Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii

We aimed to isolate Acinetobacter baumannii ( A. baumannii ) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 10751 - 11
Main Authors Hetta, Helal F., Al-Kadmy, Israa M. S., Khazaal, Saba Saadoon, Abbas, Suhad, Suhail, Ahmed, El-Mokhtar, Mohamed A., Ellah, Noura H. Abd, Ahmed, Esraa A., Abd-ellatief, Rasha B., El-Masry, Eman A., Batiha, Gaber El-Saber, Elkady, Azza A., Mohamed, Nahed A., Algammal, Abdelazeem M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-90208-4

Cover

Loading…
Abstract We aimed to isolate Acinetobacter baumannii ( A. baumannii ) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes ( afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes ( bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114 ) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH , afa/draBC , cnf1 , csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii . AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
AbstractList We aimed to isolate Acinetobacter baumannii ( A. baumannii ) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes ( afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes ( bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114 ) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH , afa/draBC , cnf1 , csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii . AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
Abstract We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
ArticleNumber 10751
Author Hetta, Helal F.
Elkady, Azza A.
Mohamed, Nahed A.
Algammal, Abdelazeem M.
Khazaal, Saba Saadoon
Abbas, Suhad
Ellah, Noura H. Abd
Abd-ellatief, Rasha B.
Batiha, Gaber El-Saber
Suhail, Ahmed
El-Mokhtar, Mohamed A.
Ahmed, Esraa A.
El-Masry, Eman A.
Al-Kadmy, Israa M. S.
Author_xml – sequence: 1
  givenname: Helal F.
  surname: Hetta
  fullname: Hetta, Helal F.
  email: helalhetta@aun.edu.eg
  organization: Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Department of Internal Medicine, University of Cincinnati College of Medicine
– sequence: 2
  givenname: Israa M. S.
  surname: Al-Kadmy
  fullname: Al-Kadmy, Israa M. S.
  email: israa.al-kadmy@plymouth.ac.uk
  organization: Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiriyah University, Faculty of Science and Engineering, School of Engineering, University of Plymouth
– sequence: 3
  givenname: Saba Saadoon
  surname: Khazaal
  fullname: Khazaal, Saba Saadoon
  organization: Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiriyah University
– sequence: 4
  givenname: Suhad
  surname: Abbas
  fullname: Abbas, Suhad
  organization: Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiriyah University
– sequence: 5
  givenname: Ahmed
  surname: Suhail
  fullname: Suhail, Ahmed
  organization: Wolfson Nanomaterials and Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, Plymouth University
– sequence: 6
  givenname: Mohamed A.
  surname: El-Mokhtar
  fullname: El-Mokhtar, Mohamed A.
  organization: Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University
– sequence: 7
  givenname: Noura H. Abd
  surname: Ellah
  fullname: Ellah, Noura H. Abd
  organization: Department of Pharmaceutics, Faculty of Pharmacy, Assiut University
– sequence: 8
  givenname: Esraa A.
  surname: Ahmed
  fullname: Ahmed, Esraa A.
  organization: Department of Pharmacology, Faculty of Medicine, Assiut University, Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University
– sequence: 9
  givenname: Rasha B.
  surname: Abd-ellatief
  fullname: Abd-ellatief, Rasha B.
  organization: Department of Pharmacology, Faculty of Medicine, Assiut University
– sequence: 10
  givenname: Eman A.
  surname: El-Masry
  fullname: El-Masry, Eman A.
  organization: Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University
– sequence: 11
  givenname: Gaber El-Saber
  surname: Batiha
  fullname: Batiha, Gaber El-Saber
  organization: Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University
– sequence: 12
  givenname: Azza A.
  surname: Elkady
  fullname: Elkady, Azza A.
  organization: Sohag University Medical Administration, Sohag University
– sequence: 13
  givenname: Nahed A.
  surname: Mohamed
  fullname: Mohamed, Nahed A.
  organization: Department of Medical Biochemistry, Faculty of Medicine, Assiut University
– sequence: 14
  givenname: Abdelazeem M.
  surname: Algammal
  fullname: Algammal, Abdelazeem M.
  organization: Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University
BookMark eNp9kk1v3CAQhq0qVZOm-QM9WeqlF7eAAeNLpVXUj0iRemjvaAzjLSsMW8CR-u_DZldtk0OQEGh434dhmNfNWYgBm-YtJR8o6dXHzKkYVUcY7UbCiOr4i-aCES461jN29t_-vLnKeUfqEGzkdHzVnPec9JQP7KLJm1Dc5OLs_NJCsHUWd-fS6jEYbPexYA2Ab-PcZufvMLUBQtxDKs54zC1swYVc2mX1xdm0bruE2eVSOe3GuIAlTmBK9U2wLhCCc2-alzP4jFen9bL58eXzz-tv3e33rzfXm9vOCMFLZ-yIxoyEyn4apCIwKCHZbATvLfQCBgqzYkr1I0qUkls7TcpyahlKkP1lc3Ok2gg7vU9ugfRHR3D6IRDTVp8eoccJJCJBy8DyUTIYkRPgyvRUzkqIyvp0ZO3XaUFrak0S-EfQxyfB_dLbeKcV5VwMB8D7EyDF3yvmoheXDXoPAeOaNRP1o7io6ip990S6i2sKtVAHFeWMSD5UFTuqTIo5J5z_JkOJPjSIPjaIrg2iHxpEH9Dqicm4AsXFQ9LOP2_tj9Zc7wlbTP-yesZ1D-HH03E
CitedBy_id crossref_primary_10_1016_j_jciso_2023_100098
crossref_primary_10_2147_IDR_S328788
crossref_primary_10_1016_j_ijpharm_2023_122967
crossref_primary_10_1007_s00210_024_03554_1
crossref_primary_10_1007_s11481_024_10134_w
crossref_primary_10_2147_IDR_S377797
crossref_primary_10_1038_s41598_024_53441_1
crossref_primary_10_1016_j_micpath_2022_105806
crossref_primary_10_1007_s11033_023_09156_z
crossref_primary_10_1007_s11250_023_03796_w
crossref_primary_10_1016_j_molstruc_2024_140440
crossref_primary_10_1007_s00203_021_02687_8
crossref_primary_10_2174_1568026622666220919124104
crossref_primary_10_1111_jcpt_13787
crossref_primary_10_3389_fmicb_2024_1387114
crossref_primary_10_1186_s12934_024_02508_9
crossref_primary_10_1016_j_nanoso_2025_101437
crossref_primary_10_1186_s13104_022_06218_6
crossref_primary_10_1039_D4TB00701H
crossref_primary_10_1016_j_inoche_2025_113893
crossref_primary_10_1016_j_micpath_2024_106842
crossref_primary_10_1039_D4PM00173G
crossref_primary_10_3390_pathogens13121049
crossref_primary_10_3390_bios13121031
crossref_primary_10_3390_nano12071115
crossref_primary_10_1016_j_jiph_2024_102501
crossref_primary_10_1039_D2BM01399A
crossref_primary_10_3390_antibiotics12081264
crossref_primary_10_1021_acsabm_2c00014
crossref_primary_10_1021_jacs_4c16035
crossref_primary_10_1016_j_aquatox_2023_106513
crossref_primary_10_1007_s13204_022_02712_2
crossref_primary_10_1016_j_ijbiomac_2022_07_065
crossref_primary_10_1097_MRM_0000000000000343
crossref_primary_10_1016_j_bbrc_2023_149126
crossref_primary_10_1016_j_micpath_2023_106184
crossref_primary_10_3390_pathogens12050746
crossref_primary_10_1016_j_ijbiomac_2024_133438
crossref_primary_10_1016_j_inoche_2024_113443
crossref_primary_10_3389_fmicb_2023_1125685
crossref_primary_10_3390_biology11091343
crossref_primary_10_3390_microorganisms10071297
crossref_primary_10_2174_0113892010290653240109053852
crossref_primary_10_1016_j_ijpharm_2024_124761
crossref_primary_10_3390_antibiotics11091205
crossref_primary_10_3389_fmicb_2022_855077
crossref_primary_10_3390_antibiotics10121548
crossref_primary_10_1007_s11033_023_08447_9
crossref_primary_10_1007_s11033_024_09979_4
crossref_primary_10_3389_fmicb_2022_1028086
crossref_primary_10_1080_08927014_2022_2156286
crossref_primary_10_1016_j_ijbiomac_2024_139012
crossref_primary_10_1039_D4PM00314D
crossref_primary_10_1155_2022_8243192
crossref_primary_10_3390_ph18030364
crossref_primary_10_1097_MRM_0000000000000325
crossref_primary_10_3390_antibiotics14010005
crossref_primary_10_3390_ph15050549
crossref_primary_10_1016_j_micpath_2025_107454
crossref_primary_10_1039_D4MD00449C
crossref_primary_10_1093_lambio_ovae053
crossref_primary_10_3390_microorganisms11102439
crossref_primary_10_1007_s42770_024_01438_3
crossref_primary_10_1016_j_micres_2022_127032
crossref_primary_10_1007_s10904_023_02992_3
crossref_primary_10_3389_fvets_2022_1006090
crossref_primary_10_1038_s41598_022_24531_9
crossref_primary_10_3390_molecules29153466
crossref_primary_10_3390_pathogens12081033
crossref_primary_10_1007_s00203_022_03332_8
crossref_primary_10_3390_ph17111555
crossref_primary_10_2217_fmb_2023_0263
crossref_primary_10_1371_journal_pone_0266443
crossref_primary_10_1016_j_heliyon_2024_e40931
crossref_primary_10_61186_JoMMID_11_4_192
crossref_primary_10_1007_s10534_024_00589_y
crossref_primary_10_1016_j_aquaculture_2024_740719
crossref_primary_10_3390_microorganisms10112279
crossref_primary_10_1016_j_onano_2024_100213
crossref_primary_10_1016_j_apmt_2024_102335
crossref_primary_10_1007_s12010_023_04587_7
crossref_primary_10_1097_MRM_0000000000000422
crossref_primary_10_1016_j_micpath_2024_106957
crossref_primary_10_3390_microorganisms10020303
crossref_primary_10_3390_biomedicines11020413
crossref_primary_10_1016_j_envres_2023_115782
crossref_primary_10_1007_s00775_022_01977_w
crossref_primary_10_1007_s11033_021_06690_6
crossref_primary_10_3390_antibiotics12081296
crossref_primary_10_3390_molecules27217589
crossref_primary_10_1002_jobm_202200612
crossref_primary_10_1016_j_ajic_2022_12_009
crossref_primary_10_2174_1389200224666230731093319
crossref_primary_10_3390_antibiotics11050614
crossref_primary_10_1021_acsomega_3c10352
crossref_primary_10_1016_j_ijbiomac_2022_12_045
crossref_primary_10_3390_antibiotics12010104
crossref_primary_10_1007_s10096_023_04677_8
crossref_primary_10_32947_ajps_v23i3_1049
crossref_primary_10_1186_s13568_023_01615_x
crossref_primary_10_3390_pharmaceutics14010111
crossref_primary_10_1016_j_jhazmat_2023_131867
crossref_primary_10_1080_10826068_2025_2472937
Cites_doi 10.1016/j.cimid.2020.101451
10.1016/j.micpath.2018.01.033
10.2217/fmb.09.5
10.1016/j.carbpol.2017.07.030
10.4061/2011/454090
10.3389/fmicb.2020.00215
10.2147/IDR.S198373
10.1016/j.jddst.2019.101169
10.1111/wrr.12718
10.2217/nnm-2018-0348
10.2217/nnm-2020-0001
10.1099/mic.0.26541-0
10.3390/molecules25133091
10.1016/j.micpath.2017.08.001
10.1186/s13756-018-0405-2
10.1016/j.jphotobiol.2018.09.012
10.3389/fchem.2020.00286
10.12998/wjcc.v7.i10.1111
10.1038/nrmicro.2017.148
10.1016/j.nmni.2018.07.001
10.1016/j.colsurfb.2018.12.032
10.1016/j.nano.2011.05.007
10.3390/antibiotics9100641
10.2147/IDR.S272733
10.1186/1476-0711-9-17
10.1186/s12866-016-0837-x
10.3389/fmicb.2019.00539
10.2147/IDR.S276975
10.1097/TA.0000000000001338
10.1186/2228-5326-2-32
10.2147/IJN.S196842
10.1186/s12866-015-0440-6
10.2147/IDR.S234425
10.1111/2049-632X.12125
10.1007/s12154-011-0063-9
10.1016/j.resmic.2005.09.011
10.1016/j.proche.2009.11.004
10.2147/IDR.S151783
10.1038/s41598-019-56847-4
10.3390/antibiotics9090603
10.3390/molecules25153479
10.3389/fmicb.2016.00049
10.1128/AAC.00415-17
10.2147/IJN.S124294
10.1093/jac/dks382
10.3390/antibiotics10010057
10.1016/j.jrras.2015.10.002
10.1016/j.nano.2007.02.001
10.1021/es103450g
10.1128/aac.01650-12
10.1080/22221751.2020.1754133
10.1016/j.genrep.2019.100557
10.2217/nnm-2020-0247
10.2147/IDR.S201124
10.1007/s11051-008-9428-6
10.1073/pnas.1800961115
10.1166/jnn.2018.15013
10.2147/IJN.S24793
10.1038/s41598-020-79479-5
10.1016/j.apjtb.2016.04.006
10.1016/j.chemosphere.2017.08.147
10.2147/IJN.S198194
10.1007/s12010-017-2503-7
10.1111/1469-0691.12427
10.1515/reveh-2017-0034
10.1007/BF00205194
10.1089/mdr.2019.0243
10.1006/meth.2001.1262
10.1021/acs.bioconjchem.9b00821
10.1101/337436
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-90208-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_9ba6ee0ed2ad4962a9e40a48c316f855
PMC8144575
10_1038_s41598_021_90208_4
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c554t-cd9ecc90163b7680a78562fc543da35a71af828839e6e664ddbb8d41d2e6a63
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Aug 21 18:23:57 EDT 2025
Fri Jul 11 13:29:44 EDT 2025
Wed Aug 13 08:09:56 EDT 2025
Tue Jul 01 03:48:28 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-cd9ecc90163b7680a78562fc543da35a71af828839e6e664ddbb8d41d2e6a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-90208-4
PMID 34031472
PQID 2531420647
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_9ba6ee0ed2ad4962a9e40a48c316f855
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8144575
proquest_miscellaneous_2532245144
proquest_journals_2531420647
crossref_primary_10_1038_s41598_021_90208_4
crossref_citationtrail_10_1038_s41598_021_90208_4
springer_journals_10_1038_s41598_021_90208_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-24
PublicationDateYYYYMMDD 2021-05-24
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Abd Ellah, Gad, Muhammad, Batiha, Hetta (CR15) 2020; 15
Neethu, Midhun, Radhakrishnan, Jyothis (CR22) 2018; 116
Deshpande, Chopade (CR65) 1994; 7
Saleh (CR19) 2020; 25
Antunes, Visca, Towner (CR51) 2014; 71
Noore, Noore, Li (CR36) 2013; 57
Babapour, Haddadi, Mirnejad, Angaji, Amirmozafari (CR57) 2016; 6
Habash (CR72) 2017; 61
Gaddy, Actis (CR80) 2009; 4
Aydemir (CR52) 2019; 7
Fleming (CR11) 2017; 82
CR77
CR31
CR75
Abd El-Baky, Farhan, Ibrahim, Mahran, Hetta (CR53) 2020; 56
Makharita (CR40) 2020; 13
Peulen, Wilkinson (CR69) 2011; 45
Scutera, Argenziano (CR33) 2021; 10
Davis (CR71) 2019; 27
El-Mokhtar, Hetta (CR43) 2018; 11
Mekkawy (CR61) 2017; 12
Lee (CR1) 2017; 7
Abd Ellah (CR21) 2019; 14
Abdullah, Ahmed (CR56) 2019; 3
Chaturvedi (CR18) 2020; 25
Abd El-Baky, Sandle, John, Abuo-Rahma, Hetta (CR46) 2019; 12
Tomaras, Dorsey, Edelmann, Actis (CR79) 2003; 149
Adewoyin, Okoh (CR5) 2018; 33
Giles, Stroeher, Eijkelkamp, Brown (CR7) 2015; 15
Martínez-Castañon, Nino-Martinez, Martinez-Gutierrez, Martinez-Mendoza, Ruiz (CR68) 2008; 10
Abd Ellah, Tawfeek, John, Hetta (CR20) 2019; 14
CR2
Abo-Shama (CR24) 2020; 13
Eid (CR14) 2020; 9
Shahverdi, Fakhimi, Shahverdi, Minaian (CR64) 2007; 3
Raffi (CR67) 2008; 24
Pakharukova (CR13) 2018; 115
Shafreen, Seema, Ahamed, Thajuddin, Alharbi (CR76) 2017; 183
Sancineto (CR30) 2016; 16
CR44
El-Sayed Ahmed (CR45) 2020; 9
Abdelkader (CR60) 2017; 174
Zander, Chmielarczyk, Heczko, Seifert, Higgins (CR28) 2013; 68
Hosseini, Nejadsattari, Zargar (CR81) 2019; 14
Farooq (CR78) 2019; 14
Tacconelli (CR39) 2014; 20
El-Kazzaz (CR4) 2020; 9
Singh, Rajwade, Paknikar (CR74) 2019; 175
Jyoti, Baunthiyal, Singh (CR26) 2016; 9
Livak, Schmittgen (CR34) 2001; 25
Tavakol, Momtaz, Mohajeri, Shokoohizadeh, Tajbakhsh (CR55) 2018; 7
Hetta (CR17) 2020; 15
Andriamanantena (CR50) 2010; 9
Bryaskova, Pencheva, Nikolov, Kantardjiev (CR37) 2011; 4
Farhan, Ibrahim, Mahran, Hetta, Abd El-Baky (CR42) 2019; 12
Algammal (CR48) 2020; 10
Ahmad (CR62) 2011; 2011
Singh (CR23) 2018; 18
Ghasemian, Mobarez, Peerayeh, Abadi (CR54) 2019; 27
Lee (CR8) 2006; 157
Wasef (CR16) 2021; 11
Al Atrouni, Joly-Guillou, Hamze, Kempf (CR49) 2016; 7
Guzman, Dille, Godet (CR35) 2012; 8
Algammal (CR47) 2020; 10
Thuptimdang, Limpiyakorn, Khan (CR73) 2017; 188
Zielińska, Skwarek, Zaleska, Gazda, Hupka (CR25) 2009; 1
CR29
Mulani, Kamble, Kumkar, Tawre, Pardesi (CR58) 2019; 10
Prabhu, Poulose (CR66) 2012; 2
Harding, Hennon, Feldman (CR9) 2018; 16
Hussain, Thu, Sohail, Khan (CR70) 2019; 54
Al-Dhabi, Ghilan, Arasu, Duraipandiyan (CR27) 2018; 189
Malina, Sobczak-Kupiec, Wzorek, Kowalski (CR38) 2012; 7
Ghosh (CR63) 2012; 7
Yeh, Huang, Yang, Chen, Fang (CR59) 2020; 8
Kanaan, Al-Shadeedi, Al-Massody, Ghasemian (CR10) 2020; 70
Qi (CR12) 2016; 7
Khazaal, Al-Kadmy, Aziz (CR6) 2020; 18
Algammal (CR41) 2020; 13
Elkhawaga, Hetta, Osman, Hosni, El-Mokhtar (CR32) 2020; 11
Kareem, Al-Kadmy, Al-Kaabi, Aziz, Ahmad (CR3) 2017; 110
JA Gaddy (90208_CR80) 2009; 4
CM Harding (90208_CR9) 2018; 16
L Antunes (90208_CR51) 2014; 71
AR Shahverdi (90208_CR64) 2007; 3
R Bryaskova (90208_CR37) 2011; 4
YC Yeh (90208_CR59) 2020; 8
AM Algammal (90208_CR41) 2020; 13
RM Abdullah (90208_CR56) 2019; 3
L Wasef (90208_CR16) 2021; 11
N Ahmad (90208_CR62) 2011; 2011
S Neethu (90208_CR22) 2018; 116
M Guzman (90208_CR35) 2012; 8
A Zielińska (90208_CR25) 2009; 1
S Scutera (90208_CR33) 2021; 10
90208_CR44
MB Habash (90208_CR72) 2017; 61
U Farooq (90208_CR78) 2019; 14
MAE El-Sayed Ahmed (90208_CR45) 2020; 9
C-R Lee (90208_CR1) 2017; 7
VK Chaturvedi (90208_CR18) 2020; 25
AP Tomaras (90208_CR79) 2003; 149
A Hosseini (90208_CR81) 2019; 14
MA El-Mokhtar (90208_CR43) 2018; 11
M Raffi (90208_CR67) 2008; 24
AM Algammal (90208_CR48) 2020; 10
RM Abd El-Baky (90208_CR53) 2020; 56
H Saleh (90208_CR19) 2020; 25
S Ghosh (90208_CR63) 2012; 7
A Al Atrouni (90208_CR49) 2016; 7
UH Abo-Shama (90208_CR24) 2020; 13
E Babapour (90208_CR57) 2016; 6
SK Giles (90208_CR7) 2015; 15
K Jyoti (90208_CR26) 2016; 9
90208_CR2
P Thuptimdang (90208_CR73) 2017; 188
ID Fleming (90208_CR11) 2017; 82
E Zander (90208_CR28) 2013; 68
TS Andriamanantena (90208_CR50) 2010; 9
90208_CR77
SM Farhan (90208_CR42) 2019; 12
90208_CR31
AA Elkhawaga (90208_CR32) 2020; 11
90208_CR75
L Sancineto (90208_CR30) 2016; 16
HF Hetta (90208_CR17) 2020; 15
J Noore (90208_CR36) 2013; 57
RR Makharita (90208_CR40) 2020; 13
MS Mulani (90208_CR58) 2019; 10
LM Deshpande (90208_CR65) 1994; 7
NH Abd Ellah (90208_CR20) 2019; 14
A Abdelkader (90208_CR60) 2017; 174
NH Abd Ellah (90208_CR15) 2020; 15
MA Adewoyin (90208_CR5) 2018; 33
SC Davis (90208_CR71) 2019; 27
RB Shafreen (90208_CR76) 2017; 183
W El-Kazzaz (90208_CR4) 2020; 9
E Tacconelli (90208_CR39) 2014; 20
G-A Martínez-Castañon (90208_CR68) 2008; 10
SS Khazaal (90208_CR6) 2020; 18
L Qi (90208_CR12) 2016; 7
NA Al-Dhabi (90208_CR27) 2018; 189
90208_CR29
JC Lee (90208_CR8) 2006; 157
M Tavakol (90208_CR55) 2018; 7
A Ghasemian (90208_CR54) 2019; 27
R Singh (90208_CR23) 2018; 18
N Pakharukova (90208_CR13) 2018; 115
S Prabhu (90208_CR66) 2012; 2
Z Hussain (90208_CR70) 2019; 54
N Singh (90208_CR74) 2019; 175
H Aydemir (90208_CR52) 2019; 7
AM Eid (90208_CR14) 2020; 9
AI Mekkawy (90208_CR61) 2017; 12
NH Abd Ellah (90208_CR21) 2019; 14
RM Abd El-Baky (90208_CR46) 2019; 12
TO Peulen (90208_CR69) 2011; 45
SM Kareem (90208_CR3) 2017; 110
KJ Livak (90208_CR34) 2001; 25
D Malina (90208_CR38) 2012; 7
AM Algammal (90208_CR47) 2020; 10
MHG Kanaan (90208_CR10) 2020; 70
References_xml – volume: 70
  start-page: 101451
  year: 2020
  ident: CR10
  article-title: Drug resistance and virulence traits of from Turkey and chicken raw meat
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
  doi: 10.1016/j.cimid.2020.101451
– volume: 116
  start-page: 263
  year: 2018
  end-page: 272
  ident: CR22
  article-title: Green synthesized silver nanoparticles by marine endophytic fungus and its antibacterial efficacy against biofilm forming, multidrug-resistant
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.01.033
– volume: 4
  start-page: 273
  year: 2009
  end-page: 278
  ident: CR80
  article-title: Regulation of biofilm formation
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.09.5
– volume: 174
  start-page: 1041
  year: 2017
  end-page: 1050
  ident: CR60
  article-title: Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.07.030
– volume: 2011
  start-page: 454090
  year: 2011
  ident: CR62
  article-title: Biosynthesis of silver nanoparticles from : a novel approach towards weed utilization
  publication-title: Biotechnol. Res. Int.
  doi: 10.4061/2011/454090
– volume: 11
  start-page: 215
  year: 2020
  ident: CR32
  article-title: Emergence of in cases of neonatal sepsis in upper Egypt: first report in North Africa
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00215
– volume: 12
  start-page: 2125
  year: 2019
  ident: CR42
  article-title: Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S198373
– ident: CR29
– volume: 54
  start-page: 101169
  year: 2019
  ident: CR70
  article-title: Hybridization and functionalization with biological macromolecules synergistically improve biomedical efficacy of silver nanoparticles: reconceptualization of in-vitro, in-vivo, and human clinical studies
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.101169
– volume: 27
  start-page: 360
  year: 2019
  end-page: 365
  ident: CR71
  article-title: Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12718
– ident: CR77
– volume: 14
  start-page: 1471
  year: 2019
  end-page: 1491
  ident: CR20
  article-title: Nanomedicine as a future therapeutic approach for Hepatitis C virus
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0348
– volume: 15
  start-page: 1375
  year: 2020
  end-page: 1390
  ident: CR17
  article-title: Modulation of rifampicin-induced hepatotoxicity using poly (lactic-co-glycolic acid) nanoparticles: a study on rat and cell culture models
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0001
– volume: 149
  start-page: 3473
  year: 2003
  end-page: 3484
  ident: CR79
  article-title: Attachment to and biofilm formation on abiotic surfaces by : involvement of a novel chaperone-usher pili assembly system
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.26541-0
– volume: 25
  start-page: 3091
  year: 2020
  ident: CR18
  article-title: Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: a new era of herbonanoceutics
  publication-title: Molecules
  doi: 10.3390/molecules25133091
– volume: 110
  start-page: 568
  year: 2017
  end-page: 572
  ident: CR3
  article-title: virulence is enhanced by the combined presence of virulence factors genes phospholipase C (plcN) and elastase (lasB)
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2017.08.001
– volume: 3
  start-page: 4
  year: 2019
  ident: CR56
  article-title: Genotype detection of fimH gene of isolated from different clinical cases
  publication-title: J. Infect.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: CR34
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 7
  start-page: 483
  year: 2016
  ident: CR12
  article-title: Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 120
  year: 2018
  ident: CR55
  article-title: Genotyping and distribution of putative virulence factors and antibiotic resistance genes of strains isolated from raw meat
  publication-title: Antimicrob. Resist. Infect. Control
  doi: 10.1186/s13756-018-0405-2
– volume: 189
  start-page: 176
  year: 2018
  end-page: 184
  ident: CR27
  article-title: Green biosynthesis of silver nanoparticles produced from marine sp Al-Dhabi-89 and their potential applications against wound infection and drug resistant clinical pathogens
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2018.09.012
– volume: 8
  start-page: 286
  year: 2020
  ident: CR59
  article-title: Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00286
– volume: 7
  start-page: 1111
  year: 2019
  ident: CR52
  article-title: Risk factors and clinical responses of pneumonia patients with colistin-resistant -
  publication-title: World J. Clin. Cases
  doi: 10.12998/wjcc.v7.i10.1111
– ident: CR75
– volume: 16
  start-page: 91
  year: 2018
  ident: CR9
  article-title: Uncovering the mechanisms of virulence
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.148
– volume: 27
  start-page: 36
  year: 2019
  end-page: 39
  ident: CR54
  article-title: The association of surface adhesin genes and the biofilm formation among clinical isolates
  publication-title: New Microbes New Infect.
  doi: 10.1016/j.nmni.2018.07.001
– volume: 56
  start-page: 4
  year: 2020
  end-page: 13
  ident: CR53
  article-title: Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt
  publication-title: Alex. J. Med.
– volume: 175
  start-page: 487
  year: 2019
  end-page: 497
  ident: CR74
  article-title: Transcriptome analysis of silver nanoparticles treated reveals potential targets for biofilm inhibition
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2018.12.032
– volume: 8
  start-page: 37
  year: 2012
  end-page: 45
  ident: CR35
  article-title: Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.05.007
– volume: 9
  start-page: 641
  year: 2020
  ident: CR14
  article-title: Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9100641
– volume: 13
  start-page: 3255
  year: 2020
  ident: CR41
  article-title: Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S272733
– volume: 9
  start-page: 17
  year: 2010
  ident: CR50
  article-title: Dissemination of multidrug resistant in various hospitals of Antananarivo Madagascar
  publication-title: Ann. Clin. Microbiol. Antimicrob.
  doi: 10.1186/1476-0711-9-17
– volume: 16
  start-page: 220
  year: 2016
  ident: CR30
  article-title: Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0837-x
– volume: 10
  start-page: 539
  year: 2019
  ident: CR58
  article-title: Emerging strategies to Combat ESKAPE pathogens in the era of antimicrobial resistance: a review
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00539
– volume: 13
  start-page: 3991
  year: 2020
  ident: CR40
  article-title: Antibiogram and genetic characterization of carbapenem-resistant gram-negative pathogens incriminated in healthcare-associated infections
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S276975
– volume: 82
  start-page: 557
  year: 2017
  end-page: 565
  ident: CR11
  article-title: Modeling wound infections: the critical role of iron
  publication-title: J. Trauma Acute Care Surg.
  doi: 10.1097/TA.0000000000001338
– volume: 2
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR66
  article-title: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects
  publication-title: Int. Nano Lett.
  doi: 10.1186/2228-5326-2-32
– volume: 14
  start-page: 2383
  year: 2019
  ident: CR21
  article-title: Metoclopramide nanoparticles modulate immune response in a diabetic rat model: association with regulatory T cells and proinflammatory cytokines
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S196842
– volume: 15
  start-page: 116
  year: 2015
  ident: CR7
  article-title: Identification of genes essential for pellicle formation in
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-015-0440-6
– volume: 13
  start-page: 351
  year: 2020
  ident: CR24
  article-title: Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S234425
– volume: 71
  start-page: 292
  year: 2014
  end-page: 301
  ident: CR51
  article-title: Acinetobacter baumannii: evolution of a global pathogen
  publication-title: Pathog. Dis.
  doi: 10.1111/2049-632X.12125
– volume: 4
  start-page: 185
  year: 2011
  ident: CR37
  article-title: Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP)
  publication-title: J. Chem. Biol.
  doi: 10.1007/s12154-011-0063-9
– volume: 157
  start-page: 360
  year: 2006
  end-page: 366
  ident: CR8
  article-title: Adherence of strains to human bronchial epithelial cells
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2005.09.011
– volume: 1
  start-page: 1560
  year: 2009
  end-page: 1566
  ident: CR25
  article-title: Preparation of silver nanoparticles with controlled particle size
  publication-title: Procedia Chem.
  doi: 10.1016/j.proche.2009.11.004
– volume: 11
  start-page: 587
  year: 2018
  ident: CR43
  article-title: Ambulance vehicles as a source of multidrug-resistant infections: a multicenter study in Assiut City, Egypt
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S151783
– ident: CR2
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR48
  article-title: Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor opr L and tox A virulence genes and bla TEM, bla CTX-M, and tet A antibiotic-resistance genes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 9
  start-page: 603
  year: 2020
  ident: CR4
  article-title: Antibiogram, prevalence of OXA carbapenemase encoding genes, and RAPD-genotyping of multidrug-resistant incriminated in hidden community-acquired infections
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9090603
– volume: 25
  start-page: 3479
  year: 2020
  ident: CR19
  article-title: Chemo-protective potential of cerium oxide nanoparticles against fipronil-induced oxidative stress, apoptosis, inflammation and reproductive dysfunction in male white albino rats
  publication-title: Molecules
  doi: 10.3390/molecules25153479
– volume: 7
  start-page: 49
  year: 2016
  ident: CR49
  article-title: Reservoirs of non-baumannii Acinetobacter species
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00049
– volume: 61
  start-page: e00415
  year: 2017
  end-page: 00417
  ident: CR72
  article-title: Potentiation of tobramycin by silver nanoparticles against biofilms
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00415-17
– volume: 12
  start-page: 759
  year: 2017
  end-page: 777
  ident: CR61
  article-title: In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S124294
– volume: 68
  start-page: 308
  year: 2013
  end-page: 311
  ident: CR28
  article-title: Conversion of OXA-66 into OXA-82 in clinical isolates and association with altered carbapenem susceptibility
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dks382
– volume: 10
  start-page: 2
  year: 2021
  ident: CR33
  article-title: Enhanced antimicrobial and antibiofilm effect of new colistin-loaded human albumin nanoparticles
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10010057
– volume: 9
  start-page: 217
  year: 2016
  end-page: 227
  ident: CR26
  article-title: Characterization of silver nanoparticles synthesized using Linn. leaves and their synergistic effects with antibiotics
  publication-title: J. Radiat. Res. Appl. Sci.
  doi: 10.1016/j.jrras.2015.10.002
– volume: 3
  start-page: 168
  year: 2007
  end-page: 171
  ident: CR64
  article-title: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against and
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2007.02.001
– volume: 45
  start-page: 3367
  year: 2011
  end-page: 3373
  ident: CR69
  article-title: Diffusion of nanoparticles in a biofilm
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103450g
– volume: 57
  start-page: 1283
  year: 2013
  end-page: 1290
  ident: CR36
  article-title: Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/aac.01650-12
– volume: 9
  start-page: 868
  year: 2020
  end-page: 885
  ident: CR45
  article-title: Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019)
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1754133
– volume: 18
  start-page: 100557
  year: 2020
  ident: CR6
  article-title: Mechanism of pathogenesis in multidrug resistant Acinetobacter baumannii isolated from intensive care unit
  publication-title: Gene Rep.
  doi: 10.1016/j.genrep.2019.100557
– volume: 7
  start-page: 55
  year: 2017
  ident: CR1
  article-title: Biology of : pathogenesis, antibiotic resistance mechanisms, and prospective treatment options
  publication-title: Front. Cell. Infect. Microbiol.
– ident: CR44
– volume: 7
  start-page: 1527
  year: 2012
  end-page: 1534
  ident: CR38
  article-title: Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone
  publication-title: Dig. J. Nanomater. Biostruct. (DJNB)
– volume: 14
  start-page: e83263
  year: 2019
  ident: CR81
  article-title: In vitro anti-biofilm activity of curcumin nanoparticles in : a culture-based and molecular approach
  publication-title: J. Arch. Clin. Infect. Dis.
– volume: 15
  start-page: 2085
  year: 2020
  end-page: 2102
  ident: CR15
  article-title: Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0247
– volume: 12
  start-page: 1703
  year: 2019
  ident: CR46
  article-title: A novel mechanism of action of ketoconazole: inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S201124
– volume: 10
  start-page: 1343
  year: 2008
  end-page: 1348
  ident: CR68
  article-title: Synthesis and antibacterial activity of silver nanoparticles with different sizes
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-008-9428-6
– volume: 115
  start-page: 5558
  year: 2018
  end-page: 5563
  ident: CR13
  article-title: Structural basis for biofilm formation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1800961115
– volume: 18
  start-page: 3806
  year: 2018
  end-page: 3815
  ident: CR23
  article-title: Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.15013
– ident: CR31
– volume: 7
  start-page: 483
  year: 2012
  end-page: 496
  ident: CR63
  article-title: Synthesis of silver nanoparticles using tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S24793
– volume: 24
  start-page: 192
  year: 2008
  end-page: 196
  ident: CR67
  article-title: Antibacterial characterization of silver nanoparticles against ATCC-15224
  publication-title: J. Mater. Sci. Technol.
– volume: 11
  start-page: 1310
  year: 2021
  ident: CR16
  article-title: The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79479-5
– volume: 6
  start-page: 528
  year: 2016
  end-page: 533
  ident: CR57
  article-title: Biofilm formation in clinical isolates of nosocomial and its relationship with multidrug resistance
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.1016/j.apjtb.2016.04.006
– volume: 188
  start-page: 199
  year: 2017
  end-page: 207
  ident: CR73
  article-title: Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.147
– volume: 14
  start-page: 3983
  year: 2019
  ident: CR78
  article-title: Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant and
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S198194
– volume: 183
  start-page: 1351
  year: 2017
  end-page: 1361
  ident: CR76
  article-title: Inhibitory effect of biosynthesized silver nanoparticles from extract of against curli-mediated biofilm of
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-017-2503-7
– volume: 20
  start-page: 1
  issue: Suppl 1
  year: 2014
  end-page: 55
  ident: CR39
  article-title: ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/1469-0691.12427
– volume: 33
  start-page: 265
  year: 2018
  end-page: 272
  ident: CR5
  article-title: The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species
  publication-title: Rev. Environ. Health
  doi: 10.1515/reveh-2017-0034
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR47
  article-title: Virulence-determinants and antibiotic-resistance genes of MDR- isolated from secondary infections following FMD-outbreak in cattle
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 7
  start-page: 49
  year: 1994
  end-page: 56
  ident: CR65
  article-title: Plasmid mediated silver resistance in
  publication-title: Biometals
  doi: 10.1007/BF00205194
– volume: 8
  start-page: 37
  year: 2012
  ident: 90208_CR35
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.05.007
– volume: 115
  start-page: 5558
  year: 2018
  ident: 90208_CR13
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1800961115
– volume: 20
  start-page: 1
  issue: Suppl 1
  year: 2014
  ident: 90208_CR39
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/1469-0691.12427
– volume: 11
  start-page: 587
  year: 2018
  ident: 90208_CR43
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S151783
– volume: 7
  start-page: 483
  year: 2012
  ident: 90208_CR63
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S24793
– volume: 45
  start-page: 3367
  year: 2011
  ident: 90208_CR69
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103450g
– volume: 25
  start-page: 3479
  year: 2020
  ident: 90208_CR19
  publication-title: Molecules
  doi: 10.3390/molecules25153479
– volume: 157
  start-page: 360
  year: 2006
  ident: 90208_CR8
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2005.09.011
– volume: 12
  start-page: 1703
  year: 2019
  ident: 90208_CR46
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S201124
– volume: 68
  start-page: 308
  year: 2013
  ident: 90208_CR28
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dks382
– volume: 189
  start-page: 176
  year: 2018
  ident: 90208_CR27
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2018.09.012
– volume: 9
  start-page: 641
  year: 2020
  ident: 90208_CR14
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9100641
– ident: 90208_CR44
– volume: 70
  start-page: 101451
  year: 2020
  ident: 90208_CR10
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
  doi: 10.1016/j.cimid.2020.101451
– volume: 13
  start-page: 3991
  year: 2020
  ident: 90208_CR40
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S276975
– volume: 15
  start-page: 116
  year: 2015
  ident: 90208_CR7
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-015-0440-6
– volume: 110
  start-page: 568
  year: 2017
  ident: 90208_CR3
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2017.08.001
– ident: 90208_CR31
– ident: 90208_CR2
  doi: 10.1089/mdr.2019.0243
– volume: 149
  start-page: 3473
  year: 2003
  ident: 90208_CR79
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.26541-0
– volume: 14
  start-page: 3983
  year: 2019
  ident: 90208_CR78
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S198194
– volume: 7
  start-page: 483
  year: 2016
  ident: 90208_CR12
  publication-title: Front. Microbiol.
– volume: 16
  start-page: 220
  year: 2016
  ident: 90208_CR30
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0837-x
– volume: 25
  start-page: 402
  year: 2001
  ident: 90208_CR34
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 4
  start-page: 185
  year: 2011
  ident: 90208_CR37
  publication-title: J. Chem. Biol.
  doi: 10.1007/s12154-011-0063-9
– volume: 54
  start-page: 101169
  year: 2019
  ident: 90208_CR70
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2019.101169
– volume: 9
  start-page: 217
  year: 2016
  ident: 90208_CR26
  publication-title: J. Radiat. Res. Appl. Sci.
  doi: 10.1016/j.jrras.2015.10.002
– volume: 7
  start-page: 1527
  year: 2012
  ident: 90208_CR38
  publication-title: Dig. J. Nanomater. Biostruct. (DJNB)
– volume: 13
  start-page: 351
  year: 2020
  ident: 90208_CR24
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S234425
– volume: 12
  start-page: 759
  year: 2017
  ident: 90208_CR61
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S124294
– volume: 10
  start-page: 1343
  year: 2008
  ident: 90208_CR68
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-008-9428-6
– volume: 24
  start-page: 192
  year: 2008
  ident: 90208_CR67
  publication-title: J. Mater. Sci. Technol.
– volume: 9
  start-page: 868
  year: 2020
  ident: 90208_CR45
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1754133
– volume: 15
  start-page: 2085
  year: 2020
  ident: 90208_CR15
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0247
– volume: 27
  start-page: 36
  year: 2019
  ident: 90208_CR54
  publication-title: New Microbes New Infect.
  doi: 10.1016/j.nmni.2018.07.001
– volume: 8
  start-page: 286
  year: 2020
  ident: 90208_CR59
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00286
– volume: 11
  start-page: 1310
  year: 2021
  ident: 90208_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79479-5
– volume: 56
  start-page: 4
  year: 2020
  ident: 90208_CR53
  publication-title: Alex. J. Med.
– volume: 11
  start-page: 215
  year: 2020
  ident: 90208_CR32
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00215
– volume: 82
  start-page: 557
  year: 2017
  ident: 90208_CR11
  publication-title: J. Trauma Acute Care Surg.
  doi: 10.1097/TA.0000000000001338
– volume: 116
  start-page: 263
  year: 2018
  ident: 90208_CR22
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.01.033
– volume: 175
  start-page: 487
  year: 2019
  ident: 90208_CR74
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2018.12.032
– volume: 57
  start-page: 1283
  year: 2013
  ident: 90208_CR36
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/aac.01650-12
– volume: 9
  start-page: 17
  year: 2010
  ident: 90208_CR50
  publication-title: Ann. Clin. Microbiol. Antimicrob.
  doi: 10.1186/1476-0711-9-17
– volume: 174
  start-page: 1041
  year: 2017
  ident: 90208_CR60
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.07.030
– volume: 9
  start-page: 603
  year: 2020
  ident: 90208_CR4
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9090603
– volume: 10
  start-page: 1
  year: 2020
  ident: 90208_CR47
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 33
  start-page: 265
  year: 2018
  ident: 90208_CR5
  publication-title: Rev. Environ. Health
  doi: 10.1515/reveh-2017-0034
– volume: 7
  start-page: 55
  year: 2017
  ident: 90208_CR1
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 25
  start-page: 3091
  year: 2020
  ident: 90208_CR18
  publication-title: Molecules
  doi: 10.3390/molecules25133091
– volume: 71
  start-page: 292
  year: 2014
  ident: 90208_CR51
  publication-title: Pathog. Dis.
  doi: 10.1111/2049-632X.12125
– volume: 3
  start-page: 168
  year: 2007
  ident: 90208_CR64
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2007.02.001
– volume: 183
  start-page: 1351
  year: 2017
  ident: 90208_CR76
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-017-2503-7
– volume: 18
  start-page: 3806
  year: 2018
  ident: 90208_CR23
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.15013
– volume: 15
  start-page: 1375
  year: 2020
  ident: 90208_CR17
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2020-0001
– volume: 14
  start-page: e83263
  year: 2019
  ident: 90208_CR81
  publication-title: J. Arch. Clin. Infect. Dis.
– volume: 188
  start-page: 199
  year: 2017
  ident: 90208_CR73
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.08.147
– ident: 90208_CR77
  doi: 10.1021/acs.bioconjchem.9b00821
– volume: 7
  start-page: 49
  year: 2016
  ident: 90208_CR49
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00049
– volume: 6
  start-page: 528
  year: 2016
  ident: 90208_CR57
  publication-title: Asian Pac. J. Trop. Biomed.
  doi: 10.1016/j.apjtb.2016.04.006
– volume: 16
  start-page: 91
  year: 2018
  ident: 90208_CR9
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.148
– volume: 7
  start-page: 1111
  year: 2019
  ident: 90208_CR52
  publication-title: World J. Clin. Cases
  doi: 10.12998/wjcc.v7.i10.1111
– ident: 90208_CR29
– volume: 2011
  start-page: 454090
  year: 2011
  ident: 90208_CR62
  publication-title: Biotechnol. Res. Int.
  doi: 10.4061/2011/454090
– volume: 2
  start-page: 1
  year: 2012
  ident: 90208_CR66
  publication-title: Int. Nano Lett.
  doi: 10.1186/2228-5326-2-32
– volume: 10
  start-page: 539
  year: 2019
  ident: 90208_CR58
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00539
– volume: 14
  start-page: 1471
  year: 2019
  ident: 90208_CR20
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0348
– volume: 18
  start-page: 100557
  year: 2020
  ident: 90208_CR6
  publication-title: Gene Rep.
  doi: 10.1016/j.genrep.2019.100557
– volume: 10
  start-page: 1
  year: 2020
  ident: 90208_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 61
  start-page: e00415
  year: 2017
  ident: 90208_CR72
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00415-17
– volume: 3
  start-page: 4
  year: 2019
  ident: 90208_CR56
  publication-title: J. Infect.
– volume: 14
  start-page: 2383
  year: 2019
  ident: 90208_CR21
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S196842
– volume: 7
  start-page: 49
  year: 1994
  ident: 90208_CR65
  publication-title: Biometals
  doi: 10.1007/BF00205194
– volume: 7
  start-page: 120
  year: 2018
  ident: 90208_CR55
  publication-title: Antimicrob. Resist. Infect. Control
  doi: 10.1186/s13756-018-0405-2
– ident: 90208_CR75
  doi: 10.1101/337436
– volume: 1
  start-page: 1560
  year: 2009
  ident: 90208_CR25
  publication-title: Procedia Chem.
  doi: 10.1016/j.proche.2009.11.004
– volume: 10
  start-page: 2
  year: 2021
  ident: 90208_CR33
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10010057
– volume: 13
  start-page: 3255
  year: 2020
  ident: 90208_CR41
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S272733
– volume: 4
  start-page: 273
  year: 2009
  ident: 90208_CR80
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.09.5
– volume: 12
  start-page: 2125
  year: 2019
  ident: 90208_CR42
  publication-title: Infect. Drug Resist.
  doi: 10.2147/IDR.S198373
– volume: 27
  start-page: 360
  year: 2019
  ident: 90208_CR71
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12718
SSID ssj0000529419
Score 2.6044776
Snippet We aimed to isolate Acinetobacter baumannii ( A. baumannii ) from wound infections, determine their resistance and virulence profile, and assess the impact of...
We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of...
Abstract We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10751
SubjectTerms 631/326
692/420
Acinetobacter baumannii
Antibacterial activity
Antibiotics
Antimicrobial activity
Biofilms
Cell culture
Cell lines
Drug resistance
Gene expression
Growth kinetics
Growth rate
Humanities and Social Sciences
Infections
Minimum inhibitory concentration
multidisciplinary
Multidrug resistance
Multidrug resistant organisms
Nanoparticles
Science
Science (multidisciplinary)
Silver
Transcription
Virulence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRP7G6KxG8adk2TfNxfCsui6AXFfYWkma6FjRvea_v4H_vTNr33C6oFw-9NEmbZDLNb5qZ3zD2OkAtKg1QtrprShnRYPUIBEoBXoOxoTZA0cgfP6mLr_LDZXt5I9UX-YRN9MDTxJ3a4BVABVH4KK0S3oKsvDRdU6vetJm9FPe8G8bUxOotrKztHCVTNeZ0izsVRZNljwRRmVIudqJM2L9Ambd9JG8dlOb95_wBuz8DR76aOvyQ3YH0iN2dUkn-fMy2q0TRH5SA-wf3KeJFeSE2uxxUxK_XI7kF4QPWPd8O5A7Nk09oMc-Ocdxf-QGhIs8ehnGzuyrRECdwmUa-otN30nxidubB04__NAxP2Ofz91_eXZRzQoWyQ9Qwll20KDFEAKoJaGZUXhuEP33Xyib6pvW69r2h9MMWFCglYwzBRFlHAcqr5ik7SusEzxjvPQTdRtHr2EiQNgRog9XYJqJwgihYvZ9a181c45Ty4rvLZ96NcZM4HIrDZXE4WbA3hzbXE9PGX2ufkcQONYklO9_AtePmqXP_WjsFO97L282qu3UCv0pSUAxuwV4dilHp6CTFJ1jvch2EPog1sR96sU4WHVqWpOFbpu822AxBcsHe7lfU75f_ecDP_8eAX7B7gjSgakshj9nRuNnBCYKqMbzM-vMLDZch9A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFA-6IngRP7G6SgRvGrZN0yQ9ySgui6AXFeYWkiYdBzQdp53D_vf7XiYzSxfcQy9t0qZ57yW_vE9C3rlQ8VKFwBrV1Ux4OLBaAAKMB6uCbl2lA0Yjf_suL36Jr8tmmRVuY3arPKyJaaH2Q4c68jMOzCI4hkZ-3PxjWDUKrau5hMZdcg9Tl6FLl1qqo44FrViianOsTFnrsxH2K4wpS34JvNRMzPajlLZ_hjVvekreMJemXej8EXmY4SNd7On9mNwJ8Qm5vy8oefmUjIuIMSBYhvsvtdHDhdUhtrsUWkQ3w4TOQfCCoafjGp2iabQRzs3ZPY7alV0DYKTJz9BvdysGx3GEmHGiC7TBo_xjfmfqLKr_43r9jPw4__Lz8wXLZRVYB9hhYp1vgW6AA2Tt4LBRWqUBBPVdI2pv68aqyvYaixC3QQYphffOaS8qz4O0sn5OTuIQwwtCexucajzvla9FEK1zoXGtgj5elNbxglSHqTVdzjiOhS_-mGT5rrXZk8MAOUwihxEFeX_ss9nn27i19Sek2LEl5spON4btyuSpM62zMoQyeG69aCW3bYDhCd3Vlex10xTk9EBvkwV4NNfsVpC3x8cgemhPsTEMu9QGABAgThiHmvHJbEDzJ3H9OyXx1tANoHJBPhw46vrj___hl7eP9RV5wJG3y4ZxcUpOpu0uvAbQNLk3STKuAHOgGOc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9QwFA_riuBF_MTqKhG8abBN0zQ9joPLIuhFhb2FpHkdC5ouM53D_ve-l2lHuqjgoZcmr03yXpJf8r4Ye-2hkHkNIKq6LYUKeGB1CASEBFeDaXxhgLyRP33WF9_Ux8vq8oTJ2RcmGe2nkJZpmZ6tw97tcKMhZ7BkUCBzI9QtdptCt5NUr_X6eK9CmitVNJN_TF6aP5Au9qAUqn-BL29aR95Qkaad5_w-uzdBRr46NPIBO4H4kN05JJG8fsR2q0h-H5R6-yd3MeBDGSG2--ROxK-GkQyC8ANDx3c9GULz6CKeladOc7dxPYJEnmwLw3a_EXgEJ1gZR74ivTvNeYrpzL2jK__Y94_Zl_MPX9cXYkqlIFrEC6NoQ4O8wr1flx4PGLmrDQKfrq1UGVxZubpwnaHEww1o0FqF4L0JqggStNPlE3YahwhPGe8c-LoKsqtDqUA13kPlmxppgsqdlxkr5qG17RRlnJJd_LBJ210ae2CHRXbYxA6rMvbmSHN1iLHxz9rviWPHmhQfO70Yths7DZ1tvNMAOQTpgmq0dA1g85Rpy0J3pqoydjbz206TdmclrkdKkvdtxl4di3G6kQ7FRRj2qQ6CHkSZ2I56ISeLBi1LYv89Be42SIbwOGNvZ4n6_fO_d_jZ_1V_zu5KkvW8ElKdsdNxu4cXCJxG_zLNlF8ybRbB
  priority: 102
  providerName: Springer Nature
Title Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii
URI https://link.springer.com/article/10.1038/s41598-021-90208-4
https://www.proquest.com/docview/2531420647
https://www.proquest.com/docview/2532245144
https://pubmed.ncbi.nlm.nih.gov/PMC8144575
https://doaj.org/article/9ba6ee0ed2ad4962a9e40a48c316f855
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7yoCWX0ifdNl1c6K11a8uyJB9KcZaEsJBQmgb2ZiRL3iyk2nQf0Pz7zsjeLQ5pDz0YgyVZskYjfeN5AbwzLmWJdC7OZZ3F3KLAqhEIxMxp6VRhUuXIG_nsXJxe8vEkn-zAJt1RN4HLe0U7yid1ubj--Ovn7Rdk-M-ty7j6tMRDiBzFgrEBS1TMd2EfTyZJjHrWwf021jcreFp0vjP3Nz2AhxmnmO6S9Y6qENG_B0PvGlHe0aSGA-rkMTzqkGVUtkvhCew4_xQetLkmb5_BsvTkHkIZun9E2lu8KHHEYh28jqKb-YrshvAF8yZazsheOvLao0jdWc5FeqpniCWjYIJoF-tpjJI6oU-_ikpSz9PWQKGfI6NJM-Bns-dwcXL8fXQadxkX4hphxSqubYEkRYggMoNySKKlQnzU1DnPrM5yLVPdKMpPXDjhhODWGqMsTy1zQovsBez5uXcvIWq0MzK3rJE2444XxrjcFBLbWJ5owwaQbqa2qrtg5JQT47oKSvFMVS1lKqRMFShT8QG837a5aUNx_LP2EVFsW5PCaIcH88W06qauKowWziXOMm15IZguHA6PqzpLRaPyfACHG3pXm6VZMdy2OCMn3QG83RYjV5KqRXs3X4c6iI0QjOI4ZG-d9AbUL_GzqxDfW2EzRNED-LBZUX86__sHv_rvjl7DASMOSPKY8UPYWy3W7g1CrZUZwq6cyCHsl-X4Yoz3o-Pzr9_w6UiMhuH3xTBw2G_ngC9N
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviE9RGGAkeIJoieMkzgNCHWzq2FYhGNKesOz4UiqBU_ohtP-JP5I7N-nUSextD3lp7OTqO_t-l_ti7JWFRMQFQJQVVRpJhwarQSAQCTAFqNImCigb-WSUD7_JT2fZ2Rb72-XCUFhldyaGg9o1FX0j3xUoLFJQauT76e-IukaRd7VrobESiyM4_4Mm2_zd4Ufk72shDvZPPwyjtqtAVKHqXESVK5FsVIN5ahFrx6ZQiAHqKpOpM2lmisTUinrwlpBDnkvnrFVOJk5AbvIUn3qDbcsUDZke297bH33-sv6mQ14zmZRtbk6cqt056kfKYQtxECJWkdzQf6FNwAa2vRyZeck9G7TewV12p4WrfLCSr3tsC_x9dnPVwPL8AZsPPOWcUNvvX9x4hxd1o5gtQyoTnzYLCkbCBzQ1n08oCJt749FOb8PxuBmbCQJUHuIa3Ww5jtD8J0jrF3xAPn86b6ieNLeG3A1-MnnIvl7Dgj9iPd94eMx4bcAWmRN14VIJsrQWMlsWOMfJ2FjRZ0m3tLpqK5xTo42fOnjaU6VX7NDIDh3YoWWfvVnPma7qe1w5eo84th5JtbnDD81srNul06U1OUAMThgny1yYEpA8qao0yWuVZX220_FbtwfGXF-Id5-9XN_GrU7-G-OhWYYxCLgQ4SIdxYacbBC0ecdPfoSi4QqnITTvs7edRF28_P9_-MnVtL5gt4anJ8f6-HB09JTdFiTncRYJucN6i9kSniFgW9jn7T7h7Pv1bsx_TfdWQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxKfoGBAkeIKoiePEzgNChVFtDCYkQOoTlh1fSiXmlKYV2n_Gn8edm3TqJPa2h7wkduL47nw_-74Ye2Eh5YkEiHNZZbFwuGE1CARiDkaCKm2qgKKRP58Uh9_Fx0k-2WF_-1gYcqvs18SwULumojPyIUdmEZxCI4d15xbx5WD8dv47pgpSZGnty2msWeQYzv7g9q19c3SAtH7J-fjDt_eHcVdhIK5QjS7jypX4C6gSi8wi7k6MVIgH6ioXmTNZbmRqakX1eEsooCiEc9YqJ1LHoTBFhm-9xq7LLE9JwuREbk53yH4m0rKL0kkyNWxRU1I0W_CI4ImKxZYmDAUDtlDuRR_NC4baoP_Gd9jtDrhGozWn3WU74O-xG-tSlmf3WTvyFH1CBcBPI-MdXlSXYrEKQU3RvFmSWxK-oKmjdkbu2JE3HnfsnWNeZKZmhlA1Ch6ObrGaxgtoCdz6ZTQi6z-tPJRZOrKGDA9-NnvAvl7BdD9ku77x8IhFtQErc8dr6TIBorQWcltK7ONEYiwfsLSfWl11uc6p5MYvHWzumdJrcmgkhw7k0GLAXm36zNeZPi5t_Y4otmlJWbrDjWYx1d3U6dKaAiABx40TZcFNCTg8oaosLWqV5wO239Nbd0tHq88ZfcCebx6j0JMlx3hoVqENQi_EujgOucUnWwPafuJnP0P6cIXdEKQP2Oueo84__v8f3rt8rM_YTRRH_eno5Pgxu8WJzZM85mKf7S4XK3iCyG1pnwYhidiPq5XJf0EwWRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiofilm+and+antivirulence+potential+of+silver+nanoparticles+against+multidrug-resistant+Acinetobacter+baumannii&rft.jtitle=Scientific+reports&rft.au=Hetta%2C+Helal+F.&rft.au=Al-Kadmy%2C+Israa+M.+S.&rft.au=Khazaal%2C+Saba+Saadoon&rft.au=Abbas%2C+Suhad&rft.date=2021-05-24&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-90208-4&rft_id=info%3Apmid%2F34031472&rft.externalDocID=PMC8144575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon