In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography
The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites wer...
Saved in:
Published in | Journal of biomechanics Vol. 98; p. 109443 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
02.01.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2019.109443 |
Cover
Loading…
Abstract | The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = −0.87, p < 0.001), as well as both bundle lengths and flexion (rho = −0.86, p < 0.001 and rho = −0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols. |
---|---|
AbstractList | The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = −0.87, p < 0.001), as well as both bundle lengths and flexion (rho = −0.86, p < 0.001 and rho = −0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols. The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols.The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols. The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5 ± 2.6 mm, strain = 5 ± 4%, mean ± standard deviation), and heel strike (length = 30.5 ± 3.0 mm, strain = 12 ± 5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho = -0.87, p < 0.001), as well as both bundle lengths and flexion (rho = -0.86, p < 0.001 and rho = -0.82, p < 0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p < 0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols. The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles. High-speed biplanar radiographs were obtained as subjects ambulated at 1 m/s. The bone models were registered to the radiographs, thereby reproducing the in vivo positions of the bones and ACL attachment sites throughout gait. The lengths of the ACL and both bundles were estimated as straight line distances between attachment sites for each knee position. Increased attachment to attachment ACL length and strain were observed during midstance (length = 28.5±2.6 mm, strain = 5±4%, mean ± standard deviation), and heel strike (length = 30.5±3.0 mm, strain = 12±5%) when the knee was positioned at low flexion angles. Significant inverse correlations were observed between mean attachment to attachment ACL lengths and flexion (rho=−0.87, p<0.001), as well as both bundle lengths and flexion (rho=−0.86, p<0.001 and rho = −0.82, p<0.001, respectively). AM and PL bundle attachment to attachment lengths were highly correlated throughout treadmill gait (rho = 0.90, p<0.001). These data can provide valuable information to inform design criteria for ACL grafts used in reconstructive surgery, and may be useful in the design of rehabilitation and injury prevention protocols. |
ArticleNumber | 109443 |
Author | Englander, Zoë A. Garrett, William E. Spritzer, Charles E. DeFrate, Louis E. |
AuthorAffiliation | 2 Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA 3 Department of Radiology, Duke University, Durham, North Carolina, USA 4 Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 1 Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA – name: 4 Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA – name: 1 Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA – name: 3 Department of Radiology, Duke University, Durham, North Carolina, USA |
Author_xml | – sequence: 1 givenname: Zoë A. surname: Englander fullname: Englander, Zoë A. organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA – sequence: 2 givenname: William E. surname: Garrett fullname: Garrett, William E. organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA – sequence: 3 givenname: Charles E. surname: Spritzer fullname: Spritzer, Charles E. organization: Department of Radiology, Duke University, Durham, NC, USA – sequence: 4 givenname: Louis E. surname: DeFrate fullname: DeFrate, Louis E. email: lou.defrate@duke.edu organization: Department of Orthopaedic Surgery, Duke University, Durham, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31679755$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl2LEzEUDbLidqt_YQn44svUJPPVAVlcih-FiiD6HO5k7sykpklNMoX-IX-n03YrWh_WhyRw7jkn93LPDbmyziIht5zNOOPF6_VsXWu3QdXPBOPVCFZZlj4hEz4v00Skc3ZFJowJnlSiYtfkJoQ1Y6zMyuoZuU55UVZlnk_Iz6WlO71zFGIE1W_QRhp0RBr_hQzaLvYUbEND9KAtdS2NPdL7xeqI6hhoPdjGYKDN4LXtjuV2MIZ2oCNVe2WQbhDC4LGh9Z5--rI8Snvd9UnY4gHVWwMWPPXQaNd52Pb75-RpCybgi4d3Sr69f_d18TFZff6wXNyvEpXnWUzUHNpGsZo1QqR1roqUzwEzlaciayHnAJWAYq5QlAJVUUKVFUywNFW1Qt7W6ZTcnXy3Q73BRo2zezBy6_UG_F460PLvitW97NxOlrzgJWOjwasHA-9-DBii3Oig0IwToRuCFCnn1XiNZ0peXlDXbvB2HG9kiUpkTIgD6_bPjn63cl7hSHhzIijvQvDYSqUjRO0ODWojOZOHxMi1PCdGHhIjT4kZ5cWF_PzDo8K3JyGO-9hp9DIojVZhoz2qKBunH7e4u7BQRlutwHzH_f8Y_AJoLvaq |
CitedBy_id | crossref_primary_10_1016_j_berh_2020_101588 crossref_primary_10_1002_jor_25162 crossref_primary_10_1007_s00590_022_03285_0 crossref_primary_10_1016_j_jbiomech_2020_109918 crossref_primary_10_1177_0363546520924168 crossref_primary_10_1016_j_actbio_2024_07_025 crossref_primary_10_1177_03635465241311246 crossref_primary_10_1177_2325967121991054 crossref_primary_10_1007_s42978_022_00211_y crossref_primary_10_1016_j_jbiomech_2021_110258 crossref_primary_10_1016_j_jbiomech_2024_112337 crossref_primary_10_1177_19417381211056873 crossref_primary_10_2519_jospt_2020_0609 crossref_primary_10_1016_j_jbiomech_2020_109922 crossref_primary_10_1177_03635465221107085 crossref_primary_10_1519_SSC_0000000000000605 crossref_primary_10_1002_jor_25198 crossref_primary_10_1016_j_jbiomech_2020_110210 crossref_primary_10_1177_03635465221131551 crossref_primary_10_1002_jor_25678 crossref_primary_10_1177_2325967120957646 crossref_primary_10_1016_j_actbio_2023_10_012 crossref_primary_10_1016_j_knee_2023_12_006 crossref_primary_10_1177_03635465221141876 crossref_primary_10_1016_j_joca_2020_12_019 crossref_primary_10_1007_s00167_021_06781_8 crossref_primary_10_1177_03635465231172184 crossref_primary_10_1007_s40279_023_01934_w crossref_primary_10_1016_j_jbiomech_2022_111335 crossref_primary_10_1177_23259671241271662 crossref_primary_10_1177_2325967121989095 |
Cites_doi | 10.1177/0363546510364240 10.1007/s00167-003-0403-6 10.1115/1.3138583 10.1016/S0268-0033(98)00012-6 10.1249/MSS.0b013e31820f8395 10.1007/s10439-012-0629-x 10.1097/BLO.0b013e31802bab3e 10.1016/j.jbiomech.2019.04.034 10.1016/j.jbiomech.2014.01.055 10.1023/B:ABME.0000017541.82498.37 10.1016/j.orthres.2004.08.006 10.1097/BLO.0b013e31802b4a59 10.1177/0363546503258928 10.1016/j.clinbiomech.2008.07.002 10.1177/0363546515594446 10.1016/j.jbiomech.2006.08.009 10.1002/jor.1100080107 10.2106/00004623-199072060-00012 10.1177/0363546516652876 10.1023/B:ABME.0000017542.75080.86 10.1016/j.jneumeth.2011.07.008 10.1177/0363546503262175 10.1016/j.jbiomech.2015.04.017 10.1016/S0736-0266(03)00133-5 10.1016/j.jbiomech.2008.09.023 10.1186/s13075-018-1727-4 10.1016/j.knee.2005.03.004 10.1177/0363546519876074 10.1148/radiol.2532082010 10.1097/BLO.0b013e31802b4a0a 10.1016/j.jbiomech.2004.10.003 10.1002/jor.1100100203 10.1177/036354659502300122 10.2106/00004623-198567020-00012 10.1177/0363546509340404 10.1177/2325967118819831 10.2106/00004623-198062020-00013 10.1002/jor.1100120606 10.1177/0363546506295941 10.1080/15438620390231193 10.1177/036354659402200117 10.1177/036354657700500406 10.1097/01.bor.0000240365.16842.4e 10.1016/j.jbiomech.2018.09.010 10.1007/BF01845586 10.1097/00003086-197501000-00033 10.1002/jor.23541 10.1177/0363546509340768 10.1016/S0021-9290(98)00044-X 10.1016/j.jbiomech.2004.01.030 10.21037/aoj.2017.05.08 10.1007/s00264-012-1557-y 10.1016/j.jbiomech.2004.02.010 10.1080/10255842.2016.1170120 10.1016/S0021-9290(00)00154-8 10.1177/03635465030310012401 10.1016/j.jbiomech.2010.11.028 10.1249/01.MSS.0000128185.55587.A3 10.1016/j.jbiomech.2010.10.028 10.1016/j.jbiomech.2012.10.031 10.1016/j.jbiomech.2003.10.010 10.1177/036354658401200102 10.1007/s00167-011-1576-z 10.2106/00004623-199072040-00014 10.1177/0363546518764681 10.1007/s00167-009-0932-8 10.1302/0301-620X.73B2.2005151 10.1016/j.clinbiomech.2009.11.006 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.jbiomech.2019.109443 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 109443 |
ExternalDocumentID | PMC7161700 31679755 10_1016_j_jbiomech_2019_109443 S0021929019306906 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR074800 – fundername: NIAMS NIH HHS grantid: R01 AR065527 – fundername: NIAMS NIH HHS grantid: R01 AR075399 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. AIGII ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c554t-c8afdc0b0d223b5c6318ae4c5324fa51aa92a68ce272ec67a94602033cbce1fb3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Aug 21 18:42:27 EDT 2025 Fri Jul 11 00:27:14 EDT 2025 Wed Aug 13 09:11:13 EDT 2025 Thu Apr 03 07:04:22 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Tue Jul 01 00:44:15 EDT 2025 Fri Feb 23 02:47:00 EST 2024 Tue Aug 26 17:09:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flexion Walking Double bundle Anterior cruciate ligament Kinematics |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-c8afdc0b0d223b5c6318ae4c5324fa51aa92a68ce272ec67a94602033cbce1fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7161700 |
PMID | 31679755 |
PQID | 2329240222 |
PQPubID | 1226346 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7161700 proquest_miscellaneous_2311923192 proquest_journals_2329240222 pubmed_primary_31679755 crossref_citationtrail_10_1016_j_jbiomech_2019_109443 crossref_primary_10_1016_j_jbiomech_2019_109443 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2019_109443 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2019_109443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-02 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Shin, Chaudhari, Andriacchi (b0310) 2011; 43 Georgoulis, Papadonikolakis, Papageorgiou, Mitsou, Stergiou (b0160) 2003; 31 Draganich, Vahey (b0105) 1990; 8 Andriacchi, Dyrby (b0030) 2005; 38 Cerulli, Benoit, Lamontagne, Caraffa, Liti (b0080) 2003; 11 Weinhandl, Hoch, Bawab, Ringleb (b0345) 2016; 19 Berchuck, Andriacchi, Bach, Reider (b0055) 1990 Andriacchi, Mündermann, Smith, Alexander, Dyrby, Koo (b0040) 2004; 32 Butler, Noyes, Grood (b0075) 1980; 62 Hefzy, Grood (b0180) 1986; 108 DeFrate, Nha, Papannagari, Moses, Gill, Li (b0095) 2007; 40 Fleming, Beynnon (b0135) 2004; 32 DeFrate (b0090) 2017; 35 Utturkar, Irribarra, Taylor, Spritzer, Taylor, Garrett, DeFrate (b0340) 2013; 41 Odensten, Gillquist (b0275) 1985; 67 Arms, Pope, Johnson, Fischer, Arvidsson, Eriksson (b0045) 1984; 12 Li, DeFrate, Sun, Gill (b0210) 2004; 32 Englander, Cutcliffe, Utturkar, Taylor, Spritzer, Garrett, DeFrate (b0125) 2019; 90 Englander, Cutcliffe, Utturkar, Garrett, Spritzer, DeFrate (b0120) 2019; 7 Englander, Martin, Ganapathy, Garrett, DeFrate (b0130) 2018; 81 Reimann, Flynn (b0300) 1992 Gabriel, Wong, Woo, Yagi, Debski (b0150) 2004; 22 Georgoulis, Ristanis, Chouliaras, Moraiti, Stergiou (b0165) 2007; 454 Mettler, Bhargavan, Faulkner, Gilley, Gray, Ibbott, Lipoti, Mahesh, McCrohan, Stabin (b0240) 2009; 253 Petersen, Zantop (b0295) 2007; 454 Kim, Spritzer, Utturkar, Toth, Garrett, DeFrate (b0200) 2015; 43 Budd, Patchava, Khanduja (b0070) 2012; 36 Skelley, N.W., Lake, S.P., Brophy, R.H., 2017. Microstructural properties of the anterior cruciate ligament. Annals of Joint 2. Marouane, Shirazi-Adl, Adouni, Hashemi (b0225) 2014; 47 Berns, Hull, Patterson (b0060) 1992; 10 Mesfar, Shirazi-Adl (b0235) 2005; 12 Yoo, Jeong, Shetty, Ingham, Smolinski, Fu (b0355) 2010; 18 Parvataneni, Ploeg, Olney, Brouwer (b0290) 2009; 24 Huber, Nüesch, Göpfert, Cattin, von Tscharner (b0190) 2011; 201 Tashman, Kolowich, Collon, Anderson, Anderst (b0320) 2007; 454 Li, DeFrate, Rubash, Gill (b0205) 2005; 23 Marouane, Shirazi-Adl, Hashemi (b0230) 2015; 48 Girgis, Marshall, Monajem (b0170) 1975 Shelburne, Pandy, Anderson, Torry (b0305) 2004; 37 Andriacchi, Mundermann (b0035) 2006; 18 Otsubo, Shino, Suzuki, Kamiya, Suzuki, Watanabe, Fujimiya, Iwahashi, Yamashita (b0280) 2012; 20 Englander, Baldwin, Smith, Garrett, Spritzer, DeFrate (b0115) 2019 Nunley, Wright, Renner, Yu, Garrett (b0270) 2003; 11 Dürselen, Claes, Kiefer (b0110) 1995; 23 Limbert, Taylor, Middleton (b0215) 2004; 37 Alton, Baldey, Caplan, Morrissey (b0015) 1998; 13 Arnoczky (b0050) 1983 Nawabi, Tucker, Schafer, Zuiderbaan, Nguyen, Wickiewicz, Imhauser, Pearle (b0255) 2016; 44 Gao, Zheng (b0155) 2010; 25 Taylor, Cutcliffe, Queen, Utturkar, Spritzer, Garrett, DeFrate (b0325) 2013; 46 Collins, Kulvaranon, Cutcliffe, Utturkar, Smith, Spritzer, Guilak, DeFrate (b0085) 2018; 20 NCRP, 2010. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures, NCRP Report No. 168. National Council on Radiation Protection and Measurements (NCRP), Bethesda, Maryland. Fleming, Beynnon, Tohyama, Johnson, Nichols, Renström, Pope (b0140) 1994; 12 Meyer, Haut (b0245) 2005; 38 Abebe, Utturkar, Taylor, Spritzer, Kim, Moorman, Garrett, DeFrate (b0010) 2011; 44 Fleming, Renstrom, Beynnon, Engstrom, Peura, Badger, Johnson (b0145) 2001; 34 Taylor, Terry, Utturkar, Spritzer, Queen, Irribarra, Garrett, DeFrate (b0330) 2011; 44 Torzilli, Deng, Warren (b0335) 1994; 22 DeMorat, Weinhold, Blackburn, Chudik, Garrett (b0100) 2004; 32 Heijne, Fleming, Renstrom, Peura, Beynnon, Werner (b0185) 2004; 36 Norwood, Cross (b0265) 1977; 5 Abebe, E.S., Moorman, C.r., Dziedzic, T.S., Spritzer, C.E., Cothran, R.L., Taylor, D.C., Garrett, W.E., DeFrate, L.E., 2009. Femoral tunnel placement during anterior cruciate ligament reconstruction an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel–independent techniques. Am. J. Sports Med., 37, 1904–1911. Jordan, DeFrate, Wook Nha, Papannagari, Gill, Li (b0195) 2007; 35 Markolf, Gorek, Kabo, Shapiro (b0220) 1990; 72 Amis, Dawkins (b0020) 1991; 73 Meyer, Haut (b0250) 2008; 41 Hara, Mochizuki, Sekiya, Yamaguchi, Akita, Muneta (b0175) 2009; 37 Wu, Hosseini, Kozanek, Gadikota, Gill, Li (b0350) 2010; 38 Andersen, Amis (b0025) 1994; 2 Beynnon, Fleming (b0065) 1998; 31 Owusu-Akyaw, Kim, Spritzer, Collins, Englander, Utturkar, Garrett, DeFrate (b0285) 2018; 46 Arnoczky (10.1016/j.jbiomech.2019.109443_b0050) 1983 Englander (10.1016/j.jbiomech.2019.109443_b0120) 2019; 7 Weinhandl (10.1016/j.jbiomech.2019.109443_b0345) 2016; 19 DeMorat (10.1016/j.jbiomech.2019.109443_b0100) 2004; 32 Hefzy (10.1016/j.jbiomech.2019.109443_b0180) 1986; 108 Limbert (10.1016/j.jbiomech.2019.109443_b0215) 2004; 37 Alton (10.1016/j.jbiomech.2019.109443_b0015) 1998; 13 10.1016/j.jbiomech.2019.109443_b0315 Fleming (10.1016/j.jbiomech.2019.109443_b0140) 1994; 12 Berns (10.1016/j.jbiomech.2019.109443_b0060) 1992; 10 Utturkar (10.1016/j.jbiomech.2019.109443_b0340) 2013; 41 Georgoulis (10.1016/j.jbiomech.2019.109443_b0160) 2003; 31 Englander (10.1016/j.jbiomech.2019.109443_b0130) 2018; 81 Petersen (10.1016/j.jbiomech.2019.109443_b0295) 2007; 454 Gabriel (10.1016/j.jbiomech.2019.109443_b0150) 2004; 22 Andriacchi (10.1016/j.jbiomech.2019.109443_b0030) 2005; 38 Arms (10.1016/j.jbiomech.2019.109443_b0045) 1984; 12 Torzilli (10.1016/j.jbiomech.2019.109443_b0335) 1994; 22 Amis (10.1016/j.jbiomech.2019.109443_b0020) 1991; 73 Butler (10.1016/j.jbiomech.2019.109443_b0075) 1980; 62 Andriacchi (10.1016/j.jbiomech.2019.109443_b0040) 2004; 32 Kim (10.1016/j.jbiomech.2019.109443_b0200) 2015; 43 10.1016/j.jbiomech.2019.109443_b0005 Shin (10.1016/j.jbiomech.2019.109443_b0310) 2011; 43 Andriacchi (10.1016/j.jbiomech.2019.109443_b0035) 2006; 18 Mettler (10.1016/j.jbiomech.2019.109443_b0240) 2009; 253 Meyer (10.1016/j.jbiomech.2019.109443_b0250) 2008; 41 Jordan (10.1016/j.jbiomech.2019.109443_b0195) 2007; 35 Markolf (10.1016/j.jbiomech.2019.109443_b0220) 1990; 72 Heijne (10.1016/j.jbiomech.2019.109443_b0185) 2004; 36 Draganich (10.1016/j.jbiomech.2019.109443_b0105) 1990; 8 DeFrate (10.1016/j.jbiomech.2019.109443_b0095) 2007; 40 Li (10.1016/j.jbiomech.2019.109443_b0205) 2005; 23 Nunley (10.1016/j.jbiomech.2019.109443_b0270) 2003; 11 DeFrate (10.1016/j.jbiomech.2019.109443_b0090) 2017; 35 Odensten (10.1016/j.jbiomech.2019.109443_b0275) 1985; 67 Reimann (10.1016/j.jbiomech.2019.109443_b0300) 1992 Girgis (10.1016/j.jbiomech.2019.109443_b0170) 1975 Marouane (10.1016/j.jbiomech.2019.109443_b0230) 2015; 48 Taylor (10.1016/j.jbiomech.2019.109443_b0325) 2013; 46 Abebe (10.1016/j.jbiomech.2019.109443_b0010) 2011; 44 Tashman (10.1016/j.jbiomech.2019.109443_b0320) 2007; 454 Wu (10.1016/j.jbiomech.2019.109443_b0350) 2010; 38 Huber (10.1016/j.jbiomech.2019.109443_b0190) 2011; 201 Li (10.1016/j.jbiomech.2019.109443_b0210) 2004; 32 Fleming (10.1016/j.jbiomech.2019.109443_b0145) 2001; 34 Yoo (10.1016/j.jbiomech.2019.109443_b0355) 2010; 18 Gao (10.1016/j.jbiomech.2019.109443_b0155) 2010; 25 Norwood (10.1016/j.jbiomech.2019.109443_b0265) 1977; 5 Budd (10.1016/j.jbiomech.2019.109443_b0070) 2012; 36 Collins (10.1016/j.jbiomech.2019.109443_b0085) 2018; 20 Fleming (10.1016/j.jbiomech.2019.109443_b0135) 2004; 32 Englander (10.1016/j.jbiomech.2019.109443_b0115) 2019 Marouane (10.1016/j.jbiomech.2019.109443_b0225) 2014; 47 Owusu-Akyaw (10.1016/j.jbiomech.2019.109443_b0285) 2018; 46 Taylor (10.1016/j.jbiomech.2019.109443_b0330) 2011; 44 Andersen (10.1016/j.jbiomech.2019.109443_b0025) 1994; 2 Beynnon (10.1016/j.jbiomech.2019.109443_b0065) 1998; 31 Hara (10.1016/j.jbiomech.2019.109443_b0175) 2009; 37 Mesfar (10.1016/j.jbiomech.2019.109443_b0235) 2005; 12 Meyer (10.1016/j.jbiomech.2019.109443_b0245) 2005; 38 Cerulli (10.1016/j.jbiomech.2019.109443_b0080) 2003; 11 10.1016/j.jbiomech.2019.109443_b0260 Nawabi (10.1016/j.jbiomech.2019.109443_b0255) 2016; 44 Englander (10.1016/j.jbiomech.2019.109443_b0125) 2019; 90 Parvataneni (10.1016/j.jbiomech.2019.109443_b0290) 2009; 24 Dürselen (10.1016/j.jbiomech.2019.109443_b0110) 1995; 23 Georgoulis (10.1016/j.jbiomech.2019.109443_b0165) 2007; 454 Shelburne (10.1016/j.jbiomech.2019.109443_b0305) 2004; 37 Otsubo (10.1016/j.jbiomech.2019.109443_b0280) 2012; 20 Berchuck (10.1016/j.jbiomech.2019.109443_b0055) 1990 32698953 - J Biomech. 2020 Aug 26;109:109922 32660758 - J Biomech. 2020 Aug 26;109:109918 |
References_xml | – volume: 20 start-page: 232 year: 2018 ident: b0085 article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI publication-title: Arth. Res. Ther. – volume: 67 start-page: 257 year: 1985 end-page: 262 ident: b0275 article-title: Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction publication-title: J. Bone Joint Surg. Am. – volume: 32 start-page: 477 year: 2004 end-page: 483 ident: b0100 article-title: Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury publication-title: Am. J. Sports Med. – volume: 44 start-page: 924 year: 2011 end-page: 929 ident: b0010 article-title: The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction publication-title: J. Biomech. – volume: 31 start-page: 75 year: 2003 end-page: 79 ident: b0160 article-title: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking publication-title: Am. J. Sports Med. – volume: 41 start-page: 123 year: 2013 end-page: 130 ident: b0340 article-title: The effects of a valgus collapse knee position on in vivo ACL elongation publication-title: Ann. Biomed. Eng. – volume: 201 start-page: 27 year: 2011 end-page: 34 ident: b0190 article-title: Muscular timing and inter-muscular coordination in healthy females while walking publication-title: J. Neurosci. Methods – volume: 5 start-page: 171 year: 1977 end-page: 176 ident: b0265 article-title: The intercondylar shelf and the anterior cruciate ligament publication-title: Am. J. Sports Med. – volume: 38 start-page: 1475 year: 2010 end-page: 1482 ident: b0350 article-title: Kinematics of the anterior cruciate ligament during gait publication-title: Am. J. Sports Med. – volume: 35 start-page: 547 year: 2007 end-page: 554 ident: b0195 article-title: The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion publication-title: Am. J. Sports Med. – volume: 7 year: 2019 ident: b0120 article-title: A comparison of knee abduction angles measured by a 3D anatomic coordinate system versus videographic analysis: implications for anterior cruciate ligament injury publication-title: Orthopaed. J. Sports Med. – reference: Abebe, E.S., Moorman, C.r., Dziedzic, T.S., Spritzer, C.E., Cothran, R.L., Taylor, D.C., Garrett, W.E., DeFrate, L.E., 2009. Femoral tunnel placement during anterior cruciate ligament reconstruction an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel–independent techniques. Am. J. Sports Med., 37, 1904–1911. – volume: 454 start-page: 35 year: 2007 end-page: 47 ident: b0295 article-title: Anatomy of the anterior cruciate ligament with regard to its two bundles publication-title: Clinical Orthopaedics and Related Research – year: 2019 ident: b0115 article-title: In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography publication-title: Am. J. Sports Med. – volume: 454 start-page: 89 year: 2007 end-page: 94 ident: b0165 article-title: Tibial rotation is not restored after ACL reconstruction with a hamstring graft publication-title: Clin. Orthopaed. Relat. Res.® – volume: 11 start-page: 307 year: 2003 end-page: 311 ident: b0080 article-title: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 40 start-page: 1716 year: 2007 end-page: 1722 ident: b0095 article-title: The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion publication-title: J. Biomech. – volume: 44 start-page: 365 year: 2011 end-page: 371 ident: b0330 article-title: Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing publication-title: J. Biomech. – volume: 8 start-page: 57 year: 1990 end-page: 63 ident: b0105 article-title: An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces publication-title: J. Orthopaed. Res. – volume: 37 start-page: 2386 year: 2009 end-page: 2391 ident: b0175 article-title: Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles publication-title: Am. J. Sports Med. – year: 1992 ident: b0300 article-title: Year Automated distortion correction of x-ray image intensifier images publication-title: Nuclear Science Symposium and Medical Imaging Conference, Conference Record of the 1992 IEEE – volume: 62 start-page: 259 year: 1980 end-page: 270 ident: b0075 article-title: Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study publication-title: JBJS – reference: Skelley, N.W., Lake, S.P., Brophy, R.H., 2017. Microstructural properties of the anterior cruciate ligament. Annals of Joint 2. – volume: 46 start-page: 1559 year: 2018 end-page: 1565 ident: b0285 article-title: Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises publication-title: Am. J. Sports Med. – start-page: 871 year: 1990 end-page: 877 ident: b0055 article-title: Gait adaptations by patients who have a deficient anterior cruciate ligament publication-title: J. Bone Joint Surg. – volume: 12 start-page: 789 year: 1994 end-page: 795 ident: b0140 article-title: Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament publication-title: J. Orthopaed. Res. – volume: 32 start-page: 1415 year: 2004 end-page: 1420 ident: b0210 article-title: In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion publication-title: Am. J. Sports Med. – volume: 44 start-page: 2563 year: 2016 end-page: 2571 ident: b0255 article-title: ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion publication-title: Am. J. Sports Med. – start-page: 19 year: 1983 end-page: 25 ident: b0050 article-title: Anatomy of the anterior cruciate ligament publication-title: Clin. Orthopaed. Related Res. – volume: 2 start-page: 192 year: 1994 end-page: 202 ident: b0025 article-title: Review on tension in the natural and reconstructed anterior cruciate ligament publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 37 start-page: 1723 year: 2004 end-page: 1731 ident: b0215 article-title: Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL publication-title: J. Biomech. – reference: NCRP, 2010. Radiation Dose Management for Fluoroscopically Guided Interventional Medical Procedures, NCRP Report No. 168. National Council on Radiation Protection and Measurements (NCRP), Bethesda, Maryland. – volume: 22 start-page: 105 year: 1994 end-page: 112 ident: b0335 article-title: The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee publication-title: Am. J. Sports Med. – volume: 47 start-page: 1353 year: 2014 end-page: 1359 ident: b0225 article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression publication-title: J. Biomech. – volume: 38 start-page: 2311 year: 2005 end-page: 2316 ident: b0245 article-title: Excessive compression of the human tibio-femoral joint causes ACL rupture publication-title: J. Biomech. – volume: 41 start-page: 3377 year: 2008 end-page: 3383 ident: b0250 article-title: Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression publication-title: J. Biomech. – volume: 20 start-page: 127 year: 2012 end-page: 134 ident: b0280 article-title: The arrangement and the attachment areas of three ACL bundles publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 23 start-page: 340 year: 2005 end-page: 344 ident: b0205 article-title: In vivo kinematics of the ACL during weight-bearing knee flexion publication-title: J. Orthopaed. Res. – volume: 11 start-page: 173 year: 2003 end-page: 185 ident: b0270 article-title: Gender comparison of patellar tendon tibial shaft angle with weight bearing publication-title: Res. Sports Med. – volume: 454 start-page: 66 year: 2007 end-page: 73 ident: b0320 article-title: Dynamic function of the ACL-reconstructed knee during running publication-title: Clin. Orthopaed. Relat. Res.® – volume: 43 start-page: 1484 year: 2011 end-page: 1491 ident: b0310 article-title: Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone publication-title: Med. Sci. Sports Exerc. – volume: 32 start-page: 447 year: 2004 end-page: 457 ident: b0040 article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee publication-title: Ann. Biomed. Eng. – volume: 24 start-page: 95 year: 2009 end-page: 100 ident: b0290 article-title: Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults publication-title: Clin. Biomech. – volume: 81 start-page: 36 year: 2018 end-page: 44 ident: b0130 article-title: Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait publication-title: J. Biomech. – volume: 108 start-page: 73 year: 1986 end-page: 82 ident: b0180 article-title: Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers publication-title: J. Biomech. Eng. – volume: 12 start-page: 424 year: 2005 end-page: 434 ident: b0235 article-title: Biomechanics of the knee joint in flexion under various quadriceps forces publication-title: Knee – volume: 23 start-page: 129 year: 1995 end-page: 136 ident: b0110 article-title: The influence of muscle forces and external loads on cruciate ligament strain publication-title: Am. J. Sports Med. – volume: 43 start-page: 2515 year: 2015 end-page: 2521 ident: b0200 article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location publication-title: Am. J. Sports Med. – volume: 90 start-page: 123 year: 2019 end-page: 127 ident: b0125 article-title: In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion publication-title: J. Biomech. – volume: 38 start-page: 293 year: 2005 end-page: 298 ident: b0030 article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee publication-title: J. Biomech. – volume: 19 start-page: 1550 year: 2016 end-page: 1556 ident: b0345 article-title: Comparison of ACL strain estimated via a data-driven model with in vitro measurements publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 72 start-page: 557 year: 1990 end-page: 567 ident: b0220 article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique publication-title: JBJS – volume: 18 start-page: 514 year: 2006 end-page: 518 ident: b0035 article-title: The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis publication-title: Curr. Opin. Rheumatol. – volume: 12 start-page: 8 year: 1984 end-page: 18 ident: b0045 article-title: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction publication-title: Am. J. Sports Med. – start-page: 216 year: 1975 end-page: 231 ident: b0170 article-title: The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis publication-title: Clin. Orthopaed. Relat. Res. – volume: 31 start-page: 519 year: 1998 end-page: 525 ident: b0065 article-title: Anterior cruciate ligament strain in-vivo: a review of previous work publication-title: J. Biomech. – volume: 13 start-page: 434 year: 1998 end-page: 440 ident: b0015 article-title: A kinematic comparison of overground and treadmill walking publication-title: Clin. Biomech. – volume: 34 start-page: 163 year: 2001 end-page: 170 ident: b0145 article-title: The effect of weightbearing and external loading on anterior cruciate ligament strain publication-title: J. Biomech. – volume: 48 start-page: 1899 year: 2015 end-page: 1905 ident: b0230 article-title: Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait publication-title: J. Biomech. – volume: 18 start-page: 292 year: 2010 end-page: 297 ident: b0355 article-title: Changes in ACL length at different knee flexion angles: an in vivo biomechanical study publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 10 start-page: 167 year: 1992 end-page: 176 ident: b0060 article-title: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading publication-title: J. Orthopaed. Res. – volume: 37 start-page: 797 year: 2004 end-page: 805 ident: b0305 article-title: Pattern of anterior cruciate ligament force in normal walking publication-title: J. Biomech. – volume: 253 start-page: 520 year: 2009 end-page: 531 ident: b0240 article-title: Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007 publication-title: Radiology – volume: 73 start-page: 260 year: 1991 end-page: 267 ident: b0020 article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries publication-title: J. Bone Joint Surg. Brit. – volume: 36 start-page: 935 year: 2004 end-page: 941 ident: b0185 article-title: Strain on the anterior cruciate ligament during closed kinetic chain exercises publication-title: Med. Sci. Sports Exerc. – volume: 22 start-page: 85 year: 2004 end-page: 89 ident: b0150 article-title: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads publication-title: J. Orthopaed. Res. – volume: 32 start-page: 318 year: 2004 end-page: 328 ident: b0135 article-title: In vivo measurement of ligament/tendon strains and forces: a review publication-title: Ann. Biomed. Eng. – volume: 36 start-page: 1803 year: 2012 end-page: 1806 ident: b0070 article-title: Establishing the radiation risk from fluoroscopic-assisted arthroscopic surgery of the hip publication-title: Int. Orthopaed. – volume: 46 start-page: 478 year: 2013 end-page: 483 ident: b0325 article-title: In vivo measurement of ACL length and relative strain during walking publication-title: J. Biomech. – volume: 25 start-page: 222 year: 2010 end-page: 229 ident: b0155 article-title: Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking publication-title: Clin. Biomech. – volume: 35 start-page: 1160 year: 2017 end-page: 1170 ident: b0090 article-title: Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions publication-title: J. Orthopaed. Res. – volume: 38 start-page: 1475 year: 2010 ident: 10.1016/j.jbiomech.2019.109443_b0350 article-title: Kinematics of the anterior cruciate ligament during gait publication-title: Am. J. Sports Med. doi: 10.1177/0363546510364240 – volume: 11 start-page: 307 year: 2003 ident: 10.1016/j.jbiomech.2019.109443_b0080 article-title: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-003-0403-6 – volume: 108 start-page: 73 year: 1986 ident: 10.1016/j.jbiomech.2019.109443_b0180 article-title: Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers publication-title: J. Biomech. Eng. doi: 10.1115/1.3138583 – ident: 10.1016/j.jbiomech.2019.109443_b0260 – volume: 13 start-page: 434 year: 1998 ident: 10.1016/j.jbiomech.2019.109443_b0015 article-title: A kinematic comparison of overground and treadmill walking publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(98)00012-6 – volume: 43 start-page: 1484 year: 2011 ident: 10.1016/j.jbiomech.2019.109443_b0310 article-title: Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e31820f8395 – volume: 41 start-page: 123 year: 2013 ident: 10.1016/j.jbiomech.2019.109443_b0340 article-title: The effects of a valgus collapse knee position on in vivo ACL elongation publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0629-x – volume: 454 start-page: 66 year: 2007 ident: 10.1016/j.jbiomech.2019.109443_b0320 article-title: Dynamic function of the ACL-reconstructed knee during running publication-title: Clin. Orthopaed. Relat. Res.® doi: 10.1097/BLO.0b013e31802bab3e – volume: 90 start-page: 123 year: 2019 ident: 10.1016/j.jbiomech.2019.109443_b0125 article-title: In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.04.034 – volume: 47 start-page: 1353 year: 2014 ident: 10.1016/j.jbiomech.2019.109443_b0225 article-title: Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.01.055 – volume: 32 start-page: 447 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0040 article-title: A framework for the in vivo pathomechanics of osteoarthritis at the knee publication-title: Ann. Biomed. Eng. doi: 10.1023/B:ABME.0000017541.82498.37 – volume: 23 start-page: 340 year: 2005 ident: 10.1016/j.jbiomech.2019.109443_b0205 article-title: In vivo kinematics of the ACL during weight-bearing knee flexion publication-title: J. Orthopaed. Res. doi: 10.1016/j.orthres.2004.08.006 – volume: 454 start-page: 35 year: 2007 ident: 10.1016/j.jbiomech.2019.109443_b0295 article-title: Anatomy of the anterior cruciate ligament with regard to its two bundles publication-title: Clinical Orthopaedics and Related Research doi: 10.1097/BLO.0b013e31802b4a59 – volume: 32 start-page: 477 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0100 article-title: Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury publication-title: Am. J. Sports Med. doi: 10.1177/0363546503258928 – volume: 24 start-page: 95 year: 2009 ident: 10.1016/j.jbiomech.2019.109443_b0290 article-title: Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2008.07.002 – volume: 43 start-page: 2515 year: 2015 ident: 10.1016/j.jbiomech.2019.109443_b0200 article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location publication-title: Am. J. Sports Med. doi: 10.1177/0363546515594446 – start-page: 19 year: 1983 ident: 10.1016/j.jbiomech.2019.109443_b0050 article-title: Anatomy of the anterior cruciate ligament publication-title: Clin. Orthopaed. Related Res. – volume: 40 start-page: 1716 year: 2007 ident: 10.1016/j.jbiomech.2019.109443_b0095 article-title: The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.08.009 – volume: 8 start-page: 57 year: 1990 ident: 10.1016/j.jbiomech.2019.109443_b0105 article-title: An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces publication-title: J. Orthopaed. Res. doi: 10.1002/jor.1100080107 – start-page: 871 year: 1990 ident: 10.1016/j.jbiomech.2019.109443_b0055 article-title: Gait adaptations by patients who have a deficient anterior cruciate ligament publication-title: J. Bone Joint Surg. doi: 10.2106/00004623-199072060-00012 – volume: 44 start-page: 2563 year: 2016 ident: 10.1016/j.jbiomech.2019.109443_b0255 article-title: ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion publication-title: Am. J. Sports Med. doi: 10.1177/0363546516652876 – year: 1992 ident: 10.1016/j.jbiomech.2019.109443_b0300 article-title: Year Automated distortion correction of x-ray image intensifier images – volume: 32 start-page: 318 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0135 article-title: In vivo measurement of ligament/tendon strains and forces: a review publication-title: Ann. Biomed. Eng. doi: 10.1023/B:ABME.0000017542.75080.86 – volume: 201 start-page: 27 year: 2011 ident: 10.1016/j.jbiomech.2019.109443_b0190 article-title: Muscular timing and inter-muscular coordination in healthy females while walking publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.07.008 – volume: 32 start-page: 1415 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0210 article-title: In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion publication-title: Am. J. Sports Med. doi: 10.1177/0363546503262175 – volume: 48 start-page: 1899 year: 2015 ident: 10.1016/j.jbiomech.2019.109443_b0230 article-title: Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.04.017 – volume: 22 start-page: 85 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0150 article-title: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads publication-title: J. Orthopaed. Res. doi: 10.1016/S0736-0266(03)00133-5 – volume: 41 start-page: 3377 year: 2008 ident: 10.1016/j.jbiomech.2019.109443_b0250 article-title: Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.09.023 – volume: 20 start-page: 232 year: 2018 ident: 10.1016/j.jbiomech.2019.109443_b0085 article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI publication-title: Arth. Res. Ther. doi: 10.1186/s13075-018-1727-4 – volume: 12 start-page: 424 year: 2005 ident: 10.1016/j.jbiomech.2019.109443_b0235 article-title: Biomechanics of the knee joint in flexion under various quadriceps forces publication-title: Knee doi: 10.1016/j.knee.2005.03.004 – year: 2019 ident: 10.1016/j.jbiomech.2019.109443_b0115 article-title: In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography publication-title: Am. J. Sports Med. doi: 10.1177/0363546519876074 – volume: 253 start-page: 520 year: 2009 ident: 10.1016/j.jbiomech.2019.109443_b0240 article-title: Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007 publication-title: Radiology doi: 10.1148/radiol.2532082010 – volume: 454 start-page: 89 year: 2007 ident: 10.1016/j.jbiomech.2019.109443_b0165 article-title: Tibial rotation is not restored after ACL reconstruction with a hamstring graft publication-title: Clin. Orthopaed. Relat. Res.® doi: 10.1097/BLO.0b013e31802b4a0a – volume: 38 start-page: 2311 year: 2005 ident: 10.1016/j.jbiomech.2019.109443_b0245 article-title: Excessive compression of the human tibio-femoral joint causes ACL rupture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.10.003 – volume: 10 start-page: 167 year: 1992 ident: 10.1016/j.jbiomech.2019.109443_b0060 article-title: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading publication-title: J. Orthopaed. Res. doi: 10.1002/jor.1100100203 – volume: 23 start-page: 129 year: 1995 ident: 10.1016/j.jbiomech.2019.109443_b0110 article-title: The influence of muscle forces and external loads on cruciate ligament strain publication-title: Am. J. Sports Med. doi: 10.1177/036354659502300122 – volume: 67 start-page: 257 year: 1985 ident: 10.1016/j.jbiomech.2019.109443_b0275 article-title: Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-198567020-00012 – volume: 37 start-page: 2386 year: 2009 ident: 10.1016/j.jbiomech.2019.109443_b0175 article-title: Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles publication-title: Am. J. Sports Med. doi: 10.1177/0363546509340404 – volume: 7 year: 2019 ident: 10.1016/j.jbiomech.2019.109443_b0120 article-title: A comparison of knee abduction angles measured by a 3D anatomic coordinate system versus videographic analysis: implications for anterior cruciate ligament injury publication-title: Orthopaed. J. Sports Med. doi: 10.1177/2325967118819831 – volume: 62 start-page: 259 year: 1980 ident: 10.1016/j.jbiomech.2019.109443_b0075 article-title: Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study publication-title: JBJS doi: 10.2106/00004623-198062020-00013 – volume: 12 start-page: 789 year: 1994 ident: 10.1016/j.jbiomech.2019.109443_b0140 article-title: Determination of a zero strain reference for the anteromedial band of the anterior cruciate ligament publication-title: J. Orthopaed. Res. doi: 10.1002/jor.1100120606 – volume: 35 start-page: 547 year: 2007 ident: 10.1016/j.jbiomech.2019.109443_b0195 article-title: The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion publication-title: Am. J. Sports Med. doi: 10.1177/0363546506295941 – volume: 11 start-page: 173 year: 2003 ident: 10.1016/j.jbiomech.2019.109443_b0270 article-title: Gender comparison of patellar tendon tibial shaft angle with weight bearing publication-title: Res. Sports Med. doi: 10.1080/15438620390231193 – volume: 22 start-page: 105 year: 1994 ident: 10.1016/j.jbiomech.2019.109443_b0335 article-title: The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee publication-title: Am. J. Sports Med. doi: 10.1177/036354659402200117 – volume: 5 start-page: 171 year: 1977 ident: 10.1016/j.jbiomech.2019.109443_b0265 article-title: The intercondylar shelf and the anterior cruciate ligament publication-title: Am. J. Sports Med. doi: 10.1177/036354657700500406 – volume: 18 start-page: 514 year: 2006 ident: 10.1016/j.jbiomech.2019.109443_b0035 article-title: The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis publication-title: Curr. Opin. Rheumatol. doi: 10.1097/01.bor.0000240365.16842.4e – volume: 81 start-page: 36 year: 2018 ident: 10.1016/j.jbiomech.2019.109443_b0130 article-title: Automatic registration of MRI-based joint models to high-speed biplanar radiographs for precise quantification of in vivo anterior cruciate ligament deformation during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.09.010 – volume: 2 start-page: 192 year: 1994 ident: 10.1016/j.jbiomech.2019.109443_b0025 article-title: Review on tension in the natural and reconstructed anterior cruciate ligament publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/BF01845586 – start-page: 216 year: 1975 ident: 10.1016/j.jbiomech.2019.109443_b0170 article-title: The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis publication-title: Clin. Orthopaed. Relat. Res. doi: 10.1097/00003086-197501000-00033 – volume: 35 start-page: 1160 year: 2017 ident: 10.1016/j.jbiomech.2019.109443_b0090 article-title: Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions publication-title: J. Orthopaed. Res. doi: 10.1002/jor.23541 – ident: 10.1016/j.jbiomech.2019.109443_b0005 doi: 10.1177/0363546509340768 – volume: 31 start-page: 519 year: 1998 ident: 10.1016/j.jbiomech.2019.109443_b0065 article-title: Anterior cruciate ligament strain in-vivo: a review of previous work publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00044-X – volume: 37 start-page: 1723 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0215 article-title: Three-dimensional finite element modelling of the human ACL: simulation of passive knee flexion with a stressed and stress-free ACL publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.01.030 – ident: 10.1016/j.jbiomech.2019.109443_b0315 doi: 10.21037/aoj.2017.05.08 – volume: 36 start-page: 1803 year: 2012 ident: 10.1016/j.jbiomech.2019.109443_b0070 article-title: Establishing the radiation risk from fluoroscopic-assisted arthroscopic surgery of the hip publication-title: Int. Orthopaed. doi: 10.1007/s00264-012-1557-y – volume: 38 start-page: 293 year: 2005 ident: 10.1016/j.jbiomech.2019.109443_b0030 article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.02.010 – volume: 19 start-page: 1550 year: 2016 ident: 10.1016/j.jbiomech.2019.109443_b0345 article-title: Comparison of ACL strain estimated via a data-driven model with in vitro measurements publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2016.1170120 – volume: 34 start-page: 163 year: 2001 ident: 10.1016/j.jbiomech.2019.109443_b0145 article-title: The effect of weightbearing and external loading on anterior cruciate ligament strain publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00154-8 – volume: 31 start-page: 75 year: 2003 ident: 10.1016/j.jbiomech.2019.109443_b0160 article-title: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking publication-title: Am. J. Sports Med. doi: 10.1177/03635465030310012401 – volume: 44 start-page: 924 year: 2011 ident: 10.1016/j.jbiomech.2019.109443_b0010 article-title: The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.11.028 – volume: 36 start-page: 935 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0185 article-title: Strain on the anterior cruciate ligament during closed kinetic chain exercises publication-title: Med. Sci. Sports Exerc. doi: 10.1249/01.MSS.0000128185.55587.A3 – volume: 44 start-page: 365 year: 2011 ident: 10.1016/j.jbiomech.2019.109443_b0330 article-title: Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.10.028 – volume: 46 start-page: 478 year: 2013 ident: 10.1016/j.jbiomech.2019.109443_b0325 article-title: In vivo measurement of ACL length and relative strain during walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.10.031 – volume: 37 start-page: 797 year: 2004 ident: 10.1016/j.jbiomech.2019.109443_b0305 article-title: Pattern of anterior cruciate ligament force in normal walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.10.010 – volume: 12 start-page: 8 year: 1984 ident: 10.1016/j.jbiomech.2019.109443_b0045 article-title: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction publication-title: Am. J. Sports Med. doi: 10.1177/036354658401200102 – volume: 20 start-page: 127 year: 2012 ident: 10.1016/j.jbiomech.2019.109443_b0280 article-title: The arrangement and the attachment areas of three ACL bundles publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-011-1576-z – volume: 72 start-page: 557 year: 1990 ident: 10.1016/j.jbiomech.2019.109443_b0220 article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique publication-title: JBJS doi: 10.2106/00004623-199072040-00014 – volume: 46 start-page: 1559 year: 2018 ident: 10.1016/j.jbiomech.2019.109443_b0285 article-title: Determination of the position of the knee at the time of an anterior cruciate ligament rupture for male versus female patients by an analysis of bone bruises publication-title: Am. J. Sports Med. doi: 10.1177/0363546518764681 – volume: 18 start-page: 292 year: 2010 ident: 10.1016/j.jbiomech.2019.109443_b0355 article-title: Changes in ACL length at different knee flexion angles: an in vivo biomechanical study publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-009-0932-8 – volume: 73 start-page: 260 year: 1991 ident: 10.1016/j.jbiomech.2019.109443_b0020 article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries publication-title: J. Bone Joint Surg. Brit. doi: 10.1302/0301-620X.73B2.2005151 – volume: 25 start-page: 222 year: 2010 ident: 10.1016/j.jbiomech.2019.109443_b0155 article-title: Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and-reconstructed knees during walking publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2009.11.006 – reference: 32660758 - J Biomech. 2020 Aug 26;109:109918 – reference: 32698953 - J Biomech. 2020 Aug 26;109:109922 |
SSID | ssj0007479 |
Score | 2.4609232 |
Snippet | The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles... The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109443 |
SubjectTerms | Adult Anterior cruciate ligament Anterior Cruciate Ligament - diagnostic imaging Anterior Cruciate Ligament - physiology Attachment Bones Bundles Bundling Calibration Double bundle Female Femur Femur - anatomy & histology Femur - surgery Flexion Gait Gait Analysis Grafts Heels High speed Humans In vivo methods and tests Injury prevention Kinematics Knee Knee Joint - anatomy & histology Knee Joint - surgery Ligaments Magnetic Resonance Imaging Male Models, Anatomic NMR Nuclear magnetic resonance Plastic surgery Radiographs Radiography Reconstructive surgery Reconstructive Surgical Procedures Rehabilitation Skin Software Standard deviation Surgery Tibia Tibia - anatomy & histology Tibia - surgery Treadmills Walking |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgSAgeEHQwCgMdEuItLHHspHlC1cS0IcoDYlLfIv8KTbUlpUkn9R_i78TnOKFjgvFq-6Q4Z58_352_I-QtkzRjNDKB0ZkMmOIqQFdDIBjTETWG8wTfO8--JKfn7NOcz73DrfFplb1NdIZa1wp95Ef25M8wEkDph9WPAKtGYXTVl9C4S-4hdRlevtL5cOFCbnif4hEFFgaEOy-El--X7n27C0hEGbIqMRb_7XC6CT7_zKHcOZROHpNHHk3CtFP_E3LHVCOyP63sTfpyC-_A5Xc6x_mIPNyhHhyR-zMfVN8nP88quCqvahBtK9QC3YWAs4b2ZhPWXWkXICoNjasuAXUBFkPC9Pizay3bBuQGmRsa6J5Aum708sN3UbagtvZL4bJzTWqQW5h9PXOiyJwcNCuDreXqQlRiDWuhS0-q_ZScn3z8dnwa-PINgbIYpQ3URBRahTLUFoJIrhJrPoSxy8FiuELwSIiMimSiDE2pUUkqMpZgXDRWUpmokPEzslfVlXlOoJgoa2lMEWsumWKRSJRJYpNoymNehNmY8F5vufLc5vgTLvI-iW2Z9_rOUd95p-8xORrkVh27x60Sab8s8v7tqrW2uT2AbpXMBkmPbjrU8l-yh_0KzL2NafLfO2JM3gzd1jpgyEdUpt7gmMhB-MyOOegW7DBR5EDIUs7tlK4t5WEAMo9f76nKhWMgT_FWHIYv_v1ZL8kDit4JdFjRQ7LXrjfmlYVwrXzt9ukvavRIqw priority: 102 providerName: ProQuest |
Title | In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929019306906 https://dx.doi.org/10.1016/j.jbiomech.2019.109443 https://www.ncbi.nlm.nih.gov/pubmed/31679755 https://www.proquest.com/docview/2329240222 https://www.proquest.com/docview/2311923192 https://pubmed.ncbi.nlm.nih.gov/PMC7161700 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg7E9jC3dJWtXzmDszY0tS3b0mIWWZFvCKCvkzciyvDi0ToidQl76c_Y7pyNflqyMDvZig6QDlnV89PlcPhHygcVUMOppRycidpjiykFXgyMZSzyqNecB1jtPpsHoin2e8dkBGTa1MJhWWdv-yqZba1239Oq32VtlGdb4mq8Nw4DCt3S7WMHOQkzrO7v7neZh4HKd5uE5OHqnSnhxtrA17jYo4QlkVmLM_9sGdR-A_plHubMxXTwnz2pECYPqoV-QA513yNEgN3_TN1v4CDbH0zrPO-TpDv1ghzye1IH1I_JznMNtdrsEWZZSzdFlCBhXhvJ-E569Us5B5gkU9oQJWKZgcCQMhl9ta1YWEG-QvaGAqgzSdqOnH37IrAS1NU8KN5V7MoF4C5PLsRVF9mSnWGlszVbXMpdrWMskq4m1X5Kri_Pvw5FTH-HgKINTSkf1ZZooN3YTA0NirgJjQqQ2KmFwXCq5J6WgMugrTUOqVRBKwQKMjfoqVtpLY_8VOcyXuX5DIO0rY2106ic8Zop5MlA68HWQUO7z1BVdwpt1i1TNb44v4TpqEtkWUbPeEa53VK13l_RauVXF8PGgRNioRdTUrxqLG5lN6EFJ0Uruafk_yZ40GhjVdqaIDB4WGB-jtEvet93GQmDYR-Z6ucExnoXxwox5XSlsO1HkQRAh52ZKe6rcDkD28f2ePJtbFvIQ_4xd9-1_TOmYPKHovkCPFj0hh-V6o98ZjFfGp_YjNtdwFp6SR4Pxl9HU3D-dT79d_gKC3Vco |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkPh4QNABKww4JOAtW-LYSfOAUDWYWtbuAW1S34LjODTVlnRNOtR_iEf-RnzOBx0TjJe92r7IyV3uzvfxMyFvWEQDRh1lqTiILCa5tDDUYAnGYocqxbmH_c7jI29wwj5P-GSD_Gx6YbCsstGJRlHHucQY-Z62_AFmAij9MD-38NYozK42V2hUYnGoVt_1ka14P_yo-fuW0oNPx_sDq75VwJLadJaW7IkklnZkx9oyRlx6WqqF0rvUrkUiuCNEQIXXk4r6VEnPFwHzMF3nykgqJ4lc_dxb5LY2vDaWEPqT9oCHWPR1SYljabfDXutInu3OTD-9SYA4AaI4Meb-zRhedXb_rNlcM4IHD8mD2nuFfiVuj8iGyjpkq5_pk_vZCt6BqSc1gfoOub8Gddghd8Z1En-L_BhmcJFe5CDKUsgphicBvzKUV4fwnpdyCiKLoTC3WUCegPZZob8_MqNpWUC0RKSIAqqWSzONWQX4JtIS5ErvFM6qUGgM0QrGX4aGFJGarWKucDSdn4pMLGAh4rQG8X5MTm6EsU_IZpZnaptA0pNas6nEjXnEJHOEJ5XnKi-m3OWJHXQJb_gWyhpLHT_CadgUzc3Cht8h8jus-N0ley3dvEITuZbCb8QibHpltXYPtcG7ljJoKWtvqvKS_ot2p5HAsNZpRfj7D-yS1-201kaYYhKZype4xjFHhkCveVoJbPuiiLkQ-JzrV7okyu0CRDq_PJOlU4N47uMp3Laf_Xtbr8jdwfF4FI6GR4fPyT2KkREMltEdslkuluqFdh_L6KX5Z4F8vWkl8QsNjIaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVwQJDyCBQYJOBmYq-9dnxAKGqJGtpUCFGpN7Ner4mj1gmxU5Q_xI_g1zGzfpBSQbn0uuux1p7Zmdl5fMvYSy_moccdbekkjC1PCWVRqMGSnpc4XGshfOp3Hh_5-8fehxNxssF-Nr0wVFbZ6ESjqJOZohh5Dy1_SJkAzntpXRbxcW_4bv7NohukKNPaXKdRiciBXn3H41vxdrSHvH7F-fD95919q75hwFJoRktL9WWaKDu2E7SSsVA-SrjUuGJ0M1IpHClDLv2-0jzgWvmBDD2fUneuipV20tjF995gNwMXzSbupeCkPewRLn1dXuJY6ILYa93J0zdT01tvkiFOSIhOnuf-zTBednz_rN9cM4jDu-xO7cnCoBK9e2xD5x22PcjxFH-2gtdgaktN0L7Dbq_BHnbY1rhO6G-zH6MczrPzGciylGpCoUqgvwzl5SG686WcgMwTKMzNFjBLAf1XGOwemtGsLCBeEmpEAVX7pZkmRsJXmZWgVrhSOKvCognEKxh_GhlSQm22irmm0Wx-KnO5gIVMshrQ-z47vhbGPmCb-SzXjxikfYVaTqduImJPeY70lfZd7SdcuCK1wy4TDd8iVeOq0084jZoCumnU8DsifkcVv7us19LNK2SRKymCRiyipm8WNX2Exu9KyrClrD2rymP6L9qdRgKjWr8V0e_d2GUv2mnUTJRukrmeLekZxxwfQnzmYSWw7YcS_kIYCIGfdEGU2wcI9fziTJ5NDPp5QCdy237872U9Z1uoHqLD0dHBE3aLU5CE4mZ8h22Wi6V-ip5kGT8zWxbYl-vWEb8AKVGKug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+attachment+site+to+attachment+site+length+and+strain+of+the+ACL+and+its+bundles+during+the+full+gait+cycle+measured+by+MRI+and+high-speed+biplanar+radiography&rft.jtitle=Journal+of+biomechanics&rft.au=Englander%2C+Zo%C3%AB+A.&rft.au=Garrett%2C+William+E.&rft.au=Spritzer%2C+Charles+E.&rft.au=DeFrate%2C+Louis+E.&rft.date=2020-01-02&rft.issn=0021-9290&rft.volume=98&rft.spage=109443&rft_id=info:doi/10.1016%2Fj.jbiomech.2019.109443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2019_109443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |