Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling
Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships amon...
Saved in:
Published in | Plant communications Vol. 1; no. 2; p. 100027 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier Inc
09.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic.
Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The relationships among the early divergent lineages of angiosperms have been the subject of long debate. By assembling a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, this study investigates the angiosperm phylogeny and reveals that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. |
---|---|
AbstractList | Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic. Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic.Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic. Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called Mesangiospermae, which is subdivided into five major groups: eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales. The relationships among these Mesangiospermae groups have been the subject of long debate. In this study, we assembled a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, including representatives of all five lineages, to investigate the phylogeny of major angiosperm lineages under both coalescent- and concatenation-based methods. We dissected the phylogenetic signal and found that more than half of the genes lack phylogenetic information for the backbone of angiosperm phylogeny. We further removed the genes with weak phylogenetic signal and showed that eudicots, Ceratophyllales, and Chloranthales form a clade, with magnoliids and monocots being the next successive sister lineages. Similar frequencies of gene tree conflict are suggestive of incomplete lineage sorting along the backbone of the angiosperm phylogeny. Our analyses suggest that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. Meanwhile, we inferred that the crown-group angiosperms originated approximately between 255.1 and 222.2 million years ago, and Mesangiospermae diversified into the five extant groups in a short time span (∼27 million years) at the Early to Late Jurassic. Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The relationships among the early divergent lineages of angiosperms have been the subject of long debate. By assembling a phylogenomic dataset of 1594 genes from 151 angiosperm taxa, this study investigates the angiosperm phylogeny and reveals that a fully bifurcating species tree may not be the best way to represent the early radiation of angiosperms. |
ArticleNumber | 100027 |
Author | Chang, Xin Foster, Charles S.P. Zhong, Bojian Sun, Linhua Zhou, Xiaofan Ma, Hong Huang, Chien-Hsun Zeng, Liping Yang, Lingxiao Su, Danyan |
Author_xml | – sequence: 1 givenname: Lingxiao surname: Yang fullname: Yang, Lingxiao organization: College of Life Sciences, Nanjing Normal University, Nanjing, China – sequence: 2 givenname: Danyan surname: Su fullname: Su, Danyan organization: College of Life Sciences, Nanjing Normal University, Nanjing, China – sequence: 3 givenname: Xin surname: Chang fullname: Chang, Xin organization: College of Life Sciences, Nanjing Normal University, Nanjing, China – sequence: 4 givenname: Charles S.P. surname: Foster fullname: Foster, Charles S.P. organization: School of Life and Environmental Sciences, University of Sydney, Sydney, Australia – sequence: 5 givenname: Linhua surname: Sun fullname: Sun, Linhua organization: Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China – sequence: 6 givenname: Chien-Hsun surname: Huang fullname: Huang, Chien-Hsun organization: State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China – sequence: 7 givenname: Xiaofan surname: Zhou fullname: Zhou, Xiaofan organization: Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China – sequence: 8 givenname: Liping surname: Zeng fullname: Zeng, Liping organization: Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA – sequence: 9 givenname: Hong surname: Ma fullname: Ma, Hong organization: Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA – sequence: 10 givenname: Bojian orcidid: 0000-0002-6496-7646 surname: Zhong fullname: Zhong, Bojian email: bjzhong@gmail.com organization: College of Life Sciences, Nanjing Normal University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33367231$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVAR_aB_gAPykcsu_kqcSAipLVBWqgAJOCLLsSdZrxI72NmK_fd12LZqOVRcbGvmveeZN3OMDnzwgNArSpaU0PLtZvln7M2SETYHCGHyGTpiRU0WXJTs4MH7EJ2mtJkhBaUlL16gQ855KRmnR-jXt_WuDx34MDiDVz65bj0l7PwU8AeAEd_ldzi0-Mx3LqQR4pDwuU5gcfD4PAZt8Zet6UFHfAke8Hc9jL3z3Uv0vNV9gtPb-wT9_PTxx8XnxdXXy9XF2dXCFIWYFoZDU7bCNLWmQFopuWhNZUwhK1JosFYWAmiTT11LyqGShtR8DpRsNoOfoNVe1wa9UWN0g447FbRTfwMhdkrHyeUKVStpwwG4JUBFNq5mFQie_2xqY23TZK33e61x2wxgDfgp6v6R6OOMd2vVhWslpZC1FFngza1ADL-3kCY1uGSg77WHsE2KidwfrUjF_wPKa8ErSUiGvn5Y1n09d6PMALYHmBhSitDeQyhRs0tqo-aVUfPKqP3KZFL1D8m4SU8uzK25_mnquz0V8mCvHUSVjANvwLoIZsrOu6foN4Ww27g |
CitedBy_id | crossref_primary_10_1111_nph_19201 crossref_primary_10_1111_jipb_13618 crossref_primary_10_1017_S0960258523000168 crossref_primary_10_1186_s12870_024_05905_9 crossref_primary_10_1007_s11103_021_01142_y crossref_primary_10_1016_j_xplc_2021_100274 crossref_primary_10_3389_fpls_2022_1100302 crossref_primary_10_1111_jipb_13415 crossref_primary_10_1093_zoolinnean_zlac096 crossref_primary_10_1186_s12870_022_03492_1 crossref_primary_10_1093_sysbio_syab035 crossref_primary_10_1111_tpj_15518 crossref_primary_10_1016_j_ygeno_2021_07_012 crossref_primary_10_3390_genes15070940 crossref_primary_10_1007_s44372_025_00163_x crossref_primary_10_3389_fpls_2022_823190 crossref_primary_10_1111_jipb_13455 crossref_primary_10_3389_fpls_2022_808156 crossref_primary_10_3390_biology11071007 crossref_primary_10_3390_d17020136 crossref_primary_10_3897_phytokeys_205_85866 crossref_primary_10_1111_jipb_13609 crossref_primary_10_1111_tpj_16097 crossref_primary_10_3389_fpls_2022_982323 crossref_primary_10_1038_s41467_022_29282_9 crossref_primary_10_1038_s41597_024_03229_9 crossref_primary_10_1007_s13562_023_00844_2 crossref_primary_10_1111_zsc_12582 crossref_primary_10_1111_jse_12708 crossref_primary_10_1093_hr_uhae166 crossref_primary_10_1093_gbe_evad041 crossref_primary_10_1016_j_hpj_2022_06_005 crossref_primary_10_1016_j_pld_2021_04_004 crossref_primary_10_1111_syen_12664 crossref_primary_10_1038_s41467_021_26922_4 crossref_primary_10_1111_nph_18017 crossref_primary_10_3390_life14020182 crossref_primary_10_1093_aob_mcad137 crossref_primary_10_3389_fpls_2022_926574 crossref_primary_10_1111_tpj_15533 crossref_primary_10_1038_s41598_024_53176_z crossref_primary_10_3389_fpls_2023_1205683 crossref_primary_10_3390_ijms231911573 crossref_primary_10_1016_j_pld_2024_07_007 crossref_primary_10_1093_treephys_tpac050 crossref_primary_10_1007_s11692_023_09620_5 crossref_primary_10_1038_s41467_023_40311_z crossref_primary_10_7554_eLife_104759 crossref_primary_10_1007_s42729_022_00760_9 crossref_primary_10_3389_fpls_2021_777157 crossref_primary_10_3389_fpls_2021_774482 crossref_primary_10_1038_s41467_021_26931_3 crossref_primary_10_1111_cla_12501 crossref_primary_10_1038_s41467_025_57687_9 crossref_primary_10_1093_botlinnean_boaa102 crossref_primary_10_1186_s12915_025_02135_9 crossref_primary_10_1186_s12915_022_01420_1 crossref_primary_10_1002_ece3_9159 crossref_primary_10_1038_s41477_021_00990_2 crossref_primary_10_3389_fpls_2023_1185440 crossref_primary_10_1186_s12864_022_09030_5 crossref_primary_10_1016_j_rse_2024_114140 crossref_primary_10_1186_s12915_021_01166_2 crossref_primary_10_1371_journal_pcbi_1010743 crossref_primary_10_1007_s00438_022_01991_2 crossref_primary_10_1016_j_ympev_2023_107714 crossref_primary_10_1111_jipb_13224 |
Cites_doi | 10.1126/science.246.4930.675 10.1038/ncomms5956 10.1093/nar/gkl315 10.1093/bioinformatics/17.12.1246 10.1093/molbev/msm088 10.1093/bioinformatics/btu033 10.3390/genes9030132 10.1126/science.1241089 10.1111/boj.12385 10.1111/j.1759-6831.2010.00097.x 10.1016/j.ympev.2014.08.013 10.1038/s41586-019-1852-5 10.1093/molbev/mst010 10.1073/pnas.0708072104 10.1111/nph.13264 10.1186/1471-2148-14-23 10.1093/molbev/msw046 10.1073/pnas.1719588115 10.1073/pnas.1001225107 10.1016/j.cub.2018.01.063 10.1186/s12862-015-0423-0 10.1080/10618600.1996.10474713 10.1038/s41477-019-0421-0 10.3732/ajb.1000404 10.11646/phytotaxa.261.3.1 10.1073/pnas.1323926111 10.1111/nph.15011 10.1371/journal.pone.0129183 10.1126/science.1253451 10.1093/sysbio/syr107 10.1093/oxfordjournals.molbev.a026334 10.1038/s41586-019-1693-2 10.1038/nature12130 10.1038/nature01014 10.1093/sysbio/syv027 10.1016/j.tplants.2013.04.009 10.5962/p.361755 10.1073/pnas.1509241112 10.1093/molbev/msv226 10.1017/S009483730000974X 10.1600/036364417X696438 10.1093/molbev/mst024 10.1080/10635150601146041 10.1371/journal.pcbi.1002195 10.1093/molbev/msw157 10.1038/331344a0 10.1093/gbe/evx233 10.3732/ajb.0800150 10.3732/ajb.0800047 10.1016/j.ympev.2013.09.010 10.1093/molbev/msu061 10.3732/ajb.0800060 10.1111/nph.14503 10.1093/bioinformatics/bts199 10.1016/j.cub.2017.02.031 10.2307/25065864 10.1073/pnas.1324002111 10.1002/ajb2.1048 10.1073/pnas.0907801107 10.1093/molbev/msu300 10.1038/nplants.2017.15 10.1186/1471-2148-9-157 10.1111/boj.12260 10.1146/annurev-earth-042711-105313 10.1093/sysbio/syu055 10.1080/10635150290069913 10.1186/s12859-018-2129-y 10.1098/rstb.2009.0227 10.1016/j.tpb.2014.12.005 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) 2020 The Author(s). 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: 2020 The Author(s). – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7S9 L.6 7X8 5PM DOA |
DOI | 10.1016/j.xplc.2020.100027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2590-3462 |
ExternalDocumentID | oai_doaj_org_article_f71b3ee3d0e14100928e43f77b9cddbb PMC7747974 33367231 10_1016_j_xplc_2020_100027 S2590346220300080 |
Genre | Journal Article |
GroupedDBID | 6I. AAEDW AAFTH AALRI AAXUO ACLIJ AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL RPM 0R~ AAHBH AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c554t-c3eb6f4cb9a1e0f7734fc8cc57805aedd754e1b754a9713e87c0931b756210163 |
IEDL.DBID | DOA |
ISSN | 2590-3462 |
IngestDate | Wed Aug 27 01:27:44 EDT 2025 Thu Aug 21 13:59:04 EDT 2025 Fri Jul 11 16:48:02 EDT 2025 Thu Jul 10 23:30:59 EDT 2025 Thu Jan 02 22:58:10 EST 2025 Tue Jul 01 00:15:01 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Fri Feb 23 02:49:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Mesangiospermae divergence times gene tree conflict phylogenomics phylogenetic signal |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 2020 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-c3eb6f4cb9a1e0f7734fc8cc57805aedd754e1b754a9713e87c0931b756210163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6496-7646 |
OpenAccessLink | https://doaj.org/article/f71b3ee3d0e14100928e43f77b9cddbb |
PMID | 33367231 |
PQID | 2439438700 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f71b3ee3d0e14100928e43f77b9cddbb pubmedcentral_primary_oai_pubmedcentral_nih_gov_7747974 proquest_miscellaneous_2473418083 proquest_miscellaneous_2439438700 pubmed_primary_33367231 crossref_primary_10_1016_j_xplc_2020_100027 crossref_citationtrail_10_1016_j_xplc_2020_100027 elsevier_sciencedirect_doi_10_1016_j_xplc_2020_100027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-09 |
PublicationDateYYYYMMDD | 2020-03-09 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Plant communications |
PublicationTitleAlternate | Plant Commun |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Minh, Nguyen, von Haeseler (bib44) 2013; 30 Stamatakis (bib61) 2014; 30 Gomez, Daviero-Gomez, Coiffard, Martin-Closas, Dilcher (bib21) 2015; 112 Katoh, Standley (bib31) 2013; 30 Salichos, Rokas (bib53) 2013; 497 Salomo, Smith, Feild (bib76) 2017; 42 Gitzendanner, Soltis, Wong, Ruhfel, Soltis (bib22) 2018; 105 Rambaut, Suchard, Drummond (bib51) 2014 Massoni, Forest, Sauquet (bib39) 2014; 70 Maarten, Christenhuse, James (bib38) 2016; 261 Hertweck, Kinney, Stuart, Maurin, Mathews, Chase, Gandolfo, Pires (bib24) 2015; 178 Simion, Philippe, Baurain, Jager, Richter, Di Franco, Roure, Satoh, Quéinnec, Ereskovsky (bib62) 2017; 27 Yang (bib68) 2007; 24 Suyama, Torrents, Bork (bib63) 2006; 34 Salichos, Stamatakis, Rokas (bib54) 2014; 31 Castresana (bib6) 2000; 17 Zhang, Sayyari, Mirarab (bib73) 2018; 19 Byng, Chase, Christenhusz, Fay, Judd, Mabberley, Sennikov, Soltis, Soltis, Stevens (bib4) 2016; 181 Sayyari, Mirarab (bib55) 2018; 9 Ruhfel, Gitzendanner, Soltis, Soltis, Burleigh (bib50) 2014; 14 Xi, Liu, Rest, Davis (bib67) 2014; 63 Judd, Campbell, Kellogg, Stevens, Donoghue (bib29) 1999 Herendeen, Friis, Pedersen, Crane (bib23) 2017; 3 Ihaka, Gentleman (bib28) 1996; 5 Morris, Puttick, Clark, Edwards, Kenrick, Pressel, Wellman, Yang, Schneider, Donoghue (bib45) 2018; 115 Magallón, Castillo (bib42) 2009; 96 Moore, Soltis, Bell, Burleigh, Soltis (bib41) 2010; 107 Roch, Steel (bib52) 2015; 100 Crane, Lidgard (bib9) 1990 Smith, Beaulieu, Donoghue (bib58) 2010; 107 Gatesy, Springer (bib20) 2014; 80 Kearse, Moir, Wilson, Stones-Havas, Cheung, Sturrock, Buxton, Cooper, Markowitz, Duran (bib32) 2012; 28 Friis, Pedersen, Crane (bib16) 2010; 365 Wickett, Mirarab, Nguyen, Warnow, Carpenter, Matasci, Ayyampalayam, Barker, Burleigh, Gitzendanner (bib66) 2014; 111 Darwin, Darwin, Seward (bib10) 1903 Beaulieu, O'Meara, Crane, Donoghue (bib3) 2015; 64 Shimodaira, Hasegawa (bib56) 2001; 17 Zhong, Liu, Yan, Penny (bib71) 2013; 18 (bib64) 2013; 342 Endress, Doyle (bib13) 2009; 96 Ebersberger, Strauss, von Haeseler (bib12) 2009; 9 Huang, Zhang, Liu, Hu, Gao, Qi, Ma (bib26) 2016; 33 Crane, Lidgard (bib8) 1989; 246 Huerta-Cepas, Serra, Bork (bib27) 2016; 33 Qiu, Li, Wang, Xue, Hendry, Li, Brown, Liu, Hudson, Chen (bib49) 2010; 48 Bayzid, Mirarab, Boussau, Warnow (bib2) 2015; 10 Lidgard, Crane (bib37) 1990; 16 Foster (bib18) 2016; 149 Tilman, Cassman, Matson, Naylor, Polasky (bib65) 2002; 418 Friedman (bib15) 2009; 96 Magallón, Gómez-Acevedo, Sánchez-Reyes, Hernández-Hernández (bib43) 2015; 207 Zeng, Zhang, Zhang, Endress, Huang, Ma (bib70) 2017; 214 Doyle (bib11) 2012; 40 Zeng, Zhang, Sun, Kong, Zhang, Ma (bib69) 2014; 5 Barba-Montoya, Reis, Schneider, Donoghue, Yang (bib1) 2018; 218 Moore, Bell, Soltis, Soltis (bib40) 2007; 104 Leebens-Mack, Barker, Carpenter, Deyholos, Gitzendanner, Graham, Grosse, Li, Melkonian, Mirarab (bib34) 2019; 574 Zhong, Betancur-R (bib72) 2017; 9 Kubatko, Degnan (bib33) 2007; 56 Li, Yi, Gao, Ma, Zhang, Yang, Gitzendanner, Fritsch, Cai, Luo (bib35) 2019; 5 Lidgard, Crane (bib36) 1988; 331 Parham, Donoghue, Bell, Calway, Head, Holrooyd, Irmis, Joyce, Ksepka, Patané (bib47) 2012; 61 Jarvis, Mirarab, Aberer, Li, Houde, Li, Ho, Faircloth, Nabholz, Howard (bib30) 2014; 346 Nguyen, Schmidt, von Haeseler, Minh (bib46) 2015; 32 Eddy (bib14) 2011; 7 Foster, Sauquet, van der Merve, McPherson, Rossetto, Ho (bib19) 2017; 66 Cantino, Doyle, Graham, Judd, Olmstead, Soltis, Soltis, Donoghue (bib5) 2007; 56 Friis, Crane, Pedersen (bib17) 2011 Smith, Moore, Brown, Yang (bib59) 2015; 15 Puttick, Morris, Williams, Cox, Edwards, Kenrick, Pressel, Wellman, Schneider, Pisani (bib48) 2018; 28 Chaboureau, Sepulchre, Donnadieu, Franc (bib7) 2014; 111 Shimodaira (bib57) 2002; 51 Huang, Sun, Hu, Zeng, Zhang, Cai, Zhang, Koch, Al-Shehbaz, Edger (bib25) 2016; 33 Soltis, Smith, Cellinese, Wurdack, Tank, Brockington, Refulio-Rodriguez, Walker, Moore, Carlsward (bib60) 2011; 98 Zhang, Chen, Zhang (bib75) 2020; 577 Stamatakis (10.1016/j.xplc.2020.100027_bib61) 2014; 30 Morris (10.1016/j.xplc.2020.100027_bib45) 2018; 115 Cantino (10.1016/j.xplc.2020.100027_bib5) 2007; 56 Magallón (10.1016/j.xplc.2020.100027_bib42) 2009; 96 Zhong (10.1016/j.xplc.2020.100027_bib71) 2013; 18 Lidgard (10.1016/j.xplc.2020.100027_bib36) 1988; 331 Gatesy (10.1016/j.xplc.2020.100027_bib20) 2014; 80 Tilman (10.1016/j.xplc.2020.100027_bib65) 2002; 418 Barba-Montoya (10.1016/j.xplc.2020.100027_bib1) 2018; 218 Wickett (10.1016/j.xplc.2020.100027_bib66) 2014; 111 Puttick (10.1016/j.xplc.2020.100027_bib48) 2018; 28 Beaulieu (10.1016/j.xplc.2020.100027_bib3) 2015; 64 Foster (10.1016/j.xplc.2020.100027_bib19) 2017; 66 Jarvis (10.1016/j.xplc.2020.100027_bib30) 2014; 346 Herendeen (10.1016/j.xplc.2020.100027_bib23) 2017; 3 Maarten (10.1016/j.xplc.2020.100027_bib38) 2016; 261 Moore (10.1016/j.xplc.2020.100027_bib40) 2007; 104 Gitzendanner (10.1016/j.xplc.2020.100027_bib22) 2018; 105 Friedman (10.1016/j.xplc.2020.100027_bib15) 2009; 96 Katoh (10.1016/j.xplc.2020.100027_bib31) 2013; 30 Kubatko (10.1016/j.xplc.2020.100027_bib33) 2007; 56 Zeng (10.1016/j.xplc.2020.100027_bib70) 2017; 214 Zhong (10.1016/j.xplc.2020.100027_bib72) 2017; 9 Suyama (10.1016/j.xplc.2020.100027_bib63) 2006; 34 Xi (10.1016/j.xplc.2020.100027_bib67) 2014; 63 Salichos (10.1016/j.xplc.2020.100027_bib53) 2013; 497 Judd (10.1016/j.xplc.2020.100027_bib29) 1999 Simion (10.1016/j.xplc.2020.100027_bib62) 2017; 27 Eddy (10.1016/j.xplc.2020.100027_bib14) 2011; 7 Shimodaira (10.1016/j.xplc.2020.100027_bib56) 2001; 17 Lidgard (10.1016/j.xplc.2020.100027_bib37) 1990; 16 Byng (10.1016/j.xplc.2020.100027_bib4) 2016; 181 Crane (10.1016/j.xplc.2020.100027_bib9) 1990 Rambaut (10.1016/j.xplc.2020.100027_bib51) Minh (10.1016/j.xplc.2020.100027_bib44) 2013; 30 Yang (10.1016/j.xplc.2020.100027_bib68) 2007; 24 Li (10.1016/j.xplc.2020.100027_bib35) 2019; 5 Roch (10.1016/j.xplc.2020.100027_bib52) 2015; 100 Foster (10.1016/j.xplc.2020.100027_bib18) 2016; 149 Moore (10.1016/j.xplc.2020.100027_bib41) 2010; 107 Nguyen (10.1016/j.xplc.2020.100027_bib46) 2015; 32 Massoni (10.1016/j.xplc.2020.100027_bib39) 2014; 70 Huang (10.1016/j.xplc.2020.100027_bib26) 2016; 33 Sayyari (10.1016/j.xplc.2020.100027_bib55) 2018; 9 Doyle (10.1016/j.xplc.2020.100027_bib11) 2012; 40 Leebens-Mack (10.1016/j.xplc.2020.100027_bib34) 2019; 574 Ihaka (10.1016/j.xplc.2020.100027_bib28) 1996; 5 Soltis (10.1016/j.xplc.2020.100027_bib60) 2011; 98 Magallón (10.1016/j.xplc.2020.100027_bib43) 2015; 207 Smith (10.1016/j.xplc.2020.100027_bib59) 2015; 15 Gomez (10.1016/j.xplc.2020.100027_bib21) 2015; 112 Chaboureau (10.1016/j.xplc.2020.100027_bib7) 2014; 111 Friis (10.1016/j.xplc.2020.100027_bib17) 2011 Castresana (10.1016/j.xplc.2020.100027_bib6) 2000; 17 Qiu (10.1016/j.xplc.2020.100027_bib49) 2010; 48 Smith (10.1016/j.xplc.2020.100027_bib58) 2010; 107 Shimodaira (10.1016/j.xplc.2020.100027_bib57) 2002; 51 Ebersberger (10.1016/j.xplc.2020.100027_bib12) 2009; 9 Salichos (10.1016/j.xplc.2020.100027_bib54) 2014; 31 Friis (10.1016/j.xplc.2020.100027_bib16) 2010; 365 Crane (10.1016/j.xplc.2020.100027_bib8) 1989; 246 Kearse (10.1016/j.xplc.2020.100027_bib32) 2012; 28 Zeng (10.1016/j.xplc.2020.100027_bib69) 2014; 5 Huang (10.1016/j.xplc.2020.100027_bib25) 2016; 33 Ruhfel (10.1016/j.xplc.2020.100027_bib50) 2014; 14 Darwin (10.1016/j.xplc.2020.100027_bib10) 1903 Hertweck (10.1016/j.xplc.2020.100027_bib24) 2015; 178 Salomo (10.1016/j.xplc.2020.100027_bib76) 2017; 42 Huerta-Cepas (10.1016/j.xplc.2020.100027_bib27) 2016; 33 Zhang (10.1016/j.xplc.2020.100027_bib75) 2020; 577 Bayzid (10.1016/j.xplc.2020.100027_bib2) 2015; 10 (10.1016/j.xplc.2020.100027_bib64) 2013; 342 Endress (10.1016/j.xplc.2020.100027_bib13) 2009; 96 Zhang (10.1016/j.xplc.2020.100027_bib73) 2018; 19 Parham (10.1016/j.xplc.2020.100027_bib47) 2012; 61 |
References_xml | – volume: 80 start-page: 231 year: 2014 end-page: 266 ident: bib20 article-title: Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum publication-title: Mol. Phylogenet. Evol. – volume: 96 start-page: 5 year: 2009 end-page: 21 ident: bib15 article-title: The meaning of Darwin’s ‘abominable mystery’ publication-title: Am. J. Bot. – volume: 33 start-page: 394 year: 2016 end-page: 412 ident: bib25 article-title: Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution publication-title: Mol. Biol. Evol. – volume: 111 start-page: 14066 year: 2014 end-page: 14070 ident: bib7 article-title: Tectonic-driven climate change and the diversification of angiosperms publication-title: Proc. Natl. Acad. Sci. U S A – volume: 331 start-page: 344 year: 1988 end-page: 346 ident: bib36 article-title: Quantitative analyses of the early angiosperm radiation publication-title: Nature – volume: 31 start-page: 1261 year: 2014 end-page: 1271 ident: bib54 article-title: Novel information theory-based measures for quantifying incongruence among phylogenetic trees publication-title: Mol. Biol. Evol. – volume: 63 start-page: 919 year: 2014 end-page: 932 ident: bib67 article-title: Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies publication-title: Syst. Biol. – volume: 9 start-page: 157 year: 2009 ident: bib12 article-title: HaMStR: profile hidden markov model based search for orthologs in ESTs publication-title: BMC Evol. Biol. – volume: 111 start-page: E4859 year: 2014 end-page: E4868 ident: bib66 article-title: Phylotranscriptomic analysis of the origin and early diversification of land plants publication-title: Proc. Natl. Acad. Sci. U S A – volume: 5 start-page: 461 year: 2019 end-page: 470 ident: bib35 article-title: Origin of angiosperms and the puzzle of the Jurassic gap publication-title: Nat. Plants – volume: 100 start-page: 56 year: 2015 end-page: 62 ident: bib52 article-title: Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent publication-title: Theor. Popul. Biol. – volume: 5 start-page: 299 year: 1996 end-page: 314 ident: bib28 article-title: A language for data analysis and graphics publication-title: J. Comput. Graph. Stat. – volume: 574 start-page: 679 year: 2019 end-page: 685 ident: bib34 article-title: One thousand plant transcriptomes and the phylogenomics of green plants publication-title: Nature – volume: 418 start-page: 671 year: 2002 end-page: 677 ident: bib65 article-title: Agricultural sustainability and intensive production practices publication-title: Nature – volume: 10 start-page: e0129183 year: 2015 ident: bib2 article-title: Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses publication-title: PLoS One – year: 1903 ident: bib10 article-title: More Letters of Charles Darwin: A Record of His Work in a Series of hitherto Unpublished Letters – volume: 346 start-page: 1320 year: 2014 end-page: 1331 ident: bib30 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science – volume: 105 start-page: 291 year: 2018 end-page: 301 ident: bib22 article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history publication-title: Am. J. Bot. – volume: 104 start-page: 19363 year: 2007 end-page: 19368 ident: bib40 article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms publication-title: Proc. Natl. Acad. Sci. U S A – volume: 261 start-page: 201 year: 2016 end-page: 217 ident: bib38 article-title: The number of known plants species in the world and its annual increase publication-title: Phytotaxa – volume: 64 start-page: 869 year: 2015 end-page: 878 ident: bib3 article-title: Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms publication-title: Syst. Biol. – volume: 27 start-page: 958 year: 2017 end-page: 967 ident: bib62 article-title: A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals publication-title: Curr. Biol. – volume: 107 start-page: 5897 year: 2010 end-page: 5902 ident: bib58 article-title: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants publication-title: Proc. Natl. Acad. Sci. U S A – volume: 28 start-page: 1647 year: 2012 end-page: 1649 ident: bib32 article-title: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics – volume: 207 start-page: 437 year: 2015 end-page: 453 ident: bib43 article-title: A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity publication-title: New Phytol. – year: 2014 ident: bib51 article-title: Tracer, version 1.6.0 – volume: 30 start-page: 1188 year: 2013 end-page: 1195 ident: bib44 article-title: Ultrafast approximation for phylogenetic bootstrap publication-title: Mol. Biol. Evol. – volume: 112 start-page: 10985 year: 2015 end-page: 10988 ident: bib21 article-title: Montsechia, an ancient aquatic angiosperm publication-title: Proc. Natl. Acad. Sci. U S A – volume: 40 start-page: 301 year: 2012 end-page: 326 ident: bib11 article-title: Molecular and fossil evidence on the origin of angiosperms publication-title: Annu. Rev. Earth Planet. Sci. – volume: 24 start-page: 1586 year: 2007 end-page: 1591 ident: bib68 article-title: PAML 4: phylogenetic analysis by maximum likelihood publication-title: Mol. Biol. Evol. – volume: 28 start-page: 733 year: 2018 end-page: 745 ident: bib48 article-title: The interrelationships of land plants and the nature of the ancestral embryophyte publication-title: Curr. Biol. – year: 1999 ident: bib29 article-title: Plant Systematics: A Phylogenetic Approach – volume: 17 start-page: 540 year: 2000 end-page: 552 ident: bib6 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis publication-title: Mol. Biol. Evol. – volume: 181 start-page: 1 year: 2016 end-page: 20 ident: bib4 article-title: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. – volume: 15 start-page: 150 year: 2015 ident: bib59 article-title: Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants publication-title: BMC Evol. Biol. – volume: 5 start-page: 4956 year: 2014 ident: bib69 article-title: Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times publication-title: Nat. Commun. – volume: 70 start-page: 84 year: 2014 end-page: 93 ident: bib39 article-title: Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms publication-title: Mol. Phylogenet. Evol. – volume: 51 start-page: 492 year: 2002 end-page: 508 ident: bib57 article-title: An approximately unbiased test of phylogenetic tree selection publication-title: Syst. Biol. – volume: 3 start-page: 17015 year: 2017 ident: bib23 article-title: Palaeobotanical redux: revisiting the age of the angiosperms publication-title: Nat. Plants – volume: 61 start-page: 346 year: 2012 end-page: 359 ident: bib47 article-title: Best practices for justifying fossil calibrations publication-title: Syst. Biol. – volume: 14 start-page: 23 year: 2014 ident: bib50 article-title: From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes publication-title: BMC Evol. Biol. – volume: 32 start-page: 268 year: 2015 end-page: 274 ident: bib46 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. – volume: 9 start-page: 132 year: 2018 ident: bib55 article-title: Testing for polytomies in phylogenetic species trees using quartet frequencies publication-title: Genes – volume: 17 start-page: 1246 year: 2001 end-page: 1247 ident: bib56 article-title: CONSEL: for assessing the confidence of phylogenetic tree selection publication-title: Bioinformatics – volume: 56 start-page: 17 year: 2007 end-page: 24 ident: bib33 article-title: Inconsistency of phylogenetic estimates from concatenated data under coalescence publication-title: Syst. Biol. – volume: 96 start-page: 349 year: 2009 end-page: 365 ident: bib42 article-title: Angiosperm diversification through time publication-title: Am. J. Bot. – volume: 497 start-page: 327 year: 2013 end-page: 331 ident: bib53 article-title: Inferring ancient divergences requires genes with strong phylogenetic signals publication-title: Nature – volume: 19 start-page: 153 year: 2018 ident: bib73 article-title: ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees publication-title: BMC Bioinformatics – volume: 342 start-page: 1241089 year: 2013 ident: bib64 article-title: The Amborella genome and the evolution of flowering plants publication-title: Science – volume: 577 start-page: 79 year: 2020 end-page: 84 ident: bib75 article-title: The water lily genome and the early evolution of flowering plants. publication-title: Nature – volume: 56 start-page: 822 year: 2007 end-page: 846 ident: bib5 article-title: Towards a phylogenetic nomenclature of Tracheophyta publication-title: Taxon – volume: 107 start-page: 4623 year: 2010 end-page: 4628 ident: bib41 article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots publication-title: Proc. Natl. Acad. Sci. U S A – volume: 96 start-page: 22 year: 2009 end-page: 66 ident: bib13 article-title: Reconstructing the ancestral angiosperm flower and its initial specializations publication-title: Am. J. Bot. – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: bib31 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. – volume: 48 start-page: 391 year: 2010 end-page: 425 ident: bib49 article-title: Angiosperm phylogeny inferred from sequences of four mitochondrial genes publication-title: J. Syst. Evol. – volume: 18 start-page: 492 year: 2013 end-page: 495 ident: bib71 article-title: Origin of land plants using the multispecies coalescent model publication-title: Trends Plant Sci. – volume: 246 start-page: 675 year: 1989 end-page: 678 ident: bib8 article-title: Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity publication-title: Science – volume: 66 start-page: 338 year: 2017 end-page: 351 ident: bib19 article-title: Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale publication-title: Syst. Biol. – volume: 30 start-page: 1312 year: 2014 end-page: 1315 ident: bib61 article-title: RAxML Version 8: a tool for phylogenetic analysis and post- analysis of large phylogenies publication-title: Bioinformatics – volume: 149 start-page: 65 year: 2016 end-page: 82 ident: bib18 article-title: The evolutionary history of flowering plants publication-title: J. Proc. R. Soc. New South Wales – volume: 33 start-page: 2820 year: 2016 end-page: 2835 ident: bib26 article-title: Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics publication-title: Mol. Biol. Evol. – volume: 42 start-page: 607 year: 2017 end-page: 619 ident: bib76 article-title: The Emergence of Earliest Angiosperms may be Earlier than Fossil Evidence Indicates publication-title: Syst. Bot. – volume: 33 start-page: 1635 year: 2016 end-page: 1638 ident: bib27 article-title: ETE3: reconstruction, analysis, and visualization of phylogenomic data publication-title: Mol. Biol. Evol. – volume: 9 start-page: 3154 year: 2017 end-page: 3161 ident: bib72 article-title: Expanded taxonomic sampling coupled with gene genealogy interrogation provides unambiguous resolution for the evolutionary root of angiosperms publication-title: Genome Biol. Evol. – volume: 34 start-page: W609 year: 2006 end-page: W612 ident: bib63 article-title: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments publication-title: Nucleic Acids Res. – volume: 365 start-page: 369 year: 2010 end-page: 382 ident: bib16 article-title: Diversity in obscurity: fossil flowers and the early history of angiosperms publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 7 start-page: e1002195 year: 2011 ident: bib14 article-title: Accelerated profile HMM searches publication-title: PLoS Comput. Biol. – volume: 214 start-page: 1338 year: 2017 end-page: 1354 ident: bib70 article-title: Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets publication-title: New Phytol. – volume: 178 start-page: 375 year: 2015 end-page: 393 ident: bib24 article-title: Phylogenetics, divergence times and diversification from three genomic partitions in monocots publication-title: Bot. J. Linn. Soc. – volume: 115 start-page: E2274 year: 2018 end-page: E2283 ident: bib45 article-title: The timescale of early land plant evolution publication-title: Proc. Natl. Acad. Sci. U S A – volume: 98 start-page: 704 year: 2011 end-page: 730 ident: bib60 article-title: Angiosperm phylogeny: 17 genes, 640 taxa publication-title: Am. J. Bot. – volume: 218 start-page: 819 year: 2018 end-page: 834 ident: bib1 article-title: Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a cretaceous terrestrial revolution publication-title: New Phytol. – start-page: 377 year: 1990 end-page: 407 ident: bib9 article-title: Angiosperm radiation and patterns of Cretaceous palynological diversity publication-title: Major Evolutionary Radiations – volume: 16 start-page: 77 year: 1990 end-page: 93 ident: bib37 article-title: Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras publication-title: Paleobiology – year: 2011 ident: bib17 article-title: Early Flowers and Angiosperm Evolution – volume: 246 start-page: 675 year: 1989 ident: 10.1016/j.xplc.2020.100027_bib8 article-title: Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity publication-title: Science doi: 10.1126/science.246.4930.675 – volume: 5 start-page: 4956 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib69 article-title: Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times publication-title: Nat. Commun. doi: 10.1038/ncomms5956 – volume: 34 start-page: W609 year: 2006 ident: 10.1016/j.xplc.2020.100027_bib63 article-title: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl315 – volume: 17 start-page: 1246 year: 2001 ident: 10.1016/j.xplc.2020.100027_bib56 article-title: CONSEL: for assessing the confidence of phylogenetic tree selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.12.1246 – volume: 66 start-page: 338 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib19 article-title: Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale publication-title: Syst. Biol. – volume: 24 start-page: 1586 year: 2007 ident: 10.1016/j.xplc.2020.100027_bib68 article-title: PAML 4: phylogenetic analysis by maximum likelihood publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm088 – volume: 30 start-page: 1312 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib61 article-title: RAxML Version 8: a tool for phylogenetic analysis and post- analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 9 start-page: 132 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib55 article-title: Testing for polytomies in phylogenetic species trees using quartet frequencies publication-title: Genes doi: 10.3390/genes9030132 – volume: 342 start-page: 1241089 year: 2013 ident: 10.1016/j.xplc.2020.100027_bib64 article-title: The Amborella genome and the evolution of flowering plants publication-title: Science doi: 10.1126/science.1241089 – volume: 181 start-page: 1 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib4 article-title: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. doi: 10.1111/boj.12385 – volume: 48 start-page: 391 year: 2010 ident: 10.1016/j.xplc.2020.100027_bib49 article-title: Angiosperm phylogeny inferred from sequences of four mitochondrial genes publication-title: J. Syst. Evol. doi: 10.1111/j.1759-6831.2010.00097.x – volume: 80 start-page: 231 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib20 article-title: Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2014.08.013 – volume: 577 start-page: 79 year: 2020 ident: 10.1016/j.xplc.2020.100027_bib75 article-title: The water lily genome and the early evolution of flowering plants. publication-title: Nature doi: 10.1038/s41586-019-1852-5 – ident: 10.1016/j.xplc.2020.100027_bib51 – volume: 30 start-page: 772 year: 2013 ident: 10.1016/j.xplc.2020.100027_bib31 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 104 start-page: 19363 year: 2007 ident: 10.1016/j.xplc.2020.100027_bib40 article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0708072104 – volume: 207 start-page: 437 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib43 article-title: A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity publication-title: New Phytol. doi: 10.1111/nph.13264 – volume: 14 start-page: 23 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib50 article-title: From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-14-23 – volume: 33 start-page: 1635 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib27 article-title: ETE3: reconstruction, analysis, and visualization of phylogenomic data publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw046 – year: 1903 ident: 10.1016/j.xplc.2020.100027_bib10 – volume: 115 start-page: E2274 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib45 article-title: The timescale of early land plant evolution publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1719588115 – volume: 107 start-page: 5897 year: 2010 ident: 10.1016/j.xplc.2020.100027_bib58 article-title: An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1001225107 – year: 1999 ident: 10.1016/j.xplc.2020.100027_bib29 – volume: 28 start-page: 733 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib48 article-title: The interrelationships of land plants and the nature of the ancestral embryophyte publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.063 – volume: 15 start-page: 150 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib59 article-title: Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants publication-title: BMC Evol. Biol. doi: 10.1186/s12862-015-0423-0 – volume: 5 start-page: 299 year: 1996 ident: 10.1016/j.xplc.2020.100027_bib28 article-title: A language for data analysis and graphics publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1996.10474713 – volume: 5 start-page: 461 year: 2019 ident: 10.1016/j.xplc.2020.100027_bib35 article-title: Origin of angiosperms and the puzzle of the Jurassic gap publication-title: Nat. Plants doi: 10.1038/s41477-019-0421-0 – volume: 98 start-page: 704 year: 2011 ident: 10.1016/j.xplc.2020.100027_bib60 article-title: Angiosperm phylogeny: 17 genes, 640 taxa publication-title: Am. J. Bot. doi: 10.3732/ajb.1000404 – volume: 261 start-page: 201 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib38 article-title: The number of known plants species in the world and its annual increase publication-title: Phytotaxa doi: 10.11646/phytotaxa.261.3.1 – volume: 111 start-page: E4859 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib66 article-title: Phylotranscriptomic analysis of the origin and early diversification of land plants publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1323926111 – volume: 218 start-page: 819 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib1 article-title: Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a cretaceous terrestrial revolution publication-title: New Phytol. doi: 10.1111/nph.15011 – volume: 10 start-page: e0129183 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib2 article-title: Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses publication-title: PLoS One doi: 10.1371/journal.pone.0129183 – volume: 346 start-page: 1320 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib30 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science doi: 10.1126/science.1253451 – volume: 61 start-page: 346 year: 2012 ident: 10.1016/j.xplc.2020.100027_bib47 article-title: Best practices for justifying fossil calibrations publication-title: Syst. Biol. doi: 10.1093/sysbio/syr107 – start-page: 377 year: 1990 ident: 10.1016/j.xplc.2020.100027_bib9 article-title: Angiosperm radiation and patterns of Cretaceous palynological diversity – volume: 17 start-page: 540 year: 2000 ident: 10.1016/j.xplc.2020.100027_bib6 article-title: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026334 – year: 2011 ident: 10.1016/j.xplc.2020.100027_bib17 – volume: 574 start-page: 679 year: 2019 ident: 10.1016/j.xplc.2020.100027_bib34 article-title: One thousand plant transcriptomes and the phylogenomics of green plants publication-title: Nature doi: 10.1038/s41586-019-1693-2 – volume: 497 start-page: 327 year: 2013 ident: 10.1016/j.xplc.2020.100027_bib53 article-title: Inferring ancient divergences requires genes with strong phylogenetic signals publication-title: Nature doi: 10.1038/nature12130 – volume: 418 start-page: 671 year: 2002 ident: 10.1016/j.xplc.2020.100027_bib65 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 64 start-page: 869 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib3 article-title: Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms publication-title: Syst. Biol. doi: 10.1093/sysbio/syv027 – volume: 18 start-page: 492 year: 2013 ident: 10.1016/j.xplc.2020.100027_bib71 article-title: Origin of land plants using the multispecies coalescent model publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.04.009 – volume: 149 start-page: 65 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib18 article-title: The evolutionary history of flowering plants publication-title: J. Proc. R. Soc. New South Wales doi: 10.5962/p.361755 – volume: 112 start-page: 10985 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib21 article-title: Montsechia, an ancient aquatic angiosperm publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1509241112 – volume: 33 start-page: 394 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib25 article-title: Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv226 – volume: 16 start-page: 77 year: 1990 ident: 10.1016/j.xplc.2020.100027_bib37 article-title: Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras publication-title: Paleobiology doi: 10.1017/S009483730000974X – volume: 42 start-page: 607 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib76 article-title: The Emergence of Earliest Angiosperms may be Earlier than Fossil Evidence Indicates publication-title: Syst. Bot. doi: 10.1600/036364417X696438 – volume: 30 start-page: 1188 year: 2013 ident: 10.1016/j.xplc.2020.100027_bib44 article-title: Ultrafast approximation for phylogenetic bootstrap publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst024 – volume: 56 start-page: 17 year: 2007 ident: 10.1016/j.xplc.2020.100027_bib33 article-title: Inconsistency of phylogenetic estimates from concatenated data under coalescence publication-title: Syst. Biol. doi: 10.1080/10635150601146041 – volume: 7 start-page: e1002195 year: 2011 ident: 10.1016/j.xplc.2020.100027_bib14 article-title: Accelerated profile HMM searches publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002195 – volume: 33 start-page: 2820 year: 2016 ident: 10.1016/j.xplc.2020.100027_bib26 article-title: Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw157 – volume: 331 start-page: 344 year: 1988 ident: 10.1016/j.xplc.2020.100027_bib36 article-title: Quantitative analyses of the early angiosperm radiation publication-title: Nature doi: 10.1038/331344a0 – volume: 9 start-page: 3154 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib72 article-title: Expanded taxonomic sampling coupled with gene genealogy interrogation provides unambiguous resolution for the evolutionary root of angiosperms publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx233 – volume: 96 start-page: 5 year: 2009 ident: 10.1016/j.xplc.2020.100027_bib15 article-title: The meaning of Darwin’s ‘abominable mystery’ publication-title: Am. J. Bot. doi: 10.3732/ajb.0800150 – volume: 96 start-page: 22 year: 2009 ident: 10.1016/j.xplc.2020.100027_bib13 article-title: Reconstructing the ancestral angiosperm flower and its initial specializations publication-title: Am. J. Bot. doi: 10.3732/ajb.0800047 – volume: 70 start-page: 84 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib39 article-title: Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2013.09.010 – volume: 31 start-page: 1261 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib54 article-title: Novel information theory-based measures for quantifying incongruence among phylogenetic trees publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu061 – volume: 96 start-page: 349 year: 2009 ident: 10.1016/j.xplc.2020.100027_bib42 article-title: Angiosperm diversification through time publication-title: Am. J. Bot. doi: 10.3732/ajb.0800060 – volume: 214 start-page: 1338 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib70 article-title: Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets publication-title: New Phytol. doi: 10.1111/nph.14503 – volume: 28 start-page: 1647 year: 2012 ident: 10.1016/j.xplc.2020.100027_bib32 article-title: Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 27 start-page: 958 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib62 article-title: A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.02.031 – volume: 56 start-page: 822 year: 2007 ident: 10.1016/j.xplc.2020.100027_bib5 article-title: Towards a phylogenetic nomenclature of Tracheophyta publication-title: Taxon doi: 10.2307/25065864 – volume: 111 start-page: 14066 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib7 article-title: Tectonic-driven climate change and the diversification of angiosperms publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1324002111 – volume: 105 start-page: 291 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib22 article-title: Plastid phylogenomic analysis of green plants: a billion years of evolutionary history publication-title: Am. J. Bot. doi: 10.1002/ajb2.1048 – volume: 107 start-page: 4623 year: 2010 ident: 10.1016/j.xplc.2020.100027_bib41 article-title: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0907801107 – volume: 32 start-page: 268 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib46 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 3 start-page: 17015 year: 2017 ident: 10.1016/j.xplc.2020.100027_bib23 article-title: Palaeobotanical redux: revisiting the age of the angiosperms publication-title: Nat. Plants doi: 10.1038/nplants.2017.15 – volume: 9 start-page: 157 year: 2009 ident: 10.1016/j.xplc.2020.100027_bib12 article-title: HaMStR: profile hidden markov model based search for orthologs in ESTs publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-9-157 – volume: 178 start-page: 375 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib24 article-title: Phylogenetics, divergence times and diversification from three genomic partitions in monocots publication-title: Bot. J. Linn. Soc. doi: 10.1111/boj.12260 – volume: 40 start-page: 301 year: 2012 ident: 10.1016/j.xplc.2020.100027_bib11 article-title: Molecular and fossil evidence on the origin of angiosperms publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-042711-105313 – volume: 63 start-page: 919 year: 2014 ident: 10.1016/j.xplc.2020.100027_bib67 article-title: Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies publication-title: Syst. Biol. doi: 10.1093/sysbio/syu055 – volume: 51 start-page: 492 year: 2002 ident: 10.1016/j.xplc.2020.100027_bib57 article-title: An approximately unbiased test of phylogenetic tree selection publication-title: Syst. Biol. doi: 10.1080/10635150290069913 – volume: 19 start-page: 153 year: 2018 ident: 10.1016/j.xplc.2020.100027_bib73 article-title: ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2129-y – volume: 365 start-page: 369 year: 2010 ident: 10.1016/j.xplc.2020.100027_bib16 article-title: Diversity in obscurity: fossil flowers and the early history of angiosperms publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2009.0227 – volume: 100 start-page: 56 year: 2015 ident: 10.1016/j.xplc.2020.100027_bib52 article-title: Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent publication-title: Theor. Popul. Biol. doi: 10.1016/j.tpb.2014.12.005 |
SSID | ssj0002511635 |
Score | 2.400949 |
Snippet | Angiosperms (flowering plants) are the most diverse and species-rich group of plants. The vast majority (∼99.95%) of angiosperms form a clade called... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100027 |
SubjectTerms | Ceratophyllales Chloranthales divergence times gene tree conflict Late Jurassic epoch Liliopsida Mesangiospermae phylogenetic signal phylogenomics phylogeny |
Title | Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling |
URI | https://dx.doi.org/10.1016/j.xplc.2020.100027 https://www.ncbi.nlm.nih.gov/pubmed/33367231 https://www.proquest.com/docview/2439438700 https://www.proquest.com/docview/2473418083 https://pubmed.ncbi.nlm.nih.gov/PMC7747974 https://doaj.org/article/f71b3ee3d0e14100928e43f77b9cddbb |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NBLSR9p3EdQobdgKktayz5m24a00FBIArkUoZcTh0Reshto_n1nZHvZbWFzycUHWbLRzEjzjT36hpBPSnlTBVvllfQml9I1uW2YyQsrmGPehlriaeSfx-XRmfxxPjlfKfWFOWE9PXAvuM-NgmEhCM8CpiSymldBikYpWzvvrcXdF3zeSjCFezAC5zJV1wR4DxuNLPlwYqZP7vozu0b-Qp6yBBiWlFnxSom8f805_Q8-_82hXHFKh9vk-YAm6UE_ixfkSYgvydNpB4jv_hX5_esSwnFkYb1pHf0e5xiIz2kbFx39GsKMjvfvadfQg3jRJt7wmzmdgm_ztIsUonTj6TGSHptbihzV9MRgEnq8eE3ODr-dfjnKh3IKuQPMsMidCLZspLO1KQIDCQrZuMq5CZY1MMF7NZGhsHA1NYSuoVKO1QIbSo5iEztkK3Yx7BJaOiM9gEPHuMPy6cZzA8DKNJyVFfcmI8UoTu0GrnEseXGtx6SyK40q0KgC3asgI_vLMbOeaWNj7ylqadkTWbJTA9iOHmxHP2Q7GZmMOtYD4OiBBDyq3fjyj6NBaFiN-IvFxNDdzTXHg8YC9kC2qQ9IvqgA-2bkTW9Ey2kIIUoFkDsjas281ua5fie2l4kVHHC8guDw7WMI5h15htNNuXb1e7K1uL0LHwB8LexeWmd76avYXztjLZY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phylogenomic+Insights+into+Deep+Phylogeny+of+Angiosperms+Based+on+Broad+Nuclear+Gene+Sampling&rft.jtitle=Plant+communications&rft.au=Yang%2C+Lingxiao&rft.au=Su%2C+Danyan&rft.au=Chang%2C+Xin&rft.au=Foster%2C+Charles+S.P.&rft.date=2020-03-09&rft.pub=Elsevier&rft.eissn=2590-3462&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1016%2Fj.xplc.2020.100027&rft_id=info%3Apmid%2F33367231&rft.externalDocID=PMC7747974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-3462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-3462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-3462&client=summon |