Biochar and Its Potential to Deliver Negative Emissions and Better Soil Quality in Europe

Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, wit...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 11; no. 10
Main Authors Tisserant, Alexandre, Hu, Xiangping, Liu, Qi, Xie, Zubin, Zhao, Wenwu, Cherubini, Francesco
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.10.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Plain Language Summary Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe. Key Points Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO2 yr−1 Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses Some trade‐offs can occur in few locations, mainly for lower yields and air pollution
AbstractList Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH[sub.3] volatilization (+21.7%‐24.2%), and reduces soil N[sub.2] O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions.
Abstract Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions.
Negative emissions are essential to limit global warming, but their large-scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially-explicit analysis of the co-benefits and trade-offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%-9%), crop production (+7.1%-8.4%), NH3 volatilization (+21.7%-24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade-offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co-deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions.
Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH 3 volatilization (+21.7%‐24.2%), and reduces soil N 2 O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe. Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO 2  yr −1 Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses Some trade‐offs can occur in few locations, mainly for lower yields and air pollution
Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils are under increasing threat of degradation, as measured by losses in soil organic matter, water holding capacity, and nutrient retention, with increasing negative effects on plant productivity. Biochar from biomass residues is a technically mature option that does not compete for land and can typically restore key functions of degraded soils while delivering negative emissions. However, quantitative estimates of its potentials in Europe and a detailed spatially‐explicit analysis of the co‐benefits and trade‐offs for agricultural land are unclear. Here, we estimate an annual negative emission potential of biochar from forest and crop residues available in Europe from 1.7% to 3.9% of 2021s European greenhouse gas emissions (15.2%–35% of the agricultural emissions), depending on residue potentials and biochar scenarios. At the same time, biochar application to cropland increases water holding capacity (+6.5%‐9%), crop production (+7.1%‐8.4%), NH3 volatilization (+21.7%‐24.2%), and reduces soil N2O emissions (−13.7%–34.7%) and nitrogen leaching (−17.5%–22.7%). There are spatially heterogeneous trade‐offs for some soil effects (ammonia volatilization and yields) and air pollution (mainly due to emissions from biochar systems). Biochar offers synergistic solutions that co‐deliver across different sustainability challenges, but its optimal deployment requires strategies tailored to local conditions. Plain Language Summary Limiting global warming requires a large‐scale deployment of negative emission technologies (NETs) to capture and store atmospheric carbon dioxide. However, many NETs typically require land use and compete with food security or nature conservation. Biochar, a stable charcoal‐like material, can be produced from biomass residues without competing for land and, when applied to agricultural soils, it delivers negative emissions while providing agronomic benefits. An analysis of the environmental and agronomic effects of biochar production and use in Europe is key to identify sustainable pathways. Our results offer high‐resolution estimates of negative emissions and maps of biochar‐induced co‐benefits and trade‐offs with crop production, soil quality and soil emissions. When correctly implemented, biochar can co‐deliver for multiple global challenges (climate change, food security, contrast land degradation) and help a cross‐sectoral sustainability transition in Europe. Key Points Biochar from biomass residues in Europe has a negative emission potential of 70–290 MtCO2 yr−1 Biochar application to cropland generally increases soil carbon, water holding capacity, crop production, and reduces soil nitrogen losses Some trade‐offs can occur in few locations, mainly for lower yields and air pollution
Audience General
Author Hu, Xiangping
Zhao, Wenwu
Xie, Zubin
Cherubini, Francesco
Tisserant, Alexandre
Liu, Qi
Author_xml – sequence: 1
  givenname: Alexandre
  orcidid: 0000-0003-4279-4446
  surname: Tisserant
  fullname: Tisserant, Alexandre
  email: tisserant.alexandre@gmail.com
  organization: Norwegian University of Science and Technology (NTNU)
– sequence: 2
  givenname: Xiangping
  orcidid: 0000-0003-3468-8248
  surname: Hu
  fullname: Hu, Xiangping
  organization: Norwegian University of Science and Technology (NTNU)
– sequence: 3
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Nanjing Forestry University
– sequence: 4
  givenname: Zubin
  surname: Xie
  fullname: Xie, Zubin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Wenwu
  orcidid: 0000-0001-5342-354X
  surname: Zhao
  fullname: Zhao, Wenwu
  organization: Beijing Normal University
– sequence: 6
  givenname: Francesco
  surname: Cherubini
  fullname: Cherubini, Francesco
  organization: Norwegian University of Science and Technology (NTNU)
BookMark eNp9kt1v0zAQwC00JEbZG39AJJ6QyPBHHMePW0lHpYqBGA88WZ5zKa7SuNgO0P-eYx3SigBbss_n3519H0_JyRhGIOQ5o-eMcv2aU87bBaWCV_UjcsoFb8qKK3XyQH5CzlLaUBxaUSHVKfl86YP7YmNhx65Y5lS8DxnG7O1Q5FC8gcF_g1i8g7XNKBXt1qfkw5ju-EvIGW8_Bj8UHyY7-Lwv_Fi0Uww7eEYe93ZIcHa_z8inRXszf1uurq-W84tV6aSUtLytuWTSStHTqhFaKuVUxV2FZ6ipYLg0TaeFYu4Watc12rEKFFPQA9NOiRlZHvx2wW7MLvqtjXsTrDd3ihDXxsbs3QCm66iWAhpGpawEBdtxoWvqUFMp3QP6enHwtYvh6wQpm02Y4ojfN7xpeIWJrAVS5wdqbdGpH_uQo3U4O9h6h1XpPeovlOaqFhqjmpGXRwbIZPiR13ZKyTRXq2O2_BvrwjDAGgymbn59zPMD72JIKUJvnM9YLDSL1g-GUfOrPczD9kCjV38Y_c7bP_D7N75jYPv_sqZd3HBWcSp-AoF6xVE
CitedBy_id crossref_primary_10_1016_j_jafr_2025_101719
crossref_primary_10_1088_1748_9326_ad71e1
crossref_primary_10_1016_j_biombioe_2024_107187
crossref_primary_10_1080_17583004_2025_2465328
crossref_primary_10_3390_en17194852
crossref_primary_10_1016_j_rset_2024_100087
Cites_doi 10.1007/s10584-005-1146-9
10.1016/j.scitotenv.2018.11.312
10.1080/09542299.2018.1544035
10.1111/gcbb.12665
10.1016/j.soilbio.2013.12.026
10.1016/j.jenvman.2021.112154
10.1007/s11367-018-1443-y
10.3390/land8120179
10.1016/j.geoderma.2020.114178
10.1038/s41598-020-67528-y
10.1080/01431160412331291297
10.1016/j.scitotenv.2018.10.060
10.1021/acs.est.7b00748
10.1126/science.1176985
10.1039/c2ee21592f
10.1088/1748-9326/aabb0e
10.1016/B978-1-78242-374-4.00003-3
10.1007/s11368-017-1899-6
10.1073/pnas.1710465114
10.1016/j.scitotenv.2018.07.099
10.1038/nclimate2998
10.3390/en12112166
10.1016/j.still.2020.104926
10.1080/03650340.2019.1650916
10.1016/j.scitotenv.2018.11.124
10.1088/1748-9326/7/1/014025
10.1111/gcb.14613
10.1016/j.soilbio.2019.04.018
10.4155/cmt.11.22
10.1287/trsc.25.1.83
10.1016/S0167-1987(03)00040-0
10.1088/1748-9326/aa67bd
10.2134/jeq2016.10.0396
10.1016/j.biombioe.2019.01.021
10.1038/s41558-017-0064-y
10.2172/1227072
10.1016/j.scitotenv.2019.06.277
10.1007/s11104-022-05365-w
10.1007/s11027-005-9006-5
10.1248/jhs.52.585
10.1016/j.scienta.2018.11.070
10.1016/bs.agron.2016.10.001
10.1021/es500474q
10.1088/1748-9326/aabf9b
10.1007/s00374-018-1289-2
10.1080/02827581.2016.1221128
10.1371/journal.pone.0138781
10.1038/s41467-017-02142-7
10.5194/acp-14-10363-2014
10.1016/j.fcr.2020.107763
10.1016/j.geoderma.2019.114055
10.1016/j.jclepro.2017.12.143
10.1016/j.jclepro.2014.12.038
10.1111/gcb.13068
10.1007/s10021-018-0248-y
10.1016/j.resconrec.2021.106030
10.3390/soilsystems4040060
10.1016/j.envres.2020.110697
10.1016/j.scitotenv.2020.136857
10.1111/gcbb.12449
10.5194/acp-13-2793-2013
10.5194/bg-2017-281
10.1111/gcbb.13022
10.5194/bg-14-2851-2017
10.1039/C2EE21750C
10.1016/j.envsci.2016.06.019
10.1111/gcbb.12604
10.3390/rs12091365
10.1038/s41467-021-21868-z
10.1111/sum.12546
10.1038/srep20700
10.1016/j.jenvman.2018.05.004
10.1016/j.catena.2018.10.021
10.5281/zenodo.8214764
10.1111/gcbb.12180
10.1111/gcbb.12783
10.1007/s11104-018-3619-4
10.1088/1748-9326/8/4/044008
10.1016/j.scitotenv.2020.137335
10.1016/j.biombioe.2010.03.004
10.1111/gcbb.12889
10.1111/ejss.12074
10.1029/2003JD003697
10.1111/gcbb.12765
10.1038/ncomms1053
10.1016/j.agee.2020.107109
10.1016/j.apenergy.2017.02.004
10.1111/gcb.13178
10.1186/s40663-019-0163-5
10.1111/gcbb.12553
10.1007/s11367-016-1087-8
10.1111/gcb.14466
10.3390/ijerph8051491
10.1038/nclimate2870
10.5194/acp-16-7451-2016
10.1016/j.jclepro.2020.120998
10.1021/acs.est.9b01615
ClassificationCodes 4954000
9106410
ContentType Journal Article
Copyright 2023 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
COPYRIGHT 2023 John Wiley & Sons, Inc.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8GL
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2022EF003246
DatabaseName Wiley Online Library Open Access
CrossRef
Gale In Context: High School
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_dd0953e81055430ead23960ce81479fe
A792763948
10_1029_2022EF003246
EFT21420
Genre researchArticle
GeographicLocations United States
Europe
GeographicLocations_xml – name: United States
– name: Europe
GrantInformation_xml – fundername: Norges Forskningsråd
  funderid: 281113
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
PMFND
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c5550-b62515a53f04839577c742c43f0e6031e6088d9371cbe6cd89c14e717efe19c73
IEDL.DBID 24P
ISSN 2328-4277
IngestDate Wed Aug 27 01:23:34 EDT 2025
Sat Aug 23 14:21:55 EDT 2025
Tue Jun 10 20:55:46 EDT 2025
Fri Jun 27 05:13:48 EDT 2025
Tue Jun 10 20:05:17 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Tue Jul 01 02:48:27 EDT 2025
Wed Jan 22 16:14:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5550-b62515a53f04839577c742c43f0e6031e6088d9371cbe6cd89c14e717efe19c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3468-8248
0000-0001-5342-354X
0000-0003-4279-4446
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF003246
PQID 2882423263
PQPubID 2034575
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_dd0953e81055430ead23960ce81479fe
proquest_journals_2882423263
gale_infotracacademiconefile_A792763948
gale_incontextgauss_8GL_A792763948
gale_incontextcollege_GICCO_A792763948
crossref_citationtrail_10_1029_2022EF003246
crossref_primary_10_1029_2022EF003246
wiley_primary_10_1029_2022EF003246_EFT21420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationTitleAlternate Earth's Future
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_1_36_1
e_1_2_8_1_13_1
IAE (e_1_2_8_1_38_1) 2022
e_1_2_8_1_55_1
Myhre G. (e_1_2_8_1_60_1) 2013
e_1_2_8_1_32_1
e_1_2_8_1_51_1
e_1_2_8_1_70_1
e_1_2_8_1_101_1
e_1_2_8_1_105_1
e_1_2_8_1_81_1
e_1_2_8_1_85_1
e_1_2_8_1_89_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_47_1
e_1_2_8_1_24_1
e_1_2_8_1_66_1
e_1_2_8_1_43_1
e_1_2_8_1_20_1
e_1_2_8_1_62_1
e_1_2_8_1_109_1
e_1_2_8_1_3_1
e_1_2_8_1_7_1
e_1_2_8_1_93_1
e_1_2_8_1_74_1
e_1_2_8_1_97_1
e_1_2_8_1_78_1
e_1_2_8_1_17_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_56_1
e_1_2_8_1_10_1
e_1_2_8_1_52_1
e_1_2_8_1_71_1
e_1_2_8_1_8_1
e_1_2_8_1_102_1
e_1_2_8_1_106_1
e_1_2_8_1_82_1
e_1_2_8_1_86_1
e_1_2_8_1_26_1
e_1_2_8_1_49_1
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_1_67_1
Stolte J. (e_1_2_8_1_87_1) 2015
e_1_2_8_2_2_1
Camia A. (e_1_2_8_1_15_1) 2021
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_1_63_1
e_1_2_8_1_90_1
e_1_2_8_1_4_1
e_1_2_8_1_94_1
e_1_2_8_1_75_1
e_1_2_8_1_98_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
e_1_2_8_1_79_1
e_1_2_8_1_11_1
e_1_2_8_1_57_1
e_1_2_8_1_34_1
e_1_2_8_1_53_1
e_1_2_8_1_30_1
e_1_2_8_1_9_1
cr-split#-e_1_2_8_1_23_1.1
cr-split#-e_1_2_8_1_23_1.2
e_1_2_8_1_83_1
e_1_2_8_1_27_1
WRI (e_1_2_8_1_103_1) 2023
IPCC (e_1_2_8_1_42_1) 2021
e_1_2_8_1_22_1
e_1_2_8_1_68_1
e_1_2_8_1_45_1
e_1_2_8_2_3_1
e_1_2_8_1_64_1
e_1_2_8_1_41_1
e_1_2_8_1_107_1
Mokma D. L. (e_1_2_8_1_59_1) 1992; 47
e_1_2_8_1_110_1
e_1_2_8_1_91_1
e_1_2_8_1_5_1
e_1_2_8_1_72_1
e_1_2_8_1_95_1
e_1_2_8_1_19_1
e_1_2_8_1_76_1
e_1_2_8_1_99_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_58_1
e_1_2_8_1_31_1
e_1_2_8_1_54_1
e_1_2_8_1_50_1
e_1_2_8_1_100_1
e_1_2_8_1_80_1
e_1_2_8_1_104_1
e_1_2_8_1_84_1
e_1_2_8_1_88_1
e_1_2_8_1_28_1
e_1_2_8_1_46_1
e_1_2_8_1_69_1
e_1_2_8_1_65_1
e_1_2_8_1_61_1
e_1_2_8_1_108_1
e_1_2_8_1_2_1
e_1_2_8_1_111_1
e_1_2_8_1_6_1
e_1_2_8_1_92_1
e_1_2_8_1_73_1
e_1_2_8_1_96_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
e_1_2_8_1_77_1
References_xml – ident: e_1_2_8_1_81_1
  doi: 10.1007/s10584-005-1146-9
– ident: e_1_2_8_1_27_1
  doi: 10.1016/j.scitotenv.2018.11.312
– ident: e_1_2_8_1_97_1
  doi: 10.1080/09542299.2018.1544035
– ident: e_1_2_8_1_11_1
  doi: 10.1111/gcbb.12665
– ident: e_1_2_8_1_61_1
  doi: 10.1016/j.soilbio.2013.12.026
– ident: e_1_2_8_1_7_1
  doi: 10.1016/j.jenvman.2021.112154
– ident: e_1_2_8_1_46_1
  doi: 10.1007/s11367-018-1443-y
– ident: e_1_2_8_1_90_1
  doi: 10.3390/land8120179
– ident: e_1_2_8_1_26_1
  doi: 10.1016/j.geoderma.2020.114178
– ident: e_1_2_8_1_52_1
  doi: 10.1038/s41598-020-67528-y
– ident: e_1_2_8_1_9_1
  doi: 10.1080/01431160412331291297
– ident: e_1_2_8_1_50_1
– ident: e_1_2_8_1_13_1
  doi: 10.1016/j.scitotenv.2018.10.060
– ident: e_1_2_8_1_66_1
  doi: 10.1021/acs.est.7b00748
– ident: e_1_2_8_1_73_1
  doi: 10.1126/science.1176985
– ident: e_1_2_8_1_67_1
  doi: 10.1039/c2ee21592f
– ident: e_1_2_8_1_99_1
  doi: 10.1088/1748-9326/aabb0e
– ident: #cr-split#-e_1_2_8_1_23_1.1
– ident: e_1_2_8_1_82_1
  doi: 10.1016/B978-1-78242-374-4.00003-3
– ident: e_1_2_8_1_20_1
  doi: 10.1007/s11368-017-1899-6
– ident: e_1_2_8_1_33_1
  doi: 10.1073/pnas.1710465114
– ident: e_1_2_8_1_37_1
– ident: e_1_2_8_1_56_1
  doi: 10.1016/j.scitotenv.2018.07.099
– volume: 47
  start-page: 325
  year: 1992
  ident: e_1_2_8_1_59_1
  article-title: Effects of soil erosion on corn yields on Marlette soils in south‐central Michigan
  publication-title: Journal of Soil and Water Conservation
– ident: e_1_2_8_1_3_1
  doi: 10.1038/nclimate2998
– ident: e_1_2_8_1_71_1
  doi: 10.3390/en12112166
– ident: e_1_2_8_1_43_1
  doi: 10.1016/j.still.2020.104926
– ident: e_1_2_8_1_70_1
  doi: 10.1080/03650340.2019.1650916
– ident: e_1_2_8_1_29_1
  doi: 10.1016/j.scitotenv.2018.11.124
– ident: e_1_2_8_1_32_1
  doi: 10.1088/1748-9326/7/1/014025
– ident: e_1_2_8_1_54_1
  doi: 10.1111/gcb.14613
– ident: e_1_2_8_1_98_1
  doi: 10.1016/j.soilbio.2019.04.018
– ident: e_1_2_8_1_80_1
  doi: 10.4155/cmt.11.22
– ident: e_1_2_8_1_63_1
– ident: #cr-split#-e_1_2_8_1_23_1.2
– ident: e_1_2_8_2_2_1
  doi: 10.1287/trsc.25.1.83
– ident: e_1_2_8_1_4_1
  doi: 10.1016/S0167-1987(03)00040-0
– ident: e_1_2_8_1_44_1
  doi: 10.1088/1748-9326/aa67bd
– ident: e_1_2_8_1_94_1
  doi: 10.2134/jeq2016.10.0396
– ident: e_1_2_8_1_76_1
  doi: 10.1016/j.biombioe.2019.01.021
– ident: e_1_2_8_1_36_1
  doi: 10.1038/s41558-017-0064-y
– ident: e_1_2_8_1_88_1
  doi: 10.2172/1227072
– ident: e_1_2_8_1_75_1
  doi: 10.1016/j.scitotenv.2019.06.277
– ident: e_1_2_8_1_72_1
  doi: 10.1007/s11104-022-05365-w
– ident: e_1_2_8_1_49_1
  doi: 10.1007/s11027-005-9006-5
– ident: e_1_2_8_1_5_1
  doi: 10.1248/jhs.52.585
– ident: e_1_2_8_1_111_1
  doi: 10.1016/j.scienta.2018.11.070
– ident: e_1_2_8_2_3_1
  doi: 10.1016/bs.agron.2016.10.001
– volume-title: Climate watch historical GHG emissions
  year: 2023
  ident: e_1_2_8_1_103_1
– ident: e_1_2_8_1_102_1
  doi: 10.1021/es500474q
– ident: e_1_2_8_1_41_1
– ident: e_1_2_8_1_58_1
  doi: 10.1088/1748-9326/aabf9b
– ident: e_1_2_8_1_62_1
  doi: 10.1007/s00374-018-1289-2
– ident: e_1_2_8_1_28_1
  doi: 10.1080/02827581.2016.1221128
– ident: e_1_2_8_1_64_1
  doi: 10.1371/journal.pone.0138781
– ident: e_1_2_8_1_14_1
  doi: 10.1038/s41467-017-02142-7
– volume-title: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_8_1_42_1
– ident: e_1_2_8_1_96_1
  doi: 10.5194/acp-14-10363-2014
– ident: e_1_2_8_1_30_1
  doi: 10.1016/j.fcr.2020.107763
– ident: e_1_2_8_1_74_1
  doi: 10.1016/j.geoderma.2019.114055
– ident: e_1_2_8_1_89_1
  doi: 10.1016/j.jclepro.2017.12.143
– ident: e_1_2_8_1_105_1
  doi: 10.1016/j.jclepro.2014.12.038
– ident: e_1_2_8_1_85_1
  doi: 10.1111/gcb.13068
– ident: e_1_2_8_1_45_1
  doi: 10.1007/s10021-018-0248-y
– volume-title: Electricity and heat statistics [WWW Document]
  year: 2022
  ident: e_1_2_8_1_38_1
– ident: e_1_2_8_1_92_1
  doi: 10.1016/j.resconrec.2021.106030
– ident: e_1_2_8_1_79_1
  doi: 10.3390/soilsystems4040060
– ident: e_1_2_8_1_69_1
  doi: 10.1016/j.envres.2020.110697
– ident: e_1_2_8_1_22_1
  doi: 10.1016/j.scitotenv.2020.136857
– ident: e_1_2_8_1_106_1
  doi: 10.1111/gcbb.12449
– ident: e_1_2_8_1_47_1
  doi: 10.5194/acp-13-2793-2013
– ident: e_1_2_8_1_18_1
  doi: 10.5194/bg-2017-281
– ident: e_1_2_8_1_34_1
  doi: 10.1111/gcbb.13022
– ident: e_1_2_8_1_25_1
  doi: 10.5194/bg-14-2851-2017
– ident: e_1_2_8_1_35_1
  doi: 10.1039/C2EE21750C
– ident: e_1_2_8_1_17_1
  doi: 10.1016/j.envsci.2016.06.019
– ident: e_1_2_8_1_31_1
  doi: 10.1111/gcbb.12604
– ident: e_1_2_8_1_65_1
  doi: 10.3390/rs12091365
– ident: e_1_2_8_1_107_1
  doi: 10.1038/s41467-021-21868-z
– ident: e_1_2_8_1_109_1
  doi: 10.1111/sum.12546
– ident: e_1_2_8_1_110_1
  doi: 10.1038/srep20700
– ident: e_1_2_8_1_16_1
  doi: 10.1016/j.jenvman.2018.05.004
– volume-title: Soil threats in Europe
  year: 2015
  ident: e_1_2_8_1_87_1
– ident: e_1_2_8_1_51_1
  doi: 10.1016/j.catena.2018.10.021
– ident: e_1_2_8_1_91_1
  doi: 10.5281/zenodo.8214764
– ident: e_1_2_8_1_19_1
  doi: 10.1111/gcbb.12180
– ident: e_1_2_8_1_10_1
  doi: 10.1111/gcbb.12783
– ident: e_1_2_8_1_55_1
  doi: 10.1007/s11104-018-3619-4
– ident: e_1_2_8_1_93_1
  doi: 10.1088/1748-9326/8/4/044008
– ident: e_1_2_8_1_86_1
  doi: 10.1016/j.scitotenv.2020.137335
– ident: e_1_2_8_1_68_1
  doi: 10.1016/j.biombioe.2010.03.004
– ident: e_1_2_8_1_78_1
  doi: 10.1111/gcbb.12889
– ident: e_1_2_8_1_8_1
  doi: 10.1111/ejss.12074
– ident: e_1_2_8_1_24_1
– ident: e_1_2_8_1_40_1
– ident: e_1_2_8_1_12_1
  doi: 10.1029/2003JD003697
– ident: e_1_2_8_1_48_1
  doi: 10.1111/gcbb.12765
– ident: e_1_2_8_1_101_1
  doi: 10.1038/ncomms1053
– ident: e_1_2_8_1_53_1
  doi: 10.1016/j.agee.2020.107109
– ident: e_1_2_8_1_108_1
  doi: 10.1016/j.apenergy.2017.02.004
– volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 82
  year: 2013
  ident: e_1_2_8_1_60_1
– ident: e_1_2_8_1_39_1
– volume-title: The use of woody biomass for energy production in the EU
  year: 2021
  ident: e_1_2_8_1_15_1
– ident: e_1_2_8_1_83_1
  doi: 10.1111/gcb.13178
– ident: e_1_2_8_1_95_1
  doi: 10.1186/s40663-019-0163-5
– ident: e_1_2_8_1_77_1
  doi: 10.1111/gcbb.12553
– ident: e_1_2_8_1_100_1
  doi: 10.1007/s11367-016-1087-8
– ident: e_1_2_8_1_104_1
  doi: 10.1111/gcb.14466
– ident: e_1_2_8_1_21_1
  doi: 10.3390/ijerph8051491
– ident: e_1_2_8_1_84_1
  doi: 10.1038/nclimate2870
– ident: e_1_2_8_1_2_1
  doi: 10.5194/acp-16-7451-2016
– ident: e_1_2_8_1_57_1
  doi: 10.1016/j.jclepro.2020.120998
– ident: e_1_2_8_1_6_1
  doi: 10.1021/acs.est.9b01615
SSID ssj0000970357
Score 2.2925334
Snippet Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time, agricultural soils...
Negative emissions are essential to limit global warming, but their large-scale deployment rises sustainability concerns. At the same time, agricultural soils...
Abstract Negative emissions are essential to limit global warming, but their large‐scale deployment rises sustainability concerns. At the same time,...
SourceID doaj
proquest
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agricultural land
Agricultural production
Air pollution
Air pollution control
Air quality management
Alternative energy sources
Ammonia
Analysis
Biochar
Biomass
Carbon sequestration
Charcoal
Climate change
Crop production
Crop residues
Emissions
Environment
Environmental research
Estimates
Forecasts and trends
Global warming
Greenhouse effect
Greenhouse gases
Harvest
Leaching
Market trend/market analysis
Methods
Nitrous oxide
Nutrient loss
Nutrient retention
Organic matter
Raw materials
Residues
Retention
Soil degradation
Soil erosion
Soil organic matter
Soil pollution
Soil quality
Soil water
Soils
Supply chains
Sustainability
Tradeoffs
Vaporization
Volatilization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmTrtMMEDrYMhCMA4oonHsxD7SLoVNAyYBEjtZie2gSlWCSDjw3_Oe40IrxHbhEqnppzZ5fnk_nPe-R8hepWJWJnEVZRIOPBVFVDJuI3BlBfhXCzqA_c5n5-npNf91I24WRn1hTVhPD9wL7shaZERzEgc58mQIN84SiLoNnOGZqhxaX_B5C8mUt8EKNFlkodJ9yBQm-SyfgA4zjHUXfJCn6n9tkJeDVe9tJqvkUwgT6XF_eWvkg6s_k838pSsNvgyPZbtO_o6mDbZP0aK29GfX0j9Nh1VAAOoa-sPNsPiCnrtbz_JNc1hb3CRrPX7kG3roZTOd0Z5R45FOa9pv02-Q60l-NT6NwsyEyAhINqIS8plYFCKpkCteiSwzkPwaDp8dDpSGg5QWSfBM6VJjpTIxd5DTucrFymTJJlmpm9p9IZQzyKVKk8Yyq7gbWgnGQIBNstzBfyRiQA7nUtQmEIrjXIuZ9i-2mdKLMh-Q_Wf0XU-k8QZuhAvyjEH6a38ClEIHpdD_U4oB-Y7LqZHgosYKGtPvwmgQ1fhCH2eKgV1VXA7I7jLwtnhoWy1Pfi-BDgKoauAGTRE6F0BMSJ61hNye648OtqDVDJIYfB2eJiAxr1P_FIDOJ1fIgzf8-h6S2CIf4cdD-eE2WenuH9w3CKO6csc_MU8QlBEJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_g9sILYoOJG2OKEB8PqKJNkzZ5QrvR20BwTLBJ4ylqk_R00qkda_ew_x47zd12QttLpbZuqzqOYzv2z4S8rVXCqjSpo1zCgWeijCrGbQRLWQnrqwUZwHrnH7Ps5Jx_uxAXIeDWhbTKlU70itq2BmPknxiYgripmKWfL_9G2DUKd1dDC43HZAtUsJQjsjUpZqe_1lGWWIFEizxkvMdMobPPiinIMkOb985a5CH7_1fMm0arX3Wmz8jTYC7Sw2F8t8kj1-yQ3eK2Og1uhunZPSd_JosWy6ho2Vj6te_oadtjNhAQ9S394paYhEFnbu7RvmkBY4zBss7TT3xhD_3dLpZ0QNa4oYuGDuH6F-R8WpwdnUShd0JkBDgdUQV-TSJKkdaIGa9Enhtwgg2Hc4eNpeEgpUUwPFO5zFipTMId-HaudokyebpLRk3buJeEcgY-VWWyROY1d7GVoBQE6CbLHXwjFWPyccVFbQKwOPa3WGq_wc2UvsvzMXm3pr4cADXuoZvggKxpEAbbX2iv5jrMKm0twuU5iV0-eRrDrGApuGQGrvBc1W5M3uNwagS6aDCTxgzRGA2sOvqpD3PFQL8qLsfkzSbhvLzuOi2Pv28QfQhEdQs_aMpQwQBsQhCtDcr9lfzooBM6fSvBwDEvUw8yQBfTM8TDi_ceftkr8gQeCwmG-2TUX12712Ao9dVBmA3_ACb2Cos
  priority: 102
  providerName: ProQuest
Title Biochar and Its Potential to Deliver Negative Emissions and Better Soil Quality in Europe
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF003246
https://www.proquest.com/docview/2882423263
https://doaj.org/article/dd0953e81055430ead23960ce81479fe
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELY2eNnLxDYQ3VhlTWx7mCIax4ntRwopbNpKNUBiT1ZiO1UllCASHvbvd-eYQoQ2aS-R6nxKlfPd2Xe5-0zIfqViViZxFQkJF56lRVQybiNYygpYXy3oAPY7_5hnp5f821V6FRJu2AvT80OsE25oGd5fo4EXZRvIBpAjE6J2ls9AKRnPnpNN7K7Fkj7GF-scy0SBPnuyT9g3yIgzIULtOzzi4PEDBquSJ-9_6qKH21e__sy2yMuwcaSH_Uy_Is9c_Zrs5A99anAzGGr7hvyarhpsqKJFbenXrqWLpsO6IAB1DT2GVwcVpnO39LzfNIfZxrRZ6_FT3-JDz5vVNe05Nn7TVU37xP02uZzlF0enUThFITIphB9RCRFOnBZpUiF7vEqFMBAOGw6_HR4xDRcpLdLimdJlxkplYu4gynOVi5URyQ7ZqJva7RIKAoyz0mSxFBV3EyvBPaTgpSx38B9JOiJf7qWoTaAYx5MurrX_1M2UfizzEfm4Rt_01Bp_wU1xQtYYJMT2A83tUgf70tYicZ6TeN4nTyZgHyyB4MzACBeqciPyCadTI-VFjTU1ps_LaBDV0Zk-FIqBp1VcjsiHIXBZ3LWtliffB6DPAVQ18IKmCL0MICak0xog9-71Rwfv0GoGYQ1-IM8SkJjXqX8KQOezC2TGm7z9L_Q78gLGQ-XhHtnobu_ce9hBdeXYm8mYbE7z-eLn2Och_gCOuw2i
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCAYThQEWYvCAIhLH-eMHhNYtpWVdmaCTxpNJbKeqVCVjyYT2pfiM3CVOt2pib3uJ1PTkque789357neEvM2FxzLfy50ohgcPg9TJGNcOHGUpnK8aZAD7nY-m4eiEfz0NTjfI364XBssqO5vYGGpdKsyRf2TgCuKlYuh_Pvvt4NQovF3tRmi0YnFoLv9AyFZ9Gh_A_u4yNkxm-yPHThVwVADuuJOBx-8FaeDniKYugihSEB4qDp8NjlyGRxxrhIlTmQmVjoXyuIGox-TGEyryYd17ZJP7oct6ZHOQTI-_r7I6rgANCiJbYe8ygckFlgxBdxj62NfOvmZEwM2DYN1Jbk654SPy0LqndK-Vp8dkwxRbZDu56oaDL605qJ6Qn4NFiW1bNC00HdcVPS5rrD4CorqkB2aJRR90auYNujhNQKYwOVc19IOmkYj-KBdL2iJ5XNJFQdvrgafk5E64uk16RVmYZ4RyBjFcpkIvjnJuXB2DEQrAFmpu4Df8oE8-dFyUygKZ4zyNpWwu1JmQ13neJ7sr6rMWwOM_dAPckBUNwm43L8rzubRaLLVGeD4T41RR7rughcyHEFDBGx6J3PTJO9xOicAaBVbuqDb7I4FV-9_kXiQY2HPB4z55s044Ty-qSsZfJmtE7y1RXsIfVKntmAA2IWjXGuVOJz_S2qBKXmkMcKyRqVsZIJPhDPH33Oe3L_aa3B_NjiZyMp4eviAPYAlb3LhDevX5hXkJTlqdvbKaQcmvu1bGfy5IRVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEF8ThQEWYvCAoiWO8-EHhNY1YWWjVLBJ48kktlNVqpKxZEL71_jruEucbhVib3uJ1PTkque789357neEvCmEx3LfK5wohgcPg8zJGdcOHGUZnK8aZAD7nb9Mw4MT_vk0ON0gf_peGCyr7G1ia6h1pTBHvsvAFcRLxdDfLWxZxGycfjz75eAEKbxp7cdpdCJyaC5_Q_hWf5iMYa93GEuT4_0Dx04YcFQArrmTg_fvBVngF4isLoIoUhAqKg6fDY5fhkcca4SMU7kJlY6F8riBCMgUxhMq8mHdO2QzwqhoQDZHyXT2bZXhcQVoUxDZanuXCUw0sCQFPWLob187B9txAf8eCusOc3vipQ_Ifeuq0r1Oth6SDVM-IlvJVWccfGlNQ_2Y_BgtKmzholmp6aSp6axqsBIJiJqKjs0SC0Do1MxbpHGagHxhoq5u6UdtUxH9Xi2WtEP1uKSLknZXBU_Iya1wdYsMyqo0TwnlDOK5XIVeHBXcuDoGgxSAXdTcwG_4wZC877kolQU1x9kaS9lerjMhr_N8SHZW1GcdmMd_6Ea4ISsahOBuX1Tnc2k1WmqNUH0mxgmj3HdBI5kP4aCCNzwShRmSt7idEkE2ShRX1WWCJLBq_6vciwQD2y54PCSv1wnn2UVdy_jT0RrRO0tUVPAHVWa7J4BNCOC1Rrndy4-09qiWV9oDHGtl6kYGyCQ9Riw-99nNi70id0EJ5dFkevic3IMVbJ3jNhk05xfmBfhrTf7SKgYlP29bF_8CyTdJiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+and+Its+Potential+to+Deliver+Negative+Emissions+and+Better+Soil+Quality+in+Europe&rft.jtitle=Earth%27s+future&rft.au=Tisserant%2C+Alexandre&rft.au=Hu%2C+Xiangping&rft.au=Liu%2C+Qi&rft.au=Xie%2C+Zubin&rft.date=2023-10-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=11&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022EF003246&rft.externalDBID=10.1029%252F2022EF003246&rft.externalDocID=EFT21420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon