Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor

The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns abou...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 590; pp. 34 - 41
Main Authors Lupala, Cecylia S., Ye, Yongjin, Chen, Hong, Su, Xiao-Dong, Liu, Haiguang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area. •Structure prediction and refinement of SARS-CoV-2 spike protein RBD-ACE2 complex for Omicron variant.•Molecular dynamics simulations reveal stronger binding interactions between RBD and ACE2 protein in Omicron.•Mutations on Omicron RBD yield more hydrogen bonds, residue contacts and larger buried surface at the ACE2-RBD interface.
AbstractList The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.
The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area. •Structure prediction and refinement of SARS-CoV-2 spike protein RBD-ACE2 complex for Omicron variant.•Molecular dynamics simulations reveal stronger binding interactions between RBD and ACE2 protein in Omicron.•Mutations on Omicron RBD yield more hydrogen bonds, residue contacts and larger buried surface at the ACE2-RBD interface.
The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of SARS-CoV-2 have emerged and posed challenges in controlling the pandemic. The recently occurred Omicron variant raised serious concerns about reducing the efficacy of vaccines and neutralization antibodies due to its vast mutations. We have modelled the complex structure of the human ACE2 protein and the receptor binding domain (RBD) of Omicron Spike protein (S-protein), and conducted atomistic molecular dynamics simulations to study the binding interactions. The analysis shows that the Omicron RBD binds more strongly to the human ACE2 protein than the original strain. The mutations at the ACE2-RBD interface enhance the tight binding by increasing hydrogen bonding interaction and enlarging buried solvent accessible surface area.
Author Lupala, Cecylia S.
Liu, Haiguang
Chen, Hong
Ye, Yongjin
Su, Xiao-Dong
Author_xml – sequence: 1
  givenname: Cecylia S.
  orcidid: 0000-0002-6987-5230
  surname: Lupala
  fullname: Lupala, Cecylia S.
  organization: Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China
– sequence: 2
  givenname: Yongjin
  surname: Ye
  fullname: Ye, Yongjin
  organization: Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China
– sequence: 3
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, People's Republic of China
– sequence: 4
  givenname: Xiao-Dong
  surname: Su
  fullname: Su, Xiao-Dong
  email: xdsu@pku.edu.cn
  organization: School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, People's Republic of China
– sequence: 5
  givenname: Haiguang
  orcidid: 0000-0001-7324-6632
  surname: Liu
  fullname: Liu, Haiguang
  email: hgliu@csrc.ac.cn
  organization: Complex Systems Division, Beijing Computational Science Research Center, Haidian, Beijing, 100193, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34968782$$D View this record in MEDLINE/PubMed
BookMark eNqNkdFqFDEUhoNU7Lb6Al5ILr2ZMSeTyWZAhO3aVqFSaFW8i5lMss0ym6xJZsG3N8u2ol4UrwI53_9zON8JOvLBG4ReAqmBAH-zrvs-6poSCjXQmsy7J2gGpCMVBcKO0IwQwivawbdjdJLSmhAAxrtn6LhhHRdzQWfo-6cpq-yCTzh4fHP2HgeLbxc3t9UyfK0ovt44Hctkp6JTPuNo0jRm7DxOufyvTMS984PzK5wDvps2yuPF8pwWUJttDvE5emrVmMyL-_cUfbk4_7z8UF1dX35cLq4q3bYsVwMMTBvWC61tq7htLNOspXZQPVgKnQEiLLNzxrkiotNcCWZsyxiFnjRaN6fo3aF3O_UbM2jjc1Sj3Ea3UfGnDMrJvyfe3clV2EkxJ5Q3tBS8vi-I4cdkUpYbl7QZR-VNmJIsEGcchCD_gULbQUcFFPTVn2v93ufBQAHEAShnTikaK7U7GClbulECkXvZci33suVetgQqi-wSpf9EH9ofDb09hEyRsXMmyqSd8doMrijLcgjusfgviTzC6w
CitedBy_id crossref_primary_10_1016_j_microb_2024_100059
crossref_primary_10_1016_j_ijbiomac_2023_125950
crossref_primary_10_1016_j_heliyon_2024_e38085
crossref_primary_10_3390_vaccines10050743
crossref_primary_10_1038_s41598_025_89548_2
crossref_primary_10_1016_j_jiac_2022_07_016
crossref_primary_10_1099_jgv_0_001735
crossref_primary_10_2174_0113816128275739231106055502
crossref_primary_10_1016_j_biopha_2022_112756
crossref_primary_10_1080_0889311X_2024_2363756
crossref_primary_10_1016_j_arabjc_2023_105493
crossref_primary_10_1016_j_ijbiomac_2024_138751
crossref_primary_10_3390_ijms23126587
crossref_primary_10_2139_ssrn_4137687
crossref_primary_10_1016_j_csbj_2022_08_015
crossref_primary_10_3390_v14061177
crossref_primary_10_1016_j_mtbio_2022_100265
crossref_primary_10_3390_diagnostics13050889
crossref_primary_10_1016_j_envres_2022_112816
crossref_primary_10_1038_s42003_024_06951_7
crossref_primary_10_1002_rmv_2373
crossref_primary_10_3389_fimmu_2022_960094
crossref_primary_10_3390_ijms242216069
crossref_primary_10_3390_biom12111607
crossref_primary_10_3390_ijms231911542
crossref_primary_10_1039_D3SD00092C
crossref_primary_10_1007_s10989_024_10630_w
crossref_primary_10_2217_fvl_2022_0003
crossref_primary_10_1002_jmv_27936
crossref_primary_10_1016_j_isci_2022_104935
crossref_primary_10_3390_physchem5010008
crossref_primary_10_1007_s12519_022_00659_6
crossref_primary_10_3390_ijms232314796
crossref_primary_10_1016_j_jksus_2023_103082
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_34133_research_0124
crossref_primary_10_3390_biom12040572
crossref_primary_10_3390_medicina58020226
crossref_primary_10_1080_21645515_2023_2301632
crossref_primary_10_25259_AJBPS_3_2022
crossref_primary_10_1038_s41392_024_01741_3
crossref_primary_10_3390_ijms23147675
crossref_primary_10_3390_v16071150
crossref_primary_10_1039_D2CP00169A
crossref_primary_10_1007_s11356_022_22468_0
crossref_primary_10_3390_biomedicines11112914
crossref_primary_10_3390_v15051129
crossref_primary_10_1016_j_jinf_2022_06_001
crossref_primary_10_1063_5_0188053
crossref_primary_10_3390_ijms25126306
crossref_primary_10_1016_j_prp_2022_154280
crossref_primary_10_1016_j_jmgm_2022_108286
crossref_primary_10_1016_j_ijmmb_2022_10_006
crossref_primary_10_1016_j_eti_2022_102667
crossref_primary_10_2174_2666796703666220827100054
crossref_primary_10_1002_jmv_28882
crossref_primary_10_1371_journal_pone_0285722
crossref_primary_10_3390_ijms23041987
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1186_s11658_022_00352_6
crossref_primary_10_3390_v15061280
crossref_primary_10_1021_acschembio_3c00066
crossref_primary_10_3390_cimb45020112
crossref_primary_10_3389_fmicb_2022_934993
crossref_primary_10_1016_j_jiph_2022_06_004
crossref_primary_10_3389_fpubh_2022_1050034
crossref_primary_10_3389_fsysb_2024_1284668
crossref_primary_10_1016_j_arabjc_2022_103916
crossref_primary_10_1128_jvi_00118_22
crossref_primary_10_1007_s11033_022_07419_9
crossref_primary_10_1007_s11224_022_02022_x
crossref_primary_10_3390_biomedicines10112779
crossref_primary_10_3389_fimmu_2024_1341600
crossref_primary_10_1016_j_ijbiomac_2022_12_120
crossref_primary_10_22207_JPAM_17_3_22
crossref_primary_10_1016_j_antiviral_2022_105428
crossref_primary_10_1128_spectrum_01250_22
crossref_primary_10_7759_cureus_26807
crossref_primary_10_2174_1871525721666230406075646
crossref_primary_10_1128_aac_00083_22
crossref_primary_10_3390_v14091861
crossref_primary_10_3389_fphar_2022_955648
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_1016_j_isci_2022_105202
crossref_primary_10_1016_j_heliyon_2024_e27193
crossref_primary_10_31083_j_fbl2702065
crossref_primary_10_3389_fchem_2022_892093
crossref_primary_10_12677_AMB_2022_112006
crossref_primary_10_54097_hset_v8i_1213
crossref_primary_10_1016_j_bpj_2023_09_003
crossref_primary_10_1021_acs_jmedchem_2c01229
crossref_primary_10_21055_0370_1069_2023_4_156_159
crossref_primary_10_1128_spectrum_02143_22
crossref_primary_10_3389_fmed_2022_825245
crossref_primary_10_3390_tropicalmed7110373
crossref_primary_10_1007_s11357_022_00532_4
crossref_primary_10_1016_j_compbiomed_2022_105903
crossref_primary_10_1016_j_jmgm_2023_108540
crossref_primary_10_3390_v15081752
crossref_primary_10_1016_j_antiviral_2024_106006
crossref_primary_10_3390_v15020408
crossref_primary_10_1016_j_azn_2025_02_001
crossref_primary_10_33073_pjm_2022_053
crossref_primary_10_1002_jcc_27025
crossref_primary_10_1007_s00894_023_05509_4
crossref_primary_10_1016_j_vaccine_2023_12_008
crossref_primary_10_1007_s10753_022_01734_w
crossref_primary_10_1016_j_ijbiomac_2022_07_254
crossref_primary_10_1088_0256_307X_39_10_108701
crossref_primary_10_1007_s10238_023_01276_x
crossref_primary_10_3389_fimmu_2022_834098
crossref_primary_10_1002_cnl2_46
crossref_primary_10_1007_s10930_022_10065_6
crossref_primary_10_1016_j_opresp_2022_100169
crossref_primary_10_3389_fmicb_2024_1358530
crossref_primary_10_1016_j_bbrc_2023_03_057
crossref_primary_10_1002_pro_4447
crossref_primary_10_2217_imt_2022_0064
crossref_primary_10_1002_jmv_27585
crossref_primary_10_1038_s41598_023_34220_w
crossref_primary_10_1093_abt_tbac032
crossref_primary_10_3390_app12115546
crossref_primary_10_3390_ijms23084376
crossref_primary_10_1002_bies_202200060
crossref_primary_10_1155_2022_4813199
crossref_primary_10_1016_j_imu_2022_101074
crossref_primary_10_30629_0023_2149_2023_101_6_265_274
crossref_primary_10_1080_07391102_2022_2142296
crossref_primary_10_3390_ijerph20021647
crossref_primary_10_2217_fvl_2022_0152
crossref_primary_10_1002_slct_202201380
crossref_primary_10_1093_bfgp_elac053
crossref_primary_10_1128_jvi_01250_22
crossref_primary_10_3390_v14081769
crossref_primary_10_1002_jmv_27749
crossref_primary_10_1038_s41598_022_26803_w
crossref_primary_10_3390_vaccines12040342
crossref_primary_10_1080_07391102_2023_2283158
crossref_primary_10_3389_fimmu_2022_1012526
crossref_primary_10_1186_s12879_023_08341_6
crossref_primary_10_1002_jmv_27633
crossref_primary_10_1021_acsinfecdis_3c00312
crossref_primary_10_3389_fimmu_2023_1162211
crossref_primary_10_1039_D2NJ05136B
crossref_primary_10_1371_journal_pone_0266844
crossref_primary_10_3390_v16010060
crossref_primary_10_1016_j_coviro_2023_101349
crossref_primary_10_1016_j_ijbiomac_2024_129785
crossref_primary_10_1128_spectrum_03120_22
crossref_primary_10_3390_antib12010017
crossref_primary_10_5812_jjm_137863
crossref_primary_10_1021_acs_jpclett_2c01155
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_3390_ijms25042174
crossref_primary_10_1016_j_cyto_2024_156592
crossref_primary_10_3390_vaccines10091468
crossref_primary_10_1016_j_compbiomed_2022_105758
crossref_primary_10_3390_v14102292
crossref_primary_10_1021_acs_jcim_2c00397
Cites_doi 10.1126/science.abb2762
10.1073/pnas.2008209117
10.1063/1.328693
10.1002/prot.10613
10.1038/s41562-021-01122-8
10.1073/pnas.2010146117
10.1038/s41422-021-00554-1
10.1063/1.464397
10.47799/pimr.0903.01
10.1103/PhysRevA.31.1695
10.1038/s41586-020-2179-y
10.1038/s41586-020-2180-5
10.15302/J-QB-020-0231
10.1038/s41422-021-00555-0
10.1038/s41577-021-00592-1
10.1016/0263-7855(96)00018-5
10.1126/science.abh1766
10.1021/acs.jctc.5b00935
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1002/pro.3280
10.1038/s41423-020-0458-z
10.1073/pnas.1705628114
10.1016/j.softx.2015.06.001
10.1016/j.cell.2020.03.045
10.1016/S0140-6736(21)02046-8
10.1007/s11427-020-1637-5
10.1063/1.447334
10.1016/S0022-2836(02)00470-9
10.1016/j.jiph.2021.08.011
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bbrc.2021.12.079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 41
ExternalDocumentID PMC8702632
34968782
10_1016_j_bbrc_2021_12_079
S0006291X21017204
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZA5
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
RIG
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c554t-d1d4ce4b8ccf5a6f3f4c452fdab1f219e108f4f7466a089c6a84ef54421b03cc3
IEDL.DBID .~1
ISSN 0006-291X
1090-2104
IngestDate Thu Aug 21 14:14:14 EDT 2025
Thu Jul 10 18:08:19 EDT 2025
Fri Jul 11 10:45:16 EDT 2025
Wed Feb 19 02:25:56 EST 2025
Tue Jul 01 01:44:23 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ACE2
SARS-CoV-2
Omicron mutant
Molecular dynamics simulation
Receptor binding domain
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-d1d4ce4b8ccf5a6f3f4c452fdab1f219e108f4f7466a089c6a84ef54421b03cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6987-5230
0000-0001-7324-6632
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8702632
PMID 34968782
PQID 2615919281
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8702632
proquest_miscellaneous_2636461880
proquest_miscellaneous_2615919281
pubmed_primary_34968782
crossref_citationtrail_10_1016_j_bbrc_2021_12_079
crossref_primary_10_1016_j_bbrc_2021_12_079
elsevier_sciencedirect_doi_10_1016_j_bbrc_2021_12_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-29
PublicationDateYYYYMMDD 2022-01-29
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ishigami, Zatsepin, Hikita, Conrad, Nelson, Coe, Basu, Grant, Seaberg, Sierra, Hunter, Fromme, Fromme, Yeh, Rousseau (bib1) 2017; 114
Hoover (bib19) 1985; 31
Johns Hopkins Coronavirus Resource Center, (n.d).
Nosé (bib18) 1984; 81
Cao, Wang, Jian, Xiao, Song, Yisimayi, Huang, Li, Wang, An, Wang, Wang, Niu, Yang, Liang, Sun, Li, Yu, Cui, Liu, Yang, Du, Zhang, Hao, Shao, Jin, Wang, Xiao, Wang, Xie (bib34) 2021
Darden, York, Pedersen (bib22) 1993; 98
Krause, Fleming, Peto, Longini, Figueroa, Sterne, Cravioto, Rees, Higgins, Boutron, Pan, Gruber, Arora, Kazi, Gaspar, Swaminathan, Ryan, Henao-Restrepo (bib5) 2021; 398
Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindah (bib21) 2015; 1–2
Wang, Liu, Gao (bib12) 2020; 117
Jurrus, Engel, Star, Monson, Brandi, Felberg, Brookes, Wilson, Chen, Liles, Chun, Li, Gohara, Dolinsky, Konecny, Koes, Nielsen, Head-Gordon, Geng, Krasny, Wei, Holst, McCammon, Baker (bib25) 2018; 27
Humphrey, Dalke, Schulten (bib24) 1996; 14
Yi, Sun, Ye, Ding, Liu, Yang, Lu, Zhang, Ma, Gu, Qu, Xu, Shi, Ling, Sun (bib29) 2020; 17
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib31) 2020
Shang, Ye, Shi, Wan, Luo, Aihara, Geng, Auerbach, Li (bib10) 2020; 581
Mathieu, Ritchie, Ortiz-Ospina, Roser, Hasell, Appel, Giattino, Rodés-Guirao (bib3) 2021; 5
(accessed December 9, 2021)..
Damas, Hughes, Keough, Painter, Persky, Corbo, Hiller, Koepfli, Pfenning, Zhao, Genereux, Swofford, Pollard, Ryder, Nweeia, Lindblad-Toh, Teeling, Karlsson, Lewin (bib15) 2020; 117
Vashi, Coiado (bib6) 2021; 14
Wang, Zhou, Zhang, Yang, Schramm, Shi, Pegu, Oloniniyi, Henry, Darko, Narpala, Hatcher, Martinez, Tsybovsky, Phung, Abiona, Antia, Cale, Chang, Choe, Corbett, Davis, DiPiazza, Gordon, Hait, Hermanus, Kgagudi, Laboune, Leung, Liu, Mason, Nazzari, Novik, O'Connell, O'Dell, Olia, Schmidt, Stephens, Stringham, Talana, Teng, Wagner, Widge, Zhang, Roederer, Ledgerwood, Ruckwardt, Gaudinski, Moore, Doria-Rose, Baric, Graham, McDermott, Douek, Kwong, Mascola, Sullivan, Misasi (bib7) 2021; 373
Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (bib27) 2004; 55
Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen, Wang, Zhou, Yan, Qi (bib30) 2020; 181
(accessed December 13, 2021).
Yan, Zhang, Li, Xia, Guo, Zhou (bib11) 2020; 367
Tregoning, Flight, Higham, Wang, Pierce (bib4) 2021
Xu, Wang, Zhao, Liang, Peng, Song, Wu, Wang, Su (bib33) 2021; 31
Parrinello, Rahman (bib20) 1981; 52
(accessed December 9, 2021).
Schrödinger (bib26) 2021
Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern, (n.d.).
Du, Liu, Zhang, Xiao, Yasimayi, Huang, Wang, Cao, Xie, Xiao (bib32) 2021; 31
Science Brief: Omicron (B.1.1.529) Variant | CDC, (n.d.).
Lupala, Kumar, Su, Wu, Liu (bib16) 2021
Lee, Cheng, Swails, Yeom, Eastman, Lemkul, Wei, Buckner, Jeong, Qi, Jo, Pande, Case, Brooks, MacKerell, Klauda, Im (bib17) 2016; 12
Lupala, Li, Lei, Chen, Qi, Liu, Su (bib13) 2021; 9
Jacobson, Friesner, Xiang, Honig (bib28) 2002; 320
Hess, Bekker, Berendsen, Fraaije (bib23) 1997; 18
Xu, Chen, Wang, Feng, Zhou, Li, Zhong, Hao (bib14) 2020; 63
Wang (10.1016/j.bbrc.2021.12.079_bib7) 2021; 373
Tregoning (10.1016/j.bbrc.2021.12.079_bib4) 2021
10.1016/j.bbrc.2021.12.079_bib9
Hoover (10.1016/j.bbrc.2021.12.079_bib19) 1985; 31
Lupala (10.1016/j.bbrc.2021.12.079_bib13) 2021; 9
10.1016/j.bbrc.2021.12.079_bib8
Damas (10.1016/j.bbrc.2021.12.079_bib15) 2020; 117
Parrinello (10.1016/j.bbrc.2021.12.079_bib20) 1981; 52
Lan (10.1016/j.bbrc.2021.12.079_bib31) 2020
Vashi (10.1016/j.bbrc.2021.12.079_bib6) 2021; 14
Cao (10.1016/j.bbrc.2021.12.079_bib34) 2021
Xu (10.1016/j.bbrc.2021.12.079_bib14) 2020; 63
Ishigami (10.1016/j.bbrc.2021.12.079_bib1) 2017; 114
Du (10.1016/j.bbrc.2021.12.079_bib32) 2021; 31
Mathieu (10.1016/j.bbrc.2021.12.079_bib3) 2021; 5
Humphrey (10.1016/j.bbrc.2021.12.079_bib24) 1996; 14
Xu (10.1016/j.bbrc.2021.12.079_bib33) 2021; 31
Darden (10.1016/j.bbrc.2021.12.079_bib22) 1993; 98
Jacobson (10.1016/j.bbrc.2021.12.079_bib28) 2002; 320
Lupala (10.1016/j.bbrc.2021.12.079_bib16) 2021
Jacobson (10.1016/j.bbrc.2021.12.079_bib27) 2004; 55
Hess (10.1016/j.bbrc.2021.12.079_bib23) 1997; 18
Yi (10.1016/j.bbrc.2021.12.079_bib29) 2020; 17
10.1016/j.bbrc.2021.12.079_bib2
Lee (10.1016/j.bbrc.2021.12.079_bib17) 2016; 12
Krause (10.1016/j.bbrc.2021.12.079_bib5) 2021; 398
Yan (10.1016/j.bbrc.2021.12.079_bib11) 2020; 367
Wang (10.1016/j.bbrc.2021.12.079_bib30) 2020; 181
Shang (10.1016/j.bbrc.2021.12.079_bib10) 2020; 581
Nosé (10.1016/j.bbrc.2021.12.079_bib18) 1984; 81
Abraham (10.1016/j.bbrc.2021.12.079_bib21) 2015; 1–2
Jurrus (10.1016/j.bbrc.2021.12.079_bib25) 2018; 27
Schrödinger (10.1016/j.bbrc.2021.12.079_bib26) 2021
Wang (10.1016/j.bbrc.2021.12.079_bib12) 2020; 117
References_xml – reference: (accessed December 9, 2021).
– year: 2021
  ident: bib26
  article-title: Schrödinger Release 2021-4: Prime
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bib20
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 373
  year: 2021
  ident: bib7
  article-title: Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants
  publication-title: Science
– volume: 9
  start-page: 61
  year: 2021
  ident: bib13
  article-title: Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
  publication-title: Quant. Biol.
– volume: 398
  start-page: 1377
  year: 2021
  end-page: 1380
  ident: bib5
  article-title: Considerations in boosting COVID-19 vaccine immune responses
  publication-title: Lancet
– year: 2020
  ident: bib31
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: bib11
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 63
  start-page: 457
  year: 2020
  end-page: 460
  ident: bib14
  article-title: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission
  publication-title: Sci. China Life Sci.
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  ident: bib21
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– reference: Johns Hopkins Coronavirus Resource Center, (n.d).
– volume: 117
  start-page: 22311
  year: 2020
  end-page: 22322
  ident: bib15
  article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: bib23
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
– volume: 55
  start-page: 351
  year: 2004
  end-page: 367
  ident: bib27
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins Struct. Funct. Bioinforma.
– volume: 320
  start-page: 597
  year: 2002
  end-page: 608
  ident: bib28
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J. Mol. Biol.
– volume: 114
  start-page: 8011
  year: 2017
  end-page: 8016
  ident: bib1
  article-title: Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 27
  start-page: 112
  year: 2018
  end-page: 128
  ident: bib25
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bib24
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 31
  start-page: 1130
  year: 2021
  end-page: 1133
  ident: bib32
  article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants
  publication-title: Cell Res.
– reference: Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern, (n.d.).
– start-page: 626
  year: 2021
  end-page: 636
  ident: bib4
  article-title: Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape
  publication-title: Nat. Rev. Immunol.
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: bib22
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– reference: (accessed December 9, 2021)..
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904
  ident: bib30
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
– volume: 31
  start-page: 1126
  year: 2021
  end-page: 1129
  ident: bib33
  article-title: Structure-based analyses of neutralization antibodies interacting with naturally occurring SARS-CoV-2 RBD variants
  publication-title: Cell Res.
– reference: Science Brief: Omicron (B.1.1.529) Variant | CDC, (n.d.).
– volume: 117
  start-page: 13967
  year: 2020
  end-page: 13974
  ident: bib12
  article-title: Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– reference: (accessed December 13, 2021).
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bib19
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A.
– year: 2021
  ident: bib34
  article-title: B.1.1.529 Escapes the Majority of SARS-CoV-2 Neutralizing Antibodies of Diverse Epitopes
– volume: 14
  start-page: 1461
  year: 2021
  end-page: 1465
  ident: bib6
  article-title: The future of COVID-19: a vaccine review
  publication-title: J. Infect. Public Health.
– volume: 12
  start-page: 405
  year: 2016
  end-page: 413
  ident: bib17
  article-title: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
  publication-title: J. Chem. Theor. Comput.
– year: 2021
  ident: bib16
  article-title: Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain
  publication-title: Comput. Biol. Med.
– volume: 5
  start-page: 947
  year: 2021
  end-page: 953
  ident: bib3
  article-title: A global database of COVID-19 vaccinations
  publication-title: Nat. Hum. Behav.
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: bib10
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: bib18
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 621
  year: 2020
  end-page: 630
  ident: bib29
  article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
  publication-title: Cell. Mol. Immunol.
– volume: 367
  start-page: 1444
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib11
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 117
  start-page: 13967
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib12
  article-title: Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.2008209117
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.bbrc.2021.12.079_bib20
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 55
  start-page: 351
  year: 2004
  ident: 10.1016/j.bbrc.2021.12.079_bib27
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins Struct. Funct. Bioinforma.
  doi: 10.1002/prot.10613
– volume: 5
  start-page: 947
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib3
  article-title: A global database of COVID-19 vaccinations
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01122-8
– volume: 117
  start-page: 22311
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib15
  article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2010146117
– volume: 31
  start-page: 1126
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib33
  article-title: Structure-based analyses of neutralization antibodies interacting with naturally occurring SARS-CoV-2 RBD variants
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00554-1
– ident: 10.1016/j.bbrc.2021.12.079_bib2
– volume: 98
  start-page: 10089
  year: 1993
  ident: 10.1016/j.bbrc.2021.12.079_bib22
  article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– ident: 10.1016/j.bbrc.2021.12.079_bib8
  doi: 10.47799/pimr.0903.01
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.bbrc.2021.12.079_bib19
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.31.1695
– year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib26
– volume: 581
  start-page: 221
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib10
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib31
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 9
  start-page: 61
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib13
  article-title: Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
  publication-title: Quant. Biol.
  doi: 10.15302/J-QB-020-0231
– volume: 31
  start-page: 1130
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib32
  article-title: Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00555-0
– start-page: 626
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib4
  article-title: Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00592-1
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.bbrc.2021.12.079_bib24
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 373
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib7
  article-title: Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants
  publication-title: Science
  doi: 10.1126/science.abh1766
– volume: 12
  start-page: 405
  year: 2016
  ident: 10.1016/j.bbrc.2021.12.079_bib17
  article-title: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.5b00935
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.bbrc.2021.12.079_bib23
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 27
  start-page: 112
  year: 2018
  ident: 10.1016/j.bbrc.2021.12.079_bib25
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
  doi: 10.1002/pro.3280
– volume: 17
  start-page: 621
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib29
  article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-0458-z
– volume: 114
  start-page: 8011
  year: 2017
  ident: 10.1016/j.bbrc.2021.12.079_bib1
  article-title: Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1705628114
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 10.1016/j.bbrc.2021.12.079_bib21
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 181
  start-page: 894
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib30
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 398
  start-page: 1377
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib5
  article-title: Considerations in boosting COVID-19 vaccine immune responses
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02046-8
– volume: 63
  start-page: 457
  year: 2020
  ident: 10.1016/j.bbrc.2021.12.079_bib14
  article-title: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-020-1637-5
– volume: 81
  start-page: 511
  year: 1984
  ident: 10.1016/j.bbrc.2021.12.079_bib18
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 320
  start-page: 597
  year: 2002
  ident: 10.1016/j.bbrc.2021.12.079_bib28
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00470-9
– volume: 14
  start-page: 1461
  year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib6
  article-title: The future of COVID-19: a vaccine review
  publication-title: J. Infect. Public Health.
  doi: 10.1016/j.jiph.2021.08.011
– year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib34
– year: 2021
  ident: 10.1016/j.bbrc.2021.12.079_bib16
  article-title: Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain
  publication-title: Comput. Biol. Med.
– ident: 10.1016/j.bbrc.2021.12.079_bib9
SSID ssj0011469
Score 2.6694374
Snippet The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to more than 270 million infections and 5.3 million of deaths worldwide. Several major variants of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms ACE2
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - metabolism
Binding Sites
COVID-19 - metabolism
COVID-19 infection
Host-Pathogen Interactions
Humans
hydrogen
Molecular Docking Simulation
molecular dynamics
Molecular Dynamics Simulation
Mutation
neutralization
Omicron mutant
pandemic
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
Receptor binding domain
SARS-CoV-2
SARS-CoV-2 - chemistry
SARS-CoV-2 - genetics
SARS-CoV-2 - physiology
Severe acute respiratory syndrome coronavirus 2
solvents
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
surface area
viruses
Title Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor
URI https://dx.doi.org/10.1016/j.bbrc.2021.12.079
https://www.ncbi.nlm.nih.gov/pubmed/34968782
https://www.proquest.com/docview/2615919281
https://www.proquest.com/docview/2636461880
https://pubmed.ncbi.nlm.nih.gov/PMC8702632
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqVgguqLRAl4_KSIgLCo0dx-s9pqHVAqJILUV7M7ZjQ1DrVLtZJC78djxOsmIB7YFblIwlxzMez9hvnhF6XoUgvmKZTrQLLpAp7RKhiA1ZitaZUExRHVG-Z3x6yd7O8tkWKodaGIBV9r6_8-nRW_dvjvrRPLqpa6jxTTmdkBkFq6KRE5SxMVj5q58rmAcU3fYhME9Aui-c6TBeWs-BxpCSuCUIcK5_L05_B59_Yih_W5ROd9HdPprERdfhe2jL-j20X_iQSV__wC9wxHfGjfM9dOt4eLpdDre87aPP75fdYfwCNx6fH7_GjcMXxflFUjafEoo_XANiz-PvIacOSsAhO19etbj2eAGb6F_sHOs6VsbgtsHxxj9clCc0CAJgppnfR5enJx_LadLfupCYEFq0SUUqZizTwhiXK-4yxwzLqauUJi74N0tS4ZgbM85VKiaGK8GsyxmjRKeZMdkDtO0bbw8QJqIy2uqUm1Qzp_RE5EIZZzKixkqxdITIMNzS9JTkcDPGlRywZ98kqEiCiiShMqhohF6u2tx0hBwbpfNBi3LNrGRYMTa2ezaoXAaFwCGK8rZZLmTIOPNJCIsF2SSTccaB6W6EHnZmsuorEPSLEJaN0HjNgFYCwPe9_sXXXyPvd3CtwK7_6D__6TG6Q6F2IyVhIjxB2-18aZ-GiKrVh3HKHKKd4s276dkvgbshVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTmi8INiAlU8jIV5QtNhxUvcxC5s6thVpH6hvxnZsCNqSqU2R-O-5y0dFAfWBtyixJcd3Pt_Zv_sdIW9zcOJzEZnAeDCBQhsfSM0cRCnGRFILzU2D8p0mk2vxcRbPtkjW58IgrLKz_a1Nb6x19-agm82Du6LAHN8w4WM246hVHDlBt5GdKh6Q7fTkdDJdXSaAMei84CTADl3uTAvzMmaOTIacNaeCiOj69_70t__5J4zyt33p-CF50DmUNG3H_IhsuXKX7KUlBNO3P-k72kA8m7PzXXLvsH_ayfpCb3vky_myvY9f0KqkF4cfaOXpZXpxGWTV54DTT7cI2ivpDwirQQ4UAvTlTU2Lki7wHP2rm1NTNMkxtK5oU_SPptkRh4aImanmj8n18dFVNgm6wguBBe-iDnKWC-uEkdb6WCc-8sKKmPtcG-bBxDkWSi_8SCSJDuXYJloK52MhODNhZG30hAzKqnT7hDKZW-NMmNjQCK_NWMZSW28jpkdai3BIWD_dynas5Fgc40b18LPvCkWkUESKcQUiGpL3qz53LSfHxtZxL0W1plkKNo2N_d70IlcgELxH0aWrlgsFQWc8Bs9Ysk1tokQkSHY3JE9bNVmNFTn6JXhmQzJaU6BVA6T8Xv9SFt8a6m-wrkiw_-w__-k12ZlcnZ-ps5Pp6XNyn2MqR8hgUbwgg3q-dC_BwarNq24B_QJV2SQF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+on+RBD+of+SARS-CoV-2+Omicron+variant+result+in+stronger+binding+to+human+ACE2+receptor&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Lupala%2C+Cecylia+S&rft.au=Ye%2C+Yongjin&rft.au=Chen%2C+Hong&rft.au=Su%2C+Xiao-Dong&rft.date=2022-01-29&rft.eissn=1090-2104&rft.volume=590&rft.spage=34&rft_id=info:doi/10.1016%2Fj.bbrc.2021.12.079&rft_id=info%3Apmid%2F34968782&rft.externalDocID=34968782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon