sat Aug 23 14:21:55 EDT 2025 Tue Jun 10 20:55:46 EDT 2025 Fri Jun 27 05:13:48 EDT 2025 Tue Jun 10 20:05:17 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Tue Jul 01 02:48:27 EDT 2025 Wed Jan 22 16:14:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5550-b62515a53f04839577c742c43f0e6031e6088d9371cbe6cd89c14e717efe19c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3468-8248 0000-0001-5342-354X 0000-0003-4279-4446 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF003246 |
PQID | 2882423263 |
PQPubID | 2034575 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd0953e81055430ead23960ce81479fe proquest_journals_2882423263 gale_infotracacademiconefile_A792763948 gale_incontextgauss_8GL_A792763948 gale_incontextcollege_GICCO_A792763948 crossref_citationtrail_10_1029_2022EF003246 crossref_primary_10_1029_2022EF003246 wiley_primary_10_1029_2022EF003246_EFT21420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earth's future |
PublicationTitleAlternate | Earth's Future |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_8_1_36_1 e_1_2_8_1_13_1 IAE (e_1_2_8_1_38_1) 2022 e_1_2_8_1_55_1 Myhre G. (e_1_2_8_1_60_1) 2013 e_1_2_8_1_32_1 e_1_2_8_1_51_1 e_1_2_8_1_70_1 e_1_2_8_1_101_1 e_1_2_8_1_105_1 e_1_2_8_1_81_1 e_1_2_8_1_85_1 e_1_2_8_1_89_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_47_1 e_1_2_8_1_24_1 e_1_2_8_1_66_1 e_1_2_8_1_43_1 e_1_2_8_1_20_1 e_1_2_8_1_62_1 e_1_2_8_1_109_1 e_1_2_8_1_3_1 e_1_2_8_1_7_1 e_1_2_8_1_93_1 e_1_2_8_1_74_1 e_1_2_8_1_97_1 e_1_2_8_1_78_1 e_1_2_8_1_17_1 e_1_2_8_1_14_1 e_1_2_8_1_33_1 e_1_2_8_1_56_1 e_1_2_8_1_10_1 e_1_2_8_1_52_1 e_1_2_8_1_71_1 e_1_2_8_1_8_1 e_1_2_8_1_102_1 e_1_2_8_1_106_1 e_1_2_8_1_82_1 e_1_2_8_1_86_1 e_1_2_8_1_26_1 e_1_2_8_1_49_1 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_1_67_1 Stolte J. (e_1_2_8_1_87_1) 2015 e_1_2_8_2_2_1 Camia A. (e_1_2_8_1_15_1) 2021 e_1_2_8_1_21_1 e_1_2_8_1_40_1 e_1_2_8_1_63_1 e_1_2_8_1_90_1 e_1_2_8_1_4_1 e_1_2_8_1_94_1 e_1_2_8_1_75_1 e_1_2_8_1_98_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_79_1 e_1_2_8_1_11_1 e_1_2_8_1_57_1 e_1_2_8_1_34_1 e_1_2_8_1_53_1 e_1_2_8_1_30_1 e_1_2_8_1_9_1 cr-split#-e_1_2_8_1_23_1.1 cr-split#-e_1_2_8_1_23_1.2 e_1_2_8_1_83_1 e_1_2_8_1_27_1 WRI (e_1_2_8_1_103_1) 2023 IPCC (e_1_2_8_1_42_1) 2021 e_1_2_8_1_22_1 e_1_2_8_1_68_1 e_1_2_8_1_45_1 e_1_2_8_2_3_1 e_1_2_8_1_64_1 e_1_2_8_1_41_1 e_1_2_8_1_107_1 Mokma D. L. (e_1_2_8_1_59_1) 1992; 47 e_1_2_8_1_110_1 e_1_2_8_1_91_1 e_1_2_8_1_5_1 e_1_2_8_1_72_1 e_1_2_8_1_95_1 e_1_2_8_1_19_1 e_1_2_8_1_76_1 e_1_2_8_1_99_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_58_1 e_1_2_8_1_31_1 e_1_2_8_1_54_1 e_1_2_8_1_50_1 e_1_2_8_1_100_1 e_1_2_8_1_80_1 e_1_2_8_1_104_1 e_1_2_8_1_84_1 e_1_2_8_1_88_1 e_1_2_8_1_28_1 e_1_2_8_1_46_1 e_1_2_8_1_69_1 e_1_2_8_1_65_1 e_1_2_8_1_61_1 e_1_2_8_1_108_1 e_1_2_8_1_2_1 e_1_2_8_1_111_1 e_1_2_8_1_6_1 e_1_2_8_1_92_1 e_1_2_8_1_73_1 e_1_2_8_1_96_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 e_1_2_8_1_77_1 |
References_xml | – ident: e_1_2_8_1_81_1 doi: 10.1007/s10584-005-1146-9 – ident: e_1_2_8_1_27_1 doi: 10.1016/j.scitotenv.2018.11.312 – ident: e_1_2_8_1_97_1 doi: 10.1080/09542299.2018.1544035 – ident: e_1_2_8_1_11_1 doi: 10.1111/gcbb.12665 – ident: e_1_2_8_1_61_1 doi: 10.1016/j.soilbio.2013.12.026 – ident: e_1_2_8_1_7_1 doi: 10.1016/j.jenvman.2021.112154 – ident: e_1_2_8_1_46_1 doi: 10.1007/s11367-018-1443-y – ident: e_1_2_8_1_90_1 doi: 10.3390/land8120179 – ident: e_1_2_8_1_26_1 doi: 10.1016/j.geoderma.2020.114178 – ident: e_1_2_8_1_52_1 doi: 10.1038/s41598-020-67528-y – ident: e_1_2_8_1_9_1 doi: 10.1080/01431160412331291297 – ident: e_1_2_8_1_50_1 – ident: e_1_2_8_1_13_1 doi: 10.1016/j.scitotenv.2018.10.060 – ident: e_1_2_8_1_66_1 doi: 10.1021/acs.est.7b00748 – ident: e_1_2_8_1_73_1 doi: 10.1126/science.1176985 – ident: e_1_2_8_1_67_1 doi: 10.1039/c2ee21592f – ident: e_1_2_8_1_99_1 doi: 10.1088/1748-9326/aabb0e – ident: #cr-split#-e_1_2_8_1_23_1.1 – ident: e_1_2_8_1_82_1 doi: 10.1016/B978-1-78242-374-4.00003-3 – ident: e_1_2_8_1_20_1 doi: 10.1007/s11368-017-1899-6 – ident: e_1_2_8_1_33_1 doi: 10.1073/pnas.1710465114 – ident: e_1_2_8_1_37_1 – ident: e_1_2_8_1_56_1 doi: 10.1016/j.scitotenv.2018.07.099 – volume: 47 start-page: 325 year: 1992 ident: e_1_2_8_1_59_1 article-title: Effects of soil erosion on corn yields on Marlette soils in south‐central Michigan publication-title: Journal of Soil and Water Conservation – ident: e_1_2_8_1_3_1 doi: 10.1038/nclimate2998 – ident: e_1_2_8_1_71_1 doi: 10.3390/en12112166 – ident: e_1_2_8_1_43_1 doi: 10.1016/j.still.2020.104926 – ident: e_1_2_8_1_70_1 doi: 10.1080/03650340.2019.1650916 – ident: e_1_2_8_1_29_1 doi: 10.1016/j.scitotenv.2018.11.124 – ident: e_1_2_8_1_32_1 doi: 10.1088/1748-9326/7/1/014025 – ident: e_1_2_8_1_54_1 doi: 10.1111/gcb.14613 – ident: e_1_2_8_1_98_1 doi: 10.1016/j.soilbio.2019.04.018 – ident: e_1_2_8_1_80_1 doi: 10.4155/cmt.11.22 – ident: e_1_2_8_1_63_1 – ident: #cr-split#-e_1_2_8_1_23_1.2 – ident: e_1_2_8_2_2_1 doi: 10.1287/trsc.25.1.83 – ident: e_1_2_8_1_4_1 doi: 10.1016/S0167-1987(03)00040-0 – ident: e_1_2_8_1_44_1 doi: 10.1088/1748-9326/aa67bd – ident: e_1_2_8_1_94_1 doi: 10.2134/jeq2016.10.0396 – ident: e_1_2_8_1_76_1 doi: 10.1016/j.biombioe.2019.01.021 – ident: e_1_2_8_1_36_1 doi: 10.1038/s41558-017-0064-y – ident: e_1_2_8_1_88_1 doi: 10.2172/1227072 – ident: e_1_2_8_1_75_1 doi: 10.1016/j.scitotenv.2019.06.277 – ident: e_1_2_8_1_72_1 doi: 10.1007/s11104-022-05365-w – ident: e_1_2_8_1_49_1 doi: 10.1007/s11027-005-9006-5 – ident: e_1_2_8_1_5_1 doi: 10.1248/jhs.52.585 – ident: e_1_2_8_1_111_1 doi: 10.1016/j.scienta.2018.11.070 – ident: e_1_2_8_2_3_1 doi: 10.1016/bs.agron.2016.10.001 – volume-title: Climate watch historical GHG emissions year: 2023 ident: e_1_2_8_1_103_1 – ident: e_1_2_8_1_102_1 doi: 10.1021/es500474q – ident: e_1_2_8_1_41_1 – ident: e_1_2_8_1_58_1 doi: 10.1088/1748-9326/aabf9b – ident: e_1_2_8_1_62_1 doi: 10.1007/s00374-018-1289-2 – ident: e_1_2_8_1_28_1 doi: 10.1080/02827581.2016.1221128 – ident: e_1_2_8_1_64_1 doi: 10.1371/journal.pone.0138781 – ident: e_1_2_8_1_14_1 doi: 10.1038/s41467-017-02142-7 – volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change year: 2021 ident: e_1_2_8_1_42_1 – ident: e_1_2_8_1_96_1 doi: 10.5194/acp-14-10363-2014 – ident: e_1_2_8_1_30_1 doi: 10.1016/j.fcr.2020.107763 – ident: e_1_2_8_1_74_1 doi: 10.1016/j.geoderma.2019.114055 – ident: e_1_2_8_1_89_1 doi: 10.1016/j.jclepro.2017.12.143 – ident: e_1_2_8_1_105_1 doi: 10.1016/j.jclepro.2014.12.038 – ident: e_1_2_8_1_85_1 doi: 10.1111/gcb.13068 – ident: e_1_2_8_1_45_1 doi: 10.1007/s10021-018-0248-y – volume-title: Electricity and heat statistics [WWW Document] year: 2022 ident: e_1_2_8_1_38_1 – ident: e_1_2_8_1_92_1 doi: 10.1016/j.resconrec.2021.106030 – ident: e_1_2_8_1_79_1 doi: 10.3390/soilsystems4040060 – ident: e_1_2_8_1_69_1 doi: 10.1016/j.envres.2020.110697 – ident: e_1_2_8_1_22_1 doi: 10.1016/j.scitotenv.2020.136857 – ident: e_1_2_8_1_106_1 doi: 10.1111/gcbb.12449 – ident: e_1_2_8_1_47_1 doi: 10.5194/acp-13-2793-2013 – ident: e_1_2_8_1_18_1 doi: 10.5194/bg-2017-281 – ident: e_1_2_8_1_34_1 doi: 10.1111/gcbb.13022 – ident: e_1_2_8_1_25_1 doi: 10.5194/bg-14-2851-2017 – ident: e_1_2_8_1_35_1 doi: 10.1039/C2EE21750C – ident: e_1_2_8_1_17_1 doi: 10.1016/j.envsci.2016.06.019 – ident: e_1_2_8_1_31_1 doi: 10.1111/gcbb.12604 – ident: e_1_2_8_1_65_1 doi: 10.3390/rs12091365 – ident: e_1_2_8_1_107_1 doi: 10.1038/s41467-021-21868-z – ident: e_1_2_8_1_109_1 doi: 10.1111/sum.12546 – ident: e_1_2_8_1_110_1 doi: 10.1038/srep20700 – ident: e_1_2_8_1_16_1 doi: 10.1016/j.jenvman.2018.05.004 – volume-title: Soil threats in Europe year: 2015 ident: e_1_2_8_1_87_1 – ident: e_1_2_8_1_51_1 doi: 10.1016/j.catena.2018.10.021 – ident: e_1_2_8_1_91_1 doi: 10.5281/zenodo.8214764 – ident: e_1_2_8_1_19_1 doi: 10.1111/gcbb.12180 – ident: e_1_2_8_1_10_1 doi: 10.1111/gcbb.12783 – ident: e_1_2_8_1_55_1 doi: 10.1007/s11104-018-3619-4 – ident: e_1_2_8_1_93_1 doi: 10.1088/1748-9326/8/4/044008 – ident: e_1_2_8_1_86_1 doi: 10.1016/j.scitotenv.2020.137335 – ident: e_1_2_8_1_68_1 doi: 10.1016/j.biombioe.2010.03.004 – ident: e_1_2_8_1_78_1 doi: 10.1111/gcbb.12889 – ident: e_1_2_8_1_8_1 doi: 10.1111/ejss.12074 – ident: e_1_2_8_1_24_1 – ident: e_1_2_8_1_40_1 – ident: e_1_2_8_1_12_1 doi: 10.1029/2003JD003697 – ident: e_1_2_8_1_48_1 doi: 10.1111/gcbb.12765 – ident: e_1_2_8_1_101_1 doi: 10.1038/ncomms1053 – ident: e_1_2_8_1_53_1 doi: 10.1016/j.agee.2020.107109 – ident: e_1_2_8_1_108_1 doi: 10.1016/j.apenergy.2017.02.004 – volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 82 year: 2013 ident: e_1_2_8_1_60_1 – ident: e_1_2_8_1_39_1 – volume-title: The use of woody biomass for energy production in the EU year: 2021 ident: e_1_2_8_1_15_1 – ident: e_1_2_8_1_83_1 doi: 10.1111/gcb.13178 – ident: e_1_2_8_1_95_1 doi: 10.1186/s40663-019-0163-5 – ident: e_1_2_8_1_77_1 doi: 10.1111/gcbb.12553 – ident: e_1_2_8_1_100_1 doi: 10.1007/s11367-016-1087-8 – ident: e_1_2_8_1_104_1 doi: 10.1111/gcb.14466 – ident: e_1_2_8_1_21_1 doi: 10.3390/ijerph8051491 – ident: e_1_2_8_1_84_1 doi: 10.1038/nclimate2870 – ident: e_1_2_8_1_2_1 doi: 10.5194/acp-16-7451-2016 – ident: e_1_2_8_1_57_1 doi: 10.1016/j.jclepro.2020.120998 – ident: e_1_2_8_1_6_1 doi: 10.1021/acs.est.9b01615 |
SSID | ssj0000970357 |
Score | 2.2925334 |
Snippet | Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils... Negative emissions are essential to limit global warming, but their large-scale deployment rises sustainability concerns. At the same time, agricultural soils... Abstract Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time,... |
SourceID | doaj proquest gale crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Agricultural land Agricultural production Air pollution Air pollution control Air quality management Alternative energy sources Ammonia Analysis Biochar Biomass Carbon sequestration Charcoal Climate change Crop production Crop residues Emissions Environment Environmental research Estimates Forecasts and trends Global warming Greenhouse effect Greenhouse gases Harvest Leaching Market trend/market analysis Methods Nitrous oxide Nutrient loss Nutrient retention Organic matter Raw materials Residues Retention Soil degradation Soil erosion Soil organic matter Soil pollution Soil quality Soil water Soils Supply chains Sustainability Tradeoffs Vaporization Volatilization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmTrtMMEDrYMhCMA4oonHsxD7SLoVNAyYBEjtZie2gSlWCSDjw3_Oe40IrxHbhEqnppzZ5fnk_nPe-R8hepWJWJnEVZRIOPBVFVDJuI3BlBfhXCzqA_c5n5-npNf91I24WRn1hTVhPD9wL7shaZERzEgc58mQIN84SiLoNnOGZqhxaX_B5C8mUt8EKNFlkodJ9yBQm-SyfgA4zjHUXfJCn6n9tkJeDVe9tJqvkUwgT6XF_eWvkg6s_k838pSsNvgyPZbtO_o6mDbZP0aK29GfX0j9Nh1VAAOoa-sPNsPiCnrtbz_JNc1hb3CRrPX7kG3roZTOd0Z5R45FOa9pv02-Q60l-NT6NwsyEyAhINqIS8plYFCKpkCteiSwzkPwaDp8dDpSGg5QWSfBM6VJjpTIxd5DTucrFymTJJlmpm9p9IZQzyKVKk8Yyq7gbWgnGQIBNstzBfyRiQA7nUtQmEIrjXIuZ9i-2mdKLMh-Q_Wf0XU-k8QZuhAvyjEH6a38ClEIHpdD_U4oB-Y7LqZHgosYKGtPvwmgQ1fhCH2eKgV1VXA7I7jLwtnhoWy1Pfi-BDgKoauAGTRE6F0BMSJ61hNye648OtqDVDJIYfB2eJiAxr1P_FIDOJ1fIgzf8-h6S2CIf4cdD-eE2WenuH9w3CKO6csc_MU8QlBEJ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_g9sILYoOJG2OKEB8PqKJNkzZ5QrvR20BwTLBJ4ylqk_R00qkda_ew_x47zd12QttLpbZuqzqOYzv2z4S8rVXCqjSpo1zCgWeijCrGbQRLWQnrqwUZwHrnH7Ps5Jx_uxAXIeDWhbTKlU70itq2BmPknxiYgripmKWfL_9G2DUKd1dDC43HZAtUsJQjsjUpZqe_1lGWWIFEizxkvMdMobPPiinIMkOb985a5CH7_1fMm0arX3Wmz8jTYC7Sw2F8t8kj1-yQ3eK2Og1uhunZPSd_JosWy6ho2Vj6te_oadtjNhAQ9S394paYhEFnbu7RvmkBY4zBss7TT3xhD_3dLpZ0QNa4oYuGDuH6F-R8WpwdnUShd0JkBDgdUQV-TSJKkdaIGa9Enhtwgg2Hc4eNpeEgpUUwPFO5zFipTMId-HaudokyebpLRk3buJeEcgY-VWWyROY1d7GVoBQE6CbLHXwjFWPyccVFbQKwOPa3WGq_wc2UvsvzMXm3pr4cADXuoZvggKxpEAbbX2iv5jrMKm0twuU5iV0-eRrDrGApuGQGrvBc1W5M3uNwagS6aDCTxgzRGA2sOvqpD3PFQL8qLsfkzSbhvLzuOi2Pv28QfQhEdQs_aMpQwQBsQhCtDcr9lfzooBM6fSvBwDEvUw8yQBfTM8TDi_ceftkr8gQeCwmG-2TUX12712Ao9dVBmA3_ACb2Cos priority: 102 providerName: ProQuest |
Title | Biochar and Its Potential to Deliver Negative Emissions and Better Soil Quality in Europe |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF003246 https://www.proquest.com/docview/2882423263 https://doaj.org/article/dd0953e81055430ead23960ce81479fe |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELY2eNnLxDYQ3VhlTWx7mCIax4ntRwopbNpKNUBiT1ZiO1UllCASHvbvd-eYQoQ2aS-R6nxKlfPd2Xe5-0zIfqViViZxFQkJF56lRVQybiNYygpYXy3oAPY7_5hnp5f821V6FRJu2AvT80OsE25oGd5fo4EXZRvIBpAjE6J2ls9AKRnPnpNN7K7Fkj7GF-scy0SBPnuyT9g3yIgzIULtOzzi4PEDBquSJ-9_6qKH21e__sy2yMuwcaSH_Uy_Is9c_Zrs5A99anAzGGr7hvyarhpsqKJFbenXrqWLpsO6IAB1DT2GVwcVpnO39LzfNIfZxrRZ6_FT3-JDz5vVNe05Nn7TVU37xP02uZzlF0enUThFITIphB9RCRFOnBZpUiF7vEqFMBAOGw6_HR4xDRcpLdLimdJlxkplYu4gynOVi5URyQ7ZqJva7RIKAoyz0mSxFBV3EyvBPaTgpSx38B9JOiJf7qWoTaAYx5MurrX_1M2UfizzEfm4Rt_01Bp_wU1xQtYYJMT2A83tUgf70tYicZ6TeN4nTyZgHyyB4MzACBeqciPyCadTI-VFjTU1ps_LaBDV0Zk-FIqBp1VcjsiHIXBZ3LWtliffB6DPAVQ18IKmCL0MICak0xog9-71Rwfv0GoGYQ1-IM8SkJjXqX8KQOezC2TGm7z9L_Q78gLGQ-XhHtnobu_ce9hBdeXYm8mYbE7z-eLn2Och_gCOuw2i |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCAYThQEWYvCAIhLH-eMHhNYtpWVdmaCTxpNJbKeqVCVjyYT2pfiM3CVOt2pib3uJ1PTkque789357neEvM2FxzLfy50ohgcPg9TJGNcOHGUpnK8aZAD7nY-m4eiEfz0NTjfI364XBssqO5vYGGpdKsyRf2TgCuKlYuh_Pvvt4NQovF3tRmi0YnFoLv9AyFZ9Gh_A_u4yNkxm-yPHThVwVADuuJOBx-8FaeDniKYugihSEB4qDp8NjlyGRxxrhIlTmQmVjoXyuIGox-TGEyryYd17ZJP7oct6ZHOQTI-_r7I6rgANCiJbYe8ygckFlgxBdxj62NfOvmZEwM2DYN1Jbk654SPy0LqndK-Vp8dkwxRbZDu56oaDL605qJ6Qn4NFiW1bNC00HdcVPS5rrD4CorqkB2aJRR90auYNujhNQKYwOVc19IOmkYj-KBdL2iJ5XNJFQdvrgafk5E64uk16RVmYZ4RyBjFcpkIvjnJuXB2DEQrAFmpu4Df8oE8-dFyUygKZ4zyNpWwu1JmQ13neJ7sr6rMWwOM_dAPckBUNwm43L8rzubRaLLVGeD4T41RR7rughcyHEFDBGx6J3PTJO9xOicAaBVbuqDb7I4FV-9_kXiQY2HPB4z55s044Ty-qSsZfJmtE7y1RXsIfVKntmAA2IWjXGuVOJz_S2qBKXmkMcKyRqVsZIJPhDPH33Oe3L_aa3B_NjiZyMp4eviAPYAlb3LhDevX5hXkJTlqdvbKaQcmvu1bGfy5IRVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEF8ThQEWYvCAoiWO8-EHhNY1YWWjVLBJ48kktlNVqpKxZEL71_jruEucbhVib3uJ1PTkque789357neEvCmEx3LfK5wohgcPg8zJGdcOHGUZnK8aZAD7nb9Mw4MT_vk0ON0gf_peGCyr7G1ia6h1pTBHvsvAFcRLxdDfLWxZxGycfjz75eAEKbxp7cdpdCJyaC5_Q_hWf5iMYa93GEuT4_0Dx04YcFQArrmTg_fvBVngF4isLoIoUhAqKg6fDY5fhkcca4SMU7kJlY6F8riBCMgUxhMq8mHdO2QzwqhoQDZHyXT2bZXhcQVoUxDZanuXCUw0sCQFPWLob187B9txAf8eCusOc3vipQ_Ifeuq0r1Oth6SDVM-IlvJVWccfGlNQ_2Y_BgtKmzholmp6aSp6axqsBIJiJqKjs0SC0Do1MxbpHGagHxhoq5u6UdtUxH9Xi2WtEP1uKSLknZXBU_Iya1wdYsMyqo0TwnlDOK5XIVeHBXcuDoGgxSAXdTcwG_4wZC877kolQU1x9kaS9lerjMhr_N8SHZW1GcdmMd_6Ea4ISsahOBuX1Tnc2k1WmqNUH0mxgmj3HdBI5kP4aCCNzwShRmSt7idEkE2ShRX1WWCJLBq_6vciwQD2y54PCSv1wnn2UVdy_jT0RrRO0tUVPAHVWa7J4BNCOC1Rrndy4-09qiWV9oDHGtl6kYGyCQ9Riw-99nNi70id0EJ5dFkevic3IMVbJ3jNhk05xfmBfhrTf7SKgYlP29bF_8CyTdJiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+and+Its+Potential+to+Deliver+Negative+Emissions+and+Better+Soil+Quality+in+Europe&rft.jtitle=Earth%27s+future&rft.au=Tisserant%2C+Alexandre&rft.au=Hu%2C+Xiangping&rft.au=Liu%2C+Qi&rft.au=Xie%2C+Zubin&rft.date=2023-10-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=11&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022EF003246&rft.externalDBID=10.1029%252F2022EF003246&rft.externalDocID=EFT21420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |