Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 180; no. 2; pp. 311 - 322.e15
Main Authors Cohen, Charles C.H., Popovic, Marko A., Klooster, Jan, Weil, Marie-Theres, Möbius, Wiebke, Nave, Klaus-Armin, Kole, Maarten H.P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.01.2020
Cell Press
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2019.11.039

Cover

Loading…
Abstract The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. [Display omitted] •Cable modeling reveals myelin and submyelin parameters consistent with EM•The periaxonal space is conductive and partially sealed at the paranodes•Optically recorded Vm confirms the separation of axon and myelin circuits•Double-cable internodes produce both temporal and amplitude saltation in Vm Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation.
AbstractList The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. • Cable modeling reveals myelin and submyelin parameters consistent with EM • The periaxonal space is conductive and partially sealed at the paranodes • Optically recorded V m confirms the separation of axon and myelin circuits • Double-cable internodes produce both temporal and amplitude saltation in V m Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation.
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. [Display omitted] •Cable modeling reveals myelin and submyelin parameters consistent with EM•The periaxonal space is conductive and partially sealed at the paranodes•Optically recorded Vm confirms the separation of axon and myelin circuits•Double-cable internodes produce both temporal and amplitude saltation in Vm Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation.
Author Cohen, Charles C.H.
Klooster, Jan
Popovic, Marko A.
Kole, Maarten H.P.
Möbius, Wiebke
Nave, Klaus-Armin
Weil, Marie-Theres
AuthorAffiliation 1 Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
2 Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
3 Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
4 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
AuthorAffiliation_xml – name: 3 Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
– name: 1 Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
– name: 4 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
– name: 2 Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
Author_xml – sequence: 1
  givenname: Charles C.H.
  surname: Cohen
  fullname: Cohen, Charles C.H.
  organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
– sequence: 2
  givenname: Marko A.
  surname: Popovic
  fullname: Popovic, Marko A.
  organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
– sequence: 3
  givenname: Jan
  surname: Klooster
  fullname: Klooster, Jan
  organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
– sequence: 4
  givenname: Marie-Theres
  surname: Weil
  fullname: Weil, Marie-Theres
  organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
– sequence: 5
  givenname: Wiebke
  surname: Möbius
  fullname: Möbius, Wiebke
  organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
– sequence: 6
  givenname: Klaus-Armin
  surname: Nave
  fullname: Nave, Klaus-Armin
  organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
– sequence: 7
  givenname: Maarten H.P.
  surname: Kole
  fullname: Kole, Maarten H.P.
  email: m.kole@nin.knaw.nl
  organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31883793$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEUhompsdvqH_DCzKU3M8IAAyTGpNn40aRVE_WaMHCmsmGhwszG_fey2dqoF_WKBJ73zeE8Z-gkpggIPSe4I5gMrzadhRC6HhPVEdJhqh6hFcFKtIyI_gStMFZ9KwfBTtFZKRuMseScP0GnlEhJhaIrdP3FhNnMKe-bdYpusbNPsTEhxZvmeg_BRzODay5-pliay7hLYQelMc1nyN7USxOajyYm67Nd_PwUPZ5MKPDs7jxH3969_br-0F59en-5vrhqLedsbkcFjlNrlaBEwUR6mCYpWZ0PLIwgGWOTGblzglvlBmPxwJzrATgdKaeCnqM3x97bZdyCsxDnbIK-zX5r8l4n4_XfL9F_1zdppwclpFCyFry8K8jpxwJl1ltfDts0EdJSdM-oopKpgf4fpZSwvpK4oi_-HOt-nt_rrkB_BGxOpWSY7hGC9cGp3uhDtT441YTo6rSG5D8h66uy6ql-zYeHo6-PUagydh6yLtZDtOB8Bjtrl_xD8V9_ub7E
CitedBy_id crossref_primary_10_1523_JNEUROSCI_0569_24_2024
crossref_primary_10_1111_joa_13577
crossref_primary_10_1002_dneu_22739
crossref_primary_10_1016_j_nbd_2022_105952
crossref_primary_10_1113_JP282884
crossref_primary_10_1523_JNEUROSCI_1446_23_2023
crossref_primary_10_7554_eLife_75523
crossref_primary_10_1007_s00018_024_05222_2
crossref_primary_10_1016_j_cub_2020_02_037
crossref_primary_10_1098_rsob_240138
crossref_primary_10_1016_j_semcdb_2021_03_017
crossref_primary_10_3917_pls_511_0028
crossref_primary_10_1016_j_celrep_2020_108641
crossref_primary_10_1038_s41593_024_01642_2
crossref_primary_10_1111_cns_14922
crossref_primary_10_7554_eLife_73827
crossref_primary_10_3390_life11030216
crossref_primary_10_1515_mim_2024_0013
crossref_primary_10_1016_j_jneumeth_2021_109400
crossref_primary_10_3390_ijms22147277
crossref_primary_10_1093_hmg_ddad141
crossref_primary_10_1038_s41467_022_35350_x
crossref_primary_10_1007_s00401_023_02557_1
crossref_primary_10_1016_j_bios_2024_116173
crossref_primary_10_1113_JP280554
crossref_primary_10_1042_BSR20231616
crossref_primary_10_3389_fncel_2021_771600
crossref_primary_10_1002_cne_25574
crossref_primary_10_1016_j_neures_2022_11_002
crossref_primary_10_4103_1673_5374_373656
crossref_primary_10_3389_fbioe_2024_1476447
crossref_primary_10_3389_fnut_2024_1367570
crossref_primary_10_3390_nano11051216
crossref_primary_10_1038_s41583_020_00406_8
crossref_primary_10_1038_s41467_021_24390_4
crossref_primary_10_1371_journal_pbio_3001008
crossref_primary_10_4103_1673_5374_354512
crossref_primary_10_1002_glia_24593
crossref_primary_10_1186_s40478_022_01366_z
crossref_primary_10_1113_JP281723
crossref_primary_10_1016_j_celrep_2020_108612
crossref_primary_10_1126_science_aba6905
crossref_primary_10_1364_AO_446845
crossref_primary_10_7759_cureus_41771
crossref_primary_10_1016_j_heliyon_2022_e10384
crossref_primary_10_1089_neu_2024_0454
crossref_primary_10_3390_biom11111668
crossref_primary_10_1088_1755_1315_657_1_012114
crossref_primary_10_3390_fractalfract5010004
crossref_primary_10_3389_fncel_2020_00040
crossref_primary_10_1083_jcb_201909022
crossref_primary_10_1038_s41593_023_01558_3
crossref_primary_10_1002_glia_24589
crossref_primary_10_1371_journal_pbio_3002929
crossref_primary_10_1021_acsami_3c16094
crossref_primary_10_3389_fnins_2022_854637
crossref_primary_10_1038_s41582_020_0375_x
crossref_primary_10_1117_1_NPh_10_1_015003
crossref_primary_10_1134_S1990747822040067
crossref_primary_10_1038_s41467_020_19152_7
crossref_primary_10_1038_s41598_023_49208_9
crossref_primary_10_1186_s13293_020_00337_0
crossref_primary_10_1371_journal_pcbi_1009527
crossref_primary_10_1038_s41598_025_85834_1
crossref_primary_10_1083_jcb_202211031
crossref_primary_10_3389_fncel_2021_576609
crossref_primary_10_1021_acs_nanolett_2c03232
crossref_primary_10_3389_fnmol_2021_779385
crossref_primary_10_1098_rsob_210177
crossref_primary_10_1038_s41593_022_01162_x
crossref_primary_10_1083_jcb_202204010
crossref_primary_10_1038_s41593_022_01169_4
crossref_primary_10_1097_ALN_0000000000004522
crossref_primary_10_1016_j_conb_2023_102782
crossref_primary_10_1113_JP283801
crossref_primary_10_1038_s41467_021_25488_5
crossref_primary_10_1101_cshperspect_a041359
crossref_primary_10_1038_s41467_022_33002_8
crossref_primary_10_1093_hmg_ddab184
crossref_primary_10_3390_cells10081911
crossref_primary_10_1016_j_neuroimage_2023_119997
crossref_primary_10_1146_annurev_neuro_100120_122621
crossref_primary_10_1038_s41467_022_34302_9
crossref_primary_10_1007_s11433_019_1530_2
crossref_primary_10_2174_0115672026336440240822063430
crossref_primary_10_1002_jbio_202400513
crossref_primary_10_1038_s41593_024_01749_6
crossref_primary_10_3389_fcell_2021_653101
crossref_primary_10_7554_eLife_85752
crossref_primary_10_1109_TNSRE_2021_3137350
crossref_primary_10_1002_ana_26585
crossref_primary_10_1016_j_brain_2022_100061
crossref_primary_10_1088_1674_1056_ac1e1a
crossref_primary_10_31083_j_jin2204090
crossref_primary_10_1038_s42003_022_04116_y
crossref_primary_10_1088_2057_1976_ad1fa3
Cites_doi 10.1523/JNEUROSCI.1787-07.2007
10.1111/j.1469-7793.2001.00445.x
10.1113/jphysiol.1993.sp019942
10.1038/nn.2203
10.1016/j.brainres.2016.02.015
10.1523/JNEUROSCI.4812-05.2006
10.1529/biophysj.108.132167
10.1523/JNEUROSCI.6335-09.2010
10.1073/pnas.1607548113
10.7554/eLife.36428
10.1038/ncomms13584
10.1038/nature11007
10.1152/ajplegacy.1939.127.2.211
10.1038/nrn.2017.128
10.1016/j.jtbi.2005.01.024
10.1016/S0022-5320(69)90012-4
10.1113/jphysiol.2013.257113
10.1038/nrn4023
10.1016/j.brainres.2016.02.027
10.1152/jn.00353.2001
10.1016/S0006-3495(00)76293-X
10.1002/jnr.22561
10.1016/S0022-5193(05)80242-5
10.1007/s10827-012-0435-3
10.1523/JNEUROSCI.22-15-06458.2002
10.1113/JP271207
10.1146/annurev-cellbio-100913-013101
10.1113/jphysiol.1994.sp020006
10.1038/nrn2797
10.1038/nn.3132
10.1016/j.neuron.2007.07.031
10.1016/0896-6273(94)90472-3
10.1523/JNEUROSCI.14-08-04613.1994
10.1016/S0091-679X(10)96020-2
10.1177/1073858413504627
10.1016/0014-4886(70)90205-0
10.1523/JNEUROSCI.4206-13.2014
10.1007/s004220000213
10.1038/369747a0
10.1016/S0006-3495(87)83410-0
10.1113/jphysiol.1982.sp014064
10.1007/BF00201429
10.1113/jphysiol.2011.209015
10.1002/jcp.1040680315
10.1242/jeb.202.15.1979
10.1113/jphysiol.2010.201376
10.3389/fncel.2017.00045
10.1126/science.1254960
10.1152/jn.01077.2015
10.1016/0006-8993(89)90046-2
10.1126/science.6204382
10.1016/0306-4522(85)90119-8
10.7554/eLife.23329
10.1113/jphysiol.1952.sp004764
10.1007/BF02345014
10.1038/nmeth.2019
10.1007/s00424-006-0149-3
10.1113/jphysiol.1949.sp004335
10.1016/0301-0082(77)90009-0
10.1016/0306-4522(85)90118-6
10.1152/physrev.1992.72.suppl_4.S159
10.1177/107385840100700207
10.1016/j.neuron.2016.05.016
10.1016/j.cell.2013.11.044
10.1017/S1740925X09990391
10.1073/pnas.0910716107
10.1002/glia.21188
10.1016/j.cub.2006.11.042
10.1038/nrn3900
10.1152/ajplegacy.1955.181.3.639
10.1146/annurev.neuro.30.051606.094313
10.1016/j.neurobiolaging.2010.08.001
10.1126/science.175.4023.720
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2019.11.039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 322.e15
ExternalDocumentID PMC6978798
31883793
10_1016_j_cell_2019_11_039
S0092867419313248
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 261114
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-b9ed53cc97319ef12eff884000ecebe8444fab5dd75c9d6ac064dd2ee53b35373
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 17:59:47 EDT 2025
Thu Jul 10 23:45:33 EDT 2025
Fri Jul 11 07:09:16 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Tue Jul 01 02:17:05 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Sun Apr 06 06:54:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords myelin
circuit
single cable
internode
computational modelling
axon
saltatory conduction
action potential
periaxonal space
double cable
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-b9ed53cc97319ef12eff884000ecebe8444fab5dd75c9d6ac064dd2ee53b35373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
Present address: Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
Present address: AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen am Rhein, Ludwigshafen, Germany
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867419313248
PMID 31883793
PQID 2331429630
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978798
proquest_miscellaneous_2439384963
proquest_miscellaneous_2331429630
pubmed_primary_31883793
crossref_primary_10_1016_j_cell_2019_11_039
crossref_citationtrail_10_1016_j_cell_2019_11_039
elsevier_sciencedirect_doi_10_1016_j_cell_2019_11_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-23
PublicationDateYYYYMMDD 2020-01-23
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2020
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Snaidero, Möbius, Czopka, Hekking, Mathisen, Verkleij, Goebbels, Edgar, Merkler, Lyons (bib68) 2014; 156
Ehrt (bib14) 2009; 50
Möbius, Nave, Werner (bib42) 2016; 1641
Battefeld, Tran, Gavrilis, Cooper, Kole (bib5) 2014; 34
Brent (bib8) 1973
Hamada, Goethals, de Vries, Brette, Kole (bib23) 2016; 113
Halter, Clark (bib22) 1991; 148
Young, Castelfranco, Hartline (bib77) 2013; 34
Blight (bib6) 1985; 15
Lopreore, Bartol, Coggan, Keller, Sosinsky, Ellisman, Sejnowski (bib36) 2008; 95
Shroff, Mierzwa, Scherer, Peles, Arevalo, Chao, Rosenbluth (bib65) 2011; 59
Fenstermacher, Li, Levin (bib15) 1970; 27
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib59) 2012; 9
Ehrenberg, Farkas, Fluher, Lojewska, Loew (bib80) 1987; 51
Hartline, Colman (bib25) 2007; 17
Rosenbluth, Mierzwa, Shroff (bib56) 2013; 19
Sivagnanam, Majumdar, Yoshimoto, Astakhov, Bandrowski, Martone (bib67) 2013; 993
Huxley, Stämpfli (bib30) 1949; 108
Gow, Devaux (bib20) 2008; 4
Schmidt-Hieber, Bischofberger (bib61) 2010; 30
Rapp, Segev, Yarom (bib53) 1994; 474
Palmer, Stuart (bib48) 2006; 26
Micu, Plemel, Caprariello, Nave, Stys (bib40) 2018; 19
Nave (bib45) 2010; 11
Pronker, Lemstra, Snijder, Heck, Thies-Weesie, Pasterkamp, Janssen (bib50) 2016; 7
Saab, Tzvetavona, Trevisiol, Baltan, Dibaj, Kusch, Möbius, Goetze, Jahn, Huang (bib58) 2016; 91
Wang, Zhu, Yang, Liu, Ding (bib75) 2013; 45
Zhang, David (bib78) 2016; 594
Hamada, Popovic, Kole (bib24) 2017; 11
Rall (bib51) 1977
Barrett, Barrett (bib4) 1982; 323
Montag, Giese, Bartsch, Martini, Lang, Blüthmann, Karthigasan, Kirschner, Wintergerst, Nave (bib43) 1994; 13
Schmidt-Hieber, Jonas, Bischofberger (bib62) 2007; 27
Li, Tropak, Gerlai, Clapoff, Abramow-Newerly, Trapp, Peterson, Roder (bib35) 1994; 369
Stuart, Palmer (bib71) 2006; 453
Chan, Kuo, Weng, Lin, Chen, Cheng, Lien (bib11) 2013; 591
Rash, Vanderpool, Yasumura, Hickman, Beatty, Nagy (bib54) 2016; 115
Altevogt, Kleopa, Postma, Scherer, Paul (bib1) 2002; 22
Roth, Häusser (bib57) 2001; 535
Xu, Terakawa (bib76) 1999; 202
David, Barrett, Barrett (bib12) 1993; 472
Hille (bib26) 2001
Nans, Einheber, Salzer, Stokes (bib44) 2011; 89
Tasaki (bib72) 1939; 127
Bakiri, Káradóttir, Cossell, Attwell (bib3) 2011; 589
Major, Larkman, Jonas, Sakmann, Jack (bib37) 1994; 14
Calabrese, Magliozzi, Ciccarelli, Geurts, Reynolds, Martin (bib9) 2015; 16
Dimitrov (bib13) 2005; 235
Hodgkin, Huxley (bib29) 1952; 117
Richardson, McIntyre, Grill (bib55) 2000; 38
Hines, Carnevale (bib27) 2001; 7
Möbius, Cooper, Kaufmann, Imig, Ruhwedel, Snaidero, Saab, Varoqueaux (bib41) 2010; 96
Blight, Someya (bib7) 1985; 15
Kole, Stuart (bib32) 2008; 11
Kole, Letzkus, Stuart (bib33) 2007; 55
Popovic, Foust, McCormick, Zecevic (bib49) 2011; 589
Tasaki (bib73) 1955; 181
Rall, Burke, Holmes, Jack, Redman, Segev (bib52) 1992; 72
Hallermann, de Kock, Stuart, Kole (bib21) 2012; 15
Stephanova, Bostock (bib70) 1995; 73
Shepherd, Pomicter, Velazco, Henderson, Dupree (bib63) 2012
Castelfranco, Hartline (bib10) 2016; 1641
Kole, Popovic (bib31) 2016
McKenzie, Ohayon, Li, de Faria, Emery, Tohyama, Richardson (bib39) 2014; 346
Trapp, Nave (bib74) 2008; 31
Fields (bib16) 2015; 16
McIntyre, Richardson, Grill (bib38) 2002; 87
Shrager (bib64) 1989; 483
Stephanova (bib69) 2001; 84
Kusano (bib34) 1966; 68
Singer, Nicolson (bib66) 1972; 175
Fünfschilling, Supplie, Mahad, Boretius, Saab, Edgar, Brinkmann, Kassmann, Tzvetanova, Möbius (bib18) 2012; 485
Schirmer, Möbius, Zhao, Cruz-Herranz, Ben Haim, Cordano, Shiow, Kelley, Sadowski, Timmons (bib60) 2018; 7
Arancibia-Cárcamo, Ford, Cossell, Ishida, Tohyama, Attwell (bib2) 2017; 6
Gentet, Stuart, Clements (bib19) 2000; 79
Funch, Faber (bib17) 1984; 225
Hirano, Dembitzer (bib28) 1969; 28
Nave, Werner (bib46) 2014; 30
Waxman, Swadlow (bib79) 1977; 8
Nörenberg, Hu, Vida, Bartos, Jonas (bib47) 2010; 107
Schindelin (10.1016/j.cell.2019.11.039_bib59) 2012; 9
Zhang (10.1016/j.cell.2019.11.039_bib78) 2016; 594
Bakiri (10.1016/j.cell.2019.11.039_bib3) 2011; 589
Hodgkin (10.1016/j.cell.2019.11.039_bib29) 1952; 117
Gentet (10.1016/j.cell.2019.11.039_bib19) 2000; 79
Barrett (10.1016/j.cell.2019.11.039_bib4) 1982; 323
Lopreore (10.1016/j.cell.2019.11.039_bib36) 2008; 95
Sivagnanam (10.1016/j.cell.2019.11.039_bib67) 2013; 993
Chan (10.1016/j.cell.2019.11.039_bib11) 2013; 591
Rall (10.1016/j.cell.2019.11.039_bib52) 1992; 72
Stephanova (10.1016/j.cell.2019.11.039_bib70) 1995; 73
Major (10.1016/j.cell.2019.11.039_bib37) 1994; 14
Fünfschilling (10.1016/j.cell.2019.11.039_bib18) 2012; 485
Hirano (10.1016/j.cell.2019.11.039_bib28) 1969; 28
Roth (10.1016/j.cell.2019.11.039_bib57) 2001; 535
Singer (10.1016/j.cell.2019.11.039_bib66) 1972; 175
Tasaki (10.1016/j.cell.2019.11.039_bib73) 1955; 181
Xu (10.1016/j.cell.2019.11.039_bib76) 1999; 202
Hallermann (10.1016/j.cell.2019.11.039_bib21) 2012; 15
Dimitrov (10.1016/j.cell.2019.11.039_bib13) 2005; 235
Hamada (10.1016/j.cell.2019.11.039_bib24) 2017; 11
Snaidero (10.1016/j.cell.2019.11.039_bib68) 2014; 156
Nörenberg (10.1016/j.cell.2019.11.039_bib47) 2010; 107
Schmidt-Hieber (10.1016/j.cell.2019.11.039_bib62) 2007; 27
Nave (10.1016/j.cell.2019.11.039_bib45) 2010; 11
Arancibia-Cárcamo (10.1016/j.cell.2019.11.039_bib2) 2017; 6
Kole (10.1016/j.cell.2019.11.039_bib32) 2008; 11
Stephanova (10.1016/j.cell.2019.11.039_bib69) 2001; 84
Rosenbluth (10.1016/j.cell.2019.11.039_bib56) 2013; 19
Fields (10.1016/j.cell.2019.11.039_bib16) 2015; 16
Hille (10.1016/j.cell.2019.11.039_bib26) 2001
Huxley (10.1016/j.cell.2019.11.039_bib30) 1949; 108
Brent (10.1016/j.cell.2019.11.039_bib8) 1973
Hines (10.1016/j.cell.2019.11.039_bib27) 2001; 7
Rapp (10.1016/j.cell.2019.11.039_bib53) 1994; 474
David (10.1016/j.cell.2019.11.039_bib12) 1993; 472
Schirmer (10.1016/j.cell.2019.11.039_bib60) 2018; 7
Stuart (10.1016/j.cell.2019.11.039_bib71) 2006; 453
Tasaki (10.1016/j.cell.2019.11.039_bib72) 1939; 127
Shrager (10.1016/j.cell.2019.11.039_bib64) 1989; 483
Waxman (10.1016/j.cell.2019.11.039_bib79) 1977; 8
Ehrt (10.1016/j.cell.2019.11.039_bib14) 2009; 50
Nave (10.1016/j.cell.2019.11.039_bib46) 2014; 30
Shepherd (10.1016/j.cell.2019.11.039_bib63) 2012; 33
Kole (10.1016/j.cell.2019.11.039_bib33) 2007; 55
Blight (10.1016/j.cell.2019.11.039_bib6) 1985; 15
Nans (10.1016/j.cell.2019.11.039_bib44) 2011; 89
Blight (10.1016/j.cell.2019.11.039_bib7) 1985; 15
McKenzie (10.1016/j.cell.2019.11.039_bib39) 2014; 346
Hamada (10.1016/j.cell.2019.11.039_bib23) 2016; 113
Calabrese (10.1016/j.cell.2019.11.039_bib9) 2015; 16
Palmer (10.1016/j.cell.2019.11.039_bib48) 2006; 26
Schmidt-Hieber (10.1016/j.cell.2019.11.039_bib61) 2010; 30
Shroff (10.1016/j.cell.2019.11.039_bib65) 2011; 59
Trapp (10.1016/j.cell.2019.11.039_bib74) 2008; 31
Hartline (10.1016/j.cell.2019.11.039_bib25) 2007; 17
Saab (10.1016/j.cell.2019.11.039_bib58) 2016; 91
Altevogt (10.1016/j.cell.2019.11.039_bib1) 2002; 22
Funch (10.1016/j.cell.2019.11.039_bib17) 1984; 225
Li (10.1016/j.cell.2019.11.039_bib35) 1994; 369
Young (10.1016/j.cell.2019.11.039_bib77) 2013; 34
Montag (10.1016/j.cell.2019.11.039_bib43) 1994; 13
Micu (10.1016/j.cell.2019.11.039_bib40) 2018; 19
Kole (10.1016/j.cell.2019.11.039_bib31) 2016
McIntyre (10.1016/j.cell.2019.11.039_bib38) 2002; 87
Möbius (10.1016/j.cell.2019.11.039_bib42) 2016; 1641
Popovic (10.1016/j.cell.2019.11.039_bib49) 2011; 589
Rall (10.1016/j.cell.2019.11.039_bib51) 1977
Richardson (10.1016/j.cell.2019.11.039_bib55) 2000; 38
Ehrenberg (10.1016/j.cell.2019.11.039_bib80) 1987; 51
Möbius (10.1016/j.cell.2019.11.039_bib41) 2010; 96
Wang (10.1016/j.cell.2019.11.039_bib75) 2013; 45
Fenstermacher (10.1016/j.cell.2019.11.039_bib15) 1970; 27
Kusano (10.1016/j.cell.2019.11.039_bib34) 1966; 68
Castelfranco (10.1016/j.cell.2019.11.039_bib10) 2016; 1641
Pronker (10.1016/j.cell.2019.11.039_bib50) 2016; 7
Rash (10.1016/j.cell.2019.11.039_bib54) 2016; 115
Battefeld (10.1016/j.cell.2019.11.039_bib5) 2014; 34
Gow (10.1016/j.cell.2019.11.039_bib20) 2008; 4
Halter (10.1016/j.cell.2019.11.039_bib22) 1991; 148
32259510 - Curr Biol. 2020 Apr 6;30(7):R326-R328. doi: 10.1016/j.cub.2020.02.037.
References_xml – volume: 95
  start-page: 2624
  year: 2008
  end-page: 2635
  ident: bib36
  article-title: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier
  publication-title: Biophys. J.
– volume: 474
  start-page: 101
  year: 1994
  end-page: 118
  ident: bib53
  article-title: Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells
  publication-title: J. Physiol.
– volume: 55
  start-page: 633
  year: 2007
  end-page: 647
  ident: bib33
  article-title: Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy
  publication-title: Neuron
– volume: 485
  start-page: 517
  year: 2012
  end-page: 521
  ident: bib18
  article-title: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
  publication-title: Nature
– volume: 453
  start-page: 403
  year: 2006
  end-page: 410
  ident: bib71
  article-title: Imaging membrane potential in dendrites and axons of single neurons
  publication-title: Pflugers Arch.
– volume: 31
  start-page: 247
  year: 2008
  end-page: 269
  ident: bib74
  article-title: Multiple sclerosis: an immune or neurodegenerative disorder?
  publication-title: Annu. Rev. Neurosci.
– volume: 27
  start-page: 8430
  year: 2007
  end-page: 8441
  ident: bib62
  article-title: Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells
  publication-title: J. Neurosci.
– volume: 1641
  start-page: 11
  year: 2016
  end-page: 33
  ident: bib10
  article-title: Evolution of rapid nerve conduction
  publication-title: Brain Res.
– volume: 472
  start-page: 177
  year: 1993
  end-page: 202
  ident: bib12
  article-title: Activation of internodal potassium conductance in rat myelinated axons
  publication-title: J. Physiol.
– volume: 225
  start-page: 538
  year: 1984
  end-page: 540
  ident: bib17
  article-title: Measurement of myelin sheath resistances: implications for axonal conduction and pathophysiology
  publication-title: Science
– volume: 28
  start-page: 141
  year: 1969
  end-page: 149
  ident: bib28
  article-title: The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber
  publication-title: J. Ultrastruct. Res.
– volume: 589
  start-page: 559
  year: 2011
  end-page: 573
  ident: bib3
  article-title: Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum
  publication-title: J. Physiol.
– volume: 38
  start-page: 438
  year: 2000
  end-page: 446
  ident: bib55
  article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath
  publication-title: Med. Biol. Eng. Comput.
– volume: 73
  start-page: 275
  year: 1995
  end-page: 280
  ident: bib70
  article-title: A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents
  publication-title: Biol. Cybern.
– volume: 7
  start-page: 123
  year: 2001
  end-page: 135
  ident: bib27
  article-title: NEURON: a tool for neuroscientists
  publication-title: Neuroscientist
– volume: 175
  start-page: 720
  year: 1972
  end-page: 731
  ident: bib66
  article-title: The fluid mosaic model of the structure of cell membranes
  publication-title: Science
– volume: 483
  start-page: 149
  year: 1989
  end-page: 154
  ident: bib64
  article-title: Sodium channels in single demyelinated mammalian axons
  publication-title: Brain Res.
– volume: 181
  start-page: 639
  year: 1955
  end-page: 650
  ident: bib73
  article-title: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber
  publication-title: Am. J. Physiol.
– volume: 7
  start-page: 13584
  year: 2016
  ident: bib50
  article-title: Structural basis of myelin-associated glycoprotein adhesion and signalling
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1854
  year: 2006
  end-page: 1863
  ident: bib48
  article-title: Site of action potential initiation in layer 5 pyramidal neurons
  publication-title: J. Neurosci.
– volume: 68
  start-page: 361
  year: 1966
  end-page: 383
  ident: bib34
  article-title: Electrical activity and structural correlates of giant nerve fibers in Kuruma shrimp (Penaeus japonicus)
  publication-title: J. Cell. Physiol.
– volume: 50
  start-page: 165
  year: 2009
  end-page: 171
  ident: bib14
  article-title: Electrical conductivity and viscosity of borosilicate glasses and melts
  publication-title: Eur. J. Glass Sci. Technol. B Phys. Chem. Glasses
– volume: 91
  start-page: 119
  year: 2016
  end-page: 132
  ident: bib58
  article-title: Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism
  publication-title: Neuron
– volume: 17
  start-page: R29
  year: 2007
  end-page: R35
  ident: bib25
  article-title: Rapid conduction and the evolution of giant axons and myelinated fibers
  publication-title: Curr. Biol.
– volume: 19
  start-page: 49
  year: 2018
  end-page: 58
  ident: bib40
  article-title: Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system
  publication-title: Nat. Rev. Neurosci.
– volume: 589
  start-page: 4167
  year: 2011
  end-page: 4187
  ident: bib49
  article-title: The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study
  publication-title: J. Physiol.
– volume: 202
  start-page: 1979
  year: 1999
  end-page: 1989
  ident: bib76
  article-title: Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons
  publication-title: J. Exp. Biol.
– volume: 89
  start-page: 310
  year: 2011
  end-page: 319
  ident: bib44
  article-title: Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system
  publication-title: J. Neurosci. Res.
– volume: 993
  year: 2013
  ident: bib67
  article-title: Introducing the Neuroscience Gateway
  publication-title: IWSG
– volume: 16
  start-page: 756
  year: 2015
  end-page: 767
  ident: bib16
  article-title: A new mechanism of nervous system plasticity: activity-dependent myelination
  publication-title: Nat. Rev. Neurosci.
– volume: 113
  start-page: 14841
  year: 2016
  end-page: 14846
  ident: bib23
  article-title: Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 235
  start-page: 451
  year: 2005
  end-page: 462
  ident: bib13
  article-title: Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials
  publication-title: J. Theor. Biol.
– volume: 22
  start-page: 6458
  year: 2002
  end-page: 6470
  ident: bib1
  article-title: Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems
  publication-title: J. Neurosci.
– volume: 87
  start-page: 995
  year: 2002
  end-page: 1006
  ident: bib38
  article-title: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle
  publication-title: J. Neurophysiol.
– volume: 108
  start-page: 315
  year: 1949
  end-page: 339
  ident: bib30
  article-title: Evidence for saltatory conduction in peripheral myelinated nerve fibres
  publication-title: J. Physiol.
– volume: 346
  start-page: 318
  year: 2014
  end-page: 322
  ident: bib39
  article-title: Motor skill learning requires active central myelination
  publication-title: Science
– start-page: 123
  year: 2016
  end-page: 138
  ident: bib31
  article-title: Patch-clamp recording from myelinated central axons
  publication-title: Advanced Patch-Clamp Analysis for Neuroscientists
– volume: 535
  start-page: 445
  year: 2001
  end-page: 472
  ident: bib57
  article-title: Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings
  publication-title: J. Physiol.
– volume: 59
  start-page: 1447
  year: 2011
  end-page: 1457
  ident: bib65
  article-title: Paranodal permeability in “myelin mutants”
  publication-title: Glia
– year: 1973
  ident: bib8
  article-title: Algorithms for Minimization without Derivatives
– volume: 96
  start-page: 475
  year: 2010
  end-page: 512
  ident: bib41
  article-title: Electron microscopy of the mouse central nervous system
  publication-title: Methods Cell Biol.
– volume: 156
  start-page: 277
  year: 2014
  end-page: 290
  ident: bib68
  article-title: Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue
  publication-title: Cell
– volume: 15
  start-page: 1007
  year: 2012
  end-page: 1014
  ident: bib21
  article-title: State and location dependence of action potential metabolic cost in cortical pyramidal neurons
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 1253
  year: 2008
  end-page: 1255
  ident: bib32
  article-title: Is action potential threshold lowest in the axon?
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 503
  year: 2014
  end-page: 533
  ident: bib46
  article-title: Myelination of the nervous system: mechanisms and functions
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 13
  start-page: 229
  year: 1994
  end-page: 246
  ident: bib43
  article-title: Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin
  publication-title: Neuron
– volume: 7
  start-page: e36428
  year: 2018
  ident: bib60
  article-title: Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity
  publication-title: eLife
– volume: 6
  start-page: e23329
  year: 2017
  ident: bib2
  article-title: Node of Ranvier length as a potential regulator of myelinated axon conduction speed
  publication-title: eLife
– volume: 127
  start-page: 211
  year: 1939
  end-page: 227
  ident: bib72
  article-title: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber
  publication-title: Am. J. Physiol.
– volume: 117
  start-page: 500
  year: 1952
  end-page: 544
  ident: bib29
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J. Physiol.
– year: 1977
  ident: bib51
  article-title: Core conductor theory and cable properties of neurons
  publication-title: The Nervous System, Volume 1, Part 7
– volume: 34
  start-page: 533
  year: 2013
  end-page: 546
  ident: bib77
  article-title: The “Lillie transition”: models of the onset of saltatory conduction in myelinating axons
  publication-title: J. Comput. Neurosci.
– volume: 19
  start-page: 629
  year: 2013
  end-page: 641
  ident: bib56
  article-title: Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination
  publication-title: Neuroscientist
– volume: 79
  start-page: 314
  year: 2000
  end-page: 320
  ident: bib19
  article-title: Direct measurement of specific membrane capacitance in neurons
  publication-title: Biophys. J.
– volume: 11
  start-page: 45
  year: 2017
  ident: bib24
  article-title: Loss of saltation and presynaptic action potential failure in demyelinated axons
  publication-title: Front. Cell. Neurosci.
– volume: 34
  start-page: 3719
  year: 2014
  end-page: 3732
  ident: bib5
  article-title: Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons
  publication-title: J. Neurosci.
– volume: 594
  start-page: 39
  year: 2016
  end-page: 57
  ident: bib78
  article-title: Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons
  publication-title: J. Physiol.
– volume: 115
  start-page: 1836
  year: 2016
  end-page: 1859
  ident: bib54
  article-title: KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction
  publication-title: J. Neurophysiol.
– volume: 369
  start-page: 747
  year: 1994
  end-page: 750
  ident: bib35
  article-title: Myelination in the absence of myelin-associated glycoprotein
  publication-title: Nature
– volume: 15
  start-page: 13
  year: 1985
  end-page: 31
  ident: bib6
  article-title: Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath
  publication-title: Neuroscience
– volume: 15
  start-page: 1
  year: 1985
  end-page: 12
  ident: bib7
  article-title: Depolarizing afterpotentials in myelinated axons of mammalian spinal cord
  publication-title: Neuroscience
– volume: 45
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib75
  article-title: Capacitance characterization of tapered through-silicon-via considering MOS effect
  publication-title: Microelectronics J.
– volume: 11
  start-page: 275
  year: 2010
  end-page: 283
  ident: bib45
  article-title: Myelination and the trophic support of long axons
  publication-title: Nat. Rev. Neurosci.
– volume: 107
  start-page: 894
  year: 2010
  end-page: 899
  ident: bib47
  article-title: Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib59
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 1641
  start-page: 92
  year: 2016
  end-page: 100
  ident: bib42
  article-title: Electron microscopy of myelin: Structure preservation by high-pressure freezing
  publication-title: Brain Res.
– year: 2001
  ident: bib26
  article-title: Ion Channels of Excitable Membranes
– volume: 14
  start-page: 4613
  year: 1994
  end-page: 4638
  ident: bib37
  article-title: Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices
  publication-title: J. Neurosci.
– volume: 84
  start-page: 301
  year: 2001
  end-page: 308
  ident: bib69
  article-title: Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre
  publication-title: Biol. Cybern.
– volume: 51
  start-page: 833
  year: 1987
  end-page: 837
  ident: bib80
  article-title: Membrane potential induced by external electric field pulses can be followed with a potentiometric dye
  publication-title: Biophys. J.
– start-page: 13
  year: 2012
  end-page: 24
  ident: bib63
  article-title: Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system
  publication-title: Neurobiol. Aging
– volume: 591
  start-page: 4843
  year: 2013
  end-page: 4858
  ident: bib11
  article-title: Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells
  publication-title: J. Physiol.
– volume: 4
  start-page: 307
  year: 2008
  end-page: 317
  ident: bib20
  article-title: A model of tight junction function in central nervous system myelinated axons
  publication-title: Neuron Glia Biol.
– volume: 148
  start-page: 345
  year: 1991
  end-page: 382
  ident: bib22
  article-title: A distributed-parameter model of the myelinated nerve fiber
  publication-title: J. Theor. Biol.
– volume: 72
  start-page: S159
  year: 1992
  end-page: S186
  ident: bib52
  article-title: Matching dendritic neuron models to experimental data
  publication-title: Physiol. Rev.
– volume: 323
  start-page: 117
  year: 1982
  end-page: 144
  ident: bib4
  article-title: Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential
  publication-title: J. Physiol.
– volume: 16
  start-page: 147
  year: 2015
  end-page: 158
  ident: bib9
  article-title: Exploring the origins of grey matter damage in multiple sclerosis
  publication-title: Nat. Rev. Neurosci.
– volume: 27
  start-page: 101
  year: 1970
  end-page: 114
  ident: bib15
  article-title: Extracellular space of the cerebral cortex of normothermic and hypothermic cats
  publication-title: Exp. Neurol.
– volume: 30
  start-page: 10233
  year: 2010
  end-page: 10242
  ident: bib61
  article-title: Fast sodium channel gating supports localized and efficient axonal action potential initiation
  publication-title: J. Neurosci.
– volume: 8
  start-page: 297
  year: 1977
  end-page: 324
  ident: bib79
  article-title: The conduction properties of axons in central white matter
  publication-title: Prog. Neurobiol.
– volume: 27
  start-page: 8430
  year: 2007
  ident: 10.1016/j.cell.2019.11.039_bib62
  article-title: Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1787-07.2007
– volume: 535
  start-page: 445
  year: 2001
  ident: 10.1016/j.cell.2019.11.039_bib57
  article-title: Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2001.00445.x
– volume: 472
  start-page: 177
  year: 1993
  ident: 10.1016/j.cell.2019.11.039_bib12
  article-title: Activation of internodal potassium conductance in rat myelinated axons
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1993.sp019942
– volume: 11
  start-page: 1253
  year: 2008
  ident: 10.1016/j.cell.2019.11.039_bib32
  article-title: Is action potential threshold lowest in the axon?
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2203
– volume: 1641
  start-page: 11
  issue: Pt A
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib10
  article-title: Evolution of rapid nerve conduction
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.02.015
– volume: 26
  start-page: 1854
  year: 2006
  ident: 10.1016/j.cell.2019.11.039_bib48
  article-title: Site of action potential initiation in layer 5 pyramidal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4812-05.2006
– volume: 95
  start-page: 2624
  year: 2008
  ident: 10.1016/j.cell.2019.11.039_bib36
  article-title: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.132167
– volume: 30
  start-page: 10233
  year: 2010
  ident: 10.1016/j.cell.2019.11.039_bib61
  article-title: Fast sodium channel gating supports localized and efficient axonal action potential initiation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6335-09.2010
– volume: 113
  start-page: 14841
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib23
  article-title: Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1607548113
– year: 2001
  ident: 10.1016/j.cell.2019.11.039_bib26
– volume: 7
  start-page: e36428
  year: 2018
  ident: 10.1016/j.cell.2019.11.039_bib60
  article-title: Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity
  publication-title: eLife
  doi: 10.7554/eLife.36428
– volume: 7
  start-page: 13584
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib50
  article-title: Structural basis of myelin-associated glycoprotein adhesion and signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13584
– volume: 485
  start-page: 517
  year: 2012
  ident: 10.1016/j.cell.2019.11.039_bib18
  article-title: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
  publication-title: Nature
  doi: 10.1038/nature11007
– volume: 127
  start-page: 211
  year: 1939
  ident: 10.1016/j.cell.2019.11.039_bib72
  article-title: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1939.127.2.211
– volume: 19
  start-page: 49
  year: 2018
  ident: 10.1016/j.cell.2019.11.039_bib40
  article-title: Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.128
– volume: 235
  start-page: 451
  year: 2005
  ident: 10.1016/j.cell.2019.11.039_bib13
  article-title: Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2005.01.024
– volume: 28
  start-page: 141
  year: 1969
  ident: 10.1016/j.cell.2019.11.039_bib28
  article-title: The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber
  publication-title: J. Ultrastruct. Res.
  doi: 10.1016/S0022-5320(69)90012-4
– year: 1977
  ident: 10.1016/j.cell.2019.11.039_bib51
  article-title: Core conductor theory and cable properties of neurons
– volume: 993
  year: 2013
  ident: 10.1016/j.cell.2019.11.039_bib67
  article-title: Introducing the Neuroscience Gateway
  publication-title: IWSG
– volume: 591
  start-page: 4843
  year: 2013
  ident: 10.1016/j.cell.2019.11.039_bib11
  article-title: Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2013.257113
– volume: 16
  start-page: 756
  year: 2015
  ident: 10.1016/j.cell.2019.11.039_bib16
  article-title: A new mechanism of nervous system plasticity: activity-dependent myelination
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn4023
– volume: 45
  start-page: 1
  year: 2013
  ident: 10.1016/j.cell.2019.11.039_bib75
  article-title: Capacitance characterization of tapered through-silicon-via considering MOS effect
  publication-title: Microelectronics J.
– volume: 1641
  start-page: 92
  issue: Pt A
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib42
  article-title: Electron microscopy of myelin: Structure preservation by high-pressure freezing
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.02.027
– volume: 87
  start-page: 995
  year: 2002
  ident: 10.1016/j.cell.2019.11.039_bib38
  article-title: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00353.2001
– volume: 79
  start-page: 314
  year: 2000
  ident: 10.1016/j.cell.2019.11.039_bib19
  article-title: Direct measurement of specific membrane capacitance in neurons
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76293-X
– volume: 89
  start-page: 310
  year: 2011
  ident: 10.1016/j.cell.2019.11.039_bib44
  article-title: Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22561
– volume: 148
  start-page: 345
  year: 1991
  ident: 10.1016/j.cell.2019.11.039_bib22
  article-title: A distributed-parameter model of the myelinated nerve fiber
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(05)80242-5
– volume: 34
  start-page: 533
  year: 2013
  ident: 10.1016/j.cell.2019.11.039_bib77
  article-title: The “Lillie transition”: models of the onset of saltatory conduction in myelinating axons
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-012-0435-3
– volume: 22
  start-page: 6458
  year: 2002
  ident: 10.1016/j.cell.2019.11.039_bib1
  article-title: Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06458.2002
– volume: 594
  start-page: 39
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib78
  article-title: Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons
  publication-title: J. Physiol.
  doi: 10.1113/JP271207
– volume: 30
  start-page: 503
  year: 2014
  ident: 10.1016/j.cell.2019.11.039_bib46
  article-title: Myelination of the nervous system: mechanisms and functions
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013101
– volume: 474
  start-page: 101
  year: 1994
  ident: 10.1016/j.cell.2019.11.039_bib53
  article-title: Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1994.sp020006
– volume: 11
  start-page: 275
  year: 2010
  ident: 10.1016/j.cell.2019.11.039_bib45
  article-title: Myelination and the trophic support of long axons
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2797
– volume: 15
  start-page: 1007
  year: 2012
  ident: 10.1016/j.cell.2019.11.039_bib21
  article-title: State and location dependence of action potential metabolic cost in cortical pyramidal neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3132
– volume: 55
  start-page: 633
  year: 2007
  ident: 10.1016/j.cell.2019.11.039_bib33
  article-title: Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.07.031
– volume: 13
  start-page: 229
  year: 1994
  ident: 10.1016/j.cell.2019.11.039_bib43
  article-title: Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin
  publication-title: Neuron
  doi: 10.1016/0896-6273(94)90472-3
– volume: 14
  start-page: 4613
  year: 1994
  ident: 10.1016/j.cell.2019.11.039_bib37
  article-title: Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-08-04613.1994
– volume: 96
  start-page: 475
  year: 2010
  ident: 10.1016/j.cell.2019.11.039_bib41
  article-title: Electron microscopy of the mouse central nervous system
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(10)96020-2
– volume: 19
  start-page: 629
  year: 2013
  ident: 10.1016/j.cell.2019.11.039_bib56
  article-title: Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination
  publication-title: Neuroscientist
  doi: 10.1177/1073858413504627
– volume: 27
  start-page: 101
  year: 1970
  ident: 10.1016/j.cell.2019.11.039_bib15
  article-title: Extracellular space of the cerebral cortex of normothermic and hypothermic cats
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(70)90205-0
– volume: 34
  start-page: 3719
  year: 2014
  ident: 10.1016/j.cell.2019.11.039_bib5
  article-title: Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4206-13.2014
– volume: 84
  start-page: 301
  year: 2001
  ident: 10.1016/j.cell.2019.11.039_bib69
  article-title: Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220000213
– volume: 369
  start-page: 747
  year: 1994
  ident: 10.1016/j.cell.2019.11.039_bib35
  article-title: Myelination in the absence of myelin-associated glycoprotein
  publication-title: Nature
  doi: 10.1038/369747a0
– volume: 51
  start-page: 833
  year: 1987
  ident: 10.1016/j.cell.2019.11.039_bib80
  article-title: Membrane potential induced by external electric field pulses can be followed with a potentiometric dye
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(87)83410-0
– volume: 323
  start-page: 117
  year: 1982
  ident: 10.1016/j.cell.2019.11.039_bib4
  article-title: Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1982.sp014064
– volume: 73
  start-page: 275
  year: 1995
  ident: 10.1016/j.cell.2019.11.039_bib70
  article-title: A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00201429
– volume: 589
  start-page: 4167
  year: 2011
  ident: 10.1016/j.cell.2019.11.039_bib49
  article-title: The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.209015
– volume: 68
  start-page: 361
  year: 1966
  ident: 10.1016/j.cell.2019.11.039_bib34
  article-title: Electrical activity and structural correlates of giant nerve fibers in Kuruma shrimp (Penaeus japonicus)
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1040680315
– volume: 202
  start-page: 1979
  year: 1999
  ident: 10.1016/j.cell.2019.11.039_bib76
  article-title: Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.202.15.1979
– volume: 589
  start-page: 559
  year: 2011
  ident: 10.1016/j.cell.2019.11.039_bib3
  article-title: Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.201376
– year: 1973
  ident: 10.1016/j.cell.2019.11.039_bib8
– volume: 11
  start-page: 45
  year: 2017
  ident: 10.1016/j.cell.2019.11.039_bib24
  article-title: Loss of saltation and presynaptic action potential failure in demyelinated axons
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00045
– volume: 346
  start-page: 318
  year: 2014
  ident: 10.1016/j.cell.2019.11.039_bib39
  article-title: Motor skill learning requires active central myelination
  publication-title: Science
  doi: 10.1126/science.1254960
– volume: 115
  start-page: 1836
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib54
  article-title: KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01077.2015
– volume: 483
  start-page: 149
  year: 1989
  ident: 10.1016/j.cell.2019.11.039_bib64
  article-title: Sodium channels in single demyelinated mammalian axons
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(89)90046-2
– volume: 225
  start-page: 538
  year: 1984
  ident: 10.1016/j.cell.2019.11.039_bib17
  article-title: Measurement of myelin sheath resistances: implications for axonal conduction and pathophysiology
  publication-title: Science
  doi: 10.1126/science.6204382
– volume: 15
  start-page: 13
  year: 1985
  ident: 10.1016/j.cell.2019.11.039_bib6
  article-title: Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(85)90119-8
– start-page: 123
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib31
  article-title: Patch-clamp recording from myelinated central axons
– volume: 6
  start-page: e23329
  year: 2017
  ident: 10.1016/j.cell.2019.11.039_bib2
  article-title: Node of Ranvier length as a potential regulator of myelinated axon conduction speed
  publication-title: eLife
  doi: 10.7554/eLife.23329
– volume: 117
  start-page: 500
  year: 1952
  ident: 10.1016/j.cell.2019.11.039_bib29
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 38
  start-page: 438
  year: 2000
  ident: 10.1016/j.cell.2019.11.039_bib55
  article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345014
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.cell.2019.11.039_bib59
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 453
  start-page: 403
  year: 2006
  ident: 10.1016/j.cell.2019.11.039_bib71
  article-title: Imaging membrane potential in dendrites and axons of single neurons
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-006-0149-3
– volume: 50
  start-page: 165
  year: 2009
  ident: 10.1016/j.cell.2019.11.039_bib14
  article-title: Electrical conductivity and viscosity of borosilicate glasses and melts
  publication-title: Eur. J. Glass Sci. Technol. B Phys. Chem. Glasses
– volume: 108
  start-page: 315
  year: 1949
  ident: 10.1016/j.cell.2019.11.039_bib30
  article-title: Evidence for saltatory conduction in peripheral myelinated nerve fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1949.sp004335
– volume: 8
  start-page: 297
  year: 1977
  ident: 10.1016/j.cell.2019.11.039_bib79
  article-title: The conduction properties of axons in central white matter
  publication-title: Prog. Neurobiol.
  doi: 10.1016/0301-0082(77)90009-0
– volume: 15
  start-page: 1
  year: 1985
  ident: 10.1016/j.cell.2019.11.039_bib7
  article-title: Depolarizing afterpotentials in myelinated axons of mammalian spinal cord
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(85)90118-6
– volume: 72
  start-page: S159
  issue: 4, Suppl
  year: 1992
  ident: 10.1016/j.cell.2019.11.039_bib52
  article-title: Matching dendritic neuron models to experimental data
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1992.72.suppl_4.S159
– volume: 7
  start-page: 123
  year: 2001
  ident: 10.1016/j.cell.2019.11.039_bib27
  article-title: NEURON: a tool for neuroscientists
  publication-title: Neuroscientist
  doi: 10.1177/107385840100700207
– volume: 91
  start-page: 119
  year: 2016
  ident: 10.1016/j.cell.2019.11.039_bib58
  article-title: Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.05.016
– volume: 156
  start-page: 277
  year: 2014
  ident: 10.1016/j.cell.2019.11.039_bib68
  article-title: Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.044
– volume: 4
  start-page: 307
  year: 2008
  ident: 10.1016/j.cell.2019.11.039_bib20
  article-title: A model of tight junction function in central nervous system myelinated axons
  publication-title: Neuron Glia Biol.
  doi: 10.1017/S1740925X09990391
– volume: 107
  start-page: 894
  year: 2010
  ident: 10.1016/j.cell.2019.11.039_bib47
  article-title: Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0910716107
– volume: 59
  start-page: 1447
  year: 2011
  ident: 10.1016/j.cell.2019.11.039_bib65
  article-title: Paranodal permeability in “myelin mutants”
  publication-title: Glia
  doi: 10.1002/glia.21188
– volume: 17
  start-page: R29
  year: 2007
  ident: 10.1016/j.cell.2019.11.039_bib25
  article-title: Rapid conduction and the evolution of giant axons and myelinated fibers
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.11.042
– volume: 16
  start-page: 147
  year: 2015
  ident: 10.1016/j.cell.2019.11.039_bib9
  article-title: Exploring the origins of grey matter damage in multiple sclerosis
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3900
– volume: 181
  start-page: 639
  year: 1955
  ident: 10.1016/j.cell.2019.11.039_bib73
  article-title: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1955.181.3.639
– volume: 31
  start-page: 247
  year: 2008
  ident: 10.1016/j.cell.2019.11.039_bib74
  article-title: Multiple sclerosis: an immune or neurodegenerative disorder?
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.30.051606.094313
– volume: 33
  start-page: 13
  year: 2012
  ident: 10.1016/j.cell.2019.11.039_bib63
  article-title: Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.08.001
– volume: 175
  start-page: 720
  year: 1972
  ident: 10.1016/j.cell.2019.11.039_bib66
  article-title: The fluid mosaic model of the structure of cell membranes
  publication-title: Science
  doi: 10.1126/science.175.4023.720
– reference: 32259510 - Curr Biol. 2020 Apr 6;30(7):R326-R328. doi: 10.1016/j.cub.2020.02.037.
SSID ssj0008555
Score 2.6037743
Snippet The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across...
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms action potential
action potentials
Action Potentials - physiology
Animals
axon
axons
Axons - metabolism
Axons - physiology
circuit
computational modelling
double cable
electric potential difference
electron microscopy
electronic circuits
internode
internodes
Male
Models, Neurological
myelin
myelin sheath
Myelin Sheath - physiology
Nerve Fibers, Myelinated - metabolism
Nerve Fibers, Myelinated - physiology
Patch-Clamp Techniques - methods
periaxonal space
Pyramidal Cells - physiology
Ranvier's Nodes - physiology
Rats
Rats, Wistar
saltatory conduction
single cable
Title Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit
URI https://dx.doi.org/10.1016/j.cell.2019.11.039
https://www.ncbi.nlm.nih.gov/pubmed/31883793
https://www.proquest.com/docview/2331429630
https://www.proquest.com/docview/2439384963
https://pubmed.ncbi.nlm.nih.gov/PMC6978798
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EEHwpVm09W2UF30pqsh_Z7KM9FBWUQivc27JfsVeOnGhO9L93Jh-Hp3IPvmZnIZmZnY_szG8IOSyCU2mAA2hVLhMRmU208zwpM6cctwrvmrDa4io_uxYXIzlaIcO-FwbLKjvb39r0xlp3T446bh7djsfY46tZkYNH1Ag_KLDhl4uiaeIb_Zpb40LKdoqBhpMP1F3jTFvjhT_HsbxL_0QkTxwY_r5zeht8vq6hfOGUTjfIpy6apMftC38mK7HaJGvtfMmnLXL5x07q5hqdDqdVaIFiqZ1Mqxt6-YSd6BBpBnr8CKpHzyuwVA_xnlr6G9XyEWN0CtYXxHfnZ-N6m1yfnvwdniXd_ITEQ5BQJ07HILn3OJ1KxzJjsSwLSOjSNHqQXSGEKK2TISjpdcith_AkBBaj5I5LrvgXslpNq7hDKMKOZs5yl9oouGc619hhG8qYWc-YGpCsZ5zxHbg4zriYmL6K7L9BZhtkNmQdBpg9ID_me25baI2l1LKXh1lQEAO2f-m-g154Bk4OLtsqTmf3hnGegTfOebqEBuI1XgggGpCvrcDn7wrWELJ7DStqQRXmBIjcvbhSjf81CN455O5KF7sf_KZvZJ1h2p9mCePfyWp9N4t7EBvVbh89k9xvjsAzQyoPdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwheENdRrkbiDYUldhzHj6Pa1MI6IbFJfbN8C3Sq0mlL0fbvOadJqhVQH3iNjyXn3PzZPheAD2VwKg1ogFYVMskjt4l2XiRV5pQTVtFbE0VbnBSjs_zLVE53YNjnwlBYZef7W5--8tbdl_2Om_sXsxnl-GpeFrgjaio_mJd34C6igYJUezz9vHbHpZRtGwONpo_kXeZMG-RFt-MU36U_USlP6hj-793pb_T5ZxDlrV3p6BE87OAkO2hX_Bh2Yv0E7rUNJm-ewuS7nTerd3Q2XNShrRTL7HxR_2CTG0pFR6gZ2ME16h4b1-iqfsUrZtk30strAukM3S_K79IvZ80zODs6PB2Okq6BQuIRJTSJ0zFI4T21p9KxynisqhJPdGkaPQqvzPO8sk6GoKTXobAe8UkIPEYpnJBCieewWy_q-AIY1R3NnBUutTEXnutCU4ptqGJmPedqAFnPOOO76uLU5GJu-jCyc0PMNsRsPHYYZPYAPq7nXLS1NbZSy14eZkNDDDr_rfPe98IzaDo0bOu4WF4ZLkSG23Eh0i00CNhEmSPRAPZaga_Xiu4Qj_caR9SGKqwJqHT35kg9-7kq4V3g4V3p8uV__tM7uD86nRyb4_HJ11fwgNMdQJolXLyG3eZyGd8gUGrc25Uh_AaYmBG2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saltatory+Conduction+along+Myelinated+Axons+Involves+a+Periaxonal+Nanocircuit&rft.jtitle=Cell&rft.au=Cohen%2C+Charles+C.H.&rft.au=Popovic%2C+Marko+A.&rft.au=Klooster%2C+Jan&rft.au=Weil%2C+Marie-Theres&rft.date=2020-01-23&rft.issn=0092-8674&rft.volume=180&rft.issue=2&rft.spage=311&rft.epage=322.e15&rft_id=info:doi/10.1016%2Fj.cell.2019.11.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2019_11_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon