In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography

The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 98; p. 109443
Main Authors Englander, Zoë A., Garrett, William E., Spritzer, Charles E., DeFrate, Louis E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 02.01.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2019.109443

Cover

Loading…
Abstract The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = −0.87, p < 0.001), as well as both bundle lengths and flexion (rho = −0.86, p < 0.001 and rho = −0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.
AbstractList The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = −0.87, p < 0.001), as well as both bundle lengths and flexion (rho = −0.86, p < 0.001 and rho = −0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.
The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.
The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.
The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5±2.6 mm, strain = 5±4%, mean ± standard deviation), and heel strike (length = 30.5±3.0 mm, strain = 12±5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho=−0.87, p<0.001), as well as both bundle lengths and flexion (rho=−0.86, p<0.001 and rho = −0.82, p<0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p<0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.
ArticleNumber 109443
Author Englander, Zoë A.
Garrett, William E.
Spritzer, Charles E.
DeFrate, Louis E.
AuthorAffiliation 2 Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
3 Department of Radiology, Duke University, Durham, North Carolina, USA
4 Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
1 Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
– name: 4 Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
– name: 1 Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
– name: 3 Department of Radiology, Duke University, Durham, North Carolina, USA
Author_xml – sequence: 1
  givenname: Zoë A.
  surname: Englander
  fullname: Englander, Zoë A.
  organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
– sequence: 2
  givenname: William E.
  surname: Garrett
  fullname: Garrett, William E.
  organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
– sequence: 3
  givenname: Charles E.
  surname: Spritzer
  fullname: Spritzer, Charles E.
  organization: Department of Radiology, Duke University, Durham, NC, USA
– sequence: 4
  givenname: Louis E.
  surname: DeFrate
  fullname: DeFrate, Louis E.
  email: lou.defrate@duke.edu
  organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31679755$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2LEzEUDbLidqt_YQn44svUJPPVAVlcih-FiiD6HO5k7sykpklNMoX-IX-n03YrWh_WhyRw7jkn93LPDbmyziIht5zNOOPF6_VsXWu3QdXPBOPVCFZZlj4hEz4v00Skc3ZFJowJnlSiYtfkJoQ1Y6zMyuoZuU55UVZlnk_Iz6WlO71zFGIE1W_QRhp0RBr_hQzaLvYUbEND9KAtdS2NPdL7xeqI6hhoPdjGYKDN4LXtjuV2MIZ2oCNVe2WQbhDC4LGh9Z5--rI8Snvd9UnY4gHVWwMWPPXQaNd52Pb75-RpCybgi4d3Sr69f_d18TFZff6wXNyvEpXnWUzUHNpGsZo1QqR1roqUzwEzlaciayHnAJWAYq5QlAJVUUKVFUywNFW1Qt7W6ZTcnXy3Q73BRo2zezBy6_UG_F460PLvitW97NxOlrzgJWOjwasHA-9-DBii3Oig0IwToRuCFCnn1XiNZ0peXlDXbvB2HG9kiUpkTIgD6_bPjn63cl7hSHhzIijvQvDYSqUjRO0ODWojOZOHxMi1PCdGHhIjT4kZ5cWF_PzDo8K3JyGO-9hp9DIojVZhoz2qKBunH7e4u7BQRlutwHzH_f8Y_AJoLvaq
CitedBy_id crossref_primary_10_1016_j_berh_2020_101588
crossref_primary_10_1002_jor_25162
crossref_primary_10_1007_s00590_022_03285_0
crossref_primary_10_1016_j_jbiomech_2020_109918
crossref_primary_10_1177_0363546520924168
crossref_primary_10_1016_j_actbio_2024_07_025
crossref_primary_10_1177_03635465241311246
crossref_primary_10_1177_2325967121991054
crossref_primary_10_1007_s42978_022_00211_y
crossref_primary_10_1016_j_jbiomech_2021_110258
crossref_primary_10_1016_j_jbiomech_2024_112337
crossref_primary_10_1177_19417381211056873
crossref_primary_10_2519_jospt_2020_0609
crossref_primary_10_1016_j_jbiomech_2020_109922
crossref_primary_10_1177_03635465221107085
crossref_primary_10_1519_SSC_0000000000000605
crossref_primary_10_1002_jor_25198
crossref_primary_10_1016_j_jbiomech_2020_110210
crossref_primary_10_1177_03635465221131551
crossref_primary_10_1002_jor_25678
crossref_primary_10_1177_2325967120957646
crossref_primary_10_1016_j_actbio_2023_10_012
crossref_primary_10_1016_j_knee_2023_12_006
crossref_primary_10_1177_03635465221141876
crossref_primary_10_1016_j_joca_2020_12_019
crossref_primary_10_1007_s00167_021_06781_8
crossref_primary_10_1177_03635465231172184
crossref_primary_10_1007_s40279_023_01934_w
crossref_primary_10_1016_j_jbiomech_2022_111335
crossref_primary_10_1177_23259671241271662
crossref_primary_10_1177_2325967121989095
Cites_doi 10.1177/0363546510364240
10.1007/s00167-003-0403-6
10.1115/1.3138583
10.1016/S0268-0033(98)00012-6
10.1249/MSS.0b013e31820f8395
10.1007/s10439-012-0629-x
10.1097/BLO.0b013e31802bab3e
10.1016/j.jbiomech.2019.04.034
10.1016/j.jbiomech.2014.01.055
10.1023/B:ABME.0000017541.82498.37
10.1016/j.orthres.2004.08.006
10.1097/BLO.0b013e31802b4a59
10.1177/0363546503258928
10.1016/j.clinbiomech.2008.07.002
10.1177/0363546515594446
10.1016/j.jbiomech.2006.08.009
10.1002/jor.1100080107
10.2106/00004623-199072060-00012
10.1177/0363546516652876
10.1023/B:ABME.0000017542.75080.86
10.1016/j.jneumeth.2011.07.008
10.1177/0363546503262175
10.1016/j.jbiomech.2015.04.017
10.1016/S0736-0266(03)00133-5
10.1016/j.jbiomech.2008.09.023
10.1186/s13075-018-1727-4
10.1016/j.knee.2005.03.004
10.1177/0363546519876074
10.1148/radiol.2532082010
10.1097/BLO.0b013e31802b4a0a
10.1016/j.jbiomech.2004.10.003
10.1002/jor.1100100203
10.1177/036354659502300122
10.2106/00004623-198567020-00012
10.1177/0363546509340404
10.1177/2325967118819831
10.2106/00004623-198062020-00013
10.1002/jor.1100120606
10.1177/0363546506295941
10.1080/15438620390231193
10.1177/036354659402200117
10.1177/036354657700500406
10.1097/01.bor.0000240365.16842.4e
10.1016/j.jbiomech.2018.09.010
10.1007/BF01845586
10.1097/00003086-197501000-00033
10.1002/jor.23541
10.1177/0363546509340768
10.1016/S0021-9290(98)00044-X
10.1016/j.jbiomech.2004.01.030
10.21037/aoj.2017.05.08
10.1007/s00264-012-1557-y
10.1016/j.jbiomech.2004.02.010
10.1080/10255842.2016.1170120
10.1016/S0021-9290(00)00154-8
10.1177/03635465030310012401
10.1016/j.jbiomech.2010.11.028
10.1249/01.MSS.0000128185.55587.A3
10.1016/j.jbiomech.2010.10.028
10.1016/j.jbiomech.2012.10.031
10.1016/j.jbiomech.2003.10.010
10.1177/036354658401200102
10.1007/s00167-011-1576-z
10.2106/00004623-199072040-00014
10.1177/0363546518764681
10.1007/s00167-009-0932-8
10.1302/0301-620X.73B2.2005151
10.1016/j.clinbiomech.2009.11.006
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2019.109443
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 109443
ExternalDocumentID PMC7161700
31679755
10_1016_j_jbiomech_2019_109443
S0021929019306906
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR074800
– fundername: NIAMS NIH HHS
  grantid: R01 AR065527
– fundername: NIAMS NIH HHS
  grantid: R01 AR075399
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c554t-c8afdc0b0d223b5c6318ae4c5324fa51aa92a68ce272ec67a94602033cbce1fb3
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Thu Aug 21 18:42:27 EDT 2025
Fri Jul 11 00:27:14 EDT 2025
Wed Aug 13 09:11:13 EDT 2025
Thu Apr 03 07:04:22 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Tue Jul 01 00:44:15 EDT 2025
Fri Feb 23 02:47:00 EST 2024
Tue Aug 26 17:09:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Flexion
Walking
Double bundle
Anterior cruciate ligament
Kinematics
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-c8afdc0b0d223b5c6318ae4c5324fa51aa92a68ce272ec67a94602033cbce1fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7161700
PMID 31679755
PQID 2329240222
PQPubID 1226346
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7161700
proquest_miscellaneous_2311923192
proquest_journals_2329240222
pubmed_primary_31679755
crossref_citationtrail_10_1016_j_jbiomech_2019_109443
crossref_primary_10_1016_j_jbiomech_2019_109443
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109443
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Shin, Chaudhari, Andriacchi (b0310) 2011; 43
Georgoulis, Papadonikolakis, Papageorgiou, Mitsou, Stergiou (b0160) 2003; 31
Draganich, Vahey (b0105) 1990; 8
Andriacchi, Dyrby (b0030) 2005; 38
Cerulli, Benoit, Lamontagne, Caraffa, Liti (b0080) 2003; 11
Weinhandl, Hoch, Bawab, Ringleb (b0345) 2016; 19
Berchuck, Andriacchi, Bach, Reider (b0055) 1990
Andriacchi, Mündermann, Smith, Alexander, Dyrby, Koo (b0040) 2004; 32
Butler, Noyes, Grood (b0075) 1980; 62
Hefzy, Grood (b0180) 1986; 108
DeFrate, Nha, Papannagari, Moses, Gill, Li (b0095) 2007; 40
Fleming, Beynnon (b0135) 2004; 32
DeFrate (b0090) 2017; 35
Utturkar, Irribarra, Taylor, Spritzer, Taylor, Garrett, DeFrate (b0340) 2013; 41
Odensten, Gillquist (b0275) 1985; 67
Arms, Pope, Johnson, Fischer, Arvidsson, Eriksson (b0045) 1984; 12
Li, DeFrate, Sun, Gill (b0210) 2004; 32
Englander, Cutcliffe, Utturkar, Taylor, Spritzer, Garrett, DeFrate (b0125) 2019; 90
Englander, Cutcliffe, Utturkar, Garrett, Spritzer, DeFrate (b0120) 2019; 7
Englander, Martin, Ganapathy, Garrett, DeFrate (b0130) 2018; 81
Reimann, Flynn (b0300) 1992
Gabriel, Wong, Woo, Yagi, Debski (b0150) 2004; 22
Georgoulis, Ristanis, Chouliaras, Moraiti, Stergiou (b0165) 2007; 454
Mettler, Bhargavan, Faulkner, Gilley, Gray, Ibbott, Lipoti, Mahesh, McCrohan, Stabin (b0240) 2009; 253
Petersen, Zantop (b0295) 2007; 454
Kim, Spritzer, Utturkar, Toth, Garrett, DeFrate (b0200) 2015; 43
Budd, Patchava, Khanduja (b0070) 2012; 36
Skelley, N.W., Lake, S.P., Brophy, R.H., 2017. Microstructural properties of the anterior cruciate ligament. Annals of Joint 2.
Marouane, Shirazi-Adl, Adouni, Hashemi (b0225) 2014; 47
Berns, Hull, Patterson (b0060) 1992; 10
Mesfar, Shirazi-Adl (b0235) 2005; 12
Yoo, Jeong, Shetty, Ingham, Smolinski, Fu (b0355) 2010; 18
Parvataneni, Ploeg, Olney, Brouwer (b0290) 2009; 24
Huber, Nüesch, Göpfert, Cattin, von Tscharner (b0190) 2011; 201
Tashman, Kolowich, Collon, Anderson, Anderst (b0320) 2007; 454
Li, DeFrate, Rubash, Gill (b0205) 2005; 23
Marouane, Shirazi-Adl, Hashemi (b0230) 2015; 48
Girgis, Marshall, Monajem (b0170) 1975
Shelburne, Pandy, Anderson, Torry (b0305) 2004; 37
Andriacchi, Mundermann (b0035) 2006; 18
Otsubo, Shino, Suzuki, Kamiya, Suzuki, Watanabe, Fujimiya, Iwahashi, Yamashita (b0280) 2012; 20
Englander, Baldwin, Smith, Garrett, Spritzer, DeFrate (b0115) 2019
Nunley, Wright, Renner, Yu, Garrett (b0270) 2003; 11
Dürselen, Claes, Kiefer (b0110) 1995; 23
Limbert, Taylor, Middleton (b0215) 2004; 37
Alton, Baldey, Caplan, Morrissey (b0015) 1998; 13
Arnoczky (b0050) 1983
Nawabi, Tucker, Schafer, Zuiderbaan, Nguyen, Wickiewicz, Imhauser, Pearle (b0255) 2016; 44
Gao, Zheng (b0155) 2010; 25
Taylor, Cutcliffe, Queen, Utturkar, Spritzer, Garrett, DeFrate (b0325) 2013; 46
Collins, Kulvaranon, Cutcliffe, Utturkar, Smith, Spritzer, Guilak, DeFrate (b0085) 2018; 20
NCRP, 2010. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures, NCRP Report No. 168. National Council on Radiation Protection and Measurements (NCRP), Bethesda, Maryland.
Fleming, Beynnon, Tohyama, Johnson, Nichols, Renström, Pope (b0140) 1994; 12
Meyer, Haut (b0245) 2005; 38
Abebe, Utturkar, Taylor, Spritzer, Kim, Moorman, Garrett, DeFrate (b0010) 2011; 44
Fleming, Renstrom, Beynnon, Engstrom, Peura, Badger, Johnson (b0145) 2001; 34
Taylor, Terry, Utturkar, Spritzer, Queen, Irribarra, Garrett, DeFrate (b0330) 2011; 44
Torzilli, Deng, Warren (b0335) 1994; 22
DeMorat, Weinhold, Blackburn, Chudik, Garrett (b0100) 2004; 32
Heijne, Fleming, Renstrom, Peura, Beynnon, Werner (b0185) 2004; 36
Norwood, Cross (b0265) 1977; 5
Abebe, E.S., Moorman, C.r., Dziedzic, T.S., Spritzer, C.E., Cothran, R.L., Taylor, D.C., Garrett, W.E., DeFrate, L.E., 2009. Femoral tunnel placement during anterior cruciate ligament reconstruction an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel–independent techniques. Am. J. Sports Med., 37, 1904–1911.
Jordan, DeFrate, Wook Nha, Papannagari, Gill, Li (b0195) 2007; 35
Markolf, Gorek, Kabo, Shapiro (b0220) 1990; 72
Amis, Dawkins (b0020) 1991; 73
Meyer, Haut (b0250) 2008; 41
Hara, Mochizuki, Sekiya, Yamaguchi, Akita, Muneta (b0175) 2009; 37
Wu, Hosseini, Kozanek, Gadikota, Gill, Li (b0350) 2010; 38
Andersen, Amis (b0025) 1994; 2
Beynnon, Fleming (b0065) 1998; 31
Owusu-Akyaw, Kim, Spritzer, Collins, Englander, Utturkar, Garrett, DeFrate (b0285) 2018; 46
Arnoczky (10.1016/j.jbiomech.2019.109443_b0050) 1983
Englander (10.1016/j.jbiomech.2019.109443_b0120) 2019; 7
Weinhandl (10.1016/j.jbiomech.2019.109443_b0345) 2016; 19
DeMorat (10.1016/j.jbiomech.2019.109443_b0100) 2004; 32
Hefzy (10.1016/j.jbiomech.2019.109443_b0180) 1986; 108
Limbert (10.1016/j.jbiomech.2019.109443_b0215) 2004; 37
Alton (10.1016/j.jbiomech.2019.109443_b0015) 1998; 13
10.1016/j.jbiomech.2019.109443_b0315
Fleming (10.1016/j.jbiomech.2019.109443_b0140) 1994; 12
Berns (10.1016/j.jbiomech.2019.109443_b0060) 1992; 10
Utturkar (10.1016/j.jbiomech.2019.109443_b0340) 2013; 41
Georgoulis (10.1016/j.jbiomech.2019.109443_b0160) 2003; 31
Englander (10.1016/j.jbiomech.2019.109443_b0130) 2018; 81
Petersen (10.1016/j.jbiomech.2019.109443_b0295) 2007; 454
Gabriel (10.1016/j.jbiomech.2019.109443_b0150) 2004; 22
Andriacchi (10.1016/j.jbiomech.2019.109443_b0030) 2005; 38
Arms (10.1016/j.jbiomech.2019.109443_b0045) 1984; 12
Torzilli (10.1016/j.jbiomech.2019.109443_b0335) 1994; 22
Amis (10.1016/j.jbiomech.2019.109443_b0020) 1991; 73
Butler (10.1016/j.jbiomech.2019.109443_b0075) 1980; 62
Andriacchi (10.1016/j.jbiomech.2019.109443_b0040) 2004; 32
Kim (10.1016/j.jbiomech.2019.109443_b0200) 2015; 43
10.1016/j.jbiomech.2019.109443_b0005
Shin (10.1016/j.jbiomech.2019.109443_b0310) 2011; 43
Andriacchi (10.1016/j.jbiomech.2019.109443_b0035) 2006; 18
Mettler (10.1016/j.jbiomech.2019.109443_b0240) 2009; 253
Meyer (10.1016/j.jbiomech.2019.109443_b0250) 2008; 41
Jordan (10.1016/j.jbiomech.2019.109443_b0195) 2007; 35
Markolf (10.1016/j.jbiomech.2019.109443_b0220) 1990; 72
Heijne (10.1016/j.jbiomech.2019.109443_b0185) 2004; 36
Draganich (10.1016/j.jbiomech.2019.109443_b0105) 1990; 8
DeFrate (10.1016/j.jbiomech.2019.109443_b0095) 2007; 40
Li (10.1016/j.jbiomech.2019.109443_b0205) 2005; 23
Nunley (10.1016/j.jbiomech.2019.109443_b0270) 2003; 11
DeFrate (10.1016/j.jbiomech.2019.109443_b0090) 2017; 35
Odensten (10.1016/j.jbiomech.2019.109443_b0275) 1985; 67
Reimann (10.1016/j.jbiomech.2019.109443_b0300) 1992
Girgis (10.1016/j.jbiomech.2019.109443_b0170) 1975
Marouane (10.1016/j.jbiomech.2019.109443_b0230) 2015; 48
Taylor (10.1016/j.jbiomech.2019.109443_b0325) 2013; 46
Abebe (10.1016/j.jbiomech.2019.109443_b0010) 2011; 44
Tashman (10.1016/j.jbiomech.2019.109443_b0320) 2007; 454
Wu (10.1016/j.jbiomech.2019.109443_b0350) 2010; 38
Huber (10.1016/j.jbiomech.2019.109443_b0190) 2011; 201
Li (10.1016/j.jbiomech.2019.109443_b0210) 2004; 32
Fleming (10.1016/j.jbiomech.2019.109443_b0145) 2001; 34
Yoo (10.1016/j.jbiomech.2019.109443_b0355) 2010; 18
Gao (10.1016/j.jbiomech.2019.109443_b0155) 2010; 25
Norwood (10.1016/j.jbiomech.2019.109443_b0265) 1977; 5
Budd (10.1016/j.jbiomech.2019.109443_b0070) 2012; 36
Collins (10.1016/j.jbiomech.2019.109443_b0085) 2018; 20
Fleming (10.1016/j.jbiomech.2019.109443_b0135) 2004; 32
Englander (10.1016/j.jbiomech.2019.109443_b0115) 2019
Marouane (10.1016/j.jbiomech.2019.109443_b0225) 2014; 47
Owusu-Akyaw (10.1016/j.jbiomech.2019.109443_b0285) 2018; 46
Taylor (10.1016/j.jbiomech.2019.109443_b0330) 2011; 44
Andersen (10.1016/j.jbiomech.2019.109443_b0025) 1994; 2
Beynnon (10.1016/j.jbiomech.2019.109443_b0065) 1998; 31
Hara (10.1016/j.jbiomech.2019.109443_b0175) 2009; 37
Mesfar (10.1016/j.jbiomech.2019.109443_b0235) 2005; 12
Meyer (10.1016/j.jbiomech.2019.109443_b0245) 2005; 38
Cerulli (10.1016/j.jbiomech.2019.109443_b0080) 2003; 11
10.1016/j.jbiomech.2019.109443_b0260
Nawabi (10.1016/j.jbiomech.2019.109443_b0255) 2016; 44
Englander (10.1016/j.jbiomech.2019.109443_b0125) 2019; 90
Parvataneni (10.1016/j.jbiomech.2019.109443_b0290) 2009; 24
Dürselen (10.1016/j.jbiomech.2019.109443_b0110) 1995; 23
Georgoulis (10.1016/j.jbiomech.2019.109443_b0165) 2007; 454
Shelburne (10.1016/j.jbiomech.2019.109443_b0305) 2004; 37
Otsubo (10.1016/j.jbiomech.2019.109443_b0280) 2012; 20
Berchuck (10.1016/j.jbiomech.2019.109443_b0055) 1990
32698953 - J Biomech. 2020 Aug 26;109:109922
32660758 - J Biomech. 2020 Aug 26;109:109918
References_xml – volume: 20
  start-page: 232
  year: 2018
  ident: b0085
  article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI
  publication-title: Arth. Res. Ther.
– volume: 67
  start-page: 257
  year: 1985
  end-page: 262
  ident: b0275
  article-title: Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction
  publication-title: J. Bone Joint Surg. Am.
– volume: 32
  start-page: 477
  year: 2004
  end-page: 483
  ident: b0100
  article-title: Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury
  publication-title: Am. J. Sports Med.
– volume: 44
  start-page: 924
  year: 2011
  end-page: 929
  ident: b0010
  article-title: The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction
  publication-title: J. Biomech.
– volume: 31
  start-page: 75
  year: 2003
  end-page: 79
  ident: b0160
  article-title: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking
  publication-title: Am. J. Sports Med.
– volume: 41
  start-page: 123
  year: 2013
  end-page: 130
  ident: b0340
  article-title: The effects of a valgus collapse knee position on in vivo ACL elongation
  publication-title: Ann. Biomed. Eng.
– volume: 201
  start-page: 27
  year: 2011
  end-page: 34
  ident: b0190
  article-title: Muscular timing and inter-muscular coordination in healthy females while walking
  publication-title: J. Neurosci. Methods
– volume: 5
  start-page: 171
  year: 1977
  end-page: 176
  ident: b0265
  article-title: The intercondylar shelf and the anterior cruciate ligament
  publication-title: Am. J. Sports Med.
– volume: 38
  start-page: 1475
  year: 2010
  end-page: 1482
  ident: b0350
  article-title: Kinematics of the anterior cruciate ligament during gait
  publication-title: Am. J. Sports Med.
– volume: 35
  start-page: 547
  year: 2007
  end-page: 554
  ident: b0195
  article-title: The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion
  publication-title: Am. J. Sports Med.
– volume: 7
  year: 2019
  ident: b0120
  article-title: A comparison of knee abduction angles measured by a 3D anatomic coordinate system versus videographic analysis: implications for anterior cruciate ligament injury
  publication-title: Orthopaed. J. Sports Med.
– reference: Abebe, E.S., Moorman, C.r., Dziedzic, T.S., Spritzer, C.E., Cothran, R.L., Taylor, D.C., Garrett, W.E., DeFrate, L.E., 2009. Femoral tunnel placement during anterior cruciate ligament reconstruction an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel–independent techniques. Am. J. Sports Med., 37, 1904–1911.
– volume: 454
  start-page: 35
  year: 2007
  end-page: 47
  ident: b0295
  article-title: Anatomy of the anterior cruciate ligament with regard to its two bundles
  publication-title: Clinical Orthopaedics and Related Research
– year: 2019
  ident: b0115
  article-title: In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography
  publication-title: Am. J. Sports Med.
– volume: 454
  start-page: 89
  year: 2007
  end-page: 94
  ident: b0165
  article-title: Tibial rotation is not restored after ACL reconstruction with a hamstring graft
  publication-title: Clin. Orthopaed. Relat. Res.®
– volume: 11
  start-page: 307
  year: 2003
  end-page: 311
  ident: b0080
  article-title: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
– volume: 40
  start-page: 1716
  year: 2007
  end-page: 1722
  ident: b0095
  article-title: The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion
  publication-title: J. Biomech.
– volume: 44
  start-page: 365
  year: 2011
  end-page: 371
  ident: b0330
  article-title: Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing
  publication-title: J. Biomech.
– volume: 8
  start-page: 57
  year: 1990
  end-page: 63
  ident: b0105
  article-title: An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces
  publication-title: J. Orthopaed. Res.
– volume: 37
  start-page: 2386
  year: 2009
  end-page: 2391
  ident: b0175
  article-title: Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles
  publication-title: Am. J. Sports Med.
– year: 1992
  ident: b0300
  article-title: Year Automated distortion correction of x-ray image intensifier images
  publication-title: Nuclear Science Symposium and Medical Imaging Conference, Conference Record of the 1992 IEEE
– volume: 62
  start-page: 259
  year: 1980
  end-page: 270
  ident: b0075
  article-title: Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study
  publication-title: JBJS
– reference: Skelley, N.W., Lake, S.P., Brophy, R.H., 2017. Microstructural properties of the anterior cruciate ligament. Annals of Joint 2.
– volume: 46
  start-page: 1559
  year: 2018
  end-page: 1565
  ident: b0285
  article-title: Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises
  publication-title: Am. J. Sports Med.
– start-page: 871
  year: 1990
  end-page: 877
  ident: b0055
  article-title: Gait adaptations by patients who have a deficient anterior cruciate ligament
  publication-title: J. Bone Joint Surg.
– volume: 12
  start-page: 789
  year: 1994
  end-page: 795
  ident: b0140
  article-title: Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament
  publication-title: J. Orthopaed. Res.
– volume: 32
  start-page: 1415
  year: 2004
  end-page: 1420
  ident: b0210
  article-title: In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion
  publication-title: Am. J. Sports Med.
– volume: 44
  start-page: 2563
  year: 2016
  end-page: 2571
  ident: b0255
  article-title: ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion
  publication-title: Am. J. Sports Med.
– start-page: 19
  year: 1983
  end-page: 25
  ident: b0050
  article-title: Anatomy of the anterior cruciate ligament
  publication-title: Clin. Orthopaed. Related Res.
– volume: 2
  start-page: 192
  year: 1994
  end-page: 202
  ident: b0025
  article-title: Review on tension in the natural and reconstructed anterior cruciate ligament
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
– volume: 37
  start-page: 1723
  year: 2004
  end-page: 1731
  ident: b0215
  article-title: Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL
  publication-title: J. Biomech.
– reference: NCRP, 2010. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures, NCRP Report No. 168. National Council on Radiation Protection and Measurements (NCRP), Bethesda, Maryland.
– volume: 22
  start-page: 105
  year: 1994
  end-page: 112
  ident: b0335
  article-title: The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee
  publication-title: Am. J. Sports Med.
– volume: 47
  start-page: 1353
  year: 2014
  end-page: 1359
  ident: b0225
  article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression
  publication-title: J. Biomech.
– volume: 38
  start-page: 2311
  year: 2005
  end-page: 2316
  ident: b0245
  article-title: Excessive compression of the human tibio-femoral joint causes ACL rupture
  publication-title: J. Biomech.
– volume: 41
  start-page: 3377
  year: 2008
  end-page: 3383
  ident: b0250
  article-title: Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression
  publication-title: J. Biomech.
– volume: 20
  start-page: 127
  year: 2012
  end-page: 134
  ident: b0280
  article-title: The arrangement and the attachment areas of three ACL bundles
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
– volume: 23
  start-page: 340
  year: 2005
  end-page: 344
  ident: b0205
  article-title: In vivo kinematics of the ACL during weight-bearing knee flexion
  publication-title: J. Orthopaed. Res.
– volume: 11
  start-page: 173
  year: 2003
  end-page: 185
  ident: b0270
  article-title: Gender comparison of patellar tendon tibial shaft angle with weight bearing
  publication-title: Res. Sports Med.
– volume: 454
  start-page: 66
  year: 2007
  end-page: 73
  ident: b0320
  article-title: Dynamic function of the ACL-reconstructed knee during running
  publication-title: Clin. Orthopaed. Relat. Res.®
– volume: 43
  start-page: 1484
  year: 2011
  end-page: 1491
  ident: b0310
  article-title: Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone
  publication-title: Med. Sci. Sports Exerc.
– volume: 32
  start-page: 447
  year: 2004
  end-page: 457
  ident: b0040
  article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee
  publication-title: Ann. Biomed. Eng.
– volume: 24
  start-page: 95
  year: 2009
  end-page: 100
  ident: b0290
  article-title: Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults
  publication-title: Clin. Biomech.
– volume: 81
  start-page: 36
  year: 2018
  end-page: 44
  ident: b0130
  article-title: Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait
  publication-title: J. Biomech.
– volume: 108
  start-page: 73
  year: 1986
  end-page: 82
  ident: b0180
  article-title: Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers
  publication-title: J. Biomech. Eng.
– volume: 12
  start-page: 424
  year: 2005
  end-page: 434
  ident: b0235
  article-title: Biomechanics of the knee joint in flexion under various quadriceps forces
  publication-title: Knee
– volume: 23
  start-page: 129
  year: 1995
  end-page: 136
  ident: b0110
  article-title: The influence of muscle forces and external loads on cruciate ligament strain
  publication-title: Am. J. Sports Med.
– volume: 43
  start-page: 2515
  year: 2015
  end-page: 2521
  ident: b0200
  article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location
  publication-title: Am. J. Sports Med.
– volume: 90
  start-page: 123
  year: 2019
  end-page: 127
  ident: b0125
  article-title: In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion
  publication-title: J. Biomech.
– volume: 38
  start-page: 293
  year: 2005
  end-page: 298
  ident: b0030
  article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee
  publication-title: J. Biomech.
– volume: 19
  start-page: 1550
  year: 2016
  end-page: 1556
  ident: b0345
  article-title: Comparison of ACL strain estimated via a data-driven model with in vitro measurements
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 72
  start-page: 557
  year: 1990
  end-page: 567
  ident: b0220
  article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique
  publication-title: JBJS
– volume: 18
  start-page: 514
  year: 2006
  end-page: 518
  ident: b0035
  article-title: The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis
  publication-title: Curr. Opin. Rheumatol.
– volume: 12
  start-page: 8
  year: 1984
  end-page: 18
  ident: b0045
  article-title: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction
  publication-title: Am. J. Sports Med.
– start-page: 216
  year: 1975
  end-page: 231
  ident: b0170
  article-title: The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis
  publication-title: Clin. Orthopaed. Relat. Res.
– volume: 31
  start-page: 519
  year: 1998
  end-page: 525
  ident: b0065
  article-title: Anterior cruciate ligament strain in-vivo: a review of previous work
  publication-title: J. Biomech.
– volume: 13
  start-page: 434
  year: 1998
  end-page: 440
  ident: b0015
  article-title: A kinematic comparison of overground and treadmill walking
  publication-title: Clin. Biomech.
– volume: 34
  start-page: 163
  year: 2001
  end-page: 170
  ident: b0145
  article-title: The effect of weightbearing and external loading on anterior cruciate ligament strain
  publication-title: J. Biomech.
– volume: 48
  start-page: 1899
  year: 2015
  end-page: 1905
  ident: b0230
  article-title: Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait
  publication-title: J. Biomech.
– volume: 18
  start-page: 292
  year: 2010
  end-page: 297
  ident: b0355
  article-title: Changes in ACL length at different knee flexion angles: an in vivo biomechanical study
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
– volume: 10
  start-page: 167
  year: 1992
  end-page: 176
  ident: b0060
  article-title: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading
  publication-title: J. Orthopaed. Res.
– volume: 37
  start-page: 797
  year: 2004
  end-page: 805
  ident: b0305
  article-title: Pattern of anterior cruciate ligament force in normal walking
  publication-title: J. Biomech.
– volume: 253
  start-page: 520
  year: 2009
  end-page: 531
  ident: b0240
  article-title: Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007
  publication-title: Radiology
– volume: 73
  start-page: 260
  year: 1991
  end-page: 267
  ident: b0020
  article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries
  publication-title: J. Bone Joint Surg. Brit.
– volume: 36
  start-page: 935
  year: 2004
  end-page: 941
  ident: b0185
  article-title: Strain on the anterior cruciate ligament during closed kinetic chain exercises
  publication-title: Med. Sci. Sports Exerc.
– volume: 22
  start-page: 85
  year: 2004
  end-page: 89
  ident: b0150
  article-title: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads
  publication-title: J. Orthopaed. Res.
– volume: 32
  start-page: 318
  year: 2004
  end-page: 328
  ident: b0135
  article-title: In vivo measurement of ligament/tendon strains and forces: a review
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 1803
  year: 2012
  end-page: 1806
  ident: b0070
  article-title: Establishing the radiation risk from fluoroscopic-assisted arthroscopic surgery of the hip
  publication-title: Int. Orthopaed.
– volume: 46
  start-page: 478
  year: 2013
  end-page: 483
  ident: b0325
  article-title: In vivo measurement of ACL length and relative strain during walking
  publication-title: J. Biomech.
– volume: 25
  start-page: 222
  year: 2010
  end-page: 229
  ident: b0155
  article-title: Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking
  publication-title: Clin. Biomech.
– volume: 35
  start-page: 1160
  year: 2017
  end-page: 1170
  ident: b0090
  article-title: Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions
  publication-title: J. Orthopaed. Res.
– volume: 38
  start-page: 1475
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109443_b0350
  article-title: Kinematics of the anterior cruciate ligament during gait
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546510364240
– volume: 11
  start-page: 307
  year: 2003
  ident: 10.1016/j.jbiomech.2019.109443_b0080
  article-title: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-003-0403-6
– volume: 108
  start-page: 73
  year: 1986
  ident: 10.1016/j.jbiomech.2019.109443_b0180
  article-title: Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138583
– ident: 10.1016/j.jbiomech.2019.109443_b0260
– volume: 13
  start-page: 434
  year: 1998
  ident: 10.1016/j.jbiomech.2019.109443_b0015
  article-title: A kinematic comparison of overground and treadmill walking
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00012-6
– volume: 43
  start-page: 1484
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109443_b0310
  article-title: Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31820f8395
– volume: 41
  start-page: 123
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109443_b0340
  article-title: The effects of a valgus collapse knee position on in vivo ACL elongation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0629-x
– volume: 454
  start-page: 66
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109443_b0320
  article-title: Dynamic function of the ACL-reconstructed knee during running
  publication-title: Clin. Orthopaed. Relat. Res.®
  doi: 10.1097/BLO.0b013e31802bab3e
– volume: 90
  start-page: 123
  year: 2019
  ident: 10.1016/j.jbiomech.2019.109443_b0125
  article-title: In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.04.034
– volume: 47
  start-page: 1353
  year: 2014
  ident: 10.1016/j.jbiomech.2019.109443_b0225
  article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.01.055
– volume: 32
  start-page: 447
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0040
  article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee
  publication-title: Ann. Biomed. Eng.
  doi: 10.1023/B:ABME.0000017541.82498.37
– volume: 23
  start-page: 340
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109443_b0205
  article-title: In vivo kinematics of the ACL during weight-bearing knee flexion
  publication-title: J. Orthopaed. Res.
  doi: 10.1016/j.orthres.2004.08.006
– volume: 454
  start-page: 35
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109443_b0295
  article-title: Anatomy of the anterior cruciate ligament with regard to its two bundles
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1097/BLO.0b013e31802b4a59
– volume: 32
  start-page: 477
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0100
  article-title: Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546503258928
– volume: 24
  start-page: 95
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109443_b0290
  article-title: Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2008.07.002
– volume: 43
  start-page: 2515
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109443_b0200
  article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546515594446
– start-page: 19
  year: 1983
  ident: 10.1016/j.jbiomech.2019.109443_b0050
  article-title: Anatomy of the anterior cruciate ligament
  publication-title: Clin. Orthopaed. Related Res.
– volume: 40
  start-page: 1716
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109443_b0095
  article-title: The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.08.009
– volume: 8
  start-page: 57
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109443_b0105
  article-title: An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces
  publication-title: J. Orthopaed. Res.
  doi: 10.1002/jor.1100080107
– start-page: 871
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109443_b0055
  article-title: Gait adaptations by patients who have a deficient anterior cruciate ligament
  publication-title: J. Bone Joint Surg.
  doi: 10.2106/00004623-199072060-00012
– volume: 44
  start-page: 2563
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109443_b0255
  article-title: ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546516652876
– year: 1992
  ident: 10.1016/j.jbiomech.2019.109443_b0300
  article-title: Year Automated distortion correction of x-ray image intensifier images
– volume: 32
  start-page: 318
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0135
  article-title: In vivo measurement of ligament/tendon strains and forces: a review
  publication-title: Ann. Biomed. Eng.
  doi: 10.1023/B:ABME.0000017542.75080.86
– volume: 201
  start-page: 27
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109443_b0190
  article-title: Muscular timing and inter-muscular coordination in healthy females while walking
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.07.008
– volume: 32
  start-page: 1415
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0210
  article-title: In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546503262175
– volume: 48
  start-page: 1899
  year: 2015
  ident: 10.1016/j.jbiomech.2019.109443_b0230
  article-title: Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.04.017
– volume: 22
  start-page: 85
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0150
  article-title: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads
  publication-title: J. Orthopaed. Res.
  doi: 10.1016/S0736-0266(03)00133-5
– volume: 41
  start-page: 3377
  year: 2008
  ident: 10.1016/j.jbiomech.2019.109443_b0250
  article-title: Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.09.023
– volume: 20
  start-page: 232
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109443_b0085
  article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI
  publication-title: Arth. Res. Ther.
  doi: 10.1186/s13075-018-1727-4
– volume: 12
  start-page: 424
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109443_b0235
  article-title: Biomechanics of the knee joint in flexion under various quadriceps forces
  publication-title: Knee
  doi: 10.1016/j.knee.2005.03.004
– year: 2019
  ident: 10.1016/j.jbiomech.2019.109443_b0115
  article-title: In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546519876074
– volume: 253
  start-page: 520
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109443_b0240
  article-title: Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007
  publication-title: Radiology
  doi: 10.1148/radiol.2532082010
– volume: 454
  start-page: 89
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109443_b0165
  article-title: Tibial rotation is not restored after ACL reconstruction with a hamstring graft
  publication-title: Clin. Orthopaed. Relat. Res.®
  doi: 10.1097/BLO.0b013e31802b4a0a
– volume: 38
  start-page: 2311
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109443_b0245
  article-title: Excessive compression of the human tibio-femoral joint causes ACL rupture
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.10.003
– volume: 10
  start-page: 167
  year: 1992
  ident: 10.1016/j.jbiomech.2019.109443_b0060
  article-title: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading
  publication-title: J. Orthopaed. Res.
  doi: 10.1002/jor.1100100203
– volume: 23
  start-page: 129
  year: 1995
  ident: 10.1016/j.jbiomech.2019.109443_b0110
  article-title: The influence of muscle forces and external loads on cruciate ligament strain
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354659502300122
– volume: 67
  start-page: 257
  year: 1985
  ident: 10.1016/j.jbiomech.2019.109443_b0275
  article-title: Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-198567020-00012
– volume: 37
  start-page: 2386
  year: 2009
  ident: 10.1016/j.jbiomech.2019.109443_b0175
  article-title: Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546509340404
– volume: 7
  year: 2019
  ident: 10.1016/j.jbiomech.2019.109443_b0120
  article-title: A comparison of knee abduction angles measured by a 3D anatomic coordinate system versus videographic analysis: implications for anterior cruciate ligament injury
  publication-title: Orthopaed. J. Sports Med.
  doi: 10.1177/2325967118819831
– volume: 62
  start-page: 259
  year: 1980
  ident: 10.1016/j.jbiomech.2019.109443_b0075
  article-title: Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study
  publication-title: JBJS
  doi: 10.2106/00004623-198062020-00013
– volume: 12
  start-page: 789
  year: 1994
  ident: 10.1016/j.jbiomech.2019.109443_b0140
  article-title: Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament
  publication-title: J. Orthopaed. Res.
  doi: 10.1002/jor.1100120606
– volume: 35
  start-page: 547
  year: 2007
  ident: 10.1016/j.jbiomech.2019.109443_b0195
  article-title: The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546506295941
– volume: 11
  start-page: 173
  year: 2003
  ident: 10.1016/j.jbiomech.2019.109443_b0270
  article-title: Gender comparison of patellar tendon tibial shaft angle with weight bearing
  publication-title: Res. Sports Med.
  doi: 10.1080/15438620390231193
– volume: 22
  start-page: 105
  year: 1994
  ident: 10.1016/j.jbiomech.2019.109443_b0335
  article-title: The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354659402200117
– volume: 5
  start-page: 171
  year: 1977
  ident: 10.1016/j.jbiomech.2019.109443_b0265
  article-title: The intercondylar shelf and the anterior cruciate ligament
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354657700500406
– volume: 18
  start-page: 514
  year: 2006
  ident: 10.1016/j.jbiomech.2019.109443_b0035
  article-title: The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis
  publication-title: Curr. Opin. Rheumatol.
  doi: 10.1097/01.bor.0000240365.16842.4e
– volume: 81
  start-page: 36
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109443_b0130
  article-title: Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.09.010
– volume: 2
  start-page: 192
  year: 1994
  ident: 10.1016/j.jbiomech.2019.109443_b0025
  article-title: Review on tension in the natural and reconstructed anterior cruciate ligament
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/BF01845586
– start-page: 216
  year: 1975
  ident: 10.1016/j.jbiomech.2019.109443_b0170
  article-title: The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis
  publication-title: Clin. Orthopaed. Relat. Res.
  doi: 10.1097/00003086-197501000-00033
– volume: 35
  start-page: 1160
  year: 2017
  ident: 10.1016/j.jbiomech.2019.109443_b0090
  article-title: Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions
  publication-title: J. Orthopaed. Res.
  doi: 10.1002/jor.23541
– ident: 10.1016/j.jbiomech.2019.109443_b0005
  doi: 10.1177/0363546509340768
– volume: 31
  start-page: 519
  year: 1998
  ident: 10.1016/j.jbiomech.2019.109443_b0065
  article-title: Anterior cruciate ligament strain in-vivo: a review of previous work
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00044-X
– volume: 37
  start-page: 1723
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0215
  article-title: Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.01.030
– ident: 10.1016/j.jbiomech.2019.109443_b0315
  doi: 10.21037/aoj.2017.05.08
– volume: 36
  start-page: 1803
  year: 2012
  ident: 10.1016/j.jbiomech.2019.109443_b0070
  article-title: Establishing the radiation risk from fluoroscopic-assisted arthroscopic surgery of the hip
  publication-title: Int. Orthopaed.
  doi: 10.1007/s00264-012-1557-y
– volume: 38
  start-page: 293
  year: 2005
  ident: 10.1016/j.jbiomech.2019.109443_b0030
  article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.010
– volume: 19
  start-page: 1550
  year: 2016
  ident: 10.1016/j.jbiomech.2019.109443_b0345
  article-title: Comparison of ACL strain estimated via a data-driven model with in vitro measurements
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2016.1170120
– volume: 34
  start-page: 163
  year: 2001
  ident: 10.1016/j.jbiomech.2019.109443_b0145
  article-title: The effect of weightbearing and external loading on anterior cruciate ligament strain
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00154-8
– volume: 31
  start-page: 75
  year: 2003
  ident: 10.1016/j.jbiomech.2019.109443_b0160
  article-title: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking
  publication-title: Am. J. Sports Med.
  doi: 10.1177/03635465030310012401
– volume: 44
  start-page: 924
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109443_b0010
  article-title: The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.11.028
– volume: 36
  start-page: 935
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0185
  article-title: Strain on the anterior cruciate ligament during closed kinetic chain exercises
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.MSS.0000128185.55587.A3
– volume: 44
  start-page: 365
  year: 2011
  ident: 10.1016/j.jbiomech.2019.109443_b0330
  article-title: Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.10.028
– volume: 46
  start-page: 478
  year: 2013
  ident: 10.1016/j.jbiomech.2019.109443_b0325
  article-title: In vivo measurement of ACL length and relative strain during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.10.031
– volume: 37
  start-page: 797
  year: 2004
  ident: 10.1016/j.jbiomech.2019.109443_b0305
  article-title: Pattern of anterior cruciate ligament force in normal walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.10.010
– volume: 12
  start-page: 8
  year: 1984
  ident: 10.1016/j.jbiomech.2019.109443_b0045
  article-title: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354658401200102
– volume: 20
  start-page: 127
  year: 2012
  ident: 10.1016/j.jbiomech.2019.109443_b0280
  article-title: The arrangement and the attachment areas of three ACL bundles
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-011-1576-z
– volume: 72
  start-page: 557
  year: 1990
  ident: 10.1016/j.jbiomech.2019.109443_b0220
  article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique
  publication-title: JBJS
  doi: 10.2106/00004623-199072040-00014
– volume: 46
  start-page: 1559
  year: 2018
  ident: 10.1016/j.jbiomech.2019.109443_b0285
  article-title: Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546518764681
– volume: 18
  start-page: 292
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109443_b0355
  article-title: Changes in ACL length at different knee flexion angles: an in vivo biomechanical study
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-009-0932-8
– volume: 73
  start-page: 260
  year: 1991
  ident: 10.1016/j.jbiomech.2019.109443_b0020
  article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries
  publication-title: J. Bone Joint Surg. Brit.
  doi: 10.1302/0301-620X.73B2.2005151
– volume: 25
  start-page: 222
  year: 2010
  ident: 10.1016/j.jbiomech.2019.109443_b0155
  article-title: Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.11.006
– reference: 32660758 - J Biomech. 2020 Aug 26;109:109918
– reference: 32698953 - J Biomech. 2020 Aug 26;109:109922
SSID ssj0007479
Score 2.4609232
Snippet The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles...
The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109443
SubjectTerms Adult
Anterior cruciate ligament
Anterior Cruciate Ligament - diagnostic imaging
Anterior Cruciate Ligament - physiology
Attachment
Bones
Bundles
Bundling
Calibration
Double bundle
Female
Femur
Femur - anatomy & histology
Femur - surgery
Flexion
Gait
Gait Analysis
Grafts
Heels
High speed
Humans
In vivo methods and tests
Injury prevention
Kinematics
Knee
Knee Joint - anatomy & histology
Knee Joint - surgery
Ligaments
Magnetic Resonance Imaging
Male
Models, Anatomic
NMR
Nuclear magnetic resonance
Plastic surgery
Radiographs
Radiography
Reconstructive surgery
Reconstructive Surgical Procedures
Rehabilitation
Skin
Software
Standard deviation
Surgery
Tibia
Tibia - anatomy & histology
Tibia - surgery
Treadmills
Walking
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgSAgeEHQwCgMdEuItLHHspHlC1cS0IcoDYlLfIv8KTbUlpUkn9R_i78TnOKFjgvFq-6Q4Z58_352_I-QtkzRjNDKB0ZkMmOIqQFdDIBjTETWG8wTfO8--JKfn7NOcz73DrfFplb1NdIZa1wp95Ef25M8wEkDph9WPAKtGYXTVl9C4S-4hdRlevtL5cOFCbnif4hEFFgaEOy-El--X7n27C0hEGbIqMRb_7XC6CT7_zKHcOZROHpNHHk3CtFP_E3LHVCOyP63sTfpyC-_A5Xc6x_mIPNyhHhyR-zMfVN8nP88quCqvahBtK9QC3YWAs4b2ZhPWXWkXICoNjasuAXUBFkPC9Pizay3bBuQGmRsa6J5Aum708sN3UbagtvZL4bJzTWqQW5h9PXOiyJwcNCuDreXqQlRiDWuhS0-q_ZScn3z8dnwa-PINgbIYpQ3URBRahTLUFoJIrhJrPoSxy8FiuELwSIiMimSiDE2pUUkqMpZgXDRWUpmokPEzslfVlXlOoJgoa2lMEWsumWKRSJRJYpNoymNehNmY8F5vufLc5vgTLvI-iW2Z9_rOUd95p-8xORrkVh27x60Sab8s8v7tqrW2uT2AbpXMBkmPbjrU8l-yh_0KzL2NafLfO2JM3gzd1jpgyEdUpt7gmMhB-MyOOegW7DBR5EDIUs7tlK4t5WEAMo9f76nKhWMgT_FWHIYv_v1ZL8kDit4JdFjRQ7LXrjfmlYVwrXzt9ukvavRIqw
  priority: 102
  providerName: ProQuest
Title In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306906
https://dx.doi.org/10.1016/j.jbiomech.2019.109443
https://www.ncbi.nlm.nih.gov/pubmed/31679755
https://www.proquest.com/docview/2329240222
https://www.proquest.com/docview/2311923192
https://pubmed.ncbi.nlm.nih.gov/PMC7161700
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg7E9jC3dJWtXzmDszY0tS3b0mIWWZFvCKCvkzciyvDi0ToidQl76c_Y7pyNflqyMDvZig6QDlnV89PlcPhHygcVUMOppRycidpjiykFXgyMZSzyqNecB1jtPpsHoin2e8dkBGTa1MJhWWdv-yqZba1239Oq32VtlGdb4mq8Nw4DCt3S7WMHOQkzrO7v7neZh4HKd5uE5OHqnSnhxtrA17jYo4QlkVmLM_9sGdR-A_plHubMxXTwnz2pECYPqoV-QA513yNEgN3_TN1v4CDbH0zrPO-TpDv1ghzye1IH1I_JznMNtdrsEWZZSzdFlCBhXhvJ-E569Us5B5gkU9oQJWKZgcCQMhl9ta1YWEG-QvaGAqgzSdqOnH37IrAS1NU8KN5V7MoF4C5PLsRVF9mSnWGlszVbXMpdrWMskq4m1X5Kri_Pvw5FTH-HgKINTSkf1ZZooN3YTA0NirgJjQqQ2KmFwXCq5J6WgMugrTUOqVRBKwQKMjfoqVtpLY_8VOcyXuX5DIO0rY2106ic8Zop5MlA68HWQUO7z1BVdwpt1i1TNb44v4TpqEtkWUbPeEa53VK13l_RauVXF8PGgRNioRdTUrxqLG5lN6EFJ0Uruafk_yZ40GhjVdqaIDB4WGB-jtEvet93GQmDYR-Z6ucExnoXxwox5XSlsO1HkQRAh52ZKe6rcDkD28f2ePJtbFvIQ_4xd9-1_TOmYPKHovkCPFj0hh-V6o98ZjFfGp_YjNtdwFp6SR4Pxl9HU3D-dT79d_gKC3Vco
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkPh4QNABKww4JOAtW-LYSfOAUDWYWtbuAW1S34LjODTVlnRNOtR_iEf-RnzOBx0TjJe92r7IyV3uzvfxMyFvWEQDRh1lqTiILCa5tDDUYAnGYocqxbmH_c7jI29wwj5P-GSD_Gx6YbCsstGJRlHHucQY-Z62_AFmAij9MD-38NYozK42V2hUYnGoVt_1ka14P_yo-fuW0oNPx_sDq75VwJLadJaW7IkklnZkx9oyRlx6WqqF0rvUrkUiuCNEQIXXk4r6VEnPFwHzMF3nykgqJ4lc_dxb5LY2vDaWEPqT9oCHWPR1SYljabfDXutInu3OTD-9SYA4AaI4Meb-zRhedXb_rNlcM4IHD8mD2nuFfiVuj8iGyjpkq5_pk_vZCt6BqSc1gfoOub8Gddghd8Z1En-L_BhmcJFe5CDKUsgphicBvzKUV4fwnpdyCiKLoTC3WUCegPZZob8_MqNpWUC0RKSIAqqWSzONWQX4JtIS5ErvFM6qUGgM0QrGX4aGFJGarWKucDSdn4pMLGAh4rQG8X5MTm6EsU_IZpZnaptA0pNas6nEjXnEJHOEJ5XnKi-m3OWJHXQJb_gWyhpLHT_CadgUzc3Cht8h8jus-N0ley3dvEITuZbCb8QibHpltXYPtcG7ljJoKWtvqvKS_ot2p5HAsNZpRfj7D-yS1-201kaYYhKZype4xjFHhkCveVoJbPuiiLkQ-JzrV7okyu0CRDq_PJOlU4N47uMp3Laf_Xtbr8jdwfF4FI6GR4fPyT2KkREMltEdslkuluqFdh_L6KX5Z4F8vWkl8QsNjIaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVwQJDyCBQYJOBmYq-9dnxAKGqJGtpUCFGpN7Ner4mj1gmxU5Q_xI_g1zGzfpBSQbn0uuux1p7Zmdl5fMvYSy_moccdbekkjC1PCWVRqMGSnpc4XGshfOp3Hh_5-8fehxNxssF-Nr0wVFbZ6ESjqJOZohh5Dy1_SJkAzntpXRbxcW_4bv7NohukKNPaXKdRiciBXn3H41vxdrSHvH7F-fD95919q75hwFJoRktL9WWaKDu2E7SSsVA-SrjUuGJ0M1IpHClDLv2-0jzgWvmBDD2fUneuipV20tjF995gNwMXzSbupeCkPewRLn1dXuJY6ILYa93J0zdT01tvkiFOSIhOnuf-zTBednz_rN9cM4jDu-xO7cnCoBK9e2xD5x22PcjxFH-2gtdgaktN0L7Dbq_BHnbY1rhO6G-zH6MczrPzGciylGpCoUqgvwzl5SG686WcgMwTKMzNFjBLAf1XGOwemtGsLCBeEmpEAVX7pZkmRsJXmZWgVrhSOKvCognEKxh_GhlSQm22irmm0Wx-KnO5gIVMshrQ-z47vhbGPmCb-SzXjxikfYVaTqduImJPeY70lfZd7SdcuCK1wy4TDd8iVeOq0084jZoCumnU8DsifkcVv7us19LNK2SRKymCRiyipm8WNX2Exu9KyrClrD2rymP6L9qdRgKjWr8V0e_d2GUv2mnUTJRukrmeLekZxxwfQnzmYSWw7YcS_kIYCIGfdEGU2wcI9fziTJ5NDPp5QCdy237872U9Z1uoHqLD0dHBE3aLU5CE4mZ8h22Wi6V-ip5kGT8zWxbYl-vWEb8AKVGKug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+attachment+site+to+attachment+site+length+and+strain+of+the+ACL+and+its+bundles+during+the+full+gait+cycle+measured+by+MRI+and+high-speed+biplanar+radiography&rft.jtitle=Journal+of+biomechanics&rft.au=Englander%2C+Zo%C3%AB+A.&rft.au=Garrett%2C+William+E.&rft.au=Spritzer%2C+Charles+E.&rft.au=DeFrate%2C+Louis+E.&rft.date=2020-01-02&rft.issn=0021-9290&rft.volume=98&rft.spage=109443&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2019_109443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon