An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 184; no. 13; pp. 3452 - 3466.e18
Main Authors Liu, Yafei, Soh, Wai Tuck, Kishikawa, Jun-ichi, Hirose, Mika, Nakayama, Emi E., Li, Songling, Sasai, Miwa, Suzuki, Tatsuya, Tada, Asa, Arakawa, Akemi, Matsuoka, Sumiko, Akamatsu, Kanako, Matsuda, Makoto, Ono, Chikako, Torii, Shiho, Kishida, Kazuki, Jin, Hui, Nakai, Wataru, Arase, Noriko, Nakagawa, Atsushi, Matsumoto, Maki, Nakazaki, Yukoh, Shindo, Yasuhiro, Kohyama, Masako, Tomii, Keisuke, Ohmura, Koichiro, Ohshima, Shiro, Okamoto, Toru, Yamamoto, Masahiro, Nakagami, Hironori, Matsuura, Yoshiharu, Kato, Takayuki, Okada, Masato, Standley, Daron M., Shioda, Tatsuo, Arase, Hisashi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. [Display omitted] •SARS-CoV-2 infectivity is enhanced by specific antibodies independent of the Fc receptor•The open RBD state is induced upon antibody binding to a specific site on the NTD•Divalent bridging of spikes is required to induce the RBD-up state•Infectivity-enhancing antibodies are detected in severe COVID-19 patients A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor.
AbstractList Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. [Display omitted] •SARS-CoV-2 infectivity is enhanced by specific antibodies independent of the Fc receptor•The open RBD state is induced upon antibody binding to a specific site on the NTD•Divalent bridging of spikes is required to induce the RBD-up state•Infectivity-enhancing antibodies are detected in severe COVID-19 patients A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor.
Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.
Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection. A subset of antibodies detected in patients with severe COVID-19 target a specific region of the N-terminal domain of the spike protein and enhance binding of the virus to the ACE2 receptor.
Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.
Author Matsuoka, Sumiko
Matsumoto, Maki
Akamatsu, Kanako
Nakayama, Emi E.
Arakawa, Akemi
Kishikawa, Jun-ichi
Kishida, Kazuki
Standley, Daron M.
Sasai, Miwa
Shioda, Tatsuo
Soh, Wai Tuck
Nakai, Wataru
Li, Songling
Matsuura, Yoshiharu
Arase, Noriko
Matsuda, Makoto
Ohmura, Koichiro
Tada, Asa
Ohshima, Shiro
Arase, Hisashi
Suzuki, Tatsuya
Hirose, Mika
Nakagami, Hironori
Nakazaki, Yukoh
Yamamoto, Masahiro
Jin, Hui
Ono, Chikako
Shindo, Yasuhiro
Okamoto, Toru
Okada, Masato
Torii, Shiho
Nakagawa, Atsushi
Kohyama, Masako
Kato, Takayuki
Tomii, Keisuke
Liu, Yafei
Author_xml – sequence: 1
  givenname: Yafei
  surname: Liu
  fullname: Liu, Yafei
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 2
  givenname: Wai Tuck
  surname: Soh
  fullname: Soh, Wai Tuck
  organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
– sequence: 3
  givenname: Jun-ichi
  surname: Kishikawa
  fullname: Kishikawa, Jun-ichi
  organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
– sequence: 4
  givenname: Mika
  surname: Hirose
  fullname: Hirose, Mika
  organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
– sequence: 5
  givenname: Emi E.
  surname: Nakayama
  fullname: Nakayama, Emi E.
  organization: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 6
  givenname: Songling
  surname: Li
  fullname: Li, Songling
  organization: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 7
  givenname: Miwa
  surname: Sasai
  fullname: Sasai, Miwa
  organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 8
  givenname: Tatsuya
  surname: Suzuki
  fullname: Suzuki, Tatsuya
  organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 9
  givenname: Asa
  surname: Tada
  fullname: Tada, Asa
  organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
– sequence: 10
  givenname: Akemi
  surname: Arakawa
  fullname: Arakawa, Akemi
  organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
– sequence: 11
  givenname: Sumiko
  surname: Matsuoka
  fullname: Matsuoka, Sumiko
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 12
  givenname: Kanako
  surname: Akamatsu
  fullname: Akamatsu, Kanako
  organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 13
  givenname: Makoto
  surname: Matsuda
  fullname: Matsuda, Makoto
  organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 14
  givenname: Chikako
  surname: Ono
  fullname: Ono, Chikako
  organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 15
  givenname: Shiho
  surname: Torii
  fullname: Torii, Shiho
  organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 16
  givenname: Kazuki
  surname: Kishida
  fullname: Kishida, Kazuki
  organization: Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
– sequence: 17
  givenname: Hui
  surname: Jin
  fullname: Jin, Hui
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 18
  givenname: Wataru
  surname: Nakai
  fullname: Nakai, Wataru
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 19
  givenname: Noriko
  surname: Arase
  fullname: Arase, Noriko
  organization: Department of Dermatology, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 20
  givenname: Atsushi
  surname: Nakagawa
  fullname: Nakagawa, Atsushi
  organization: Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
– sequence: 21
  givenname: Maki
  surname: Matsumoto
  fullname: Matsumoto, Maki
  organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan
– sequence: 22
  givenname: Yukoh
  surname: Nakazaki
  fullname: Nakazaki, Yukoh
  organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan
– sequence: 23
  givenname: Yasuhiro
  surname: Shindo
  fullname: Shindo, Yasuhiro
  organization: Drug Discovery Research Center, HuLA immune, Inc., Osaka 565-0871, Japan
– sequence: 24
  givenname: Masako
  surname: Kohyama
  fullname: Kohyama, Masako
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 25
  givenname: Keisuke
  surname: Tomii
  fullname: Tomii, Keisuke
  organization: Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
– sequence: 26
  givenname: Koichiro
  surname: Ohmura
  fullname: Ohmura, Koichiro
  organization: Department of Rheumatology, Kobe City Medical Center General Hospital, Hyogo 650-0047, Japan
– sequence: 27
  givenname: Shiro
  surname: Ohshima
  fullname: Ohshima, Shiro
  organization: Department of Clinical Research, Osaka Minami Medical Center, Kawachinagano, Osaka 586-8521, Japan
– sequence: 28
  givenname: Toru
  surname: Okamoto
  fullname: Okamoto, Toru
  organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 29
  givenname: Masahiro
  surname: Yamamoto
  fullname: Yamamoto, Masahiro
  organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 30
  givenname: Hironori
  surname: Nakagami
  fullname: Nakagami, Hironori
  organization: Department of Health Development and Medicine, Graduate school of Medicine, Osaka University, Osaka 565-0871, Japan
– sequence: 31
  givenname: Yoshiharu
  surname: Matsuura
  fullname: Matsuura, Yoshiharu
  organization: Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 32
  givenname: Atsushi
  surname: Nakagawa
  fullname: Nakagawa, Atsushi
  organization: Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
– sequence: 33
  givenname: Takayuki
  surname: Kato
  fullname: Kato, Takayuki
  organization: Laboratory for CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
– sequence: 34
  givenname: Masato
  surname: Okada
  fullname: Okada, Masato
  organization: Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 35
  givenname: Daron M.
  surname: Standley
  fullname: Standley, Daron M.
  organization: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 36
  givenname: Tatsuo
  surname: Shioda
  fullname: Shioda, Tatsuo
  organization: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
– sequence: 37
  givenname: Hisashi
  surname: Arase
  fullname: Arase, Hisashi
  email: arase@biken.osaka-u.ac.jp
  organization: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34139176$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOD2jf8CF1NJNlXlXCkRoGl8wIDij25BKbnWnrU7aJN3Q_94qekbUxeDqLu75zj3cc4UuQgyA0EuCG4KJfLNtLIxjQzElDRYNZvQJWhDctTUnLb1AC4w7WivZ8kt0lfMWY6yEEM_QJeOEdaSVC3S3DJUPA9jij76caggbE6wP6yr7AlUMVdlAdbv8eluv4veaVnnvf0C1T7GAn5YmraGAq_pTZULxfXQe8nP0dDBjhhf38xp9-_D-bvWpvvny8fNqeVNbIXipB6eocRIMdS1THEtQxA1UMkIV7rlRjJthMKTtnWmdU6TDg-isNZj1kkjMrtG7s-_-0O_AWQglmVHvk9-ZdNLReP33JviNXsejVoRTJbrJ4PW9QYo_D5CL3vk8P9UEiIesqRAUM6mE-g8pZ5zLVtFJ-urPWL_zPHx9EqizwKaYc4JBW19M8XFO6UdNsJ4L1ls9H9BzwRoLPRU8ofQf9MH9UejtGYKpjKOHpLP1ECw4n6bmtYv-MfwXmbC_EA
CitedBy_id crossref_primary_10_7759_cureus_57860
crossref_primary_10_1016_j_ebiom_2021_103762
crossref_primary_10_1021_acscentsci_2c01190
crossref_primary_10_1038_s41392_021_00861_4
crossref_primary_10_3389_fimmu_2021_757691
crossref_primary_10_3390_vaccines12121418
crossref_primary_10_1172_JCI158190
crossref_primary_10_1016_j_csbj_2022_08_010
crossref_primary_10_3390_ijms24065352
crossref_primary_10_1016_j_biopha_2023_115628
crossref_primary_10_1038_s41385_022_00569_w
crossref_primary_10_3390_vaccines9080869
crossref_primary_10_1080_22221751_2024_2307510
crossref_primary_10_3389_fmicb_2022_933249
crossref_primary_10_3390_vaccines9101082
crossref_primary_10_2147_IJN_S463546
crossref_primary_10_1002_iid3_1154
crossref_primary_10_1002_jev2_12170
crossref_primary_10_1016_j_celrep_2022_110368
crossref_primary_10_5363_tits_26_9_79
crossref_primary_10_2169_naika_110_2355
crossref_primary_10_2184_lsj_50_2_92
crossref_primary_10_3390_vaccines10111815
crossref_primary_10_1186_s12951_021_01148_0
crossref_primary_10_1016_j_celrep_2022_111220
crossref_primary_10_1016_j_jvacx_2022_100173
crossref_primary_10_1093_pnasnexus_pgac045
crossref_primary_10_1155_2023_6695533
crossref_primary_10_3390_v14081739
crossref_primary_10_1002_advs_202103240
crossref_primary_10_1016_j_cell_2024_08_025
crossref_primary_10_1126_sciadv_abn4188
crossref_primary_10_1016_j_bmc_2025_118124
crossref_primary_10_20411_pai_v9i2_679
crossref_primary_10_1039_D3RA00198A
crossref_primary_10_3390_v15061252
crossref_primary_10_3390_vaccines10101618
crossref_primary_10_3390_v15010067
crossref_primary_10_1002_jmv_28359
crossref_primary_10_1093_ve_veab069
crossref_primary_10_3390_vaccines10071050
crossref_primary_10_1007_s40744_022_00469_2
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1016_j_vaccine_2023_08_076
crossref_primary_10_1007_s10875_022_01378_3
crossref_primary_10_1080_07853890_2024_2392882
crossref_primary_10_1080_22221751_2021_1976598
crossref_primary_10_1111_imr_13091
crossref_primary_10_1111_imr_70000
crossref_primary_10_3389_fimmu_2021_789905
crossref_primary_10_3390_vaccines11040773
crossref_primary_10_3390_microorganisms11041015
crossref_primary_10_1093_bioadv_vbab038
crossref_primary_10_3390_ijms231911058
crossref_primary_10_3390_pathogens12121408
crossref_primary_10_3390_vaccines9111351
crossref_primary_10_1128_spectrum_01181_21
crossref_primary_10_1016_j_smim_2021_101507
crossref_primary_10_1128_spectrum_01553_21
crossref_primary_10_3389_fmed_2022_952697
crossref_primary_10_3389_fpubh_2022_1060043
crossref_primary_10_1128_jvi_01366_22
crossref_primary_10_3389_fimmu_2022_912898
crossref_primary_10_1186_s12929_021_00784_w
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1186_s41232_022_00233_7
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_3390_vaccines12080914
crossref_primary_10_1016_j_lansea_2022_100046
crossref_primary_10_4103_ohbl_ohbl_17_24
crossref_primary_10_1002_pro_4221
crossref_primary_10_1371_journal_ppat_1010155
crossref_primary_10_3389_fbinf_2022_1044975
crossref_primary_10_1016_j_vaccine_2022_10_043
crossref_primary_10_3389_fmicb_2023_1122868
crossref_primary_10_33611_trs_2021_021
crossref_primary_10_3389_fimmu_2023_1195533
crossref_primary_10_1016_j_antiviral_2024_105905
crossref_primary_10_1093_ve_veab096
crossref_primary_10_3390_v15102079
crossref_primary_10_1007_s15010_023_02171_z
crossref_primary_10_1093_jb_mvac096
crossref_primary_10_1016_j_chom_2022_09_018
crossref_primary_10_1038_s41598_022_19993_w
crossref_primary_10_26508_lsa_202201415
crossref_primary_10_3390_pathogens13121109
crossref_primary_10_2147_IJN_S427990
crossref_primary_10_2222_jsv_71_169
crossref_primary_10_1016_j_immuni_2022_04_003
crossref_primary_10_3390_ijerph191710768
crossref_primary_10_1016_j_jinf_2024_106121
crossref_primary_10_1007_s10238_023_01264_1
crossref_primary_10_1126_scitranslmed_abn3715
crossref_primary_10_1016_j_micinf_2024_105464
crossref_primary_10_12677_AMB_2022_112006
crossref_primary_10_5582_bst_2021_01227
crossref_primary_10_1016_j_jaci_2022_01_005
crossref_primary_10_1021_acsnano_4c00809
crossref_primary_10_1002_rmv_2464
crossref_primary_10_1016_j_celrep_2024_114922
crossref_primary_10_1021_acs_nanolett_2c04270
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1016_j_apsb_2022_07_004
crossref_primary_10_3389_fimmu_2023_1055457
crossref_primary_10_1016_j_jaci_2021_11_019
crossref_primary_10_1080_22221751_2024_2412990
crossref_primary_10_1080_22221751_2021_1959270
crossref_primary_10_1021_acsinfecdis_2c00488
crossref_primary_10_1038_s41392_024_01888_z
crossref_primary_10_1186_s12985_025_02667_0
crossref_primary_10_1002_jmv_27577
crossref_primary_10_1016_j_jiac_2024_08_024
crossref_primary_10_2196_47453
crossref_primary_10_3390_v15040898
crossref_primary_10_3390_v15122421
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1016_j_ymthe_2022_02_013
crossref_primary_10_1056_NEJMc2111096
crossref_primary_10_3389_fimmu_2022_843928
crossref_primary_10_1016_j_cell_2021_12_046
crossref_primary_10_3389_fimmu_2022_882972
crossref_primary_10_3389_fimmu_2022_901217
crossref_primary_10_1186_s12985_022_01831_0
crossref_primary_10_1016_j_apsb_2023_02_010
crossref_primary_10_3389_fimmu_2022_1008285
crossref_primary_10_1017_qrd_2021_12
crossref_primary_10_1126_scitranslmed_adi2623
crossref_primary_10_2139_ssrn_4022365
crossref_primary_10_3389_fimmu_2022_1041025
crossref_primary_10_1038_s41598_022_24730_4
crossref_primary_10_1111_jcmm_17103
crossref_primary_10_1038_s41598_021_03273_0
crossref_primary_10_3390_medicina58020309
crossref_primary_10_3389_fimmu_2021_693579
crossref_primary_10_1038_s41419_021_04058_z
crossref_primary_10_1146_annurev_med_042420_113838
crossref_primary_10_3389_fimmu_2022_882856
crossref_primary_10_2222_jsv_71_1
crossref_primary_10_3389_fmicb_2022_926929
crossref_primary_10_1016_j_heliyon_2023_e16750
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1016_j_jmb_2021_167280
crossref_primary_10_3390_molecules27123851
crossref_primary_10_1038_s42003_021_02663_4
crossref_primary_10_1002_jmv_27749
crossref_primary_10_1016_j_tim_2024_01_005
crossref_primary_10_1038_s41421_023_00535_1
crossref_primary_10_1128_mBio_01987_21
crossref_primary_10_3390_microorganisms11020471
crossref_primary_10_5005_jp_journals_10018_1408
crossref_primary_10_1038_s41467_022_30699_5
crossref_primary_10_1080_24694452_2024_2346728
crossref_primary_10_1016_j_coviro_2021_08_006
crossref_primary_10_3390_ijms222011211
crossref_primary_10_1128_msystems_00722_23
crossref_primary_10_1016_j_clim_2022_108955
crossref_primary_10_1016_j_csbj_2022_11_001
crossref_primary_10_3390_v14010125
crossref_primary_10_3389_fimmu_2022_844837
crossref_primary_10_2340_actadv_v102_936
crossref_primary_10_1038_s41392_024_01940_y
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1128_spectrum_02859_23
crossref_primary_10_1039_D2CP01893D
crossref_primary_10_1080_22221751_2023_2245921
crossref_primary_10_1128_jcm_00042_24
crossref_primary_10_1371_journal_ppat_1012493
crossref_primary_10_1038_s41423_021_00752_2
crossref_primary_10_1002_2211_5463_13754
crossref_primary_10_1016_j_isci_2021_103720
crossref_primary_10_3390_microorganisms9071479
crossref_primary_10_1016_j_celrep_2021_110218
crossref_primary_10_1111_1348_0421_13116
crossref_primary_10_1172_jci_insight_156372
crossref_primary_10_2807_1560_7917_ES_2022_27_18_2200178
crossref_primary_10_2217_fmb_2022_0025
crossref_primary_10_1016_j_isci_2024_109363
crossref_primary_10_4049_jimmunol_2300282
Cites_doi 10.1128/JVI.00671-11
10.1038/nmicrobiol.2016.54
10.1016/j.cell.2020.07.012
10.1128/JVI.01062-20
10.1038/s41586-021-03291-y
10.1016/j.biopha.2020.110629
10.1016/S2666-5247(20)30004-5
10.1126/science.abd5223
10.1038/s41586-020-2012-7
10.1038/s41591-020-0998-x
10.1016/S1473-3099(20)30482-5
10.1126/science.abc5902
10.1292/jvms.60.49
10.1038/s41586-020-2456-9
10.1016/j.cell.2020.09.032
10.1016/j.gendis.2020.07.006
10.1126/science.abe1107
10.1016/j.cell.2021.02.010
10.1038/s41577-020-00410-0
10.1016/j.bpj.2021.01.012
10.1016/0147-9571(81)90003-5
10.3389/fmicb.2020.02112
10.1038/s41586-021-03398-2
10.1038/s41591-020-1088-9
10.1016/j.chom.2020.11.001
10.1038/s41579-020-00468-6
10.1016/j.vaccine.2006.08.011
10.1016/j.cell.2020.02.052
10.1038/s41467-020-20247-4
10.1016/j.cell.2020.06.040
10.1038/s41586-020-2895-3
10.1038/s41594-020-0479-4
10.1016/S0140-6736(20)30566-3
10.1126/science.abc6952
10.1021/acs.jpclett.0c01431
10.1128/jvi.64.3.1407-1409.1990
10.1016/j.cell.2021.02.033
10.1126/science.aai8128
10.1002/jcc.20084
10.1126/science.abb2507
10.1016/0378-1135(93)90126-R
10.1126/science.abd4251
10.1016/j.cell.2020.06.043
10.1038/nature24994
10.1128/JVI.02015-19
10.1002/cpbi.3
10.1016/j.cell.2008.01.043
10.1038/nmeth.4169
10.1126/science.abe8499
10.1126/science.abc5881
10.1039/C9ME00020H
10.1073/pnas.2003138117
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021 Elsevier Inc. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021 Elsevier Inc. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2021.05.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 3466.e18
ExternalDocumentID PMC8142859
34139176
10_1016_j_cell_2021_05_032
S0092867421006620
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c554t-fd82ad6ea2d738406e81df2631280b4a834affa17bda7dd8190f59cca03b61603
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:17:14 EDT 2025
Fri Jul 11 04:08:12 EDT 2025
Thu Jul 10 23:44:11 EDT 2025
Wed Feb 19 02:26:15 EST 2025
Thu Apr 24 22:58:01 EDT 2025
Tue Jul 01 02:17:09 EDT 2025
Fri Feb 23 02:44:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords ADE
docking model
antibody-dependent enhancement
angiotensin converting enzyme 2
cryo-EM
cryo-electron microscopy
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-fd82ad6ea2d738406e81df2631280b4a834affa17bda7dd8190f59cca03b61603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8142859
PMID 34139176
PQID 2543446782
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8142859
proquest_miscellaneous_2552036858
proquest_miscellaneous_2543446782
pubmed_primary_34139176
crossref_citationtrail_10_1016_j_cell_2021_05_032
crossref_primary_10_1016_j_cell_2021_05_032
elsevier_sciencedirect_doi_10_1016_j_cell_2021_05_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-24
PublicationDateYYYYMMDD 2021-06-24
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Saputri, Li, van Eerden, Rozewicki, Xu, Ismanto, Davila, Teraguchi, Katoh, Standley (bib34) 2020; 11
Johnson, Lyddon, Suarez, Salcedo, LePique, Graham, Ricana, Robinson, Ritter (bib17) 2020; 94
Vennema, de Groot, Harbour, Dalderup, Gruffydd-Jones, Horzinek, Spaan (bib42) 1990; 64
Ambrosetti, Jandova, Bonvin (bib1) 2020
Satoh, Arii, Suenaga, Wang, Kogure, Uehori, Arase, Shiratori, Tanaka, Kawaguchi (bib35) 2008; 132
Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang (bib7) 2020; 369
Jaume, Yip, Cheung, Leung, Li, Kien, Dutry, Callendret, Escriou, Altmeyer (bib16) 2011; 85
Punjani, Rubinstein, Fleet, Brubaker (bib30) 2017; 14
Roy, Jaiswar, Sarkar (bib32) 2020; 11
Supasa, Zhou, Dejnirattisai, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Nutalai, Tuekprakhon (bib38) 2021; 184
V’kovski, Kratzel, Steiner, Stalder, Thiel (bib41) 2021; 19
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib51) 2020; 579
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib48) 2020; 367
Grubaugh, Hanage, Rasmussen (bib9) 2020; 182
Henderson, Edwards, Mansouri, Janowska, Stalls, Gobeil, Kopp, Li, Parks, Hsu (bib10) 2020; 27
Wang, Sewatanon, Memoli, Wrammert, Bournazos, Bhaumik, Pinsky, Chokephaibulkit, Onlamoon, Pattanapanyasat (bib44) 2017; 355
Weiss, Scott (bib47) 1981; 4
Lau, Tsang, Hui, Kwan, Chan, Chiu, Ko, Chan, Cheng, Perera (bib21) 2021; 12
Liu, Lin, Baine, Wajnberg, Gumprecht, Rahman, Rodriguez, Tandon, Bassily-Marcus, Bander (bib23) 2020; 26
Chu, Chan, Yuen, Shuai, Yuan, Wang, Hu, Yip, Tsang, Huang (bib8) 2020; 1
Zost, Gilchuk, Chen, Case, Reidy, Trivette, Nargi, Sutton, Suryadevara, Chen (bib52) 2020; 26
Turoňová, Sikora, Schürmann, Hagen, Welsch, Blanc, von Bülow, Gecht, Bagola, Hörner (bib40) 2020; 370
Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib22) 2020; 182
Hohdatsu, Yamada, Tominaga, Makino, Kida, Koyama (bib13) 1998; 60
Cai, Zhang, Xiao, Peng, Sterling, Walsh, Rawson, Rits-Volloch, Chen (bib5) 2020; 369
Tabata, Imai, Kawano, Ikeda, Kodama, Miyoshi, Obinata, Mimura, Kodera, Kitagaki (bib39) 2020; 20
Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib4) 2020; 369
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib12) 2020; 181
Olsen (bib28) 1993; 36
Kam, Kien, Roberts, Cheung, Lamirande, Vogel, Chu, Tse, Guarner, Zaki (bib18) 2007; 25
Kemp, Collier, Datir, Ferreira, Gayed, Jahun, Hosmillo, Rees-Spear, Mlcochova, Lumb (bib19) 2021; 592
Webb, Sali (bib46) 2016; 54
Zhou, Yu, Du, Fan, Liu, Liu, Xiang, Wang, Song, Gu (bib50) 2020; 395
Chen, Zhang, Qin, Wang, Xu, Wang, Xu, Tang, Liu, Zhang (bib6) 2020; 130
Bournazos, Gupta, Ravetch (bib3) 2020; 20
Lu, Uchil, Li, Zheng, Terry, Gorman, Shi, Zhang, Zhou, Ding (bib24) 2020; 28
Hu, Gao, He, Huang, Tang, Wang (bib15) 2020; 7
Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib31) 2020; 584
Mori, Jung, Kobayashi, Dokainish, Re, Sugita (bib26) 2021; 120
Schritt, Li, Rozewicki, Katoh, Yamashita, Volkmuth, Cavet, Standley (bib36) 2019; 4
Lv, Deng, Ye, Cao, Sun, Fan, Huang, Sun, Sun, Zhu (bib25) 2020; 369
Hirayasu, Saito, Suenaga, Shida, Arase, Oikawa, Yamaoka, Murota, Chibana, Nakagawa (bib11) 2016; 1
Anderson, Goodwin, Verma, Arevalo, Bolton, Weirick, Gouma, McAllister, Christensen, Weaver (bib2) 2021; 184
Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib49) 2020; 183
Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib14) 2020; 370
Wan, Shang, Sun, Tai, Chen, Geng, He, Chen, Wu, Shi (bib43) 2020; 94
Ng, Faulkner, Cornish, Rosa, Harvey, Hussain, Ulferts, Earl, Wrobel, Benton (bib27) 2020; 370
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib45) 2021; 593
Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib29) 2021; 592
Saito, Hirayasu, Satoh, Wang, Lusingu, Arimori, Shida, Palacpac, Itagaki, Iwanaga (bib33) 2017; 552
Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley (bib20) 2020; 182
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib53) 2004; 25
Shang, Wan, Luo, Ye, Geng, Auerbach, Li (bib37) 2020; 117
Mori (10.1016/j.cell.2021.05.032_bib26) 2021; 120
Zost (10.1016/j.cell.2021.05.032_bib52) 2020; 26
Wrapp (10.1016/j.cell.2021.05.032_bib48) 2020; 367
Webb (10.1016/j.cell.2021.05.032_bib46) 2016; 54
Cai (10.1016/j.cell.2021.05.032_bib5) 2020; 369
Hirayasu (10.1016/j.cell.2021.05.032_bib11) 2016; 1
Schritt (10.1016/j.cell.2021.05.032_bib36) 2019; 4
Plante (10.1016/j.cell.2021.05.032_bib29) 2021; 592
Korber (10.1016/j.cell.2021.05.032_bib20) 2020; 182
Grubaugh (10.1016/j.cell.2021.05.032_bib9) 2020; 182
Kemp (10.1016/j.cell.2021.05.032_bib19) 2021; 592
Ambrosetti (10.1016/j.cell.2021.05.032_bib1) 2020
Brouwer (10.1016/j.cell.2021.05.032_bib4) 2020; 369
Zhou (10.1016/j.cell.2021.05.032_bib51) 2020; 579
Yurkovetskiy (10.1016/j.cell.2021.05.032_bib49) 2020; 183
Roy (10.1016/j.cell.2021.05.032_bib32) 2020; 11
Anderson (10.1016/j.cell.2021.05.032_bib2) 2021; 184
Chi (10.1016/j.cell.2021.05.032_bib7) 2020; 369
Hoffmann (10.1016/j.cell.2021.05.032_bib12) 2020; 181
Satoh (10.1016/j.cell.2021.05.032_bib35) 2008; 132
Zhou (10.1016/j.cell.2021.05.032_bib50) 2020; 395
Hou (10.1016/j.cell.2021.05.032_bib14) 2020; 370
Pettersen (10.1016/j.cell.2021.05.032_bib53) 2004; 25
Wang (10.1016/j.cell.2021.05.032_bib45) 2021; 593
Supasa (10.1016/j.cell.2021.05.032_bib38) 2021; 184
Saito (10.1016/j.cell.2021.05.032_bib33) 2017; 552
Weiss (10.1016/j.cell.2021.05.032_bib47) 1981; 4
Kam (10.1016/j.cell.2021.05.032_bib18) 2007; 25
Shang (10.1016/j.cell.2021.05.032_bib37) 2020; 117
V’kovski (10.1016/j.cell.2021.05.032_bib41) 2021; 19
Chen (10.1016/j.cell.2021.05.032_bib6) 2020; 130
Tabata (10.1016/j.cell.2021.05.032_bib39) 2020; 20
Hu (10.1016/j.cell.2021.05.032_bib15) 2020; 7
Jaume (10.1016/j.cell.2021.05.032_bib16) 2011; 85
Lv (10.1016/j.cell.2021.05.032_bib25) 2020; 369
Wan (10.1016/j.cell.2021.05.032_bib43) 2020; 94
Saputri (10.1016/j.cell.2021.05.032_bib34) 2020; 11
Chu (10.1016/j.cell.2021.05.032_bib8) 2020; 1
Johnson (10.1016/j.cell.2021.05.032_bib17) 2020; 94
Bournazos (10.1016/j.cell.2021.05.032_bib3) 2020; 20
Lau (10.1016/j.cell.2021.05.032_bib21) 2021; 12
Henderson (10.1016/j.cell.2021.05.032_bib10) 2020; 27
Robbiani (10.1016/j.cell.2021.05.032_bib31) 2020; 584
Li (10.1016/j.cell.2021.05.032_bib22) 2020; 182
Liu (10.1016/j.cell.2021.05.032_bib23) 2020; 26
Ng (10.1016/j.cell.2021.05.032_bib27) 2020; 370
Turoňová (10.1016/j.cell.2021.05.032_bib40) 2020; 370
Hohdatsu (10.1016/j.cell.2021.05.032_bib13) 1998; 60
Olsen (10.1016/j.cell.2021.05.032_bib28) 1993; 36
Punjani (10.1016/j.cell.2021.05.032_bib30) 2017; 14
Wang (10.1016/j.cell.2021.05.032_bib44) 2017; 355
Lu (10.1016/j.cell.2021.05.032_bib24) 2020; 28
Vennema (10.1016/j.cell.2021.05.032_bib42) 1990; 64
References_xml – volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: bib22
  article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
  publication-title: Cell
– volume: 27
  start-page: 925
  year: 2020
  end-page: 933
  ident: bib10
  article-title: Controlling the SARS-CoV-2 spike glycoprotein conformation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 94
  start-page: e02015-19
  year: 2020
  ident: bib43
  article-title: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry
  publication-title: J. Virol.
– volume: 395
  start-page: 1054
  year: 2020
  end-page: 1062
  ident: bib50
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
– volume: 369
  start-page: 1586
  year: 2020
  end-page: 1592
  ident: bib5
  article-title: Distinct conformational states of SARS-CoV-2 spike protein
  publication-title: Science
– volume: 184
  start-page: 1858
  year: 2021
  end-page: 1864 e1810
  ident: bib2
  article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection
  publication-title: Cell
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827.e19
  ident: bib20
  article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
  publication-title: Cell
– volume: 85
  start-page: 10582
  year: 2011
  end-page: 10597
  ident: bib16
  article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway
  publication-title: J. Virol.
– volume: 130
  start-page: 110629
  year: 2020
  ident: bib6
  article-title: SARS-CoV-2 neutralizing antibody levels are correlated with severity of COVID-19 pneumonia
  publication-title: Biomed. Pharmacother.
– volume: 25
  start-page: 729
  year: 2007
  end-page: 740
  ident: bib18
  article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro
  publication-title: Vaccine
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib51
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 182
  start-page: 794
  year: 2020
  end-page: 795
  ident: bib9
  article-title: Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear
  publication-title: Cell
– volume: 184
  start-page: 2201
  year: 2021
  end-page: 2211.e7
  ident: bib38
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
– volume: 19
  start-page: 155
  year: 2021
  end-page: 170
  ident: bib41
  article-title: Coronavirus biology and replication: implications for SARS-CoV-2
  publication-title: Nat. Rev. Microbiol.
– volume: 64
  start-page: 1407
  year: 1990
  end-page: 1409
  ident: bib42
  article-title: Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization
  publication-title: J. Virol.
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e8
  ident: bib49
  article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
  publication-title: Cell
– volume: 12
  start-page: 63
  year: 2021
  ident: bib21
  article-title: Neutralizing antibody titres in SARS-CoV-2 infections
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1422
  year: 2020
  end-page: 1427
  ident: bib52
  article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein
  publication-title: Nat. Med.
– volume: 120
  start-page: 1060
  year: 2021
  end-page: 1071
  ident: bib26
  article-title: Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein
  publication-title: Biophys. J.
– volume: 11
  start-page: 7021
  year: 2020
  end-page: 7027
  ident: bib32
  article-title: Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 633
  year: 2020
  end-page: 643
  ident: bib3
  article-title: The role of IgG Fc receptors in antibody-dependent enhancement
  publication-title: Nat. Rev. Immunol.
– volume: 26
  start-page: 1708
  year: 2020
  end-page: 1713
  ident: bib23
  article-title: Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study
  publication-title: Nat. Med.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib48
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 54
  start-page: 5.6.1
  year: 2016
  end-page: 5.6.37
  ident: bib46
  article-title: Comparative Protein Structure Modeling Using MODELLER
  publication-title: Curr. Protoc. Bioinformatics
– volume: 369
  start-page: 643
  year: 2020
  end-page: 650
  ident: bib4
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: bib12
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib31
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 4
  start-page: 761
  year: 2019
  end-page: 768
  ident: bib36
  article-title: Repertoire Builder: high-throughput structural modeling of B and T cell receptors
  publication-title: Mol. Syst. Des. Eng.
– volume: 36
  start-page: 1
  year: 1993
  end-page: 37
  ident: bib28
  article-title: A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination
  publication-title: Vet. Microbiol.
– year: 2020
  ident: bib1
  article-title: A protocol for information-driven antibody-antigen modelling with the HADDOCK2.4 webserver
  publication-title: arXiv
– volume: 1
  start-page: e14
  year: 2020
  end-page: e23
  ident: bib8
  article-title: Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study
  publication-title: Lancet Microbe
– volume: 370
  start-page: 203
  year: 2020
  end-page: 208
  ident: bib40
  article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges
  publication-title: Science
– volume: 7
  start-page: 551
  year: 2020
  end-page: 557
  ident: bib15
  article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2
  publication-title: Genes Dis.
– volume: 369
  start-page: 1505
  year: 2020
  end-page: 1509
  ident: bib25
  article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody
  publication-title: Science
– volume: 552
  start-page: 101
  year: 2017
  end-page: 105
  ident: bib33
  article-title: Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors
  publication-title: Nature
– volume: 592
  start-page: 277
  year: 2021
  end-page: 282
  ident: bib19
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: bib29
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib45
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib30
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 60
  start-page: 49
  year: 1998
  end-page: 55
  ident: bib13
  article-title: Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus
  publication-title: J. Vet. Med. Sci.
– volume: 94
  start-page: e01062
  year: 2020
  ident: bib17
  article-title: Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein
  publication-title: J. Virol.
– volume: 370
  start-page: 1339
  year: 2020
  end-page: 1343
  ident: bib27
  article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans
  publication-title: Science
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: bib7
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib53
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 132
  start-page: 935
  year: 2008
  end-page: 944
  ident: bib35
  article-title: PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B
  publication-title: Cell
– volume: 355
  start-page: 395
  year: 2017
  end-page: 398
  ident: bib44
  article-title: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity
  publication-title: Science
– volume: 4
  start-page: 175
  year: 1981
  end-page: 189
  ident: bib47
  article-title: Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
– volume: 20
  start-page: 1043
  year: 2020
  end-page: 1050
  ident: bib39
  article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis
  publication-title: Lancet Infect. Dis.
– volume: 117
  start-page: 11727
  year: 2020
  end-page: 11734
  ident: bib37
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 16054
  year: 2016
  ident: bib11
  article-title: Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2
  publication-title: Nat. Microbiol.
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: bib14
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
– volume: 28
  start-page: 880
  year: 2020
  end-page: 891.e8
  ident: bib24
  article-title: Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles
  publication-title: Cell Host Microbe
– volume: 11
  start-page: 2112
  year: 2020
  ident: bib34
  article-title: Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution
  publication-title: Front. Microbiol.
– volume: 85
  start-page: 10582
  year: 2011
  ident: 10.1016/j.cell.2021.05.032_bib16
  article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway
  publication-title: J. Virol.
  doi: 10.1128/JVI.00671-11
– volume: 1
  start-page: 16054
  year: 2016
  ident: 10.1016/j.cell.2021.05.032_bib11
  article-title: Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.54
– volume: 182
  start-page: 1284
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib22
  article-title: The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 94
  start-page: e01062
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib17
  article-title: Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein
  publication-title: J. Virol.
  doi: 10.1128/JVI.01062-20
– year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib1
  article-title: A protocol for information-driven antibody-antigen modelling with the HADDOCK2.4 webserver
  publication-title: arXiv
– volume: 592
  start-page: 277
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib19
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
  doi: 10.1038/s41586-021-03291-y
– volume: 130
  start-page: 110629
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib6
  article-title: SARS-CoV-2 neutralizing antibody levels are correlated with severity of COVID-19 pneumonia
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110629
– volume: 1
  start-page: e14
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib8
  article-title: Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30004-5
– volume: 370
  start-page: 203
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib40
  article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges
  publication-title: Science
  doi: 10.1126/science.abd5223
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib51
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 26
  start-page: 1422
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib52
  article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0998-x
– volume: 20
  start-page: 1043
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib39
  article-title: Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30482-5
– volume: 369
  start-page: 643
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib4
  article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability
  publication-title: Science
  doi: 10.1126/science.abc5902
– volume: 60
  start-page: 49
  year: 1998
  ident: 10.1016/j.cell.2021.05.032_bib13
  article-title: Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.60.49
– volume: 584
  start-page: 437
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib31
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– volume: 183
  start-page: 739
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib49
  article-title: Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– volume: 7
  start-page: 551
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib15
  article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2020.07.006
– volume: 370
  start-page: 1339
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib27
  article-title: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans
  publication-title: Science
  doi: 10.1126/science.abe1107
– volume: 184
  start-page: 1858
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib2
  article-title: Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.010
– volume: 20
  start-page: 633
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib3
  article-title: The role of IgG Fc receptors in antibody-dependent enhancement
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00410-0
– volume: 120
  start-page: 1060
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib26
  article-title: Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.01.012
– volume: 4
  start-page: 175
  year: 1981
  ident: 10.1016/j.cell.2021.05.032_bib47
  article-title: Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
  doi: 10.1016/0147-9571(81)90003-5
– volume: 11
  start-page: 2112
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib34
  article-title: Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.02112
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib45
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 26
  start-page: 1708
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib23
  article-title: Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1088-9
– volume: 28
  start-page: 880
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib24
  article-title: Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.001
– volume: 19
  start-page: 155
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib41
  article-title: Coronavirus biology and replication: implications for SARS-CoV-2
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00468-6
– volume: 25
  start-page: 729
  year: 2007
  ident: 10.1016/j.cell.2021.05.032_bib18
  article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.08.011
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib12
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 12
  start-page: 63
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib21
  article-title: Neutralizing antibody titres in SARS-CoV-2 infections
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20247-4
– volume: 182
  start-page: 794
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib9
  article-title: Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.040
– volume: 592
  start-page: 116
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib29
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 27
  start-page: 925
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib10
  article-title: Controlling the SARS-CoV-2 spike glycoprotein conformation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0479-4
– volume: 395
  start-page: 1054
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib50
  article-title: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30566-3
– volume: 369
  start-page: 650
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib7
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 11
  start-page: 7021
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib32
  article-title: Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01431
– volume: 64
  start-page: 1407
  year: 1990
  ident: 10.1016/j.cell.2021.05.032_bib42
  article-title: Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization
  publication-title: J. Virol.
  doi: 10.1128/jvi.64.3.1407-1409.1990
– volume: 184
  start-page: 2201
  year: 2021
  ident: 10.1016/j.cell.2021.05.032_bib38
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.033
– volume: 355
  start-page: 395
  year: 2017
  ident: 10.1016/j.cell.2021.05.032_bib44
  article-title: IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity
  publication-title: Science
  doi: 10.1126/science.aai8128
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.cell.2021.05.032_bib53
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib48
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 36
  start-page: 1
  year: 1993
  ident: 10.1016/j.cell.2021.05.032_bib28
  article-title: A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination
  publication-title: Vet. Microbiol.
  doi: 10.1016/0378-1135(93)90126-R
– volume: 369
  start-page: 1586
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib5
  article-title: Distinct conformational states of SARS-CoV-2 spike protein
  publication-title: Science
  doi: 10.1126/science.abd4251
– volume: 182
  start-page: 812
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib20
  article-title: Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 552
  start-page: 101
  year: 2017
  ident: 10.1016/j.cell.2021.05.032_bib33
  article-title: Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors
  publication-title: Nature
  doi: 10.1038/nature24994
– volume: 94
  start-page: e02015-19
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib43
  article-title: Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.02015-19
– volume: 54
  start-page: 5.6.1
  year: 2016
  ident: 10.1016/j.cell.2021.05.032_bib46
  article-title: Comparative Protein Structure Modeling Using MODELLER
  publication-title: Curr. Protoc. Bioinformatics
  doi: 10.1002/cpbi.3
– volume: 132
  start-page: 935
  year: 2008
  ident: 10.1016/j.cell.2021.05.032_bib35
  article-title: PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.043
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.cell.2021.05.032_bib30
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 370
  start-page: 1464
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib14
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 369
  start-page: 1505
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib25
  article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody
  publication-title: Science
  doi: 10.1126/science.abc5881
– volume: 4
  start-page: 761
  year: 2019
  ident: 10.1016/j.cell.2021.05.032_bib36
  article-title: Repertoire Builder: high-throughput structural modeling of B and T cell receptors
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00020H
– volume: 117
  start-page: 11727
  year: 2020
  ident: 10.1016/j.cell.2021.05.032_bib37
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003138117
SSID ssj0008555
Score 2.6804175
Snippet Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3452
SubjectTerms ADE
angiotensin converting enzyme 2
Animals
Antibodies, Monoclonal - immunology
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
antibody-dependent enhancement
Cell Line
Chlorocebus aethiops
COVID-19 - immunology
COVID-19 infection
cryo-electron microscopy
cryo-EM
docking model
HEK293 Cells
Humans
mutational analysis
pathogenicity
Protein Binding - immunology
Protein Domains - immunology
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Vero Cells
Title An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies
URI https://dx.doi.org/10.1016/j.cell.2021.05.032
https://www.ncbi.nlm.nih.gov/pubmed/34139176
https://www.proquest.com/docview/2543446782
https://www.proquest.com/docview/2552036858
https://pubmed.ncbi.nlm.nih.gov/PMC8142859
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEhIXVChtFyhyJW4oInFsxzluV0WoUnuA3WpvVvwIpEXOCnYP---ZyUtsK_bQS6TEtuTM-PGNPfMNIRdGcAcwwIJtwvOIW4WUt0ZFJk6tt6Xz0uGB_o-f8mbGv8_FfIdM-lgYdKvs1v52TW9W6-7LVSfNq0VVYYxvzpQE0y5paMzRbk-5aoL45l-H1VgJ0WYxyGHmQ-0ucKb18cLDcbARWdKwd6bsrc3pX_D5tw_lq03p-h056NAkHbcdPiQ7PhyRvTa_5Po9mY4D7bytMEVE5MMD0muEe4p3xrQOFOAfvRvf3kWT-lfE6POi-uNpw91QQWHjJe4dNWsKCqhMjS6Hx2R2_W06uYm6NAqRBaywjEqnWOGkL5jLUrDnpAeMWjKZwtYUG16olBdlWSSZcUXmHEKEUuSg2Tg1ErNQfyC7oQ7-E6GS-cxL40HwObfwyGwhs9gCxrRclPmIJL38tO04xjHVxaPuncl-a5S5RpnrWGiQ-YhcDm0WLcPG1tqiV4veGCcatoCt7b70OtQwgbC4CL5ePWtkAwCbGJDStjoCL2yVUCPysdX70FeEAWDzyhHJNkbEUAEJvDdLQvXQEHkrpLsT-cl__tMp2cc3dFxj_IzsLp9W_jNApKU5b-bAC_4LDvk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguqLyXFjASNxQ169iOc1xWrbbQ9kC3aG9W_EgbQM6Kbg_998zksWJB7IFLDrEtJTP2zDf2-BuA91YKjzDAYWwiikQ4TZS3Vic2zVxwlQ_K04b-2bmaXYpPC7nYgelwF4bSKnvb39n01lr3bw57aR4u65ru-BZcKwztxi2NOcbt9xAN5LQ6TxYf1-ZYS9mVMShw6WP3_uZMl-RFu-MYJPJxS9-Z8X95p7_R559JlL95peM9eNTDSTbpvvgx7IT4BO53BSbvnsJ8ElmfbkU1IpIQr4lfI14xOjRmTWSI_9jF5MtFMm2-JpzdLOvvgbXkDTU2tmniwTN7x1ADtW0o5_AZXB4fzaezpK-jkDgEC6uk8pqXXoWS-zzDgE4FBKkVVxn6ptSKUmeirKpynFtf5t4TRqhkgapNM6uoDPVz2I1NDC-BKR7yoGxAyRfC4SN3pcpThyDTCVkVIxgP8jOuJxmnWhc_zJBN9s2QzA3J3KTSoMxH8GE9ZtlRbGztLQe1mI2JYtAHbB33btChwRVEzWUMze2NIToADIoRKm3rI-nEVks9ghed3tffSjgAg141gnxjRqw7EIP3Zkusr1smb018d7J49Z__9BYezOZnp-b05PzzPjykFspi4-IAdlc_b8NrxEsr-6ZdD78AnVUSGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+infectivity-enhancing+site+on+the+SARS-CoV-2+spike+protein+targeted+by+antibodies&rft.jtitle=Cell&rft.au=Liu%2C+Yafei&rft.au=Soh%2C+Wai+Tuck&rft.au=Kishikawa%2C+Jun-ichi&rft.au=Hirose%2C+Mika&rft.date=2021-06-24&rft.issn=0092-8674&rft.volume=184&rft.issue=13&rft.spage=3452&rft.epage=3466.e18&rft_id=info:doi/10.1016%2Fj.cell.2021.05.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2021_05_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon