The impact of aging and gender on brain viscoelasticity
Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 46; no. 3; pp. 652 - 657 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2009
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter μ that describes the solid-fluid behavior of the tissue and a parameter α related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal ‘liquefaction’ characterized by a continuous decline in μ of 0.8% per year (P<0.001), whereas α remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade ‘younger’ than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. |
---|---|
AbstractList | Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter is a subset of that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in is a subset of of 0.8% per year (P < 0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P = 0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter μ that describes the solid-fluid behavior of the tissue and a parameter α related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal ‘liquefaction’ characterized by a continuous decline in μ of 0.8% per year (P<0.001), whereas α remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade ‘younger’ than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter[micro]that describes the solid-fluid behavior of the tissue and a parameter[alpha]related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in[micro]of 0.8% per year (P<0.001), whereas[alpha]remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods. |
Author | Klatt, Dieter Hamhaber, Uwe Braun, Jürgen Beierbach, Bernd Wuerfel, Jens Sack, Ingolf Papazoglou, Sebastian Martus, Peter |
Author_xml | – sequence: 1 givenname: Ingolf surname: Sack fullname: Sack, Ingolf email: ingolf.sack@charite.de organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany – sequence: 2 givenname: Bernd surname: Beierbach fullname: Beierbach, Bernd organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany – sequence: 3 givenname: Jens surname: Wuerfel fullname: Wuerfel, Jens organization: Institute of Neuroradiology, University Schleswig-Holstein, Campus Luebeck, Germany – sequence: 4 givenname: Dieter surname: Klatt fullname: Klatt, Dieter organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany – sequence: 5 givenname: Uwe surname: Hamhaber fullname: Hamhaber, Uwe organization: Institute of Medical Informatics, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany – sequence: 6 givenname: Sebastian surname: Papazoglou fullname: Papazoglou, Sebastian organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany – sequence: 7 givenname: Peter surname: Martus fullname: Martus, Peter organization: Institute of Biometry and Clinical Epidemiology, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany – sequence: 8 givenname: Jürgen surname: Braun fullname: Braun, Jürgen organization: Institute of Medical Informatics, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19281851$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAUhVGUqPlpX6FCitSdHS42NmyqNFHzI0XqZvYI4-sJUw9MwY40bx9Gk7bSbJINsPjuB5xzTo598EgIBVYCg-ZqVXqcY3Brs8SSM6ZKxktWsyNyBkyJQomWH-_OoiokgDol5ymtWAahlp_IKSguQQo4I-3iGalbb4ydaBioWTq_pMb3dIm-x0iDp100ztMXl2zA0aTJWTdtP5OTwYwJv7ztF2Rx93Nx-1A8_bp_vP3xVFgh6qnAWlaCWwMWOFddXiohLetY1xglhIRBCRyqYagQOVaW49B2TY0N2JZ3trog3_baTQx_ZkyTXud34Dgaj2FOummhZS2v3wU5E0qAhAxeHoCrMEef_6BBsKaVjVQ73dc3au7W2OtNzFnHrf4bXAa-7wEbQ0oRB51TMZMLfspxjRqY3jWlV_p_U3rXlGZc56ayQB4I_t3x_ujNfhRz8C8Oo07WobfYu4h20n1wH5FcH0js6LyzZvyN248pXgGGBsho |
CitedBy_id | crossref_primary_10_3389_fnagi_2023_1212212 crossref_primary_10_3389_fphy_2021_666192 crossref_primary_10_2478_s13540_013_0003_1 crossref_primary_10_3390_app10134467 crossref_primary_10_1016_j_neuroimage_2023_120234 crossref_primary_10_3348_kjr_2022_0992 crossref_primary_10_1016_j_media_2022_102416 crossref_primary_10_3389_fphy_2024_1324659 crossref_primary_10_1364_OE_445259 crossref_primary_10_1142_S0218957713500085 crossref_primary_10_1002_mrm_24141 crossref_primary_10_1371_journal_pone_0023451 crossref_primary_10_1109_TUFFC_2011_1961 crossref_primary_10_1097_SLA_0b013e31828ccf43 crossref_primary_10_13104_imri_2023_0029 crossref_primary_10_1016_j_jmbbm_2017_04_017 crossref_primary_10_1016_j_neuroimage_2015_02_016 crossref_primary_10_1002_mrm_24268 crossref_primary_10_1115_1_4067393 crossref_primary_10_1371_journal_pone_0037502 crossref_primary_10_1038_natrevmats_2016_63 crossref_primary_10_1371_journal_pone_0092582 crossref_primary_10_1016_j_media_2018_03_003 crossref_primary_10_1016_j_actbio_2023_07_040 crossref_primary_10_1016_j_brs_2025_02_019 crossref_primary_10_1016_j_jbiomech_2021_110259 crossref_primary_10_1016_j_jns_2020_117152 crossref_primary_10_1093_braincomms_fcae073 crossref_primary_10_1177_0271678X18799241 crossref_primary_10_1016_j_mbs_2013_08_012 crossref_primary_10_1007_s11431_014_5582_5 crossref_primary_10_1098_rspa_2020_0990 crossref_primary_10_1016_j_mri_2010_07_014 crossref_primary_10_1016_j_compbiomed_2022_106226 crossref_primary_10_1002_nbm_3118 crossref_primary_10_1177_0271678X15606923 crossref_primary_10_1002_jmri_22294 crossref_primary_10_1039_C9NR06327G crossref_primary_10_1002_nbm_3919 crossref_primary_10_1016_j_cma_2020_112834 crossref_primary_10_1016_j_neuron_2023_10_005 crossref_primary_10_1007_s10143_010_0249_6 crossref_primary_10_1002_mrm_27672 crossref_primary_10_1021_acsomega_3c04064 crossref_primary_10_1002_jmri_28747 crossref_primary_10_1016_j_actbio_2019_08_013 crossref_primary_10_1002_nbm_1602 crossref_primary_10_1038_s44222_023_00027_7 crossref_primary_10_1016_j_nicl_2017_12_023 crossref_primary_10_1088_1478_3975_aa6d18 crossref_primary_10_1118_1_4754649 crossref_primary_10_1002_adfm_202100848 crossref_primary_10_1016_j_jmbbm_2020_103795 crossref_primary_10_1089_ten_teb_2012_0755 crossref_primary_10_1016_j_media_2022_102432 crossref_primary_10_1016_j_neuroimage_2020_116592 crossref_primary_10_1007_s00234_011_0871_1 crossref_primary_10_1016_j_neuroimage_2013_04_089 crossref_primary_10_1007_s11682_019_00200_w crossref_primary_10_1016_j_brain_2023_100075 crossref_primary_10_1016_j_clineuro_2020_105836 crossref_primary_10_1039_c3sm50552a crossref_primary_10_1007_s00330_020_07054_7 crossref_primary_10_1109_TMI_2012_2197407 crossref_primary_10_3390_ma13020438 crossref_primary_10_1088_0031_9155_56_19_014 crossref_primary_10_1007_s10143_017_0862_8 crossref_primary_10_1371_journal_pone_0029888 crossref_primary_10_1002_cnm_3882 crossref_primary_10_1016_j_brain_2020_100019 crossref_primary_10_1016_j_jbiomech_2011_04_034 crossref_primary_10_1161_STROKEAHA_117_016996 crossref_primary_10_1016_j_jbiomech_2011_01_019 crossref_primary_10_1007_s00441_017_2709_6 crossref_primary_10_1080_09205063_2013_848327 crossref_primary_10_1088_1367_2630_15_8_085024 crossref_primary_10_1002_mrm_26333 crossref_primary_10_4103_tcmj_tcmj_120_22 crossref_primary_10_3390_biology11020230 crossref_primary_10_1016_j_jbiomech_2010_06_008 crossref_primary_10_1016_j_neuroimage_2017_10_008 crossref_primary_10_1038_s41598_024_79991_y crossref_primary_10_1109_TUFFC_2012_2443 crossref_primary_10_1007_s13206_018_3101_7 crossref_primary_10_1109_TBME_2019_2905551 crossref_primary_10_1177_0271678X231186571 crossref_primary_10_1007_s10237_019_01157_x crossref_primary_10_1016_j_nicl_2015_12_007 crossref_primary_10_1016_j_media_2017_06_003 crossref_primary_10_3389_fbioe_2024_1386955 crossref_primary_10_3179_jjmu_JJMU_R_203 crossref_primary_10_1038_nrneurol_2015_194 crossref_primary_10_1002_hbm_25192 crossref_primary_10_1016_j_copbio_2016_04_021 crossref_primary_10_1016_j_jmbbm_2022_105394 crossref_primary_10_1088_0031_9155_57_3_R35 crossref_primary_10_2139_ssrn_4185682 crossref_primary_10_1016_j_jbiomech_2010_12_031 crossref_primary_10_1002_mrm_25719 crossref_primary_10_1093_braincomms_fcae424 crossref_primary_10_1109_TMI_2013_2268978 crossref_primary_10_1007_s00330_016_4561_6 crossref_primary_10_1088_0031_9155_57_22_7275 crossref_primary_10_1002_jmri_25129 crossref_primary_10_3389_fbioe_2021_704738 crossref_primary_10_3389_fnmol_2024_1371086 crossref_primary_10_1121_10_0025467 crossref_primary_10_1088_0031_9155_56_8_005 crossref_primary_10_1016_j_ultrasmedbio_2013_02_006 crossref_primary_10_1016_j_nicl_2023_103328 crossref_primary_10_1016_j_pnmrs_2015_06_001 crossref_primary_10_1242_dev_079145 crossref_primary_10_1016_j_wneu_2016_12_121 crossref_primary_10_1103_PhysRevE_95_022418 crossref_primary_10_3389_fphy_2023_1201032 crossref_primary_10_1002_mrm_26477 crossref_primary_10_1002_nbm_2987 crossref_primary_10_26599_BSA_2023_9050002 crossref_primary_10_1002_hbm_23314 crossref_primary_10_1146_annurev_bioeng_071811_150032 crossref_primary_10_1016_j_nicl_2012_09_003 crossref_primary_10_1007_s10396_020_01059_x crossref_primary_10_1002_adhm_202401603 crossref_primary_10_1002_hbm_25891 crossref_primary_10_1016_j_jbiomech_2018_01_016 crossref_primary_10_1016_j_clinbiomech_2018_01_015 crossref_primary_10_1111_jon_12619 crossref_primary_10_1177_016173461003200405 crossref_primary_10_1177_1754337118822940 crossref_primary_10_1038_srep01817 crossref_primary_10_1016_j_jmbbm_2021_104680 crossref_primary_10_1007_s10237_022_01659_1 crossref_primary_10_1017_S0022112010004428 crossref_primary_10_1016_j_radi_2024_01_008 crossref_primary_10_1016_j_jmbbm_2021_104449 crossref_primary_10_1038_s41598_018_36191_9 crossref_primary_10_1016_j_mric_2020_03_001 crossref_primary_10_1016_j_cult_2013_09_006 crossref_primary_10_1016_j_neurobiolaging_2025_01_001 crossref_primary_10_1002_advs_202402338 crossref_primary_10_1007_s00261_020_02656_7 crossref_primary_10_1016_j_jbiomech_2015_01_044 crossref_primary_10_1002_jum_14366 crossref_primary_10_1016_j_nicl_2021_102579 crossref_primary_10_1097_RMR_0000000000000292 crossref_primary_10_1016_j_bbadis_2022_166513 crossref_primary_10_1016_j_jmbbm_2017_03_001 crossref_primary_10_1016_j_actbio_2020_12_027 crossref_primary_10_1097_RMR_0000000000000178 crossref_primary_10_1002_nbm_3935 crossref_primary_10_1016_j_mri_2011_12_019 crossref_primary_10_1121_1_3613939 crossref_primary_10_3389_fbioe_2022_1056131 crossref_primary_10_1016_j_ejrad_2021_110136 crossref_primary_10_1016_j_jmbbm_2017_08_029 crossref_primary_10_1121_1_3531936 crossref_primary_10_1088_0034_4885_73_9_094601 crossref_primary_10_1002_nbm_4174 crossref_primary_10_1002_nbm_4050 crossref_primary_10_1016_j_neuroimage_2009_06_018 crossref_primary_10_1371_journal_pone_0161179 crossref_primary_10_1016_j_jbiomech_2016_04_005 crossref_primary_10_1038_s42254_022_00543_2 crossref_primary_10_1371_journal_pone_0071807 crossref_primary_10_1002_mrm_26600 crossref_primary_10_1002_mrm_27019 crossref_primary_10_1016_j_jmbbm_2017_06_027 crossref_primary_10_1118_1_4757617 crossref_primary_10_1016_j_brain_2024_100091 crossref_primary_10_1063_1_4770305 crossref_primary_10_1016_j_mri_2019_03_009 crossref_primary_10_1115_1_4032436 crossref_primary_10_1002_jmri_27475 crossref_primary_10_1038_s42003_019_0421_7 crossref_primary_10_3389_fbioe_2021_666456 crossref_primary_10_1088_1361_6560_ad7fc9 crossref_primary_10_1088_1742_6596_2092_1_012001 crossref_primary_10_1364_BOE_497801 crossref_primary_10_3182_20110828_6_IT_1002_01840 crossref_primary_10_1016_j_ultras_2010_07_005 crossref_primary_10_3390_ijms22062962 crossref_primary_10_1002_mrm_25065 crossref_primary_10_1038_s41598_023_48439_0 crossref_primary_10_1088_1742_6596_628_1_012007 crossref_primary_10_1002_mrm_26030 crossref_primary_10_1016_j_cmpb_2014_05_006 crossref_primary_10_1002_mrm_29308 crossref_primary_10_1016_j_cmpb_2023_107430 crossref_primary_10_1002_mrm_29309 crossref_primary_10_1002_advs_202002693 crossref_primary_10_1016_j_carbpol_2021_118961 crossref_primary_10_1371_journal_pone_0148652 crossref_primary_10_1016_j_brs_2024_10_008 crossref_primary_10_1002_mrm_25067 crossref_primary_10_1016_j_jmbbm_2018_04_009 crossref_primary_10_1162_jocn_a_01454 crossref_primary_10_1162_jocn_a_01574 crossref_primary_10_1177_0954411920964630 crossref_primary_10_2147_NDT_S371404 crossref_primary_10_1016_j_neuroimage_2022_119590 crossref_primary_10_1038_s41514_024_00178_w crossref_primary_10_3390_cells10113144 crossref_primary_10_3390_bioengineering11060537 crossref_primary_10_1088_1742_6596_290_1_012006 crossref_primary_10_1063_5_0043338 crossref_primary_10_1016_j_crme_2010_07_014 crossref_primary_10_1016_j_biomaterials_2016_08_029 crossref_primary_10_1088_0031_9155_59_24_7717 crossref_primary_10_1016_j_actbio_2025_02_049 crossref_primary_10_1073_pnas_1610175113 crossref_primary_10_1146_annurev_bioeng_071811_150045 crossref_primary_10_3390_s17092078 crossref_primary_10_1002_hbm_24753 crossref_primary_10_4028_www_scientific_net_AMM_66_68_384 crossref_primary_10_3174_ajnr_A2042 crossref_primary_10_1016_j_neuroimage_2018_01_007 crossref_primary_10_1088_0031_9155_55_21_007 crossref_primary_10_1186_s12987_019_0131_z crossref_primary_10_1080_15389588_2015_1021416 crossref_primary_10_1142_S0218957713500152 crossref_primary_10_1016_j_isci_2023_106825 crossref_primary_10_1016_j_mric_2021_06_011 crossref_primary_10_1002_mrm_25881 crossref_primary_10_1109_TMI_2010_2079940 crossref_primary_10_1016_j_nicl_2024_103606 crossref_primary_10_1002_smsc_202300185 crossref_primary_10_1007_s13246_015_0372_3 crossref_primary_10_1186_s12987_020_00214_3 crossref_primary_10_1016_j_jbiomech_2014_09_030 crossref_primary_10_1109_TUFFC_2010_1600 crossref_primary_10_1002_mrm_26738 crossref_primary_10_1137_100781882 crossref_primary_10_1002_jmri_23597 crossref_primary_10_1523_JNEUROSCI_0592_22_2022 crossref_primary_10_1088_1478_3975_ad88e4 crossref_primary_10_1016_j_actbio_2011_12_013 crossref_primary_10_1016_j_medengphy_2014_10_007 crossref_primary_10_1007_s00330_017_5269_y crossref_primary_10_1016_j_neurobiolaging_2018_01_010 crossref_primary_10_1088_0031_9155_58_16_5771 crossref_primary_10_3390_cells11193093 crossref_primary_10_1016_j_actbio_2019_08_036 crossref_primary_10_1016_j_tins_2020_10_012 crossref_primary_10_1109_TMI_2018_2837390 crossref_primary_10_1038_s41380_023_02236_3 crossref_primary_10_1007_s10237_015_0658_0 crossref_primary_10_1016_j_neuroimage_2016_02_059 crossref_primary_10_1038_s41583_021_00496_y crossref_primary_10_1016_j_brain_2022_100056 crossref_primary_10_1016_j_jbiomech_2021_110851 crossref_primary_10_1016_j_jmbbm_2020_104229 crossref_primary_10_1016_j_neuroimage_2021_118078 crossref_primary_10_1016_j_mri_2010_06_016 crossref_primary_10_1007_s00381_010_1226_7 crossref_primary_10_1088_1741_2560_10_6_066001 crossref_primary_10_1039_D2TB01111E crossref_primary_10_1088_0031_9155_57_8_2329 crossref_primary_10_1002_cnm_1488 crossref_primary_10_1002_stem_746 crossref_primary_10_1038_s41586_020_2612_2 crossref_primary_10_1016_j_ultrasmedbio_2019_12_019 crossref_primary_10_1088_1741_2560_13_5_056002 crossref_primary_10_1089_ten_teb_2021_0151 crossref_primary_10_1016_j_jmbbm_2014_09_027 crossref_primary_10_1016_j_wneu_2015_10_069 crossref_primary_10_1148_radiol_10092489 crossref_primary_10_2214_AJR_16_17455 crossref_primary_10_1088_0031_9155_61_24_R401 crossref_primary_10_1007_s00062_014_0311_9 crossref_primary_10_3389_fnagi_2017_00387 crossref_primary_10_1016_j_jmbbm_2023_105721 crossref_primary_10_1098_rsif_2017_0088 crossref_primary_10_1002_mrm_29226 crossref_primary_10_1007_s11831_019_09352_w crossref_primary_10_1016_j_actbio_2012_11_035 crossref_primary_10_1093_brain_awaa125 crossref_primary_10_1038_npp_2016_185 crossref_primary_10_1371_journal_pone_0110588 crossref_primary_10_1016_j_dcn_2017_08_010 crossref_primary_10_1299_mej_14_00417 crossref_primary_10_1088_1361_6560_aacb08 crossref_primary_10_1016_j_clinbiomech_2022_105792 crossref_primary_10_1016_j_cmpb_2024_108381 crossref_primary_10_1111_ejn_14766 crossref_primary_10_1002_cpz1_379 crossref_primary_10_1007_s11548_014_1100_2 crossref_primary_10_1038_s42003_021_01920_w crossref_primary_10_1016_j_neuroimage_2021_117889 crossref_primary_10_1002_mrm_27757 crossref_primary_10_1016_j_jmbbm_2011_09_013 crossref_primary_10_1088_2516_1091_ada654 crossref_primary_10_1002_jmri_26881 crossref_primary_10_1016_j_actbio_2016_07_040 crossref_primary_10_3171_2012_9_JNS12519 crossref_primary_10_1073_pnas_1200151109 crossref_primary_10_1126_sciadv_adh8313 crossref_primary_10_1007_s12356_009_0003_3 crossref_primary_10_1109_TBME_2012_2227316 crossref_primary_10_1016_j_neuroimage_2013_12_032 crossref_primary_10_1007_s00261_017_1340_z crossref_primary_10_1007_s00401_023_02658_x crossref_primary_10_1002_nbm_3891 crossref_primary_10_1038_s41598_024_54341_0 crossref_primary_10_1016_j_jmbbm_2018_03_031 crossref_primary_10_1016_j_actbio_2024_05_007 crossref_primary_10_1121_1_3631626 crossref_primary_10_1259_bjr_20200265 crossref_primary_10_1002_jmri_22707 crossref_primary_10_1016_j_jneumeth_2011_08_019 crossref_primary_10_1016_j_nicl_2013_09_006 crossref_primary_10_1063_1_5024394 crossref_primary_10_1002_adma_202007663 crossref_primary_10_3390_s20082379 crossref_primary_10_1002_mrm_26659 crossref_primary_10_1093_cercor_bhaa388 |
Cites_doi | 10.1016/j.actbio.2006.08.007 10.1115/1.2907746 10.1016/S0531-5565(02)00151-1 10.1080/02841850701199967 10.1126/science.1116995 10.1115/1.3167616 10.1002/mrm.20388 10.1038/385313a0 10.1002/nbm.1189 10.1002/ana.410210603 10.1088/0031-9155/52/24/006 10.1002/nbm.1254 10.1002/ana.410040410 10.1088/0031-9155/52/3/010 10.1006/nimg.2001.0786 10.1002/nbm.1062 10.1088/0031-9155/53/12/005 10.1126/science.278.5337.412 10.1016/j.neuroimage.2007.09.017 10.1073/pnas.0606150103 10.1016/S0021-9290(98)00122-5 10.1002/mrm.21404 10.1002/mrm.21636 10.1007/s10334-007-0098-7 10.1016/j.neuroimage.2007.08.030 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Copyright Elsevier Limited Jul 1, 2009 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Limited Jul 1, 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7X8 |
DOI | 10.1016/j.neuroimage.2009.02.040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 657 |
ExternalDocumentID | 3244674371 19281851 10_1016_j_neuroimage_2009_02_040 S1053811909002237 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 P-8 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7X8 |
ID | FETCH-LOGICAL-c554t-e48352ca1c1229b122358c0b0b6a95581f95ef3ff3ee2e3c2ef7b64e61c72bc3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 09:18:34 EDT 2025 Thu Jul 10 20:44:29 EDT 2025 Wed Aug 13 04:43:33 EDT 2025 Mon Jul 21 05:56:43 EDT 2025 Tue Jul 01 02:14:24 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 23 02:30:10 EST 2024 Tue Aug 26 18:05:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Brain viscoelasticity Stiffness Rheology Springpot Age Sex |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-e48352ca1c1229b122358c0b0b6a95581f95ef3ff3ee2e3c2ef7b64e61c72bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 19281851 |
PQID | 1506786894 |
PQPubID | 2031077 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_67170724 proquest_miscellaneous_20595181 proquest_journals_1506786894 pubmed_primary_19281851 crossref_citationtrail_10_1016_j_neuroimage_2009_02_040 crossref_primary_10_1016_j_neuroimage_2009_02_040 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_02_040 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_02_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 2009-07-00 2009-Jul-01 20090701 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Klatt, Hamhaber, Asbach, Braun, Sack (bib10) 2007; 52 Thibault, Margulies (bib25) 1998; 31 Wuerfel, Beierbach, Klatt, Papazoglou, Hamhaber, Braun, Sack (bib29) 2008 Hamhaber, Sack, Papazoglou, Rump, Klatt, Braun (bib7) 2007; 3 Vappou, Breton, Choquet, Goetz, Willinger, Constantinesco (bib28) 2007; 20 Kruse, Rose, Glaser, Manduca, Felmlee, Jack, Ehman (bib13) 2008; 39 Papazoglou, Hamhaber, Braun, Sack (bib20) 2008; 53 McCracken, Manduca, Felmlee, Ehman (bib15) 2005; 53 Asbach, Klatt, Hamhaber, Braun, Somasundaram, Hamm, Sack (bib1) 2008; 60 Pelvig, Pakkenberg, Stark, Pakkenberg (bib21) 2007 Pakkenberg, Pelvig, Marner, Bundgaard, Gundersen, Nyengaard, Regeur (bib18) 2003; 38 Lu, Franze, Seifert, Steinhauser, Kirchhoff, Wolburg, Guck, Janmey, Wei, Kas, Reichenbach (bib14) 2006; 103 Terry, DeTeresa, Hansen (bib24) 1987; 21 Koeller (bib12) 1984; 51 Sack, Beierbach, Hamhaber, Klatt, Braun (bib22) 2008; 21 Mueller, Schuff, Weiner (bib17) 2006; 19 Discher, Janmey, Wang (bib3) 2005; 310 Hrapko, van Dommelen, Peters, Wismans (bib8) 2008; 130 Tschoegl (bib26) 1989 Hsu, Leemans, Bai, Lee, Tsai, Chiu, Chen (bib9) 2008; 39 Sinkus, Siegmann, Xydeas, Tanter, Claussen, Fink (bib23) 2007; 58 Xu, Lin, Han, Xi, Shen, Gao (bib30) 2007; 48 Fung (bib4) 1993 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib5) 2001; 14 Morrison, Hof (bib16) 1997; 278 Van Essen (bib27) 1997; 385 Papazoglou, Hamhaber, Braun, Sack (bib19) 2007; 52 Dekaban (bib2) 1978; 4 Green, Bilston, Sinkus (bib6) 2008; 21 Klatt, Asbach, Somasundaram, Hamm, Braun, Sack (bib11) 2008; 180 Klatt (10.1016/j.neuroimage.2009.02.040_bib10) 2007; 52 Dekaban (10.1016/j.neuroimage.2009.02.040_bib2) 1978; 4 Van Essen (10.1016/j.neuroimage.2009.02.040_bib27) 1997; 385 McCracken (10.1016/j.neuroimage.2009.02.040_bib15) 2005; 53 Morrison (10.1016/j.neuroimage.2009.02.040_bib16) 1997; 278 Hamhaber (10.1016/j.neuroimage.2009.02.040_bib7) 2007; 3 Mueller (10.1016/j.neuroimage.2009.02.040_bib17) 2006; 19 Wuerfel (10.1016/j.neuroimage.2009.02.040_bib29) 2008 Klatt (10.1016/j.neuroimage.2009.02.040_bib11) 2008; 180 Sack (10.1016/j.neuroimage.2009.02.040_bib22) 2008; 21 Xu (10.1016/j.neuroimage.2009.02.040_bib30) 2007; 48 Kruse (10.1016/j.neuroimage.2009.02.040_bib13) 2008; 39 Fung (10.1016/j.neuroimage.2009.02.040_bib4) 1993 Lu (10.1016/j.neuroimage.2009.02.040_bib14) 2006; 103 Pakkenberg (10.1016/j.neuroimage.2009.02.040_bib18) 2003; 38 Sinkus (10.1016/j.neuroimage.2009.02.040_bib23) 2007; 58 Good (10.1016/j.neuroimage.2009.02.040_bib5) 2001; 14 Hsu (10.1016/j.neuroimage.2009.02.040_bib9) 2008; 39 Koeller (10.1016/j.neuroimage.2009.02.040_bib12) 1984; 51 Hrapko (10.1016/j.neuroimage.2009.02.040_bib8) 2008; 130 Tschoegl (10.1016/j.neuroimage.2009.02.040_bib26) 1989 Terry (10.1016/j.neuroimage.2009.02.040_bib24) 1987; 21 Papazoglou (10.1016/j.neuroimage.2009.02.040_bib19) 2007; 52 Discher (10.1016/j.neuroimage.2009.02.040_bib3) 2005; 310 Vappou (10.1016/j.neuroimage.2009.02.040_bib28) 2007; 20 Asbach (10.1016/j.neuroimage.2009.02.040_bib1) 2008; 60 Green (10.1016/j.neuroimage.2009.02.040_bib6) 2008; 21 Pelvig (10.1016/j.neuroimage.2009.02.040_bib21) 2007 Papazoglou (10.1016/j.neuroimage.2009.02.040_bib20) 2008; 53 Thibault (10.1016/j.neuroimage.2009.02.040_bib25) 1998; 31 |
References_xml | – volume: 130 start-page: 0310010 year: 2008 end-page: 0310031 ident: bib8 article-title: The influence of test conditions on characterization of the mechanical properties of brain tissue publication-title: J. Biomech. Eng. – volume: 20 start-page: 273 year: 2007 end-page: 278 ident: bib28 article-title: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement publication-title: Magma – volume: 3 start-page: 127 year: 2007 end-page: 137 ident: bib7 article-title: Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain publication-title: Acta Biomater. – volume: 21 start-page: 265 year: 2008 end-page: 271 ident: bib22 article-title: Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography publication-title: NMR. Biomed. – volume: 53 start-page: 628 year: 2005 end-page: 639 ident: bib15 article-title: Mechanical transient-based magnetic resonance elastography publication-title: Magn. Reson. Med. – volume: 52 start-page: 7281 year: 2007 end-page: 7294 ident: bib10 article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity publication-title: Phys. Med. Biol. – volume: 180 start-page: 1106 year: 2008 end-page: 1109 ident: bib11 article-title: Assessment of the solid–liquid behavior of the liver for the diagnosis of diffuse disease using magnetic resonance elastography publication-title: Röfo – volume: 58 start-page: 1135 year: 2007 end-page: 1144 ident: bib23 article-title: elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography publication-title: Magn. Reson. Med. – volume: 39 start-page: 566 year: 2008 end-page: 577 ident: bib9 article-title: Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study publication-title: NeuroImage – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bib5 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage – year: 1989 ident: bib26 article-title: The Phenomenological Theory of Linear Viscoelastic Behavior – volume: 19 start-page: 655 year: 2006 end-page: 668 ident: bib17 article-title: Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS publication-title: NMR. Biomed. – volume: 278 start-page: 412 year: 1997 end-page: 419 ident: bib16 article-title: Life and death of neurons in the aging brain publication-title: Science – volume: 21 start-page: 530 year: 1987 end-page: 539 ident: bib24 article-title: Neocortical cell counts in normal human adult aging publication-title: Ann. Neurol. – volume: 51 start-page: 299 year: 1984 end-page: 307 ident: bib12 article-title: Applications of fractional calculus to the theory of viscoelasticity publication-title: J. Appl. Mech. – volume: 53 start-page: 3147 year: 2008 end-page: 3158 ident: bib20 article-title: Algebraic Helmholtz inversion in planar magnetic resonance elastography publication-title: Phys. Med. Biol. – volume: 21 start-page: 755 year: 2008 end-page: 764 ident: bib6 article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography publication-title: NMR Biomed. – volume: 385 start-page: 313 year: 1997 end-page: 318 ident: bib27 article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system publication-title: Nature – volume: 60 start-page: 373 year: 2008 end-page: 379 ident: bib1 article-title: Assessment of liver viscoelasticity using multifrequency MR elastography publication-title: Magn. Reson. Med. – start-page: 1547 year: 2008 ident: bib29 article-title: elastography reveals tissue degeneration in Multiple Sclerosis patients. In: Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine publication-title: Toronto – year: 1993 ident: bib4 article-title: Biomechanics: Mechanical Properties of Living Tissue – volume: 38 start-page: 95 year: 2003 end-page: 99 ident: bib18 article-title: Aging and the human neocortex publication-title: Exp. Gerontol. – volume: 48 start-page: 327 year: 2007 end-page: 330 ident: bib30 article-title: Magnetic resonance elastography of brain tumors: preliminary results publication-title: Acta Radiol. – volume: 310 start-page: 1139 year: 2005 end-page: 1143 ident: bib3 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science – year: 2007 ident: bib21 article-title: Neocortical glial cell numbers in human brains publication-title: Neurobiol Aging – volume: 103 start-page: 17759 year: 2006 end-page: 17764 ident: bib14 article-title: Viscoelastic properties of individual glial cells and neurons in the CNS publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 52 start-page: 675 year: 2007 end-page: 684 ident: bib19 article-title: Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography publication-title: Phys. Med. Biol. – volume: 4 start-page: 345 year: 1978 end-page: 356 ident: bib2 article-title: Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights publication-title: Ann. Neurol. – volume: 39 start-page: 231 year: 2008 end-page: 237 ident: bib13 article-title: Magnetic resonance elastography of the brain publication-title: NeuroImage – volume: 31 start-page: 1119 year: 1998 end-page: 1126 ident: bib25 article-title: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria publication-title: J. Biomech. – volume: 3 start-page: 127 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib7 article-title: Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain publication-title: Acta Biomater. doi: 10.1016/j.actbio.2006.08.007 – volume: 130 start-page: 0310010 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib8 article-title: The influence of test conditions on characterization of the mechanical properties of brain tissue publication-title: J. Biomech. Eng. doi: 10.1115/1.2907746 – volume: 38 start-page: 95 issue: 1–2 year: 2003 ident: 10.1016/j.neuroimage.2009.02.040_bib18 article-title: Aging and the human neocortex publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(02)00151-1 – volume: 48 start-page: 327 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib30 article-title: Magnetic resonance elastography of brain tumors: preliminary results publication-title: Acta Radiol. doi: 10.1080/02841850701199967 – volume: 310 start-page: 1139 issue: 5751 year: 2005 ident: 10.1016/j.neuroimage.2009.02.040_bib3 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science doi: 10.1126/science.1116995 – volume: 51 start-page: 299 issue: 2 year: 1984 ident: 10.1016/j.neuroimage.2009.02.040_bib12 article-title: Applications of fractional calculus to the theory of viscoelasticity publication-title: J. Appl. Mech. doi: 10.1115/1.3167616 – volume: 53 start-page: 628 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2009.02.040_bib15 article-title: Mechanical transient-based magnetic resonance elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20388 – volume: 385 start-page: 313 issue: 6614 year: 1997 ident: 10.1016/j.neuroimage.2009.02.040_bib27 article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system publication-title: Nature doi: 10.1038/385313a0 – year: 1989 ident: 10.1016/j.neuroimage.2009.02.040_bib26 – volume: 21 start-page: 265 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib22 article-title: Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography publication-title: NMR. Biomed. doi: 10.1002/nbm.1189 – volume: 21 start-page: 530 issue: 6 year: 1987 ident: 10.1016/j.neuroimage.2009.02.040_bib24 article-title: Neocortical cell counts in normal human adult aging publication-title: Ann. Neurol. doi: 10.1002/ana.410210603 – volume: 52 start-page: 7281 issue: 24 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib10 article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/24/006 – volume: 21 start-page: 755 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib6 article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography publication-title: NMR Biomed. doi: 10.1002/nbm.1254 – volume: 4 start-page: 345 issue: 4 year: 1978 ident: 10.1016/j.neuroimage.2009.02.040_bib2 article-title: Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights publication-title: Ann. Neurol. doi: 10.1002/ana.410040410 – year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib21 article-title: Neocortical glial cell numbers in human brains publication-title: Neurobiol Aging – volume: 52 start-page: 675 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib19 article-title: Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/52/3/010 – volume: 14 start-page: 21 issue: 1 Pt 1 year: 2001 ident: 10.1016/j.neuroimage.2009.02.040_bib5 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 19 start-page: 655 issue: 6 year: 2006 ident: 10.1016/j.neuroimage.2009.02.040_bib17 article-title: Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS publication-title: NMR. Biomed. doi: 10.1002/nbm.1062 – volume: 53 start-page: 3147 issue: 12 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib20 article-title: Algebraic Helmholtz inversion in planar magnetic resonance elastography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/12/005 – volume: 278 start-page: 412 issue: 5337 year: 1997 ident: 10.1016/j.neuroimage.2009.02.040_bib16 article-title: Life and death of neurons in the aging brain publication-title: Science doi: 10.1126/science.278.5337.412 – volume: 39 start-page: 566 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib9 article-title: Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.017 – volume: 103 start-page: 17759 issue: 47 year: 2006 ident: 10.1016/j.neuroimage.2009.02.040_bib14 article-title: Viscoelastic properties of individual glial cells and neurons in the CNS publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606150103 – start-page: 1547 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib29 article-title: elastography reveals tissue degeneration in Multiple Sclerosis patients. In: Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine publication-title: Toronto – volume: 31 start-page: 1119 year: 1998 ident: 10.1016/j.neuroimage.2009.02.040_bib25 article-title: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00122-5 – volume: 58 start-page: 1135 issue: 6 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib23 article-title: elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21404 – volume: 60 start-page: 373 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib1 article-title: Assessment of liver viscoelasticity using multifrequency MR elastography publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21636 – volume: 20 start-page: 273 issue: 5–6 year: 2007 ident: 10.1016/j.neuroimage.2009.02.040_bib28 article-title: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement publication-title: Magma doi: 10.1007/s10334-007-0098-7 – year: 1993 ident: 10.1016/j.neuroimage.2009.02.040_bib4 – volume: 39 start-page: 231 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib13 article-title: Magnetic resonance elastography of the brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.08.030 – volume: 180 start-page: 1106 year: 2008 ident: 10.1016/j.neuroimage.2009.02.040_bib11 article-title: Assessment of the solid–liquid behavior of the liver for the diagnosis of diffuse disease using magnetic resonance elastography publication-title: Röfo |
SSID | ssj0009148 |
Score | 2.4679677 |
Snippet | Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Adolescent Adult Age Aged Aged, 80 and over Aging Aging - physiology Brain - physiology Brain viscoelasticity Computer Simulation Elastic Modulus - physiology Elasticity Imaging Techniques - methods Female Hardness - physiology Humans Magnetic Resonance Imaging - methods Male Medical research Middle Aged Models, Neurological NMR Nuclear magnetic resonance Rheology Sex Sex Factors Springpot Stiffness Viscosity Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoSFUviEdblqcPXEP9diwOCCEQQoITSHuzYseuqCABdkHi3zNOnN0LVHvJJRlHGtvjz57x9yF0SFgQkkZVeFIK2KAoUhiveRFdRSL1xrA6ZXSvb9Tlnbgay3E-cJvkssohJnaBum59OiP_k5jwdKlKI06enoukGpWyq1lC4xtaSdRlqaRLj_WcdJeK_iqc5EUJH-RKnr6-q-OLvH-EWZtZK9kRSUcgny9PX8HPbhm6WEOrGT_i077D19FSaDbQ9-ucId9EGvod91cfcRtxp0GEq6bGfzvNONw22CVVCPx2P_FtAOycyqqn7z_R7cX57dllkcURCg8IYFoEkbCTr6injBkHDy5LTxxxqjJSljQaGSKPkYfAAvcsRO2UCIp6zZznv9By0zZhC-EqChUDFzEx4dewJRZBSi6rGISrXc1HSA8usT4Thyf9igc7VIj9s3NnJl1LYwmz4MwRojPLp548YwEbM3jdDpdDIZxZiPAL2B7PbDOA6IHBgta7QyfbPJEndj7sRuhg9hqmYMqrVE1oXyfQhgScWtKvv1CwaSaaQRu_-8Ezd4fp6Ljo9v9_voN-9GmsVCe8i5anL69hD9DQ1O13Q_4DO88Ivg priority: 102 providerName: ProQuest |
Title | The impact of aging and gender on brain viscoelasticity |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909002237 https://dx.doi.org/10.1016/j.neuroimage.2009.02.040 https://www.ncbi.nlm.nih.gov/pubmed/19281851 https://www.proquest.com/docview/1506786894 https://www.proquest.com/docview/20595181 https://www.proquest.com/docview/67170724 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZ5QOkl9N1tk1SHXp3VWxY9JSFh25KltCnsTViyFLa0dshuCrnkt3dky7sUGljoxQbbI8RIM_PJ80LoPWFBSBpV4Ukp4ICiSGG85kV0FYnUG8Pq5NG9mKrJd_FpJmdb6HTIhUlhlVn39zq909b5yThzc3w9n4-_ATIAcwMGzSRDxPU22mXcKNjau8cfP0-m69q7VPQZcZIXiSAH9PRhXl3ZyPkvEN5cvJIdkfQn5N9W6iEU2lmj8ydoL8NIfNzP9CnaCs0z9OgiO8qfIw3Lj_sMSNxG3LUiwlVT46uudRxuG-xScwj8e77wbQAInaKrl3cv0OX52eXppMg9EgoPQGBZBJEglK-op4wZBxcuS08ccaoyUpY0Ghkij5GHwAL3LETtlAiKes2c5y_RTtM24TXCVRQqBi5iKohfw8lYBCm5rGIQrnY1HyE9sMT6XD88tbH4aYdAsR92zczU3tJYwiwwc4ToivK6r6GxAY0ZuG6HHFHQahYU_Qa0H1a0f-2lDan3h0W2WZ4XNtVh1KUqjRihd6vXIInJvVI1ob1dwBgS4GpJH_5CwdmZaAZjvOo3z5odpqvKRd_819Tfose9sytFE--jneXNbTgAzLR0h2j76J7CVc_0YZYPuJ-cTb98_QNJxhjW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WCvUBjoH4lcRCCPFotaXdFUKL1JsVOzYqgqSwW1B_FP-RcezsXijaSy-5JONI4_E8PI8P4GnOnJDUF5nNK4EBSpFnypY886bOPbVKsSZkdKezYvJZfDiWx1vwZ-iFCWWVg07sFXXT2XBH_iJMwiurolLi9emPLKBGhezqAKERxeLQnf_GkG3x6uA97u8zxvb35u8mWUIVyCyazmXmRHA6bE0tZUwZfHBZ2dzkpqiVlBX1SjrPvefOMcctc740hXAFtSUzluOyV2BbcIxkRrD9dm_28dN6yi8VsfdO8qyiVKXSoVhQ1g-oPPmOaiKNyWTP83Dn8m97eJG_29u9_ZtwIzms5E2UsFuw5drbcHWaUvJ3oERBI7HXknSe9KBHpG4b8qUHqSNdS0yAoSC_Tha2c-ishzru5fldmF8G3-7BqO1a9wBI7UXhHRc-jN5vMAYXTkoua--EaUzDx1AOLNE2TSoPgBnf9FCS9lWvmRmANJXOmUZmjoGuKE_jtI4NaNTAdT10o6L-1GhSNqB9uaJNHkv0RDak3hk2WSfNsdBrOR_D7uo1nvmQyKlb150tcA2JjnFFL_6iwCg9LxmucT8Kz5odqp__RR_-_-e7cG0ynx7po4PZ4SO4HnNooUh5B0bLn2fuMbpiS_MkHQAC-pKP3F9Y20ap |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDcLhfoAx1C_HQshhCirltKKQ5H2ZsWOXRVBUtgtqD-Nf8c4dnYvFO2ll1yScaTxvOx5fAi9ICwISaOqPKkFHFAUqYzXvIquIZF6Y1ibMrpHx2r_i_g4k7MN9GfshUlllaNNHAx12_t0R76bJuHpWtVG7MZSFvF5b_r2_EeVEKRSpnWE08gichguf8Pxbf7mYA_2-iVj0w8n7_ergjBQeXCjiyqIFID4hnrKmHHw4LL2xBGnGiNlTaORIfIYeQgscM9C1E6JoKjXzHkOy95ANzWXNKmYnunVvF8qchee5FVNqSlFRLm0bBhVefYdDEYZmMlekXT78m_PeFXkO3jA6R10u4Su-F2WtbtoI3T30NZRSc7fRxpEDueuS9xHPMAf4aZr8ekAV4f7DrsESIF_nc19HyBsTxXdi8sH6OQ6uPYQbXZ9Fx4j3EShYuAipiH8LZzGRZCSyyYG4VrX8gnSI0usLzPLE3TGNzsWp321K2YmSE1jCbPAzAmiS8rzPLdjDRozct2OfalgSS04lzVoXy9pS-ySY5I1qbfHTbbFhsztSuInaGf5GrQ_pXSaLvQXc1hDQohc06u_UHBeJ5rBGo-y8KzYYYZJYPTJ_3--g7ZA0eyng-PDp-hWTqalauVttLn4eRGeQUy2cM8H6cfIXrO2_QXm6kl5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+aging+and+gender+on+brain+viscoelasticity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sack%2C+Ingolf&rft.au=Beierbach%2C+Bernd&rft.au=Wuerfel%2C+Jens&rft.au=Klatt%2C+Dieter&rft.date=2009-07-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=46&rft.issue=3&rft.spage=652&rft.epage=657&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.02.040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |