The impact of aging and gender on brain viscoelasticity

Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 46; no. 3; pp. 652 - 657
Main Authors Sack, Ingolf, Beierbach, Bernd, Wuerfel, Jens, Klatt, Dieter, Hamhaber, Uwe, Papazoglou, Sebastian, Martus, Peter, Braun, Jürgen
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2009
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter μ that describes the solid-fluid behavior of the tissue and a parameter α related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal ‘liquefaction’ characterized by a continuous decline in μ of 0.8% per year (P<0.001), whereas α remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade ‘younger’ than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
AbstractList Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter is a subset of that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in is a subset of of 0.8% per year (P < 0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P = 0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter μ that describes the solid-fluid behavior of the tissue and a parameter α related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal ‘liquefaction’ characterized by a continuous decline in μ of 0.8% per year (P<0.001), whereas α remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade ‘younger’ than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter[micro]that describes the solid-fluid behavior of the tissue and a parameter[alpha]related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in[micro]of 0.8% per year (P<0.001), whereas[alpha]remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.
Author Klatt, Dieter
Hamhaber, Uwe
Braun, Jürgen
Beierbach, Bernd
Wuerfel, Jens
Sack, Ingolf
Papazoglou, Sebastian
Martus, Peter
Author_xml – sequence: 1
  givenname: Ingolf
  surname: Sack
  fullname: Sack, Ingolf
  email: ingolf.sack@charite.de
  organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
– sequence: 2
  givenname: Bernd
  surname: Beierbach
  fullname: Beierbach, Bernd
  organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
– sequence: 3
  givenname: Jens
  surname: Wuerfel
  fullname: Wuerfel, Jens
  organization: Institute of Neuroradiology, University Schleswig-Holstein, Campus Luebeck, Germany
– sequence: 4
  givenname: Dieter
  surname: Klatt
  fullname: Klatt, Dieter
  organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
– sequence: 5
  givenname: Uwe
  surname: Hamhaber
  fullname: Hamhaber, Uwe
  organization: Institute of Medical Informatics, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
– sequence: 6
  givenname: Sebastian
  surname: Papazoglou
  fullname: Papazoglou, Sebastian
  organization: Department of Radiology, Charité — University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
– sequence: 7
  givenname: Peter
  surname: Martus
  fullname: Martus, Peter
  organization: Institute of Biometry and Clinical Epidemiology, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
– sequence: 8
  givenname: Jürgen
  surname: Braun
  fullname: Braun, Jürgen
  organization: Institute of Medical Informatics, Charité — University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19281851$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGUqPlpX6FCitSdHS42NmyqNFHzI0XqZvYI4-sJUw9MwY40bx9Gk7bSbJINsPjuB5xzTo598EgIBVYCg-ZqVXqcY3Brs8SSM6ZKxktWsyNyBkyJQomWH-_OoiokgDol5ymtWAahlp_IKSguQQo4I-3iGalbb4ydaBioWTq_pMb3dIm-x0iDp100ztMXl2zA0aTJWTdtP5OTwYwJv7ztF2Rx93Nx-1A8_bp_vP3xVFgh6qnAWlaCWwMWOFddXiohLetY1xglhIRBCRyqYagQOVaW49B2TY0N2JZ3trog3_baTQx_ZkyTXud34Dgaj2FOummhZS2v3wU5E0qAhAxeHoCrMEef_6BBsKaVjVQ73dc3au7W2OtNzFnHrf4bXAa-7wEbQ0oRB51TMZMLfspxjRqY3jWlV_p_U3rXlGZc56ayQB4I_t3x_ujNfhRz8C8Oo07WobfYu4h20n1wH5FcH0js6LyzZvyN248pXgGGBsho
CitedBy_id crossref_primary_10_3389_fnagi_2023_1212212
crossref_primary_10_3389_fphy_2021_666192
crossref_primary_10_2478_s13540_013_0003_1
crossref_primary_10_3390_app10134467
crossref_primary_10_1016_j_neuroimage_2023_120234
crossref_primary_10_3348_kjr_2022_0992
crossref_primary_10_1016_j_media_2022_102416
crossref_primary_10_3389_fphy_2024_1324659
crossref_primary_10_1364_OE_445259
crossref_primary_10_1142_S0218957713500085
crossref_primary_10_1002_mrm_24141
crossref_primary_10_1371_journal_pone_0023451
crossref_primary_10_1109_TUFFC_2011_1961
crossref_primary_10_1097_SLA_0b013e31828ccf43
crossref_primary_10_13104_imri_2023_0029
crossref_primary_10_1016_j_jmbbm_2017_04_017
crossref_primary_10_1016_j_neuroimage_2015_02_016
crossref_primary_10_1002_mrm_24268
crossref_primary_10_1115_1_4067393
crossref_primary_10_1371_journal_pone_0037502
crossref_primary_10_1038_natrevmats_2016_63
crossref_primary_10_1371_journal_pone_0092582
crossref_primary_10_1016_j_media_2018_03_003
crossref_primary_10_1016_j_actbio_2023_07_040
crossref_primary_10_1016_j_brs_2025_02_019
crossref_primary_10_1016_j_jbiomech_2021_110259
crossref_primary_10_1016_j_jns_2020_117152
crossref_primary_10_1093_braincomms_fcae073
crossref_primary_10_1177_0271678X18799241
crossref_primary_10_1016_j_mbs_2013_08_012
crossref_primary_10_1007_s11431_014_5582_5
crossref_primary_10_1098_rspa_2020_0990
crossref_primary_10_1016_j_mri_2010_07_014
crossref_primary_10_1016_j_compbiomed_2022_106226
crossref_primary_10_1002_nbm_3118
crossref_primary_10_1177_0271678X15606923
crossref_primary_10_1002_jmri_22294
crossref_primary_10_1039_C9NR06327G
crossref_primary_10_1002_nbm_3919
crossref_primary_10_1016_j_cma_2020_112834
crossref_primary_10_1016_j_neuron_2023_10_005
crossref_primary_10_1007_s10143_010_0249_6
crossref_primary_10_1002_mrm_27672
crossref_primary_10_1021_acsomega_3c04064
crossref_primary_10_1002_jmri_28747
crossref_primary_10_1016_j_actbio_2019_08_013
crossref_primary_10_1002_nbm_1602
crossref_primary_10_1038_s44222_023_00027_7
crossref_primary_10_1016_j_nicl_2017_12_023
crossref_primary_10_1088_1478_3975_aa6d18
crossref_primary_10_1118_1_4754649
crossref_primary_10_1002_adfm_202100848
crossref_primary_10_1016_j_jmbbm_2020_103795
crossref_primary_10_1089_ten_teb_2012_0755
crossref_primary_10_1016_j_media_2022_102432
crossref_primary_10_1016_j_neuroimage_2020_116592
crossref_primary_10_1007_s00234_011_0871_1
crossref_primary_10_1016_j_neuroimage_2013_04_089
crossref_primary_10_1007_s11682_019_00200_w
crossref_primary_10_1016_j_brain_2023_100075
crossref_primary_10_1016_j_clineuro_2020_105836
crossref_primary_10_1039_c3sm50552a
crossref_primary_10_1007_s00330_020_07054_7
crossref_primary_10_1109_TMI_2012_2197407
crossref_primary_10_3390_ma13020438
crossref_primary_10_1088_0031_9155_56_19_014
crossref_primary_10_1007_s10143_017_0862_8
crossref_primary_10_1371_journal_pone_0029888
crossref_primary_10_1002_cnm_3882
crossref_primary_10_1016_j_brain_2020_100019
crossref_primary_10_1016_j_jbiomech_2011_04_034
crossref_primary_10_1161_STROKEAHA_117_016996
crossref_primary_10_1016_j_jbiomech_2011_01_019
crossref_primary_10_1007_s00441_017_2709_6
crossref_primary_10_1080_09205063_2013_848327
crossref_primary_10_1088_1367_2630_15_8_085024
crossref_primary_10_1002_mrm_26333
crossref_primary_10_4103_tcmj_tcmj_120_22
crossref_primary_10_3390_biology11020230
crossref_primary_10_1016_j_jbiomech_2010_06_008
crossref_primary_10_1016_j_neuroimage_2017_10_008
crossref_primary_10_1038_s41598_024_79991_y
crossref_primary_10_1109_TUFFC_2012_2443
crossref_primary_10_1007_s13206_018_3101_7
crossref_primary_10_1109_TBME_2019_2905551
crossref_primary_10_1177_0271678X231186571
crossref_primary_10_1007_s10237_019_01157_x
crossref_primary_10_1016_j_nicl_2015_12_007
crossref_primary_10_1016_j_media_2017_06_003
crossref_primary_10_3389_fbioe_2024_1386955
crossref_primary_10_3179_jjmu_JJMU_R_203
crossref_primary_10_1038_nrneurol_2015_194
crossref_primary_10_1002_hbm_25192
crossref_primary_10_1016_j_copbio_2016_04_021
crossref_primary_10_1016_j_jmbbm_2022_105394
crossref_primary_10_1088_0031_9155_57_3_R35
crossref_primary_10_2139_ssrn_4185682
crossref_primary_10_1016_j_jbiomech_2010_12_031
crossref_primary_10_1002_mrm_25719
crossref_primary_10_1093_braincomms_fcae424
crossref_primary_10_1109_TMI_2013_2268978
crossref_primary_10_1007_s00330_016_4561_6
crossref_primary_10_1088_0031_9155_57_22_7275
crossref_primary_10_1002_jmri_25129
crossref_primary_10_3389_fbioe_2021_704738
crossref_primary_10_3389_fnmol_2024_1371086
crossref_primary_10_1121_10_0025467
crossref_primary_10_1088_0031_9155_56_8_005
crossref_primary_10_1016_j_ultrasmedbio_2013_02_006
crossref_primary_10_1016_j_nicl_2023_103328
crossref_primary_10_1016_j_pnmrs_2015_06_001
crossref_primary_10_1242_dev_079145
crossref_primary_10_1016_j_wneu_2016_12_121
crossref_primary_10_1103_PhysRevE_95_022418
crossref_primary_10_3389_fphy_2023_1201032
crossref_primary_10_1002_mrm_26477
crossref_primary_10_1002_nbm_2987
crossref_primary_10_26599_BSA_2023_9050002
crossref_primary_10_1002_hbm_23314
crossref_primary_10_1146_annurev_bioeng_071811_150032
crossref_primary_10_1016_j_nicl_2012_09_003
crossref_primary_10_1007_s10396_020_01059_x
crossref_primary_10_1002_adhm_202401603
crossref_primary_10_1002_hbm_25891
crossref_primary_10_1016_j_jbiomech_2018_01_016
crossref_primary_10_1016_j_clinbiomech_2018_01_015
crossref_primary_10_1111_jon_12619
crossref_primary_10_1177_016173461003200405
crossref_primary_10_1177_1754337118822940
crossref_primary_10_1038_srep01817
crossref_primary_10_1016_j_jmbbm_2021_104680
crossref_primary_10_1007_s10237_022_01659_1
crossref_primary_10_1017_S0022112010004428
crossref_primary_10_1016_j_radi_2024_01_008
crossref_primary_10_1016_j_jmbbm_2021_104449
crossref_primary_10_1038_s41598_018_36191_9
crossref_primary_10_1016_j_mric_2020_03_001
crossref_primary_10_1016_j_cult_2013_09_006
crossref_primary_10_1016_j_neurobiolaging_2025_01_001
crossref_primary_10_1002_advs_202402338
crossref_primary_10_1007_s00261_020_02656_7
crossref_primary_10_1016_j_jbiomech_2015_01_044
crossref_primary_10_1002_jum_14366
crossref_primary_10_1016_j_nicl_2021_102579
crossref_primary_10_1097_RMR_0000000000000292
crossref_primary_10_1016_j_bbadis_2022_166513
crossref_primary_10_1016_j_jmbbm_2017_03_001
crossref_primary_10_1016_j_actbio_2020_12_027
crossref_primary_10_1097_RMR_0000000000000178
crossref_primary_10_1002_nbm_3935
crossref_primary_10_1016_j_mri_2011_12_019
crossref_primary_10_1121_1_3613939
crossref_primary_10_3389_fbioe_2022_1056131
crossref_primary_10_1016_j_ejrad_2021_110136
crossref_primary_10_1016_j_jmbbm_2017_08_029
crossref_primary_10_1121_1_3531936
crossref_primary_10_1088_0034_4885_73_9_094601
crossref_primary_10_1002_nbm_4174
crossref_primary_10_1002_nbm_4050
crossref_primary_10_1016_j_neuroimage_2009_06_018
crossref_primary_10_1371_journal_pone_0161179
crossref_primary_10_1016_j_jbiomech_2016_04_005
crossref_primary_10_1038_s42254_022_00543_2
crossref_primary_10_1371_journal_pone_0071807
crossref_primary_10_1002_mrm_26600
crossref_primary_10_1002_mrm_27019
crossref_primary_10_1016_j_jmbbm_2017_06_027
crossref_primary_10_1118_1_4757617
crossref_primary_10_1016_j_brain_2024_100091
crossref_primary_10_1063_1_4770305
crossref_primary_10_1016_j_mri_2019_03_009
crossref_primary_10_1115_1_4032436
crossref_primary_10_1002_jmri_27475
crossref_primary_10_1038_s42003_019_0421_7
crossref_primary_10_3389_fbioe_2021_666456
crossref_primary_10_1088_1361_6560_ad7fc9
crossref_primary_10_1088_1742_6596_2092_1_012001
crossref_primary_10_1364_BOE_497801
crossref_primary_10_3182_20110828_6_IT_1002_01840
crossref_primary_10_1016_j_ultras_2010_07_005
crossref_primary_10_3390_ijms22062962
crossref_primary_10_1002_mrm_25065
crossref_primary_10_1038_s41598_023_48439_0
crossref_primary_10_1088_1742_6596_628_1_012007
crossref_primary_10_1002_mrm_26030
crossref_primary_10_1016_j_cmpb_2014_05_006
crossref_primary_10_1002_mrm_29308
crossref_primary_10_1016_j_cmpb_2023_107430
crossref_primary_10_1002_mrm_29309
crossref_primary_10_1002_advs_202002693
crossref_primary_10_1016_j_carbpol_2021_118961
crossref_primary_10_1371_journal_pone_0148652
crossref_primary_10_1016_j_brs_2024_10_008
crossref_primary_10_1002_mrm_25067
crossref_primary_10_1016_j_jmbbm_2018_04_009
crossref_primary_10_1162_jocn_a_01454
crossref_primary_10_1162_jocn_a_01574
crossref_primary_10_1177_0954411920964630
crossref_primary_10_2147_NDT_S371404
crossref_primary_10_1016_j_neuroimage_2022_119590
crossref_primary_10_1038_s41514_024_00178_w
crossref_primary_10_3390_cells10113144
crossref_primary_10_3390_bioengineering11060537
crossref_primary_10_1088_1742_6596_290_1_012006
crossref_primary_10_1063_5_0043338
crossref_primary_10_1016_j_crme_2010_07_014
crossref_primary_10_1016_j_biomaterials_2016_08_029
crossref_primary_10_1088_0031_9155_59_24_7717
crossref_primary_10_1016_j_actbio_2025_02_049
crossref_primary_10_1073_pnas_1610175113
crossref_primary_10_1146_annurev_bioeng_071811_150045
crossref_primary_10_3390_s17092078
crossref_primary_10_1002_hbm_24753
crossref_primary_10_4028_www_scientific_net_AMM_66_68_384
crossref_primary_10_3174_ajnr_A2042
crossref_primary_10_1016_j_neuroimage_2018_01_007
crossref_primary_10_1088_0031_9155_55_21_007
crossref_primary_10_1186_s12987_019_0131_z
crossref_primary_10_1080_15389588_2015_1021416
crossref_primary_10_1142_S0218957713500152
crossref_primary_10_1016_j_isci_2023_106825
crossref_primary_10_1016_j_mric_2021_06_011
crossref_primary_10_1002_mrm_25881
crossref_primary_10_1109_TMI_2010_2079940
crossref_primary_10_1016_j_nicl_2024_103606
crossref_primary_10_1002_smsc_202300185
crossref_primary_10_1007_s13246_015_0372_3
crossref_primary_10_1186_s12987_020_00214_3
crossref_primary_10_1016_j_jbiomech_2014_09_030
crossref_primary_10_1109_TUFFC_2010_1600
crossref_primary_10_1002_mrm_26738
crossref_primary_10_1137_100781882
crossref_primary_10_1002_jmri_23597
crossref_primary_10_1523_JNEUROSCI_0592_22_2022
crossref_primary_10_1088_1478_3975_ad88e4
crossref_primary_10_1016_j_actbio_2011_12_013
crossref_primary_10_1016_j_medengphy_2014_10_007
crossref_primary_10_1007_s00330_017_5269_y
crossref_primary_10_1016_j_neurobiolaging_2018_01_010
crossref_primary_10_1088_0031_9155_58_16_5771
crossref_primary_10_3390_cells11193093
crossref_primary_10_1016_j_actbio_2019_08_036
crossref_primary_10_1016_j_tins_2020_10_012
crossref_primary_10_1109_TMI_2018_2837390
crossref_primary_10_1038_s41380_023_02236_3
crossref_primary_10_1007_s10237_015_0658_0
crossref_primary_10_1016_j_neuroimage_2016_02_059
crossref_primary_10_1038_s41583_021_00496_y
crossref_primary_10_1016_j_brain_2022_100056
crossref_primary_10_1016_j_jbiomech_2021_110851
crossref_primary_10_1016_j_jmbbm_2020_104229
crossref_primary_10_1016_j_neuroimage_2021_118078
crossref_primary_10_1016_j_mri_2010_06_016
crossref_primary_10_1007_s00381_010_1226_7
crossref_primary_10_1088_1741_2560_10_6_066001
crossref_primary_10_1039_D2TB01111E
crossref_primary_10_1088_0031_9155_57_8_2329
crossref_primary_10_1002_cnm_1488
crossref_primary_10_1002_stem_746
crossref_primary_10_1038_s41586_020_2612_2
crossref_primary_10_1016_j_ultrasmedbio_2019_12_019
crossref_primary_10_1088_1741_2560_13_5_056002
crossref_primary_10_1089_ten_teb_2021_0151
crossref_primary_10_1016_j_jmbbm_2014_09_027
crossref_primary_10_1016_j_wneu_2015_10_069
crossref_primary_10_1148_radiol_10092489
crossref_primary_10_2214_AJR_16_17455
crossref_primary_10_1088_0031_9155_61_24_R401
crossref_primary_10_1007_s00062_014_0311_9
crossref_primary_10_3389_fnagi_2017_00387
crossref_primary_10_1016_j_jmbbm_2023_105721
crossref_primary_10_1098_rsif_2017_0088
crossref_primary_10_1002_mrm_29226
crossref_primary_10_1007_s11831_019_09352_w
crossref_primary_10_1016_j_actbio_2012_11_035
crossref_primary_10_1093_brain_awaa125
crossref_primary_10_1038_npp_2016_185
crossref_primary_10_1371_journal_pone_0110588
crossref_primary_10_1016_j_dcn_2017_08_010
crossref_primary_10_1299_mej_14_00417
crossref_primary_10_1088_1361_6560_aacb08
crossref_primary_10_1016_j_clinbiomech_2022_105792
crossref_primary_10_1016_j_cmpb_2024_108381
crossref_primary_10_1111_ejn_14766
crossref_primary_10_1002_cpz1_379
crossref_primary_10_1007_s11548_014_1100_2
crossref_primary_10_1038_s42003_021_01920_w
crossref_primary_10_1016_j_neuroimage_2021_117889
crossref_primary_10_1002_mrm_27757
crossref_primary_10_1016_j_jmbbm_2011_09_013
crossref_primary_10_1088_2516_1091_ada654
crossref_primary_10_1002_jmri_26881
crossref_primary_10_1016_j_actbio_2016_07_040
crossref_primary_10_3171_2012_9_JNS12519
crossref_primary_10_1073_pnas_1200151109
crossref_primary_10_1126_sciadv_adh8313
crossref_primary_10_1007_s12356_009_0003_3
crossref_primary_10_1109_TBME_2012_2227316
crossref_primary_10_1016_j_neuroimage_2013_12_032
crossref_primary_10_1007_s00261_017_1340_z
crossref_primary_10_1007_s00401_023_02658_x
crossref_primary_10_1002_nbm_3891
crossref_primary_10_1038_s41598_024_54341_0
crossref_primary_10_1016_j_jmbbm_2018_03_031
crossref_primary_10_1016_j_actbio_2024_05_007
crossref_primary_10_1121_1_3631626
crossref_primary_10_1259_bjr_20200265
crossref_primary_10_1002_jmri_22707
crossref_primary_10_1016_j_jneumeth_2011_08_019
crossref_primary_10_1016_j_nicl_2013_09_006
crossref_primary_10_1063_1_5024394
crossref_primary_10_1002_adma_202007663
crossref_primary_10_3390_s20082379
crossref_primary_10_1002_mrm_26659
crossref_primary_10_1093_cercor_bhaa388
Cites_doi 10.1016/j.actbio.2006.08.007
10.1115/1.2907746
10.1016/S0531-5565(02)00151-1
10.1080/02841850701199967
10.1126/science.1116995
10.1115/1.3167616
10.1002/mrm.20388
10.1038/385313a0
10.1002/nbm.1189
10.1002/ana.410210603
10.1088/0031-9155/52/24/006
10.1002/nbm.1254
10.1002/ana.410040410
10.1088/0031-9155/52/3/010
10.1006/nimg.2001.0786
10.1002/nbm.1062
10.1088/0031-9155/53/12/005
10.1126/science.278.5337.412
10.1016/j.neuroimage.2007.09.017
10.1073/pnas.0606150103
10.1016/S0021-9290(98)00122-5
10.1002/mrm.21404
10.1002/mrm.21636
10.1007/s10334-007-0098-7
10.1016/j.neuroimage.2007.08.030
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Limited Jul 1, 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Limited Jul 1, 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7X8
DOI 10.1016/j.neuroimage.2009.02.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database


ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 657
ExternalDocumentID 3244674371
19281851
10_1016_j_neuroimage_2009_02_040
S1053811909002237
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
P-8
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7X8
ID FETCH-LOGICAL-c554t-e48352ca1c1229b122358c0b0b6a95581f95ef3ff3ee2e3c2ef7b64e61c72bc3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 09:18:34 EDT 2025
Thu Jul 10 20:44:29 EDT 2025
Wed Aug 13 04:43:33 EDT 2025
Mon Jul 21 05:56:43 EDT 2025
Tue Jul 01 02:14:24 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:30:10 EST 2024
Tue Aug 26 18:05:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Brain viscoelasticity
Stiffness
Rheology
Springpot
Age
Sex
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-e48352ca1c1229b122358c0b0b6a95581f95ef3ff3ee2e3c2ef7b64e61c72bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19281851
PQID 1506786894
PQPubID 2031077
PageCount 6
ParticipantIDs proquest_miscellaneous_67170724
proquest_miscellaneous_20595181
proquest_journals_1506786894
pubmed_primary_19281851
crossref_citationtrail_10_1016_j_neuroimage_2009_02_040
crossref_primary_10_1016_j_neuroimage_2009_02_040
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_02_040
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_02_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-01
2009-07-00
2009-Jul-01
20090701
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2009
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Klatt, Hamhaber, Asbach, Braun, Sack (bib10) 2007; 52
Thibault, Margulies (bib25) 1998; 31
Wuerfel, Beierbach, Klatt, Papazoglou, Hamhaber, Braun, Sack (bib29) 2008
Hamhaber, Sack, Papazoglou, Rump, Klatt, Braun (bib7) 2007; 3
Vappou, Breton, Choquet, Goetz, Willinger, Constantinesco (bib28) 2007; 20
Kruse, Rose, Glaser, Manduca, Felmlee, Jack, Ehman (bib13) 2008; 39
Papazoglou, Hamhaber, Braun, Sack (bib20) 2008; 53
McCracken, Manduca, Felmlee, Ehman (bib15) 2005; 53
Asbach, Klatt, Hamhaber, Braun, Somasundaram, Hamm, Sack (bib1) 2008; 60
Pelvig, Pakkenberg, Stark, Pakkenberg (bib21) 2007
Pakkenberg, Pelvig, Marner, Bundgaard, Gundersen, Nyengaard, Regeur (bib18) 2003; 38
Lu, Franze, Seifert, Steinhauser, Kirchhoff, Wolburg, Guck, Janmey, Wei, Kas, Reichenbach (bib14) 2006; 103
Terry, DeTeresa, Hansen (bib24) 1987; 21
Koeller (bib12) 1984; 51
Sack, Beierbach, Hamhaber, Klatt, Braun (bib22) 2008; 21
Mueller, Schuff, Weiner (bib17) 2006; 19
Discher, Janmey, Wang (bib3) 2005; 310
Hrapko, van Dommelen, Peters, Wismans (bib8) 2008; 130
Tschoegl (bib26) 1989
Hsu, Leemans, Bai, Lee, Tsai, Chiu, Chen (bib9) 2008; 39
Sinkus, Siegmann, Xydeas, Tanter, Claussen, Fink (bib23) 2007; 58
Xu, Lin, Han, Xi, Shen, Gao (bib30) 2007; 48
Fung (bib4) 1993
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib5) 2001; 14
Morrison, Hof (bib16) 1997; 278
Van Essen (bib27) 1997; 385
Papazoglou, Hamhaber, Braun, Sack (bib19) 2007; 52
Dekaban (bib2) 1978; 4
Green, Bilston, Sinkus (bib6) 2008; 21
Klatt, Asbach, Somasundaram, Hamm, Braun, Sack (bib11) 2008; 180
Klatt (10.1016/j.neuroimage.2009.02.040_bib10) 2007; 52
Dekaban (10.1016/j.neuroimage.2009.02.040_bib2) 1978; 4
Van Essen (10.1016/j.neuroimage.2009.02.040_bib27) 1997; 385
McCracken (10.1016/j.neuroimage.2009.02.040_bib15) 2005; 53
Morrison (10.1016/j.neuroimage.2009.02.040_bib16) 1997; 278
Hamhaber (10.1016/j.neuroimage.2009.02.040_bib7) 2007; 3
Mueller (10.1016/j.neuroimage.2009.02.040_bib17) 2006; 19
Wuerfel (10.1016/j.neuroimage.2009.02.040_bib29) 2008
Klatt (10.1016/j.neuroimage.2009.02.040_bib11) 2008; 180
Sack (10.1016/j.neuroimage.2009.02.040_bib22) 2008; 21
Xu (10.1016/j.neuroimage.2009.02.040_bib30) 2007; 48
Kruse (10.1016/j.neuroimage.2009.02.040_bib13) 2008; 39
Fung (10.1016/j.neuroimage.2009.02.040_bib4) 1993
Lu (10.1016/j.neuroimage.2009.02.040_bib14) 2006; 103
Pakkenberg (10.1016/j.neuroimage.2009.02.040_bib18) 2003; 38
Sinkus (10.1016/j.neuroimage.2009.02.040_bib23) 2007; 58
Good (10.1016/j.neuroimage.2009.02.040_bib5) 2001; 14
Hsu (10.1016/j.neuroimage.2009.02.040_bib9) 2008; 39
Koeller (10.1016/j.neuroimage.2009.02.040_bib12) 1984; 51
Hrapko (10.1016/j.neuroimage.2009.02.040_bib8) 2008; 130
Tschoegl (10.1016/j.neuroimage.2009.02.040_bib26) 1989
Terry (10.1016/j.neuroimage.2009.02.040_bib24) 1987; 21
Papazoglou (10.1016/j.neuroimage.2009.02.040_bib19) 2007; 52
Discher (10.1016/j.neuroimage.2009.02.040_bib3) 2005; 310
Vappou (10.1016/j.neuroimage.2009.02.040_bib28) 2007; 20
Asbach (10.1016/j.neuroimage.2009.02.040_bib1) 2008; 60
Green (10.1016/j.neuroimage.2009.02.040_bib6) 2008; 21
Pelvig (10.1016/j.neuroimage.2009.02.040_bib21) 2007
Papazoglou (10.1016/j.neuroimage.2009.02.040_bib20) 2008; 53
Thibault (10.1016/j.neuroimage.2009.02.040_bib25) 1998; 31
References_xml – volume: 130
  start-page: 0310010
  year: 2008
  end-page: 0310031
  ident: bib8
  article-title: The influence of test conditions on characterization of the mechanical properties of brain tissue
  publication-title: J. Biomech. Eng.
– volume: 20
  start-page: 273
  year: 2007
  end-page: 278
  ident: bib28
  article-title: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement
  publication-title: Magma
– volume: 3
  start-page: 127
  year: 2007
  end-page: 137
  ident: bib7
  article-title: Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain
  publication-title: Acta Biomater.
– volume: 21
  start-page: 265
  year: 2008
  end-page: 271
  ident: bib22
  article-title: Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography
  publication-title: NMR. Biomed.
– volume: 53
  start-page: 628
  year: 2005
  end-page: 639
  ident: bib15
  article-title: Mechanical transient-based magnetic resonance elastography
  publication-title: Magn. Reson. Med.
– volume: 52
  start-page: 7281
  year: 2007
  end-page: 7294
  ident: bib10
  article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity
  publication-title: Phys. Med. Biol.
– volume: 180
  start-page: 1106
  year: 2008
  end-page: 1109
  ident: bib11
  article-title: Assessment of the solid–liquid behavior of the liver for the diagnosis of diffuse disease using magnetic resonance elastography
  publication-title: Röfo
– volume: 58
  start-page: 1135
  year: 2007
  end-page: 1144
  ident: bib23
  article-title: elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography
  publication-title: Magn. Reson. Med.
– volume: 39
  start-page: 566
  year: 2008
  end-page: 577
  ident: bib9
  article-title: Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study
  publication-title: NeuroImage
– volume: 14
  start-page: 21
  year: 2001
  end-page: 36
  ident: bib5
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: NeuroImage
– year: 1989
  ident: bib26
  article-title: The Phenomenological Theory of Linear Viscoelastic Behavior
– volume: 19
  start-page: 655
  year: 2006
  end-page: 668
  ident: bib17
  article-title: Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS
  publication-title: NMR. Biomed.
– volume: 278
  start-page: 412
  year: 1997
  end-page: 419
  ident: bib16
  article-title: Life and death of neurons in the aging brain
  publication-title: Science
– volume: 21
  start-page: 530
  year: 1987
  end-page: 539
  ident: bib24
  article-title: Neocortical cell counts in normal human adult aging
  publication-title: Ann. Neurol.
– volume: 51
  start-page: 299
  year: 1984
  end-page: 307
  ident: bib12
  article-title: Applications of fractional calculus to the theory of viscoelasticity
  publication-title: J. Appl. Mech.
– volume: 53
  start-page: 3147
  year: 2008
  end-page: 3158
  ident: bib20
  article-title: Algebraic Helmholtz inversion in planar magnetic resonance elastography
  publication-title: Phys. Med. Biol.
– volume: 21
  start-page: 755
  year: 2008
  end-page: 764
  ident: bib6
  article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography
  publication-title: NMR Biomed.
– volume: 385
  start-page: 313
  year: 1997
  end-page: 318
  ident: bib27
  article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system
  publication-title: Nature
– volume: 60
  start-page: 373
  year: 2008
  end-page: 379
  ident: bib1
  article-title: Assessment of liver viscoelasticity using multifrequency MR elastography
  publication-title: Magn. Reson. Med.
– start-page: 1547
  year: 2008
  ident: bib29
  article-title: elastography reveals tissue degeneration in Multiple Sclerosis patients. In: Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine
  publication-title: Toronto
– year: 1993
  ident: bib4
  article-title: Biomechanics: Mechanical Properties of Living Tissue
– volume: 38
  start-page: 95
  year: 2003
  end-page: 99
  ident: bib18
  article-title: Aging and the human neocortex
  publication-title: Exp. Gerontol.
– volume: 48
  start-page: 327
  year: 2007
  end-page: 330
  ident: bib30
  article-title: Magnetic resonance elastography of brain tumors: preliminary results
  publication-title: Acta Radiol.
– volume: 310
  start-page: 1139
  year: 2005
  end-page: 1143
  ident: bib3
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
– year: 2007
  ident: bib21
  article-title: Neocortical glial cell numbers in human brains
  publication-title: Neurobiol Aging
– volume: 103
  start-page: 17759
  year: 2006
  end-page: 17764
  ident: bib14
  article-title: Viscoelastic properties of individual glial cells and neurons in the CNS
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 52
  start-page: 675
  year: 2007
  end-page: 684
  ident: bib19
  article-title: Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography
  publication-title: Phys. Med. Biol.
– volume: 4
  start-page: 345
  year: 1978
  end-page: 356
  ident: bib2
  article-title: Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights
  publication-title: Ann. Neurol.
– volume: 39
  start-page: 231
  year: 2008
  end-page: 237
  ident: bib13
  article-title: Magnetic resonance elastography of the brain
  publication-title: NeuroImage
– volume: 31
  start-page: 1119
  year: 1998
  end-page: 1126
  ident: bib25
  article-title: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria
  publication-title: J. Biomech.
– volume: 3
  start-page: 127
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib7
  article-title: Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2006.08.007
– volume: 130
  start-page: 0310010
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib8
  article-title: The influence of test conditions on characterization of the mechanical properties of brain tissue
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2907746
– volume: 38
  start-page: 95
  issue: 1–2
  year: 2003
  ident: 10.1016/j.neuroimage.2009.02.040_bib18
  article-title: Aging and the human neocortex
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(02)00151-1
– volume: 48
  start-page: 327
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib30
  article-title: Magnetic resonance elastography of brain tumors: preliminary results
  publication-title: Acta Radiol.
  doi: 10.1080/02841850701199967
– volume: 310
  start-page: 1139
  issue: 5751
  year: 2005
  ident: 10.1016/j.neuroimage.2009.02.040_bib3
  article-title: Tissue cells feel and respond to the stiffness of their substrate
  publication-title: Science
  doi: 10.1126/science.1116995
– volume: 51
  start-page: 299
  issue: 2
  year: 1984
  ident: 10.1016/j.neuroimage.2009.02.040_bib12
  article-title: Applications of fractional calculus to the theory of viscoelasticity
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3167616
– volume: 53
  start-page: 628
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2009.02.040_bib15
  article-title: Mechanical transient-based magnetic resonance elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20388
– volume: 385
  start-page: 313
  issue: 6614
  year: 1997
  ident: 10.1016/j.neuroimage.2009.02.040_bib27
  article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system
  publication-title: Nature
  doi: 10.1038/385313a0
– year: 1989
  ident: 10.1016/j.neuroimage.2009.02.040_bib26
– volume: 21
  start-page: 265
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib22
  article-title: Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography
  publication-title: NMR. Biomed.
  doi: 10.1002/nbm.1189
– volume: 21
  start-page: 530
  issue: 6
  year: 1987
  ident: 10.1016/j.neuroimage.2009.02.040_bib24
  article-title: Neocortical cell counts in normal human adult aging
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410210603
– volume: 52
  start-page: 7281
  issue: 24
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib10
  article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/24/006
– volume: 21
  start-page: 755
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib6
  article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1254
– volume: 4
  start-page: 345
  issue: 4
  year: 1978
  ident: 10.1016/j.neuroimage.2009.02.040_bib2
  article-title: Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410040410
– year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib21
  article-title: Neocortical glial cell numbers in human brains
  publication-title: Neurobiol Aging
– volume: 52
  start-page: 675
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib19
  article-title: Horizontal shear wave scattering from a nonwelded interface observed by magnetic resonance elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/3/010
– volume: 14
  start-page: 21
  issue: 1 Pt 1
  year: 2001
  ident: 10.1016/j.neuroimage.2009.02.040_bib5
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0786
– volume: 19
  start-page: 655
  issue: 6
  year: 2006
  ident: 10.1016/j.neuroimage.2009.02.040_bib17
  article-title: Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS
  publication-title: NMR. Biomed.
  doi: 10.1002/nbm.1062
– volume: 53
  start-page: 3147
  issue: 12
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib20
  article-title: Algebraic Helmholtz inversion in planar magnetic resonance elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/12/005
– volume: 278
  start-page: 412
  issue: 5337
  year: 1997
  ident: 10.1016/j.neuroimage.2009.02.040_bib16
  article-title: Life and death of neurons in the aging brain
  publication-title: Science
  doi: 10.1126/science.278.5337.412
– volume: 39
  start-page: 566
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib9
  article-title: Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.017
– volume: 103
  start-page: 17759
  issue: 47
  year: 2006
  ident: 10.1016/j.neuroimage.2009.02.040_bib14
  article-title: Viscoelastic properties of individual glial cells and neurons in the CNS
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0606150103
– start-page: 1547
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib29
  article-title: elastography reveals tissue degeneration in Multiple Sclerosis patients. In: Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine
  publication-title: Toronto
– volume: 31
  start-page: 1119
  year: 1998
  ident: 10.1016/j.neuroimage.2009.02.040_bib25
  article-title: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00122-5
– volume: 58
  start-page: 1135
  issue: 6
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib23
  article-title: elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21404
– volume: 60
  start-page: 373
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib1
  article-title: Assessment of liver viscoelasticity using multifrequency MR elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21636
– volume: 20
  start-page: 273
  issue: 5–6
  year: 2007
  ident: 10.1016/j.neuroimage.2009.02.040_bib28
  article-title: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement
  publication-title: Magma
  doi: 10.1007/s10334-007-0098-7
– year: 1993
  ident: 10.1016/j.neuroimage.2009.02.040_bib4
– volume: 39
  start-page: 231
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib13
  article-title: Magnetic resonance elastography of the brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.08.030
– volume: 180
  start-page: 1106
  year: 2008
  ident: 10.1016/j.neuroimage.2009.02.040_bib11
  article-title: Assessment of the solid–liquid behavior of the liver for the diagnosis of diffuse disease using magnetic resonance elastography
  publication-title: Röfo
SSID ssj0009148
Score 2.4679677
Snippet Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Adolescent
Adult
Age
Aged
Aged, 80 and over
Aging
Aging - physiology
Brain - physiology
Brain viscoelasticity
Computer Simulation
Elastic Modulus - physiology
Elasticity Imaging Techniques - methods
Female
Hardness - physiology
Humans
Magnetic Resonance Imaging - methods
Male
Medical research
Middle Aged
Models, Neurological
NMR
Nuclear magnetic resonance
Rheology
Sex
Sex Factors
Springpot
Stiffness
Viscosity
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoSFUviEdblqcPXEP9diwOCCEQQoITSHuzYseuqCABdkHi3zNOnN0LVHvJJRlHGtvjz57x9yF0SFgQkkZVeFIK2KAoUhiveRFdRSL1xrA6ZXSvb9Tlnbgay3E-cJvkssohJnaBum59OiP_k5jwdKlKI06enoukGpWyq1lC4xtaSdRlqaRLj_WcdJeK_iqc5EUJH-RKnr6-q-OLvH-EWZtZK9kRSUcgny9PX8HPbhm6WEOrGT_i077D19FSaDbQ9-ucId9EGvod91cfcRtxp0GEq6bGfzvNONw22CVVCPx2P_FtAOycyqqn7z_R7cX57dllkcURCg8IYFoEkbCTr6injBkHDy5LTxxxqjJSljQaGSKPkYfAAvcsRO2UCIp6zZznv9By0zZhC-EqChUDFzEx4dewJRZBSi6rGISrXc1HSA8usT4Thyf9igc7VIj9s3NnJl1LYwmz4MwRojPLp548YwEbM3jdDpdDIZxZiPAL2B7PbDOA6IHBgta7QyfbPJEndj7sRuhg9hqmYMqrVE1oXyfQhgScWtKvv1CwaSaaQRu_-8Ezd4fp6Ljo9v9_voN-9GmsVCe8i5anL69hD9DQ1O13Q_4DO88Ivg
  priority: 102
  providerName: ProQuest
Title The impact of aging and gender on brain viscoelasticity
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811909002237
https://dx.doi.org/10.1016/j.neuroimage.2009.02.040
https://www.ncbi.nlm.nih.gov/pubmed/19281851
https://www.proquest.com/docview/1506786894
https://www.proquest.com/docview/20595181
https://www.proquest.com/docview/67170724
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZ5QOkl9N1tk1SHXp3VWxY9JSFh25KltCnsTViyFLa0dshuCrnkt3dky7sUGljoxQbbI8RIM_PJ80LoPWFBSBpV4Ukp4ICiSGG85kV0FYnUG8Pq5NG9mKrJd_FpJmdb6HTIhUlhlVn39zq909b5yThzc3w9n4-_ATIAcwMGzSRDxPU22mXcKNjau8cfP0-m69q7VPQZcZIXiSAH9PRhXl3ZyPkvEN5cvJIdkfQn5N9W6iEU2lmj8ydoL8NIfNzP9CnaCs0z9OgiO8qfIw3Lj_sMSNxG3LUiwlVT46uudRxuG-xScwj8e77wbQAInaKrl3cv0OX52eXppMg9EgoPQGBZBJEglK-op4wZBxcuS08ccaoyUpY0Ghkij5GHwAL3LETtlAiKes2c5y_RTtM24TXCVRQqBi5iKohfw8lYBCm5rGIQrnY1HyE9sMT6XD88tbH4aYdAsR92zczU3tJYwiwwc4ToivK6r6GxAY0ZuG6HHFHQahYU_Qa0H1a0f-2lDan3h0W2WZ4XNtVh1KUqjRihd6vXIInJvVI1ob1dwBgS4GpJH_5CwdmZaAZjvOo3z5odpqvKRd_819Tfose9sytFE--jneXNbTgAzLR0h2j76J7CVc_0YZYPuJ-cTb98_QNJxhjW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WCvUBjoH4lcRCCPFotaXdFUKL1JsVOzYqgqSwW1B_FP-RcezsXijaSy-5JONI4_E8PI8P4GnOnJDUF5nNK4EBSpFnypY886bOPbVKsSZkdKezYvJZfDiWx1vwZ-iFCWWVg07sFXXT2XBH_iJMwiurolLi9emPLKBGhezqAKERxeLQnf_GkG3x6uA97u8zxvb35u8mWUIVyCyazmXmRHA6bE0tZUwZfHBZ2dzkpqiVlBX1SjrPvefOMcctc740hXAFtSUzluOyV2BbcIxkRrD9dm_28dN6yi8VsfdO8qyiVKXSoVhQ1g-oPPmOaiKNyWTP83Dn8m97eJG_29u9_ZtwIzms5E2UsFuw5drbcHWaUvJ3oERBI7HXknSe9KBHpG4b8qUHqSNdS0yAoSC_Tha2c-ishzru5fldmF8G3-7BqO1a9wBI7UXhHRc-jN5vMAYXTkoua--EaUzDx1AOLNE2TSoPgBnf9FCS9lWvmRmANJXOmUZmjoGuKE_jtI4NaNTAdT10o6L-1GhSNqB9uaJNHkv0RDak3hk2WSfNsdBrOR_D7uo1nvmQyKlb150tcA2JjnFFL_6iwCg9LxmucT8Kz5odqp__RR_-_-e7cG0ynx7po4PZ4SO4HnNooUh5B0bLn2fuMbpiS_MkHQAC-pKP3F9Y20ap
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDcLhfoAx1C_HQshhCirltKKQ5H2ZsWOXRVBUtgtqD-Nf8c4dnYvFO2ll1yScaTxvOx5fAi9ICwISaOqPKkFHFAUqYzXvIquIZF6Y1ibMrpHx2r_i_g4k7MN9GfshUlllaNNHAx12_t0R76bJuHpWtVG7MZSFvF5b_r2_EeVEKRSpnWE08gichguf8Pxbf7mYA_2-iVj0w8n7_ergjBQeXCjiyqIFID4hnrKmHHw4LL2xBGnGiNlTaORIfIYeQgscM9C1E6JoKjXzHkOy95ANzWXNKmYnunVvF8qchee5FVNqSlFRLm0bBhVefYdDEYZmMlekXT78m_PeFXkO3jA6R10u4Su-F2WtbtoI3T30NZRSc7fRxpEDueuS9xHPMAf4aZr8ekAV4f7DrsESIF_nc19HyBsTxXdi8sH6OQ6uPYQbXZ9Fx4j3EShYuAipiH8LZzGRZCSyyYG4VrX8gnSI0usLzPLE3TGNzsWp321K2YmSE1jCbPAzAmiS8rzPLdjDRozct2OfalgSS04lzVoXy9pS-ySY5I1qbfHTbbFhsztSuInaGf5GrQ_pXSaLvQXc1hDQohc06u_UHBeJ5rBGo-y8KzYYYZJYPTJ_3--g7ZA0eyng-PDp-hWTqalauVttLn4eRGeQUy2cM8H6cfIXrO2_QXm6kl5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+aging+and+gender+on+brain+viscoelasticity&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sack%2C+Ingolf&rft.au=Beierbach%2C+Bernd&rft.au=Wuerfel%2C+Jens&rft.au=Klatt%2C+Dieter&rft.date=2009-07-01&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=46&rft.issue=3&rft.spage=652&rft.epage=657&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.02.040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon