An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies
Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019...
Saved in:
Published in | Cell Vol. 184; no. 13; pp. 3452 - 3466.e18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.
[Display omitted]
•SARS-CoV-2 infectivity is enhanced by specific antibodies independent of the Fc receptor•The open RBD state is induced upon antibody binding to a specific site on the NTD•Divalent bridging of spikes is required to induce the RBD-up state•Infectivity-enhancing antibodies are detected in severe COVID-19 patients
A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor. |
---|---|
AbstractList | Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.
[Display omitted]
•SARS-CoV-2 infectivity is enhanced by specific antibodies independent of the Fc receptor•The open RBD state is induced upon antibody binding to a specific site on the NTD•Divalent bridging of spikes is required to induce the RBD-up state•Infectivity-enhancing antibodies are detected in severe COVID-19 patients
A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor. Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor. Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. |
Author | Matsuoka, Sumiko Matsumoto, Maki Akamatsu, Kanako Nakayama, Emi E. Arakawa, Akemi Kishikawa, Jun-ichi Kishida, Kazuki Standley, Daron M. Sasai, Miwa Shioda, Tatsuo Soh, Wai Tuck Nakai, Wataru Li, Songling Matsuura, Yoshiharu Arase, Noriko Matsuda, Makoto Ohmura, Koichiro Tada, Asa Ohshima, Shiro Arase, Hisashi Suzuki, Tatsuya Hirose, Mika Nakagami, Hironori Nakazaki, Yukoh Yamamoto, Masahiro Jin, Hui Ono, Chikako Shindo, Yasuhiro Okamoto, Toru Okada, Masato Torii, Shiho Nakagawa, Atsushi Kohyama, Masako Kato, Takayuki Tomii, Keisuke Liu, Yafei |
Author_xml | – sequence: 1 givenname: Yafei surname: Liu fullname: Liu, Yafei organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 2 givenname: Wai Tuck surname: Soh fullname: Soh, Wai Tuck organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan – sequence: 3 givenname: Jun-ichi surname: Kishikawa fullname: Kishikawa, Jun-ichi organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan – sequence: 4 givenname: Mika surname: Hirose fullname: Hirose, Mika organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan – sequence: 5 givenname: Emi E. surname: Nakayama fullname: Nakayama, Emi E. organization: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 6 givenname: Songling surname: Li fullname: Li, Songling organization: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 7 givenname: Miwa surname: Sasai fullname: Sasai, Miwa organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 8 givenname: Tatsuya surname: Suzuki fullname: Suzuki, Tatsuya organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 9 givenname: Asa surname: Tada fullname: Tada, Asa organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan – sequence: 10 givenname: Akemi surname: Arakawa fullname: Arakawa, Akemi organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan – sequence: 11 givenname: Sumiko surname: Matsuoka fullname: Matsuoka, Sumiko organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 12 givenname: Kanako surname: Akamatsu fullname: Akamatsu, Kanako organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 13 givenname: Makoto surname: Matsuda fullname: Matsuda, Makoto organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 14 givenname: Chikako surname: Ono fullname: Ono, Chikako organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 15 givenname: Shiho surname: Torii fullname: Torii, Shiho organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 16 givenname: Kazuki surname: Kishida fullname: Kishida, Kazuki organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan – sequence: 17 givenname: Hui surname: Jin fullname: Jin, Hui organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 18 givenname: Wataru surname: Nakai fullname: Nakai, Wataru organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 19 givenname: Noriko surname: Arase fullname: Arase, Noriko organization: Department of Dermatology, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan – sequence: 20 givenname: Atsushi surname: Nakagawa fullname: Nakagawa, Atsushi organization: Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan – sequence: 21 givenname: Maki surname: Matsumoto fullname: Matsumoto, Maki organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan – sequence: 22 givenname: Yukoh surname: Nakazaki fullname: Nakazaki, Yukoh organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan – sequence: 23 givenname: Yasuhiro surname: Shindo fullname: Shindo, Yasuhiro organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan – sequence: 24 givenname: Masako surname: Kohyama fullname: Kohyama, Masako organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 25 givenname: Keisuke surname: Tomii fullname: Tomii, Keisuke organization: Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan – sequence: 26 givenname: Koichiro surname: Ohmura fullname: Ohmura, Koichiro organization: Department of Rheumatology, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan – sequence: 27 givenname: Shiro surname: Ohshima fullname: Ohshima, Shiro organization: Department of Clinical Research, Osaka Minami Medical Center, Kawachinagano, Osaka 586-8521, Japan – sequence: 28 givenname: Toru surname: Okamoto fullname: Okamoto, Toru organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 29 givenname: Masahiro surname: Yamamoto fullname: Yamamoto, Masahiro organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 30 givenname: Hironori surname: Nakagami fullname: Nakagami, Hironori organization: Department of Health Development and Medicine, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan – sequence: 31 givenname: Yoshiharu surname: Matsuura fullname: Matsuura, Yoshiharu organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 32 givenname: Atsushi surname: Nakagawa fullname: Nakagawa, Atsushi organization: Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan – sequence: 33 givenname: Takayuki surname: Kato fullname: Kato, Takayuki organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan – sequence: 34 givenname: Masato surname: Okada fullname: Okada, Masato organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 35 givenname: Daron M. surname: Standley fullname: Standley, Daron M. organization: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 36 givenname: Tatsuo surname: Shioda fullname: Shioda, Tatsuo organization: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan – sequence: 37 givenname: Hisashi surname: Arase fullname: Arase, Hisashi email: arase@biken.osaka-u.ac.jp organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34139176$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuLFDEUhYOMOD2jf8CF1NJNlXlXCkRoGl8wIDij25BKbnWnrU7aJN3Q_94qekbUxeDqLu75zj3cc4UuQgyA0EuCG4KJfLNtLIxjQzElDRYNZvQJWhDctTUnLb1AC4w7WivZ8kt0lfMWY6yEEM_QJeOEdaSVC3S3DJUPA9jij76caggbE6wP6yr7AlUMVdlAdbv8eluv4veaVnnvf0C1T7GAn5YmraGAq_pTZULxfXQe8nP0dDBjhhf38xp9-_D-bvWpvvny8fNqeVNbIXipB6eocRIMdS1THEtQxA1UMkIV7rlRjJthMKTtnWmdU6TDg-isNZj1kkjMrtG7s-_-0O_AWQglmVHvk9-ZdNLReP33JviNXsejVoRTJbrJ4PW9QYo_D5CL3vk8P9UEiIesqRAUM6mE-g8pZ5zLVtFJ-urPWL_zPHx9EqizwKaYc4JBW19M8XFO6UdNsJ4L1ls9H9BzwRoLPRU8ofQf9MH9UejtGYKpjKOHpLP1ECw4n6bmtYv-MfwXmbC_EA |
CitedBy_id | crossref_primary_10_7759_cureus_57860 crossref_primary_10_1016_j_ebiom_2021_103762 crossref_primary_10_1021_acscentsci_2c01190 crossref_primary_10_1038_s41392_021_00861_4 crossref_primary_10_3389_fimmu_2021_757691 crossref_primary_10_3390_vaccines12121418 crossref_primary_10_1172_JCI158190 crossref_primary_10_1016_j_csbj_2022_08_010 crossref_primary_10_3390_ijms24065352 crossref_primary_10_1016_j_biopha_2023_115628 crossref_primary_10_1038_s41385_022_00569_w crossref_primary_10_3390_vaccines9080869 crossref_primary_10_1080_22221751_2024_2307510 crossref_primary_10_3389_fmicb_2022_933249 crossref_primary_10_3390_vaccines9101082 crossref_primary_10_2147_IJN_S463546 crossref_primary_10_1002_iid3_1154 crossref_primary_10_1002_jev2_12170 crossref_primary_10_1016_j_celrep_2022_110368 crossref_primary_10_5363_tits_26_9_79 crossref_primary_10_2169_naika_110_2355 crossref_primary_10_2184_lsj_50_2_92 crossref_primary_10_3390_vaccines10111815 crossref_primary_10_1186_s12951_021_01148_0 crossref_primary_10_1016_j_celrep_2022_111220 crossref_primary_10_1016_j_jvacx_2022_100173 crossref_primary_10_1093_pnasnexus_pgac045 crossref_primary_10_1155_2023_6695533 crossref_primary_10_3390_v14081739 crossref_primary_10_1002_advs_202103240 crossref_primary_10_1016_j_cell_2024_08_025 crossref_primary_10_1126_sciadv_abn4188 crossref_primary_10_1016_j_bmc_2025_118124 crossref_primary_10_20411_pai_v9i2_679 crossref_primary_10_1039_D3RA00198A crossref_primary_10_3390_v15061252 crossref_primary_10_3390_vaccines10101618 crossref_primary_10_3390_v15010067 crossref_primary_10_1002_jmv_28359 crossref_primary_10_1093_ve_veab069 crossref_primary_10_3390_vaccines10071050 crossref_primary_10_1007_s40744_022_00469_2 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1016_j_vaccine_2023_08_076 crossref_primary_10_1007_s10875_022_01378_3 crossref_primary_10_1080_07853890_2024_2392882 crossref_primary_10_1080_22221751_2021_1976598 crossref_primary_10_1111_imr_13091 crossref_primary_10_1111_imr_70000 crossref_primary_10_3389_fimmu_2021_789905 crossref_primary_10_3390_vaccines11040773 crossref_primary_10_3390_microorganisms11041015 crossref_primary_10_1093_bioadv_vbab038 crossref_primary_10_3390_ijms231911058 crossref_primary_10_3390_pathogens12121408 crossref_primary_10_3390_vaccines9111351 crossref_primary_10_1128_spectrum_01181_21 crossref_primary_10_1016_j_smim_2021_101507 crossref_primary_10_1128_spectrum_01553_21 crossref_primary_10_3389_fmed_2022_952697 crossref_primary_10_3389_fpubh_2022_1060043 crossref_primary_10_1128_jvi_01366_22 crossref_primary_10_3389_fimmu_2022_912898 crossref_primary_10_1186_s12929_021_00784_w crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1186_s41232_022_00233_7 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_3390_vaccines12080914 crossref_primary_10_1016_j_lansea_2022_100046 crossref_primary_10_4103_ohbl_ohbl_17_24 crossref_primary_10_1002_pro_4221 crossref_primary_10_1371_journal_ppat_1010155 crossref_primary_10_3389_fbinf_2022_1044975 crossref_primary_10_1016_j_vaccine_2022_10_043 crossref_primary_10_3389_fmicb_2023_1122868 crossref_primary_10_33611_trs_2021_021 crossref_primary_10_3389_fimmu_2023_1195533 crossref_primary_10_1016_j_antiviral_2024_105905 crossref_primary_10_1093_ve_veab096 crossref_primary_10_3390_v15102079 crossref_primary_10_1007_s15010_023_02171_z crossref_primary_10_1093_jb_mvac096 crossref_primary_10_1016_j_chom_2022_09_018 crossref_primary_10_1038_s41598_022_19993_w crossref_primary_10_26508_lsa_202201415 crossref_primary_10_3390_pathogens13121109 crossref_primary_10_2147_IJN_S427990 crossref_primary_10_2222_jsv_71_169 crossref_primary_10_1016_j_immuni_2022_04_003 crossref_primary_10_3390_ijerph191710768 crossref_primary_10_1016_j_jinf_2024_106121 crossref_primary_10_1007_s10238_023_01264_1 crossref_primary_10_1126_scitranslmed_abn3715 crossref_primary_10_1016_j_micinf_2024_105464 crossref_primary_10_12677_AMB_2022_112006 crossref_primary_10_5582_bst_2021_01227 crossref_primary_10_1016_j_jaci_2022_01_005 crossref_primary_10_1021_acsnano_4c00809 crossref_primary_10_1002_rmv_2464 crossref_primary_10_1016_j_celrep_2024_114922 crossref_primary_10_1021_acs_nanolett_2c04270 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1016_j_apsb_2022_07_004 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1016_j_jaci_2021_11_019 crossref_primary_10_1080_22221751_2024_2412990 crossref_primary_10_1080_22221751_2021_1959270 crossref_primary_10_1021_acsinfecdis_2c00488 crossref_primary_10_1038_s41392_024_01888_z crossref_primary_10_1186_s12985_025_02667_0 crossref_primary_10_1002_jmv_27577 crossref_primary_10_1016_j_jiac_2024_08_024 crossref_primary_10_2196_47453 crossref_primary_10_3390_v15040898 crossref_primary_10_3390_v15122421 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_1016_j_ymthe_2022_02_013 crossref_primary_10_1056_NEJMc2111096 crossref_primary_10_3389_fimmu_2022_843928 crossref_primary_10_1016_j_cell_2021_12_046 crossref_primary_10_3389_fimmu_2022_882972 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_1186_s12985_022_01831_0 crossref_primary_10_1016_j_apsb_2023_02_010 crossref_primary_10_3389_fimmu_2022_1008285 crossref_primary_10_1017_qrd_2021_12 crossref_primary_10_1126_scitranslmed_adi2623 crossref_primary_10_2139_ssrn_4022365 crossref_primary_10_3389_fimmu_2022_1041025 crossref_primary_10_1038_s41598_022_24730_4 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_1038_s41598_021_03273_0 crossref_primary_10_3390_medicina58020309 crossref_primary_10_3389_fimmu_2021_693579 crossref_primary_10_1038_s41419_021_04058_z crossref_primary_10_1146_annurev_med_042420_113838 crossref_primary_10_3389_fimmu_2022_882856 crossref_primary_10_2222_jsv_71_1 crossref_primary_10_3389_fmicb_2022_926929 crossref_primary_10_1016_j_heliyon_2023_e16750 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1016_j_jmb_2021_167280 crossref_primary_10_3390_molecules27123851 crossref_primary_10_1038_s42003_021_02663_4 crossref_primary_10_1002_jmv_27749 crossref_primary_10_1016_j_tim_2024_01_005 crossref_primary_10_1038_s41421_023_00535_1 crossref_primary_10_1128_mBio_01987_21 crossref_primary_10_3390_microorganisms11020471 crossref_primary_10_5005_jp_journals_10018_1408 crossref_primary_10_1038_s41467_022_30699_5 crossref_primary_10_1080_24694452_2024_2346728 crossref_primary_10_1016_j_coviro_2021_08_006 crossref_primary_10_3390_ijms222011211 crossref_primary_10_1128_msystems_00722_23 crossref_primary_10_1016_j_clim_2022_108955 crossref_primary_10_1016_j_csbj_2022_11_001 crossref_primary_10_3390_v14010125 crossref_primary_10_3389_fimmu_2022_844837 crossref_primary_10_2340_actadv_v102_936 crossref_primary_10_1038_s41392_024_01940_y crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1128_spectrum_02859_23 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1080_22221751_2023_2245921 crossref_primary_10_1128_jcm_00042_24 crossref_primary_10_1371_journal_ppat_1012493 crossref_primary_10_1038_s41423_021_00752_2 crossref_primary_10_1002_2211_5463_13754 crossref_primary_10_1016_j_isci_2021_103720 crossref_primary_10_3390_microorganisms9071479 crossref_primary_10_1016_j_celrep_2021_110218 crossref_primary_10_1111_1348_0421_13116 crossref_primary_10_1172_jci_insight_156372 crossref_primary_10_2807_1560_7917_ES_2022_27_18_2200178 crossref_primary_10_2217_fmb_2022_0025 crossref_primary_10_1016_j_isci_2024_109363 crossref_primary_10_4049_jimmunol_2300282 |
Cites_doi | 10.1128/JVI.00671-11 10.1038/nmicrobiol.2016.54 10.1016/j.cell.2020.07.012 10.1128/JVI.01062-20 10.1038/s41586-021-03291-y 10.1016/j.biopha.2020.110629 10.1016/S2666-5247(20)30004-5 10.1126/science.abd5223 10.1038/s41586-020-2012-7 10.1038/s41591-020-0998-x 10.1016/S1473-3099(20)30482-5 10.1126/science.abc5902 10.1292/jvms.60.49 10.1038/s41586-020-2456-9 10.1016/j.cell.2020.09.032 10.1016/j.gendis.2020.07.006 10.1126/science.abe1107 10.1016/j.cell.2021.02.010 10.1038/s41577-020-00410-0 10.1016/j.bpj.2021.01.012 10.1016/0147-9571(81)90003-5 10.3389/fmicb.2020.02112 10.1038/s41586-021-03398-2 10.1038/s41591-020-1088-9 10.1016/j.chom.2020.11.001 10.1038/s41579-020-00468-6 10.1016/j.vaccine.2006.08.011 10.1016/j.cell.2020.02.052 10.1038/s41467-020-20247-4 10.1016/j.cell.2020.06.040 10.1038/s41586-020-2895-3 10.1038/s41594-020-0479-4 10.1016/S0140-6736(20)30566-3 10.1126/science.abc6952 10.1021/acs.jpclett.0c01431 10.1128/jvi.64.3.1407-1409.1990 10.1016/j.cell.2021.02.033 10.1126/science.aai8128 10.1002/jcc.20084 10.1126/science.abb2507 10.1016/0378-1135(93)90126-R 10.1126/science.abd4251 10.1016/j.cell.2020.06.043 10.1038/nature24994 10.1128/JVI.02015-19 10.1002/cpbi.3 10.1016/j.cell.2008.01.043 10.1038/nmeth.4169 10.1126/science.abe8499 10.1126/science.abc5881 10.1039/C9ME00020H 10.1073/pnas.2003138117 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: 2021 Elsevier Inc. 2021 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2021.05.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 3466.e18 |
ExternalDocumentID | PMC8142859 34139176 10_1016_j_cell_2021_05_032 S0092867421006620 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c554t-fd82ad6ea2d738406e81df2631280b4a834affa17bda7dd8190f59cca03b61603 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 13:17:14 EDT 2025 Fri Jul 11 04:08:12 EDT 2025 Thu Jul 10 23:44:11 EDT 2025 Wed Feb 19 02:26:15 EST 2025 Thu Apr 24 22:58:01 EDT 2025 Tue Jul 01 02:17:09 EDT 2025 Fri Feb 23 02:44:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | ADE docking model antibody-dependent enhancement angiotensin converting enzyme 2 cryo-EM cryo-electron microscopy |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-fd82ad6ea2d738406e81df2631280b4a834affa17bda7dd8190f59cca03b61603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8142859 |
PMID | 34139176 |
PQID | 2543446782 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8142859 proquest_miscellaneous_2552036858 proquest_miscellaneous_2543446782 pubmed_primary_34139176 crossref_citationtrail_10_1016_j_cell_2021_05_032 crossref_primary_10_1016_j_cell_2021_05_032 elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-24 |
PublicationDateYYYYMMDD | 2021-06-24 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Saputri, Li, van Eerden, Rozewicki, Xu, Ismanto, Davila, Teraguchi, Katoh, Standley (bib34) 2020; 11 Johnson, Lyddon, Suarez, Salcedo, LePique, Graham, Ricana, Robinson, Ritter (bib17) 2020; 94 Vennema, de Groot, Harbour, Dalderup, Gruffydd-Jones, Horzinek, Spaan (bib42) 1990; 64 Ambrosetti, Jandova, Bonvin (bib1) 2020 Satoh, Arii, Suenaga, Wang, Kogure, Uehori, Arase, Shiratori, Tanaka, Kawaguchi (bib35) 2008; 132 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib7) 2020; 369 Jaume, Yip, Cheung, Leung, Li, Kien, Dutry, Callendret, Escriou, Altmeyer (bib16) 2011; 85 Punjani, Rubinstein, Fleet, Brubaker (bib30) 2017; 14 Roy, Jaiswar, Sarkar (bib32) 2020; 11 Supasa, Zhou, Dejnirattisai, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Nutalai, Tuekprakhon (bib38) 2021; 184 V’kovski, Kratzel, Steiner, Stalder, Thiel (bib41) 2021; 19 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib51) 2020; 579 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib48) 2020; 367 Grubaugh, Hanage, Rasmussen (bib9) 2020; 182 Henderson, Edwards, Mansouri, Janowska, Stalls, Gobeil, Kopp, Li, Parks, Hsu (bib10) 2020; 27 Wang, Sewatanon, Memoli, Wrammert, Bournazos, Bhaumik, Pinsky, Chokephaibulkit, Onlamoon, Pattanapanyasat (bib44) 2017; 355 Weiss, Scott (bib47) 1981; 4 Lau, Tsang, Hui, Kwan, Chan, Chiu, Ko, Chan, Cheng, Perera (bib21) 2021; 12 Liu, Lin, Baine, Wajnberg, Gumprecht, Rahman, Rodriguez, Tandon, Bassily-Marcus, Bander (bib23) 2020; 26 Chu, Chan, Yuen, Shuai, Yuan, Wang, Hu, Yip, Tsang, Huang (bib8) 2020; 1 Zost, Gilchuk, Chen, Case, Reidy, Trivette, Nargi, Sutton, Suryadevara, Chen (bib52) 2020; 26 Turoňová, Sikora, Schürmann, Hagen, Welsch, Blanc, von Bülow, Gecht, Bagola, Hörner (bib40) 2020; 370 Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib22) 2020; 182 Hohdatsu, Yamada, Tominaga, Makino, Kida, Koyama (bib13) 1998; 60 Cai, Zhang, Xiao, Peng, Sterling, Walsh, Rawson, Rits-Volloch, Chen (bib5) 2020; 369 Tabata, Imai, Kawano, Ikeda, Kodama, Miyoshi, Obinata, Mimura, Kodera, Kitagaki (bib39) 2020; 20 Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib4) 2020; 369 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib12) 2020; 181 Olsen (bib28) 1993; 36 Kam, Kien, Roberts, Cheung, Lamirande, Vogel, Chu, Tse, Guarner, Zaki (bib18) 2007; 25 Kemp, Collier, Datir, Ferreira, Gayed, Jahun, Hosmillo, Rees-Spear, Mlcochova, Lumb (bib19) 2021; 592 Webb, Sali (bib46) 2016; 54 Zhou, Yu, Du, Fan, Liu, Liu, Xiang, Wang, Song, Gu (bib50) 2020; 395 Chen, Zhang, Qin, Wang, Xu, Wang, Xu, Tang, Liu, Zhang (bib6) 2020; 130 Bournazos, Gupta, Ravetch (bib3) 2020; 20 Lu, Uchil, Li, Zheng, Terry, Gorman, Shi, Zhang, Zhou, Ding (bib24) 2020; 28 Hu, Gao, He, Huang, Tang, Wang (bib15) 2020; 7 Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib31) 2020; 584 Mori, Jung, Kobayashi, Dokainish, Re, Sugita (bib26) 2021; 120 Schritt, Li, Rozewicki, Katoh, Yamashita, Volkmuth, Cavet, Standley (bib36) 2019; 4 Lv, Deng, Ye, Cao, Sun, Fan, Huang, Sun, Sun, Zhu (bib25) 2020; 369 Hirayasu, Saito, Suenaga, Shida, Arase, Oikawa, Yamaoka, Murota, Chibana, Nakagawa (bib11) 2016; 1 Anderson, Goodwin, Verma, Arevalo, Bolton, Weirick, Gouma, McAllister, Christensen, Weaver (bib2) 2021; 184 Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib49) 2020; 183 Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib14) 2020; 370 Wan, Shang, Sun, Tai, Chen, Geng, He, Chen, Wu, Shi (bib43) 2020; 94 Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib27) 2020; 370 Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib45) 2021; 593 Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib29) 2021; 592 Saito, Hirayasu, Satoh, Wang, Lusingu, Arimori, Shida, Palacpac, Itagaki, Iwanaga (bib33) 2017; 552 Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley (bib20) 2020; 182 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib53) 2004; 25 Shang, Wan, Luo, Ye, Geng, Auerbach, Li (bib37) 2020; 117 Mori (10.1016/j.cell.2021.05.032_bib26) 2021; 120 Zost (10.1016/j.cell.2021.05.032_bib52) 2020; 26 Wrapp (10.1016/j.cell.2021.05.032_bib48) 2020; 367 Webb (10.1016/j.cell.2021.05.032_bib46) 2016; 54 Cai (10.1016/j.cell.2021.05.032_bib5) 2020; 369 Hirayasu (10.1016/j.cell.2021.05.032_bib11) 2016; 1 Schritt (10.1016/j.cell.2021.05.032_bib36) 2019; 4 Plante (10.1016/j.cell.2021.05.032_bib29) 2021; 592 Korber (10.1016/j.cell.2021.05.032_bib20) 2020; 182 Grubaugh (10.1016/j.cell.2021.05.032_bib9) 2020; 182 Kemp (10.1016/j.cell.2021.05.032_bib19) 2021; 592 Ambrosetti (10.1016/j.cell.2021.05.032_bib1) 2020 Brouwer (10.1016/j.cell.2021.05.032_bib4) 2020; 369 Zhou (10.1016/j.cell.2021.05.032_bib51) 2020; 579 Yurkovetskiy (10.1016/j.cell.2021.05.032_bib49) 2020; 183 Roy (10.1016/j.cell.2021.05.032_bib32) 2020; 11 Anderson (10.1016/j.cell.2021.05.032_bib2) 2021; 184 Chi (10.1016/j.cell.2021.05.032_bib7) 2020; 369 Hoffmann (10.1016/j.cell.2021.05.032_bib12) 2020; 181 Satoh (10.1016/j.cell.2021.05.032_bib35) 2008; 132 Zhou (10.1016/j.cell.2021.05.032_bib50) 2020; 395 Hou (10.1016/j.cell.2021.05.032_bib14) 2020; 370 Pettersen (10.1016/j.cell.2021.05.032_bib53) 2004; 25 Wang (10.1016/j.cell.2021.05.032_bib45) 2021; 593 Supasa (10.1016/j.cell.2021.05.032_bib38) 2021; 184 Saito (10.1016/j.cell.2021.05.032_bib33) 2017; 552 Weiss (10.1016/j.cell.2021.05.032_bib47) 1981; 4 Kam (10.1016/j.cell.2021.05.032_bib18) 2007; 25 Shang (10.1016/j.cell.2021.05.032_bib37) 2020; 117 V’kovski (10.1016/j.cell.2021.05.032_bib41) 2021; 19 Chen (10.1016/j.cell.2021.05.032_bib6) 2020; 130 Tabata (10.1016/j.cell.2021.05.032_bib39) 2020; 20 Hu (10.1016/j.cell.2021.05.032_bib15) 2020; 7 Jaume (10.1016/j.cell.2021.05.032_bib16) 2011; 85 Lv (10.1016/j.cell.2021.05.032_bib25) 2020; 369 Wan (10.1016/j.cell.2021.05.032_bib43) 2020; 94 Saputri (10.1016/j.cell.2021.05.032_bib34) 2020; 11 Chu (10.1016/j.cell.2021.05.032_bib8) 2020; 1 Johnson (10.1016/j.cell.2021.05.032_bib17) 2020; 94 Bournazos (10.1016/j.cell.2021.05.032_bib3) 2020; 20 Lau (10.1016/j.cell.2021.05.032_bib21) 2021; 12 Henderson (10.1016/j.cell.2021.05.032_bib10) 2020; 27 Robbiani (10.1016/j.cell.2021.05.032_bib31) 2020; 584 Li (10.1016/j.cell.2021.05.032_bib22) 2020; 182 Liu (10.1016/j.cell.2021.05.032_bib23) 2020; 26 Ng (10.1016/j.cell.2021.05.032_bib27) 2020; 370 Turoňová (10.1016/j.cell.2021.05.032_bib40) 2020; 370 Hohdatsu (10.1016/j.cell.2021.05.032_bib13) 1998; 60 Olsen (10.1016/j.cell.2021.05.032_bib28) 1993; 36 Punjani (10.1016/j.cell.2021.05.032_bib30) 2017; 14 Wang (10.1016/j.cell.2021.05.032_bib44) 2017; 355 Lu (10.1016/j.cell.2021.05.032_bib24) 2020; 28 Vennema (10.1016/j.cell.2021.05.032_bib42) 1990; 64 |
References_xml | – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: bib22 article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity publication-title: Cell – volume: 27 start-page: 925 year: 2020 end-page: 933 ident: bib10 article-title: Controlling the SARS-CoV-2 spike glycoprotein conformation publication-title: Nat. Struct. Mol. Biol. – volume: 94 start-page: e02015-19 year: 2020 ident: bib43 article-title: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry publication-title: J. Virol. – volume: 395 start-page: 1054 year: 2020 end-page: 1062 ident: bib50 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet – volume: 369 start-page: 1586 year: 2020 end-page: 1592 ident: bib5 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science – volume: 184 start-page: 1858 year: 2021 end-page: 1864 e1810 ident: bib2 article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection publication-title: Cell – volume: 182 start-page: 812 year: 2020 end-page: 827.e19 ident: bib20 article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus publication-title: Cell – volume: 85 start-page: 10582 year: 2011 end-page: 10597 ident: bib16 article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway publication-title: J. Virol. – volume: 130 start-page: 110629 year: 2020 ident: bib6 article-title: SARS-CoV-2 neutralizing antibody levels are correlated with severity of COVID-19 pneumonia publication-title: Biomed. Pharmacother. – volume: 25 start-page: 729 year: 2007 end-page: 740 ident: bib18 article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro publication-title: Vaccine – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib51 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 182 start-page: 794 year: 2020 end-page: 795 ident: bib9 article-title: Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear publication-title: Cell – volume: 184 start-page: 2201 year: 2021 end-page: 2211.e7 ident: bib38 article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera publication-title: Cell – volume: 19 start-page: 155 year: 2021 end-page: 170 ident: bib41 article-title: Coronavirus biology and replication: implications for SARS-CoV-2 publication-title: Nat. Rev. Microbiol. – volume: 64 start-page: 1407 year: 1990 end-page: 1409 ident: bib42 article-title: Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization publication-title: J. Virol. – volume: 183 start-page: 739 year: 2020 end-page: 751.e8 ident: bib49 article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant publication-title: Cell – volume: 12 start-page: 63 year: 2021 ident: bib21 article-title: Neutralizing antibody titres in SARS-CoV-2 infections publication-title: Nat. Commun. – volume: 26 start-page: 1422 year: 2020 end-page: 1427 ident: bib52 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. – volume: 120 start-page: 1060 year: 2021 end-page: 1071 ident: bib26 article-title: Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein publication-title: Biophys. J. – volume: 11 start-page: 7021 year: 2020 end-page: 7027 ident: bib32 article-title: Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike publication-title: J. Phys. Chem. Lett. – volume: 20 start-page: 633 year: 2020 end-page: 643 ident: bib3 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat. Rev. Immunol. – volume: 26 start-page: 1708 year: 2020 end-page: 1713 ident: bib23 article-title: Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study publication-title: Nat. Med. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib48 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 54 start-page: 5.6.1 year: 2016 end-page: 5.6.37 ident: bib46 article-title: Comparative Protein Structure Modeling Using MODELLER publication-title: Curr. Protoc. Bioinformatics – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: bib4 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib12 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib31 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 4 start-page: 761 year: 2019 end-page: 768 ident: bib36 article-title: Repertoire Builder: high-throughput structural modeling of B and T cell receptors publication-title: Mol. Syst. Des. Eng. – volume: 36 start-page: 1 year: 1993 end-page: 37 ident: bib28 article-title: A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination publication-title: Vet. Microbiol. – year: 2020 ident: bib1 article-title: A protocol for information-driven antibody-antigen modelling with the HADDOCK2.4 webserver publication-title: arXiv – volume: 1 start-page: e14 year: 2020 end-page: e23 ident: bib8 article-title: Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study publication-title: Lancet Microbe – volume: 370 start-page: 203 year: 2020 end-page: 208 ident: bib40 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science – volume: 7 start-page: 551 year: 2020 end-page: 557 ident: bib15 article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2 publication-title: Genes Dis. – volume: 369 start-page: 1505 year: 2020 end-page: 1509 ident: bib25 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science – volume: 552 start-page: 101 year: 2017 end-page: 105 ident: bib33 article-title: Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors publication-title: Nature – volume: 592 start-page: 277 year: 2021 end-page: 282 ident: bib19 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature – volume: 592 start-page: 116 year: 2021 end-page: 121 ident: bib29 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: bib45 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib30 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 60 start-page: 49 year: 1998 end-page: 55 ident: bib13 article-title: Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus publication-title: J. Vet. Med. Sci. – volume: 94 start-page: e01062 year: 2020 ident: bib17 article-title: Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein publication-title: J. Virol. – volume: 370 start-page: 1339 year: 2020 end-page: 1343 ident: bib27 article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans publication-title: Science – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib7 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib53 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 132 start-page: 935 year: 2008 end-page: 944 ident: bib35 article-title: PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B publication-title: Cell – volume: 355 start-page: 395 year: 2017 end-page: 398 ident: bib44 article-title: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity publication-title: Science – volume: 4 start-page: 175 year: 1981 end-page: 189 ident: bib47 article-title: Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever publication-title: Comp. Immunol. Microbiol. Infect. Dis. – volume: 20 start-page: 1043 year: 2020 end-page: 1050 ident: bib39 article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis publication-title: Lancet Infect. Dis. – volume: 117 start-page: 11727 year: 2020 end-page: 11734 ident: bib37 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 16054 year: 2016 ident: bib11 article-title: Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2 publication-title: Nat. Microbiol. – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: bib14 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science – volume: 28 start-page: 880 year: 2020 end-page: 891.e8 ident: bib24 article-title: Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles publication-title: Cell Host Microbe – volume: 11 start-page: 2112 year: 2020 ident: bib34 article-title: Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution publication-title: Front. Microbiol. – volume: 85 start-page: 10582 year: 2011 ident: 10.1016/j.cell.2021.05.032_bib16 article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway publication-title: J. Virol. doi: 10.1128/JVI.00671-11 – volume: 1 start-page: 16054 year: 2016 ident: 10.1016/j.cell.2021.05.032_bib11 article-title: Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2 publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.54 – volume: 182 start-page: 1284 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib22 article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 94 start-page: e01062 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib17 article-title: Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein publication-title: J. Virol. doi: 10.1128/JVI.01062-20 – year: 2020 ident: 10.1016/j.cell.2021.05.032_bib1 article-title: A protocol for information-driven antibody-antigen modelling with the HADDOCK2.4 webserver publication-title: arXiv – volume: 592 start-page: 277 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib19 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature doi: 10.1038/s41586-021-03291-y – volume: 130 start-page: 110629 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib6 article-title: SARS-CoV-2 neutralizing antibody levels are correlated with severity of COVID-19 pneumonia publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110629 – volume: 1 start-page: e14 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib8 article-title: Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30004-5 – volume: 370 start-page: 203 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib40 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science doi: 10.1126/science.abd5223 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib51 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 26 start-page: 1422 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib52 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. doi: 10.1038/s41591-020-0998-x – volume: 20 start-page: 1043 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib39 article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30482-5 – volume: 369 start-page: 643 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib4 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 60 start-page: 49 year: 1998 ident: 10.1016/j.cell.2021.05.032_bib13 article-title: Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.60.49 – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib31 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 183 start-page: 739 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib49 article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 7 start-page: 551 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib15 article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2 publication-title: Genes Dis. doi: 10.1016/j.gendis.2020.07.006 – volume: 370 start-page: 1339 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib27 article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans publication-title: Science doi: 10.1126/science.abe1107 – volume: 184 start-page: 1858 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib2 article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection publication-title: Cell doi: 10.1016/j.cell.2021.02.010 – volume: 20 start-page: 633 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib3 article-title: The role of IgG Fc receptors in antibody-dependent enhancement publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00410-0 – volume: 120 start-page: 1060 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib26 article-title: Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.01.012 – volume: 4 start-page: 175 year: 1981 ident: 10.1016/j.cell.2021.05.032_bib47 article-title: Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever publication-title: Comp. Immunol. Microbiol. Infect. Dis. doi: 10.1016/0147-9571(81)90003-5 – volume: 11 start-page: 2112 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib34 article-title: Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.02112 – volume: 593 start-page: 130 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib45 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 26 start-page: 1708 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib23 article-title: Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study publication-title: Nat. Med. doi: 10.1038/s41591-020-1088-9 – volume: 28 start-page: 880 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib24 article-title: Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.001 – volume: 19 start-page: 155 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib41 article-title: Coronavirus biology and replication: implications for SARS-CoV-2 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00468-6 – volume: 25 start-page: 729 year: 2007 ident: 10.1016/j.cell.2021.05.032_bib18 article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.011 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib12 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 12 start-page: 63 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib21 article-title: Neutralizing antibody titres in SARS-CoV-2 infections publication-title: Nat. Commun. doi: 10.1038/s41467-020-20247-4 – volume: 182 start-page: 794 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib9 article-title: Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear publication-title: Cell doi: 10.1016/j.cell.2020.06.040 – volume: 592 start-page: 116 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib29 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 27 start-page: 925 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib10 article-title: Controlling the SARS-CoV-2 spike glycoprotein conformation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0479-4 – volume: 395 start-page: 1054 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib50 article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)30566-3 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib7 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – volume: 11 start-page: 7021 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib32 article-title: Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01431 – volume: 64 start-page: 1407 year: 1990 ident: 10.1016/j.cell.2021.05.032_bib42 article-title: Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization publication-title: J. Virol. doi: 10.1128/jvi.64.3.1407-1409.1990 – volume: 184 start-page: 2201 year: 2021 ident: 10.1016/j.cell.2021.05.032_bib38 article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera publication-title: Cell doi: 10.1016/j.cell.2021.02.033 – volume: 355 start-page: 395 year: 2017 ident: 10.1016/j.cell.2021.05.032_bib44 article-title: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity publication-title: Science doi: 10.1126/science.aai8128 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.cell.2021.05.032_bib53 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib48 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 36 start-page: 1 year: 1993 ident: 10.1016/j.cell.2021.05.032_bib28 article-title: A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination publication-title: Vet. Microbiol. doi: 10.1016/0378-1135(93)90126-R – volume: 369 start-page: 1586 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib5 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science doi: 10.1126/science.abd4251 – volume: 182 start-page: 812 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib20 article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 552 start-page: 101 year: 2017 ident: 10.1016/j.cell.2021.05.032_bib33 article-title: Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors publication-title: Nature doi: 10.1038/nature24994 – volume: 94 start-page: e02015-19 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib43 article-title: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry publication-title: J. Virol. doi: 10.1128/JVI.02015-19 – volume: 54 start-page: 5.6.1 year: 2016 ident: 10.1016/j.cell.2021.05.032_bib46 article-title: Comparative Protein Structure Modeling Using MODELLER publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/cpbi.3 – volume: 132 start-page: 935 year: 2008 ident: 10.1016/j.cell.2021.05.032_bib35 article-title: PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B publication-title: Cell doi: 10.1016/j.cell.2008.01.043 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.cell.2021.05.032_bib30 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 370 start-page: 1464 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib14 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science doi: 10.1126/science.abe8499 – volume: 369 start-page: 1505 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib25 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science doi: 10.1126/science.abc5881 – volume: 4 start-page: 761 year: 2019 ident: 10.1016/j.cell.2021.05.032_bib36 article-title: Repertoire Builder: high-throughput structural modeling of B and T cell receptors publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C9ME00020H – volume: 117 start-page: 11727 year: 2020 ident: 10.1016/j.cell.2021.05.032_bib37 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003138117 |
SSID | ssj0008555 |
Score | 2.6804175 |
Snippet | Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3452 |
SubjectTerms | ADE angiotensin converting enzyme 2 Animals Antibodies, Monoclonal - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology antibody-dependent enhancement Cell Line Chlorocebus aethiops COVID-19 - immunology COVID-19 infection cryo-electron microscopy cryo-EM docking model HEK293 Cells Humans mutational analysis pathogenicity Protein Binding - immunology Protein Domains - immunology SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Vero Cells |
Title | An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies |
URI | https://dx.doi.org/10.1016/j.cell.2021.05.032 https://www.ncbi.nlm.nih.gov/pubmed/34139176 https://www.proquest.com/docview/2543446782 https://www.proquest.com/docview/2552036858 https://pubmed.ncbi.nlm.nih.gov/PMC8142859 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEhIXVChtFyhyJW4oInFsxzluV0WoUnuA3WpvVvwIpEXOCnYP---ZyUtsK_bQS6TEtuTM-PGNPfMNIRdGcAcwwIJtwvOIW4WUt0ZFJk6tt6Xz0uGB_o-f8mbGv8_FfIdM-lgYdKvs1v52TW9W6-7LVSfNq0VVYYxvzpQE0y5paMzRbk-5aoL45l-H1VgJ0WYxyGHmQ-0ucKb18cLDcbARWdKwd6bsrc3pX_D5tw_lq03p-h056NAkHbcdPiQ7PhyRvTa_5Po9mY4D7bytMEVE5MMD0muEe4p3xrQOFOAfvRvf3kWT-lfE6POi-uNpw91QQWHjJe4dNWsKCqhMjS6Hx2R2_W06uYm6NAqRBaywjEqnWOGkL5jLUrDnpAeMWjKZwtYUG16olBdlWSSZcUXmHEKEUuSg2Tg1ErNQfyC7oQ7-E6GS-cxL40HwObfwyGwhs9gCxrRclPmIJL38tO04xjHVxaPuncl-a5S5RpnrWGiQ-YhcDm0WLcPG1tqiV4veGCcatoCt7b70OtQwgbC4CL5ePWtkAwCbGJDStjoCL2yVUCPysdX70FeEAWDzyhHJNkbEUAEJvDdLQvXQEHkrpLsT-cl__tMp2cc3dFxj_IzsLp9W_jNApKU5b-bAC_4LDvk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguqLyXFjASNxQ169iOc1xWrbbQ9kC3aG9W_EgbQM6Kbg_998zksWJB7IFLDrEtJTP2zDf2-BuA91YKjzDAYWwiikQ4TZS3Vic2zVxwlQ_K04b-2bmaXYpPC7nYgelwF4bSKnvb39n01lr3bw57aR4u65ru-BZcKwztxi2NOcbt9xAN5LQ6TxYf1-ZYS9mVMShw6WP3_uZMl-RFu-MYJPJxS9-Z8X95p7_R559JlL95peM9eNTDSTbpvvgx7IT4BO53BSbvnsJ8ElmfbkU1IpIQr4lfI14xOjRmTWSI_9jF5MtFMm2-JpzdLOvvgbXkDTU2tmniwTN7x1ADtW0o5_AZXB4fzaezpK-jkDgEC6uk8pqXXoWS-zzDgE4FBKkVVxn6ptSKUmeirKpynFtf5t4TRqhkgapNM6uoDPVz2I1NDC-BKR7yoGxAyRfC4SN3pcpThyDTCVkVIxgP8jOuJxmnWhc_zJBN9s2QzA3J3KTSoMxH8GE9ZtlRbGztLQe1mI2JYtAHbB33btChwRVEzWUMze2NIToADIoRKm3rI-nEVks9ghed3tffSjgAg141gnxjRqw7EIP3Zkusr1smb018d7J49Z__9BYezOZnp-b05PzzPjykFspi4-IAdlc_b8NrxEsr-6ZdD78AnVUSGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+infectivity-enhancing+site+on+the+SARS-CoV-2+spike+protein+targeted+by+antibodies&rft.jtitle=Cell&rft.au=Liu%2C+Yafei&rft.au=Soh%2C+Wai+Tuck&rft.au=Kishikawa%2C+Jun-ichi&rft.au=Hirose%2C+Mika&rft.date=2021-06-24&rft.issn=0092-8674&rft.volume=184&rft.issue=13&rft.spage=3452&rft.epage=3466.e18&rft_id=info:doi/10.1016%2Fj.cell.2021.05.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2021_05_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |