Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit
The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in...
Saved in:
Published in | Cell Vol. 180; no. 2; pp. 311 - 322.e15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.01.2020
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2019.11.039 |
Cover
Loading…
Abstract | The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.
[Display omitted]
•Cable modeling reveals myelin and submyelin parameters consistent with EM•The periaxonal space is conductive and partially sealed at the paranodes•Optically recorded Vm confirms the separation of axon and myelin circuits•Double-cable internodes produce both temporal and amplitude saltation in Vm
Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation. |
---|---|
AbstractList | The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. • Cable modeling reveals myelin and submyelin parameters consistent with EM • The periaxonal space is conductive and partially sealed at the paranodes • Optically recorded V m confirms the separation of axon and myelin circuits • Double-cable internodes produce both temporal and amplitude saltation in V m Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation. The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space. [Display omitted] •Cable modeling reveals myelin and submyelin parameters consistent with EM•The periaxonal space is conductive and partially sealed at the paranodes•Optically recorded Vm confirms the separation of axon and myelin circuits•Double-cable internodes produce both temporal and amplitude saltation in Vm Patch-clamp recording and computational modeling combined with high-speed voltage-calibrated optical recordings and EM analysis reveal a second longitudinal conducting pathway formed by the periaxonal and paranodal submyelin spaces that are integral to reproducing the spatiotemporal profile of action potential saltation. |
Author | Cohen, Charles C.H. Klooster, Jan Popovic, Marko A. Kole, Maarten H.P. Möbius, Wiebke Nave, Klaus-Armin Weil, Marie-Theres |
AuthorAffiliation | 1 Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands 2 Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands 3 Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany 4 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany |
AuthorAffiliation_xml | – name: 3 Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany – name: 1 Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands – name: 4 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany – name: 2 Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands |
Author_xml | – sequence: 1 givenname: Charles C.H. surname: Cohen fullname: Cohen, Charles C.H. organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands – sequence: 2 givenname: Marko A. surname: Popovic fullname: Popovic, Marko A. organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands – sequence: 3 givenname: Jan surname: Klooster fullname: Klooster, Jan organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands – sequence: 4 givenname: Marie-Theres surname: Weil fullname: Weil, Marie-Theres organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany – sequence: 5 givenname: Wiebke surname: Möbius fullname: Möbius, Wiebke organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany – sequence: 6 givenname: Klaus-Armin surname: Nave fullname: Nave, Klaus-Armin organization: Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany – sequence: 7 givenname: Maarten H.P. surname: Kole fullname: Kole, Maarten H.P. email: m.kole@nin.knaw.nl organization: Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31883793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1vFCEUhompsdvqH_DCzKU3M8IAAyTGpNn40aRVE_WaMHCmsmGhwszG_fey2dqoF_WKBJ73zeE8Z-gkpggIPSe4I5gMrzadhRC6HhPVEdJhqh6hFcFKtIyI_gStMFZ9KwfBTtFZKRuMseScP0GnlEhJhaIrdP3FhNnMKe-bdYpusbNPsTEhxZvmeg_BRzODay5-pliay7hLYQelMc1nyN7USxOajyYm67Nd_PwUPZ5MKPDs7jxH3969_br-0F59en-5vrhqLedsbkcFjlNrlaBEwUR6mCYpWZ0PLIwgGWOTGblzglvlBmPxwJzrATgdKaeCnqM3x97bZdyCsxDnbIK-zX5r8l4n4_XfL9F_1zdppwclpFCyFry8K8jpxwJl1ltfDts0EdJSdM-oopKpgf4fpZSwvpK4oi_-HOt-nt_rrkB_BGxOpWSY7hGC9cGp3uhDtT441YTo6rSG5D8h66uy6ql-zYeHo6-PUagydh6yLtZDtOB8Bjtrl_xD8V9_ub7E |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_0569_24_2024 crossref_primary_10_1111_joa_13577 crossref_primary_10_1002_dneu_22739 crossref_primary_10_1016_j_nbd_2022_105952 crossref_primary_10_1113_JP282884 crossref_primary_10_1523_JNEUROSCI_1446_23_2023 crossref_primary_10_7554_eLife_75523 crossref_primary_10_1007_s00018_024_05222_2 crossref_primary_10_1016_j_cub_2020_02_037 crossref_primary_10_1098_rsob_240138 crossref_primary_10_1016_j_semcdb_2021_03_017 crossref_primary_10_3917_pls_511_0028 crossref_primary_10_1016_j_celrep_2020_108641 crossref_primary_10_1038_s41593_024_01642_2 crossref_primary_10_1111_cns_14922 crossref_primary_10_7554_eLife_73827 crossref_primary_10_3390_life11030216 crossref_primary_10_1515_mim_2024_0013 crossref_primary_10_1016_j_jneumeth_2021_109400 crossref_primary_10_3390_ijms22147277 crossref_primary_10_1093_hmg_ddad141 crossref_primary_10_1038_s41467_022_35350_x crossref_primary_10_1007_s00401_023_02557_1 crossref_primary_10_1016_j_bios_2024_116173 crossref_primary_10_1113_JP280554 crossref_primary_10_1042_BSR20231616 crossref_primary_10_3389_fncel_2021_771600 crossref_primary_10_1002_cne_25574 crossref_primary_10_1016_j_neures_2022_11_002 crossref_primary_10_4103_1673_5374_373656 crossref_primary_10_3389_fbioe_2024_1476447 crossref_primary_10_3389_fnut_2024_1367570 crossref_primary_10_3390_nano11051216 crossref_primary_10_1038_s41583_020_00406_8 crossref_primary_10_1038_s41467_021_24390_4 crossref_primary_10_1371_journal_pbio_3001008 crossref_primary_10_4103_1673_5374_354512 crossref_primary_10_1002_glia_24593 crossref_primary_10_1186_s40478_022_01366_z crossref_primary_10_1113_JP281723 crossref_primary_10_1016_j_celrep_2020_108612 crossref_primary_10_1126_science_aba6905 crossref_primary_10_1364_AO_446845 crossref_primary_10_7759_cureus_41771 crossref_primary_10_1016_j_heliyon_2022_e10384 crossref_primary_10_1089_neu_2024_0454 crossref_primary_10_3390_biom11111668 crossref_primary_10_1088_1755_1315_657_1_012114 crossref_primary_10_3390_fractalfract5010004 crossref_primary_10_3389_fncel_2020_00040 crossref_primary_10_1083_jcb_201909022 crossref_primary_10_1038_s41593_023_01558_3 crossref_primary_10_1002_glia_24589 crossref_primary_10_1371_journal_pbio_3002929 crossref_primary_10_1021_acsami_3c16094 crossref_primary_10_3389_fnins_2022_854637 crossref_primary_10_1038_s41582_020_0375_x crossref_primary_10_1117_1_NPh_10_1_015003 crossref_primary_10_1134_S1990747822040067 crossref_primary_10_1038_s41467_020_19152_7 crossref_primary_10_1038_s41598_023_49208_9 crossref_primary_10_1186_s13293_020_00337_0 crossref_primary_10_1371_journal_pcbi_1009527 crossref_primary_10_1038_s41598_025_85834_1 crossref_primary_10_1083_jcb_202211031 crossref_primary_10_3389_fncel_2021_576609 crossref_primary_10_1021_acs_nanolett_2c03232 crossref_primary_10_3389_fnmol_2021_779385 crossref_primary_10_1098_rsob_210177 crossref_primary_10_1038_s41593_022_01162_x crossref_primary_10_1083_jcb_202204010 crossref_primary_10_1038_s41593_022_01169_4 crossref_primary_10_1097_ALN_0000000000004522 crossref_primary_10_1016_j_conb_2023_102782 crossref_primary_10_1113_JP283801 crossref_primary_10_1038_s41467_021_25488_5 crossref_primary_10_1101_cshperspect_a041359 crossref_primary_10_1038_s41467_022_33002_8 crossref_primary_10_1093_hmg_ddab184 crossref_primary_10_3390_cells10081911 crossref_primary_10_1016_j_neuroimage_2023_119997 crossref_primary_10_1146_annurev_neuro_100120_122621 crossref_primary_10_1038_s41467_022_34302_9 crossref_primary_10_1007_s11433_019_1530_2 crossref_primary_10_2174_0115672026336440240822063430 crossref_primary_10_1002_jbio_202400513 crossref_primary_10_1038_s41593_024_01749_6 crossref_primary_10_3389_fcell_2021_653101 crossref_primary_10_7554_eLife_85752 crossref_primary_10_1109_TNSRE_2021_3137350 crossref_primary_10_1002_ana_26585 crossref_primary_10_1016_j_brain_2022_100061 crossref_primary_10_1088_1674_1056_ac1e1a crossref_primary_10_31083_j_jin2204090 crossref_primary_10_1038_s42003_022_04116_y crossref_primary_10_1088_2057_1976_ad1fa3 |
Cites_doi | 10.1523/JNEUROSCI.1787-07.2007 10.1111/j.1469-7793.2001.00445.x 10.1113/jphysiol.1993.sp019942 10.1038/nn.2203 10.1016/j.brainres.2016.02.015 10.1523/JNEUROSCI.4812-05.2006 10.1529/biophysj.108.132167 10.1523/JNEUROSCI.6335-09.2010 10.1073/pnas.1607548113 10.7554/eLife.36428 10.1038/ncomms13584 10.1038/nature11007 10.1152/ajplegacy.1939.127.2.211 10.1038/nrn.2017.128 10.1016/j.jtbi.2005.01.024 10.1016/S0022-5320(69)90012-4 10.1113/jphysiol.2013.257113 10.1038/nrn4023 10.1016/j.brainres.2016.02.027 10.1152/jn.00353.2001 10.1016/S0006-3495(00)76293-X 10.1002/jnr.22561 10.1016/S0022-5193(05)80242-5 10.1007/s10827-012-0435-3 10.1523/JNEUROSCI.22-15-06458.2002 10.1113/JP271207 10.1146/annurev-cellbio-100913-013101 10.1113/jphysiol.1994.sp020006 10.1038/nrn2797 10.1038/nn.3132 10.1016/j.neuron.2007.07.031 10.1016/0896-6273(94)90472-3 10.1523/JNEUROSCI.14-08-04613.1994 10.1016/S0091-679X(10)96020-2 10.1177/1073858413504627 10.1016/0014-4886(70)90205-0 10.1523/JNEUROSCI.4206-13.2014 10.1007/s004220000213 10.1038/369747a0 10.1016/S0006-3495(87)83410-0 10.1113/jphysiol.1982.sp014064 10.1007/BF00201429 10.1113/jphysiol.2011.209015 10.1002/jcp.1040680315 10.1242/jeb.202.15.1979 10.1113/jphysiol.2010.201376 10.3389/fncel.2017.00045 10.1126/science.1254960 10.1152/jn.01077.2015 10.1016/0006-8993(89)90046-2 10.1126/science.6204382 10.1016/0306-4522(85)90119-8 10.7554/eLife.23329 10.1113/jphysiol.1952.sp004764 10.1007/BF02345014 10.1038/nmeth.2019 10.1007/s00424-006-0149-3 10.1113/jphysiol.1949.sp004335 10.1016/0301-0082(77)90009-0 10.1016/0306-4522(85)90118-6 10.1152/physrev.1992.72.suppl_4.S159 10.1177/107385840100700207 10.1016/j.neuron.2016.05.016 10.1016/j.cell.2013.11.044 10.1017/S1740925X09990391 10.1073/pnas.0910716107 10.1002/glia.21188 10.1016/j.cub.2006.11.042 10.1038/nrn3900 10.1152/ajplegacy.1955.181.3.639 10.1146/annurev.neuro.30.051606.094313 10.1016/j.neurobiolaging.2010.08.001 10.1126/science.175.4023.720 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2019.11.039 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 322.e15 |
ExternalDocumentID | PMC6978798 31883793 10_1016_j_cell_2019_11_039 S0092867419313248 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 261114 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKBMS AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-b9ed53cc97319ef12eff884000ecebe8444fab5dd75c9d6ac064dd2ee53b35373 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 17:59:47 EDT 2025 Thu Jul 10 23:45:33 EDT 2025 Fri Jul 11 07:09:16 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Tue Jul 01 02:17:05 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Sun Apr 06 06:54:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | myelin circuit single cable internode computational modelling axon saltatory conduction action potential periaxonal space double cable |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-b9ed53cc97319ef12eff884000ecebe8444fab5dd75c9d6ac064dd2ee53b35373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Present address: Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands Present address: AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen am Rhein, Ludwigshafen, Germany |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867419313248 |
PMID | 31883793 |
PQID | 2331429630 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6978798 proquest_miscellaneous_2439384963 proquest_miscellaneous_2331429630 pubmed_primary_31883793 crossref_primary_10_1016_j_cell_2019_11_039 crossref_citationtrail_10_1016_j_cell_2019_11_039 elsevier_sciencedirect_doi_10_1016_j_cell_2019_11_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-23 |
PublicationDateYYYYMMDD | 2020-01-23 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Snaidero, Möbius, Czopka, Hekking, Mathisen, Verkleij, Goebbels, Edgar, Merkler, Lyons (bib68) 2014; 156 Ehrt (bib14) 2009; 50 Möbius, Nave, Werner (bib42) 2016; 1641 Battefeld, Tran, Gavrilis, Cooper, Kole (bib5) 2014; 34 Brent (bib8) 1973 Hamada, Goethals, de Vries, Brette, Kole (bib23) 2016; 113 Halter, Clark (bib22) 1991; 148 Young, Castelfranco, Hartline (bib77) 2013; 34 Blight (bib6) 1985; 15 Lopreore, Bartol, Coggan, Keller, Sosinsky, Ellisman, Sejnowski (bib36) 2008; 95 Shroff, Mierzwa, Scherer, Peles, Arevalo, Chao, Rosenbluth (bib65) 2011; 59 Fenstermacher, Li, Levin (bib15) 1970; 27 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib59) 2012; 9 Ehrenberg, Farkas, Fluher, Lojewska, Loew (bib80) 1987; 51 Hartline, Colman (bib25) 2007; 17 Rosenbluth, Mierzwa, Shroff (bib56) 2013; 19 Sivagnanam, Majumdar, Yoshimoto, Astakhov, Bandrowski, Martone (bib67) 2013; 993 Huxley, Stämpfli (bib30) 1949; 108 Gow, Devaux (bib20) 2008; 4 Schmidt-Hieber, Bischofberger (bib61) 2010; 30 Rapp, Segev, Yarom (bib53) 1994; 474 Palmer, Stuart (bib48) 2006; 26 Micu, Plemel, Caprariello, Nave, Stys (bib40) 2018; 19 Nave (bib45) 2010; 11 Pronker, Lemstra, Snijder, Heck, Thies-Weesie, Pasterkamp, Janssen (bib50) 2016; 7 Saab, Tzvetavona, Trevisiol, Baltan, Dibaj, Kusch, Möbius, Goetze, Jahn, Huang (bib58) 2016; 91 Wang, Zhu, Yang, Liu, Ding (bib75) 2013; 45 Zhang, David (bib78) 2016; 594 Hamada, Popovic, Kole (bib24) 2017; 11 Rall (bib51) 1977 Barrett, Barrett (bib4) 1982; 323 Montag, Giese, Bartsch, Martini, Lang, Blüthmann, Karthigasan, Kirschner, Wintergerst, Nave (bib43) 1994; 13 Schmidt-Hieber, Jonas, Bischofberger (bib62) 2007; 27 Li, Tropak, Gerlai, Clapoff, Abramow-Newerly, Trapp, Peterson, Roder (bib35) 1994; 369 Stuart, Palmer (bib71) 2006; 453 Chan, Kuo, Weng, Lin, Chen, Cheng, Lien (bib11) 2013; 591 Rash, Vanderpool, Yasumura, Hickman, Beatty, Nagy (bib54) 2016; 115 Altevogt, Kleopa, Postma, Scherer, Paul (bib1) 2002; 22 Roth, Häusser (bib57) 2001; 535 Xu, Terakawa (bib76) 1999; 202 David, Barrett, Barrett (bib12) 1993; 472 Hille (bib26) 2001 Nans, Einheber, Salzer, Stokes (bib44) 2011; 89 Tasaki (bib72) 1939; 127 Bakiri, Káradóttir, Cossell, Attwell (bib3) 2011; 589 Major, Larkman, Jonas, Sakmann, Jack (bib37) 1994; 14 Calabrese, Magliozzi, Ciccarelli, Geurts, Reynolds, Martin (bib9) 2015; 16 Dimitrov (bib13) 2005; 235 Hodgkin, Huxley (bib29) 1952; 117 Richardson, McIntyre, Grill (bib55) 2000; 38 Hines, Carnevale (bib27) 2001; 7 Möbius, Cooper, Kaufmann, Imig, Ruhwedel, Snaidero, Saab, Varoqueaux (bib41) 2010; 96 Blight, Someya (bib7) 1985; 15 Kole, Stuart (bib32) 2008; 11 Kole, Letzkus, Stuart (bib33) 2007; 55 Popovic, Foust, McCormick, Zecevic (bib49) 2011; 589 Tasaki (bib73) 1955; 181 Rall, Burke, Holmes, Jack, Redman, Segev (bib52) 1992; 72 Hallermann, de Kock, Stuart, Kole (bib21) 2012; 15 Stephanova, Bostock (bib70) 1995; 73 Shepherd, Pomicter, Velazco, Henderson, Dupree (bib63) 2012 Castelfranco, Hartline (bib10) 2016; 1641 Kole, Popovic (bib31) 2016 McKenzie, Ohayon, Li, de Faria, Emery, Tohyama, Richardson (bib39) 2014; 346 Trapp, Nave (bib74) 2008; 31 Fields (bib16) 2015; 16 McIntyre, Richardson, Grill (bib38) 2002; 87 Shrager (bib64) 1989; 483 Stephanova (bib69) 2001; 84 Kusano (bib34) 1966; 68 Singer, Nicolson (bib66) 1972; 175 Fünfschilling, Supplie, Mahad, Boretius, Saab, Edgar, Brinkmann, Kassmann, Tzvetanova, Möbius (bib18) 2012; 485 Schirmer, Möbius, Zhao, Cruz-Herranz, Ben Haim, Cordano, Shiow, Kelley, Sadowski, Timmons (bib60) 2018; 7 Arancibia-Cárcamo, Ford, Cossell, Ishida, Tohyama, Attwell (bib2) 2017; 6 Gentet, Stuart, Clements (bib19) 2000; 79 Funch, Faber (bib17) 1984; 225 Hirano, Dembitzer (bib28) 1969; 28 Nave, Werner (bib46) 2014; 30 Waxman, Swadlow (bib79) 1977; 8 Nörenberg, Hu, Vida, Bartos, Jonas (bib47) 2010; 107 Schindelin (10.1016/j.cell.2019.11.039_bib59) 2012; 9 Zhang (10.1016/j.cell.2019.11.039_bib78) 2016; 594 Bakiri (10.1016/j.cell.2019.11.039_bib3) 2011; 589 Hodgkin (10.1016/j.cell.2019.11.039_bib29) 1952; 117 Gentet (10.1016/j.cell.2019.11.039_bib19) 2000; 79 Barrett (10.1016/j.cell.2019.11.039_bib4) 1982; 323 Lopreore (10.1016/j.cell.2019.11.039_bib36) 2008; 95 Sivagnanam (10.1016/j.cell.2019.11.039_bib67) 2013; 993 Chan (10.1016/j.cell.2019.11.039_bib11) 2013; 591 Rall (10.1016/j.cell.2019.11.039_bib52) 1992; 72 Stephanova (10.1016/j.cell.2019.11.039_bib70) 1995; 73 Major (10.1016/j.cell.2019.11.039_bib37) 1994; 14 Fünfschilling (10.1016/j.cell.2019.11.039_bib18) 2012; 485 Hirano (10.1016/j.cell.2019.11.039_bib28) 1969; 28 Roth (10.1016/j.cell.2019.11.039_bib57) 2001; 535 Singer (10.1016/j.cell.2019.11.039_bib66) 1972; 175 Tasaki (10.1016/j.cell.2019.11.039_bib73) 1955; 181 Xu (10.1016/j.cell.2019.11.039_bib76) 1999; 202 Hallermann (10.1016/j.cell.2019.11.039_bib21) 2012; 15 Dimitrov (10.1016/j.cell.2019.11.039_bib13) 2005; 235 Hamada (10.1016/j.cell.2019.11.039_bib24) 2017; 11 Snaidero (10.1016/j.cell.2019.11.039_bib68) 2014; 156 Nörenberg (10.1016/j.cell.2019.11.039_bib47) 2010; 107 Schmidt-Hieber (10.1016/j.cell.2019.11.039_bib62) 2007; 27 Nave (10.1016/j.cell.2019.11.039_bib45) 2010; 11 Arancibia-Cárcamo (10.1016/j.cell.2019.11.039_bib2) 2017; 6 Kole (10.1016/j.cell.2019.11.039_bib32) 2008; 11 Stephanova (10.1016/j.cell.2019.11.039_bib69) 2001; 84 Rosenbluth (10.1016/j.cell.2019.11.039_bib56) 2013; 19 Fields (10.1016/j.cell.2019.11.039_bib16) 2015; 16 Hille (10.1016/j.cell.2019.11.039_bib26) 2001 Huxley (10.1016/j.cell.2019.11.039_bib30) 1949; 108 Brent (10.1016/j.cell.2019.11.039_bib8) 1973 Hines (10.1016/j.cell.2019.11.039_bib27) 2001; 7 Rapp (10.1016/j.cell.2019.11.039_bib53) 1994; 474 David (10.1016/j.cell.2019.11.039_bib12) 1993; 472 Schirmer (10.1016/j.cell.2019.11.039_bib60) 2018; 7 Stuart (10.1016/j.cell.2019.11.039_bib71) 2006; 453 Tasaki (10.1016/j.cell.2019.11.039_bib72) 1939; 127 Shrager (10.1016/j.cell.2019.11.039_bib64) 1989; 483 Waxman (10.1016/j.cell.2019.11.039_bib79) 1977; 8 Ehrt (10.1016/j.cell.2019.11.039_bib14) 2009; 50 Nave (10.1016/j.cell.2019.11.039_bib46) 2014; 30 Shepherd (10.1016/j.cell.2019.11.039_bib63) 2012; 33 Kole (10.1016/j.cell.2019.11.039_bib33) 2007; 55 Blight (10.1016/j.cell.2019.11.039_bib6) 1985; 15 Nans (10.1016/j.cell.2019.11.039_bib44) 2011; 89 Blight (10.1016/j.cell.2019.11.039_bib7) 1985; 15 McKenzie (10.1016/j.cell.2019.11.039_bib39) 2014; 346 Hamada (10.1016/j.cell.2019.11.039_bib23) 2016; 113 Calabrese (10.1016/j.cell.2019.11.039_bib9) 2015; 16 Palmer (10.1016/j.cell.2019.11.039_bib48) 2006; 26 Schmidt-Hieber (10.1016/j.cell.2019.11.039_bib61) 2010; 30 Shroff (10.1016/j.cell.2019.11.039_bib65) 2011; 59 Trapp (10.1016/j.cell.2019.11.039_bib74) 2008; 31 Hartline (10.1016/j.cell.2019.11.039_bib25) 2007; 17 Saab (10.1016/j.cell.2019.11.039_bib58) 2016; 91 Altevogt (10.1016/j.cell.2019.11.039_bib1) 2002; 22 Funch (10.1016/j.cell.2019.11.039_bib17) 1984; 225 Li (10.1016/j.cell.2019.11.039_bib35) 1994; 369 Young (10.1016/j.cell.2019.11.039_bib77) 2013; 34 Montag (10.1016/j.cell.2019.11.039_bib43) 1994; 13 Micu (10.1016/j.cell.2019.11.039_bib40) 2018; 19 Kole (10.1016/j.cell.2019.11.039_bib31) 2016 McIntyre (10.1016/j.cell.2019.11.039_bib38) 2002; 87 Möbius (10.1016/j.cell.2019.11.039_bib42) 2016; 1641 Popovic (10.1016/j.cell.2019.11.039_bib49) 2011; 589 Rall (10.1016/j.cell.2019.11.039_bib51) 1977 Richardson (10.1016/j.cell.2019.11.039_bib55) 2000; 38 Ehrenberg (10.1016/j.cell.2019.11.039_bib80) 1987; 51 Möbius (10.1016/j.cell.2019.11.039_bib41) 2010; 96 Wang (10.1016/j.cell.2019.11.039_bib75) 2013; 45 Fenstermacher (10.1016/j.cell.2019.11.039_bib15) 1970; 27 Kusano (10.1016/j.cell.2019.11.039_bib34) 1966; 68 Castelfranco (10.1016/j.cell.2019.11.039_bib10) 2016; 1641 Pronker (10.1016/j.cell.2019.11.039_bib50) 2016; 7 Rash (10.1016/j.cell.2019.11.039_bib54) 2016; 115 Battefeld (10.1016/j.cell.2019.11.039_bib5) 2014; 34 Gow (10.1016/j.cell.2019.11.039_bib20) 2008; 4 Halter (10.1016/j.cell.2019.11.039_bib22) 1991; 148 32259510 - Curr Biol. 2020 Apr 6;30(7):R326-R328. doi: 10.1016/j.cub.2020.02.037. |
References_xml | – volume: 95 start-page: 2624 year: 2008 end-page: 2635 ident: bib36 article-title: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier publication-title: Biophys. J. – volume: 474 start-page: 101 year: 1994 end-page: 118 ident: bib53 article-title: Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells publication-title: J. Physiol. – volume: 55 start-page: 633 year: 2007 end-page: 647 ident: bib33 article-title: Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy publication-title: Neuron – volume: 485 start-page: 517 year: 2012 end-page: 521 ident: bib18 article-title: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity publication-title: Nature – volume: 453 start-page: 403 year: 2006 end-page: 410 ident: bib71 article-title: Imaging membrane potential in dendrites and axons of single neurons publication-title: Pflugers Arch. – volume: 31 start-page: 247 year: 2008 end-page: 269 ident: bib74 article-title: Multiple sclerosis: an immune or neurodegenerative disorder? publication-title: Annu. Rev. Neurosci. – volume: 27 start-page: 8430 year: 2007 end-page: 8441 ident: bib62 article-title: Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells publication-title: J. Neurosci. – volume: 1641 start-page: 11 year: 2016 end-page: 33 ident: bib10 article-title: Evolution of rapid nerve conduction publication-title: Brain Res. – volume: 472 start-page: 177 year: 1993 end-page: 202 ident: bib12 article-title: Activation of internodal potassium conductance in rat myelinated axons publication-title: J. Physiol. – volume: 225 start-page: 538 year: 1984 end-page: 540 ident: bib17 article-title: Measurement of myelin sheath resistances: implications for axonal conduction and pathophysiology publication-title: Science – volume: 28 start-page: 141 year: 1969 end-page: 149 ident: bib28 article-title: The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber publication-title: J. Ultrastruct. Res. – volume: 589 start-page: 559 year: 2011 end-page: 573 ident: bib3 article-title: Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum publication-title: J. Physiol. – volume: 38 start-page: 438 year: 2000 end-page: 446 ident: bib55 article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath publication-title: Med. Biol. Eng. Comput. – volume: 73 start-page: 275 year: 1995 end-page: 280 ident: bib70 article-title: A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents publication-title: Biol. Cybern. – volume: 7 start-page: 123 year: 2001 end-page: 135 ident: bib27 article-title: NEURON: a tool for neuroscientists publication-title: Neuroscientist – volume: 175 start-page: 720 year: 1972 end-page: 731 ident: bib66 article-title: The fluid mosaic model of the structure of cell membranes publication-title: Science – volume: 483 start-page: 149 year: 1989 end-page: 154 ident: bib64 article-title: Sodium channels in single demyelinated mammalian axons publication-title: Brain Res. – volume: 181 start-page: 639 year: 1955 end-page: 650 ident: bib73 article-title: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber publication-title: Am. J. Physiol. – volume: 7 start-page: 13584 year: 2016 ident: bib50 article-title: Structural basis of myelin-associated glycoprotein adhesion and signalling publication-title: Nat. Commun. – volume: 26 start-page: 1854 year: 2006 end-page: 1863 ident: bib48 article-title: Site of action potential initiation in layer 5 pyramidal neurons publication-title: J. Neurosci. – volume: 68 start-page: 361 year: 1966 end-page: 383 ident: bib34 article-title: Electrical activity and structural correlates of giant nerve fibers in Kuruma shrimp (Penaeus japonicus) publication-title: J. Cell. Physiol. – volume: 50 start-page: 165 year: 2009 end-page: 171 ident: bib14 article-title: Electrical conductivity and viscosity of borosilicate glasses and melts publication-title: Eur. J. Glass Sci. Technol. B Phys. Chem. Glasses – volume: 91 start-page: 119 year: 2016 end-page: 132 ident: bib58 article-title: Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism publication-title: Neuron – volume: 17 start-page: R29 year: 2007 end-page: R35 ident: bib25 article-title: Rapid conduction and the evolution of giant axons and myelinated fibers publication-title: Curr. Biol. – volume: 19 start-page: 49 year: 2018 end-page: 58 ident: bib40 article-title: Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system publication-title: Nat. Rev. Neurosci. – volume: 589 start-page: 4167 year: 2011 end-page: 4187 ident: bib49 article-title: The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study publication-title: J. Physiol. – volume: 202 start-page: 1979 year: 1999 end-page: 1989 ident: bib76 article-title: Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons publication-title: J. Exp. Biol. – volume: 89 start-page: 310 year: 2011 end-page: 319 ident: bib44 article-title: Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system publication-title: J. Neurosci. Res. – volume: 993 year: 2013 ident: bib67 article-title: Introducing the Neuroscience Gateway publication-title: IWSG – volume: 16 start-page: 756 year: 2015 end-page: 767 ident: bib16 article-title: A new mechanism of nervous system plasticity: activity-dependent myelination publication-title: Nat. Rev. Neurosci. – volume: 113 start-page: 14841 year: 2016 end-page: 14846 ident: bib23 article-title: Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential publication-title: Proc. Natl. Acad. Sci. USA – volume: 235 start-page: 451 year: 2005 end-page: 462 ident: bib13 article-title: Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials publication-title: J. Theor. Biol. – volume: 22 start-page: 6458 year: 2002 end-page: 6470 ident: bib1 article-title: Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems publication-title: J. Neurosci. – volume: 87 start-page: 995 year: 2002 end-page: 1006 ident: bib38 article-title: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle publication-title: J. Neurophysiol. – volume: 108 start-page: 315 year: 1949 end-page: 339 ident: bib30 article-title: Evidence for saltatory conduction in peripheral myelinated nerve fibres publication-title: J. Physiol. – volume: 346 start-page: 318 year: 2014 end-page: 322 ident: bib39 article-title: Motor skill learning requires active central myelination publication-title: Science – start-page: 123 year: 2016 end-page: 138 ident: bib31 article-title: Patch-clamp recording from myelinated central axons publication-title: Advanced Patch-Clamp Analysis for Neuroscientists – volume: 535 start-page: 445 year: 2001 end-page: 472 ident: bib57 article-title: Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings publication-title: J. Physiol. – volume: 59 start-page: 1447 year: 2011 end-page: 1457 ident: bib65 article-title: Paranodal permeability in “myelin mutants” publication-title: Glia – year: 1973 ident: bib8 article-title: Algorithms for Minimization without Derivatives – volume: 96 start-page: 475 year: 2010 end-page: 512 ident: bib41 article-title: Electron microscopy of the mouse central nervous system publication-title: Methods Cell Biol. – volume: 156 start-page: 277 year: 2014 end-page: 290 ident: bib68 article-title: Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue publication-title: Cell – volume: 15 start-page: 1007 year: 2012 end-page: 1014 ident: bib21 article-title: State and location dependence of action potential metabolic cost in cortical pyramidal neurons publication-title: Nat. Neurosci. – volume: 11 start-page: 1253 year: 2008 end-page: 1255 ident: bib32 article-title: Is action potential threshold lowest in the axon? publication-title: Nat. Neurosci. – volume: 30 start-page: 503 year: 2014 end-page: 533 ident: bib46 article-title: Myelination of the nervous system: mechanisms and functions publication-title: Annu. Rev. Cell Dev. Biol. – volume: 13 start-page: 229 year: 1994 end-page: 246 ident: bib43 article-title: Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin publication-title: Neuron – volume: 7 start-page: e36428 year: 2018 ident: bib60 article-title: Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity publication-title: eLife – volume: 6 start-page: e23329 year: 2017 ident: bib2 article-title: Node of Ranvier length as a potential regulator of myelinated axon conduction speed publication-title: eLife – volume: 127 start-page: 211 year: 1939 end-page: 227 ident: bib72 article-title: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber publication-title: Am. J. Physiol. – volume: 117 start-page: 500 year: 1952 end-page: 544 ident: bib29 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J. Physiol. – year: 1977 ident: bib51 article-title: Core conductor theory and cable properties of neurons publication-title: The Nervous System, Volume 1, Part 7 – volume: 34 start-page: 533 year: 2013 end-page: 546 ident: bib77 article-title: The “Lillie transition”: models of the onset of saltatory conduction in myelinating axons publication-title: J. Comput. Neurosci. – volume: 19 start-page: 629 year: 2013 end-page: 641 ident: bib56 article-title: Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination publication-title: Neuroscientist – volume: 79 start-page: 314 year: 2000 end-page: 320 ident: bib19 article-title: Direct measurement of specific membrane capacitance in neurons publication-title: Biophys. J. – volume: 11 start-page: 45 year: 2017 ident: bib24 article-title: Loss of saltation and presynaptic action potential failure in demyelinated axons publication-title: Front. Cell. Neurosci. – volume: 34 start-page: 3719 year: 2014 end-page: 3732 ident: bib5 article-title: Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons publication-title: J. Neurosci. – volume: 594 start-page: 39 year: 2016 end-page: 57 ident: bib78 article-title: Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons publication-title: J. Physiol. – volume: 115 start-page: 1836 year: 2016 end-page: 1859 ident: bib54 article-title: KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction publication-title: J. Neurophysiol. – volume: 369 start-page: 747 year: 1994 end-page: 750 ident: bib35 article-title: Myelination in the absence of myelin-associated glycoprotein publication-title: Nature – volume: 15 start-page: 13 year: 1985 end-page: 31 ident: bib6 article-title: Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath publication-title: Neuroscience – volume: 15 start-page: 1 year: 1985 end-page: 12 ident: bib7 article-title: Depolarizing afterpotentials in myelinated axons of mammalian spinal cord publication-title: Neuroscience – volume: 45 start-page: 1 year: 2013 end-page: 6 ident: bib75 article-title: Capacitance characterization of tapered through-silicon-via considering MOS effect publication-title: Microelectronics J. – volume: 11 start-page: 275 year: 2010 end-page: 283 ident: bib45 article-title: Myelination and the trophic support of long axons publication-title: Nat. Rev. Neurosci. – volume: 107 start-page: 894 year: 2010 end-page: 899 ident: bib47 article-title: Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib59 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 1641 start-page: 92 year: 2016 end-page: 100 ident: bib42 article-title: Electron microscopy of myelin: Structure preservation by high-pressure freezing publication-title: Brain Res. – year: 2001 ident: bib26 article-title: Ion Channels of Excitable Membranes – volume: 14 start-page: 4613 year: 1994 end-page: 4638 ident: bib37 article-title: Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices publication-title: J. Neurosci. – volume: 84 start-page: 301 year: 2001 end-page: 308 ident: bib69 article-title: Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre publication-title: Biol. Cybern. – volume: 51 start-page: 833 year: 1987 end-page: 837 ident: bib80 article-title: Membrane potential induced by external electric field pulses can be followed with a potentiometric dye publication-title: Biophys. J. – start-page: 13 year: 2012 end-page: 24 ident: bib63 article-title: Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system publication-title: Neurobiol. Aging – volume: 591 start-page: 4843 year: 2013 end-page: 4858 ident: bib11 article-title: Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells publication-title: J. Physiol. – volume: 4 start-page: 307 year: 2008 end-page: 317 ident: bib20 article-title: A model of tight junction function in central nervous system myelinated axons publication-title: Neuron Glia Biol. – volume: 148 start-page: 345 year: 1991 end-page: 382 ident: bib22 article-title: A distributed-parameter model of the myelinated nerve fiber publication-title: J. Theor. Biol. – volume: 72 start-page: S159 year: 1992 end-page: S186 ident: bib52 article-title: Matching dendritic neuron models to experimental data publication-title: Physiol. Rev. – volume: 323 start-page: 117 year: 1982 end-page: 144 ident: bib4 article-title: Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential publication-title: J. Physiol. – volume: 16 start-page: 147 year: 2015 end-page: 158 ident: bib9 article-title: Exploring the origins of grey matter damage in multiple sclerosis publication-title: Nat. Rev. Neurosci. – volume: 27 start-page: 101 year: 1970 end-page: 114 ident: bib15 article-title: Extracellular space of the cerebral cortex of normothermic and hypothermic cats publication-title: Exp. Neurol. – volume: 30 start-page: 10233 year: 2010 end-page: 10242 ident: bib61 article-title: Fast sodium channel gating supports localized and efficient axonal action potential initiation publication-title: J. Neurosci. – volume: 8 start-page: 297 year: 1977 end-page: 324 ident: bib79 article-title: The conduction properties of axons in central white matter publication-title: Prog. Neurobiol. – volume: 27 start-page: 8430 year: 2007 ident: 10.1016/j.cell.2019.11.039_bib62 article-title: Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1787-07.2007 – volume: 535 start-page: 445 year: 2001 ident: 10.1016/j.cell.2019.11.039_bib57 article-title: Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2001.00445.x – volume: 472 start-page: 177 year: 1993 ident: 10.1016/j.cell.2019.11.039_bib12 article-title: Activation of internodal potassium conductance in rat myelinated axons publication-title: J. Physiol. doi: 10.1113/jphysiol.1993.sp019942 – volume: 11 start-page: 1253 year: 2008 ident: 10.1016/j.cell.2019.11.039_bib32 article-title: Is action potential threshold lowest in the axon? publication-title: Nat. Neurosci. doi: 10.1038/nn.2203 – volume: 1641 start-page: 11 issue: Pt A year: 2016 ident: 10.1016/j.cell.2019.11.039_bib10 article-title: Evolution of rapid nerve conduction publication-title: Brain Res. doi: 10.1016/j.brainres.2016.02.015 – volume: 26 start-page: 1854 year: 2006 ident: 10.1016/j.cell.2019.11.039_bib48 article-title: Site of action potential initiation in layer 5 pyramidal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4812-05.2006 – volume: 95 start-page: 2624 year: 2008 ident: 10.1016/j.cell.2019.11.039_bib36 article-title: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier publication-title: Biophys. J. doi: 10.1529/biophysj.108.132167 – volume: 30 start-page: 10233 year: 2010 ident: 10.1016/j.cell.2019.11.039_bib61 article-title: Fast sodium channel gating supports localized and efficient axonal action potential initiation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6335-09.2010 – volume: 113 start-page: 14841 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib23 article-title: Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607548113 – year: 2001 ident: 10.1016/j.cell.2019.11.039_bib26 – volume: 7 start-page: e36428 year: 2018 ident: 10.1016/j.cell.2019.11.039_bib60 article-title: Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity publication-title: eLife doi: 10.7554/eLife.36428 – volume: 7 start-page: 13584 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib50 article-title: Structural basis of myelin-associated glycoprotein adhesion and signalling publication-title: Nat. Commun. doi: 10.1038/ncomms13584 – volume: 485 start-page: 517 year: 2012 ident: 10.1016/j.cell.2019.11.039_bib18 article-title: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity publication-title: Nature doi: 10.1038/nature11007 – volume: 127 start-page: 211 year: 1939 ident: 10.1016/j.cell.2019.11.039_bib72 article-title: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1939.127.2.211 – volume: 19 start-page: 49 year: 2018 ident: 10.1016/j.cell.2019.11.039_bib40 article-title: Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.128 – volume: 235 start-page: 451 year: 2005 ident: 10.1016/j.cell.2019.11.039_bib13 article-title: Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2005.01.024 – volume: 28 start-page: 141 year: 1969 ident: 10.1016/j.cell.2019.11.039_bib28 article-title: The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(69)90012-4 – year: 1977 ident: 10.1016/j.cell.2019.11.039_bib51 article-title: Core conductor theory and cable properties of neurons – volume: 993 year: 2013 ident: 10.1016/j.cell.2019.11.039_bib67 article-title: Introducing the Neuroscience Gateway publication-title: IWSG – volume: 591 start-page: 4843 year: 2013 ident: 10.1016/j.cell.2019.11.039_bib11 article-title: Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells publication-title: J. Physiol. doi: 10.1113/jphysiol.2013.257113 – volume: 16 start-page: 756 year: 2015 ident: 10.1016/j.cell.2019.11.039_bib16 article-title: A new mechanism of nervous system plasticity: activity-dependent myelination publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn4023 – volume: 45 start-page: 1 year: 2013 ident: 10.1016/j.cell.2019.11.039_bib75 article-title: Capacitance characterization of tapered through-silicon-via considering MOS effect publication-title: Microelectronics J. – volume: 1641 start-page: 92 issue: Pt A year: 2016 ident: 10.1016/j.cell.2019.11.039_bib42 article-title: Electron microscopy of myelin: Structure preservation by high-pressure freezing publication-title: Brain Res. doi: 10.1016/j.brainres.2016.02.027 – volume: 87 start-page: 995 year: 2002 ident: 10.1016/j.cell.2019.11.039_bib38 article-title: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle publication-title: J. Neurophysiol. doi: 10.1152/jn.00353.2001 – volume: 79 start-page: 314 year: 2000 ident: 10.1016/j.cell.2019.11.039_bib19 article-title: Direct measurement of specific membrane capacitance in neurons publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76293-X – volume: 89 start-page: 310 year: 2011 ident: 10.1016/j.cell.2019.11.039_bib44 article-title: Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22561 – volume: 148 start-page: 345 year: 1991 ident: 10.1016/j.cell.2019.11.039_bib22 article-title: A distributed-parameter model of the myelinated nerve fiber publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(05)80242-5 – volume: 34 start-page: 533 year: 2013 ident: 10.1016/j.cell.2019.11.039_bib77 article-title: The “Lillie transition”: models of the onset of saltatory conduction in myelinating axons publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-012-0435-3 – volume: 22 start-page: 6458 year: 2002 ident: 10.1016/j.cell.2019.11.039_bib1 article-title: Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-15-06458.2002 – volume: 594 start-page: 39 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib78 article-title: Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons publication-title: J. Physiol. doi: 10.1113/JP271207 – volume: 30 start-page: 503 year: 2014 ident: 10.1016/j.cell.2019.11.039_bib46 article-title: Myelination of the nervous system: mechanisms and functions publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013101 – volume: 474 start-page: 101 year: 1994 ident: 10.1016/j.cell.2019.11.039_bib53 article-title: Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells publication-title: J. Physiol. doi: 10.1113/jphysiol.1994.sp020006 – volume: 11 start-page: 275 year: 2010 ident: 10.1016/j.cell.2019.11.039_bib45 article-title: Myelination and the trophic support of long axons publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2797 – volume: 15 start-page: 1007 year: 2012 ident: 10.1016/j.cell.2019.11.039_bib21 article-title: State and location dependence of action potential metabolic cost in cortical pyramidal neurons publication-title: Nat. Neurosci. doi: 10.1038/nn.3132 – volume: 55 start-page: 633 year: 2007 ident: 10.1016/j.cell.2019.11.039_bib33 article-title: Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy publication-title: Neuron doi: 10.1016/j.neuron.2007.07.031 – volume: 13 start-page: 229 year: 1994 ident: 10.1016/j.cell.2019.11.039_bib43 article-title: Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin publication-title: Neuron doi: 10.1016/0896-6273(94)90472-3 – volume: 14 start-page: 4613 year: 1994 ident: 10.1016/j.cell.2019.11.039_bib37 article-title: Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-08-04613.1994 – volume: 96 start-page: 475 year: 2010 ident: 10.1016/j.cell.2019.11.039_bib41 article-title: Electron microscopy of the mouse central nervous system publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(10)96020-2 – volume: 19 start-page: 629 year: 2013 ident: 10.1016/j.cell.2019.11.039_bib56 article-title: Molecular architecture of myelinated nerve fibers: leaky paranodal junctions and paranodal dysmyelination publication-title: Neuroscientist doi: 10.1177/1073858413504627 – volume: 27 start-page: 101 year: 1970 ident: 10.1016/j.cell.2019.11.039_bib15 article-title: Extracellular space of the cerebral cortex of normothermic and hypothermic cats publication-title: Exp. Neurol. doi: 10.1016/0014-4886(70)90205-0 – volume: 34 start-page: 3719 year: 2014 ident: 10.1016/j.cell.2019.11.039_bib5 article-title: Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4206-13.2014 – volume: 84 start-page: 301 year: 2001 ident: 10.1016/j.cell.2019.11.039_bib69 article-title: Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre publication-title: Biol. Cybern. doi: 10.1007/s004220000213 – volume: 369 start-page: 747 year: 1994 ident: 10.1016/j.cell.2019.11.039_bib35 article-title: Myelination in the absence of myelin-associated glycoprotein publication-title: Nature doi: 10.1038/369747a0 – volume: 51 start-page: 833 year: 1987 ident: 10.1016/j.cell.2019.11.039_bib80 article-title: Membrane potential induced by external electric field pulses can be followed with a potentiometric dye publication-title: Biophys. J. doi: 10.1016/S0006-3495(87)83410-0 – volume: 323 start-page: 117 year: 1982 ident: 10.1016/j.cell.2019.11.039_bib4 article-title: Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential publication-title: J. Physiol. doi: 10.1113/jphysiol.1982.sp014064 – volume: 73 start-page: 275 year: 1995 ident: 10.1016/j.cell.2019.11.039_bib70 article-title: A distributed-parameter model of the myelinated human motor nerve fibre: temporal and spatial distributions of action potentials and ionic currents publication-title: Biol. Cybern. doi: 10.1007/BF00201429 – volume: 589 start-page: 4167 year: 2011 ident: 10.1016/j.cell.2019.11.039_bib49 article-title: The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.209015 – volume: 68 start-page: 361 year: 1966 ident: 10.1016/j.cell.2019.11.039_bib34 article-title: Electrical activity and structural correlates of giant nerve fibers in Kuruma shrimp (Penaeus japonicus) publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1040680315 – volume: 202 start-page: 1979 year: 1999 ident: 10.1016/j.cell.2019.11.039_bib76 article-title: Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons publication-title: J. Exp. Biol. doi: 10.1242/jeb.202.15.1979 – volume: 589 start-page: 559 year: 2011 ident: 10.1016/j.cell.2019.11.039_bib3 article-title: Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum publication-title: J. Physiol. doi: 10.1113/jphysiol.2010.201376 – year: 1973 ident: 10.1016/j.cell.2019.11.039_bib8 – volume: 11 start-page: 45 year: 2017 ident: 10.1016/j.cell.2019.11.039_bib24 article-title: Loss of saltation and presynaptic action potential failure in demyelinated axons publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2017.00045 – volume: 346 start-page: 318 year: 2014 ident: 10.1016/j.cell.2019.11.039_bib39 article-title: Motor skill learning requires active central myelination publication-title: Science doi: 10.1126/science.1254960 – volume: 115 start-page: 1836 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib54 article-title: KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction publication-title: J. Neurophysiol. doi: 10.1152/jn.01077.2015 – volume: 483 start-page: 149 year: 1989 ident: 10.1016/j.cell.2019.11.039_bib64 article-title: Sodium channels in single demyelinated mammalian axons publication-title: Brain Res. doi: 10.1016/0006-8993(89)90046-2 – volume: 225 start-page: 538 year: 1984 ident: 10.1016/j.cell.2019.11.039_bib17 article-title: Measurement of myelin sheath resistances: implications for axonal conduction and pathophysiology publication-title: Science doi: 10.1126/science.6204382 – volume: 15 start-page: 13 year: 1985 ident: 10.1016/j.cell.2019.11.039_bib6 article-title: Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath publication-title: Neuroscience doi: 10.1016/0306-4522(85)90119-8 – start-page: 123 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib31 article-title: Patch-clamp recording from myelinated central axons – volume: 6 start-page: e23329 year: 2017 ident: 10.1016/j.cell.2019.11.039_bib2 article-title: Node of Ranvier length as a potential regulator of myelinated axon conduction speed publication-title: eLife doi: 10.7554/eLife.23329 – volume: 117 start-page: 500 year: 1952 ident: 10.1016/j.cell.2019.11.039_bib29 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004764 – volume: 38 start-page: 438 year: 2000 ident: 10.1016/j.cell.2019.11.039_bib55 article-title: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345014 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.cell.2019.11.039_bib59 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 453 start-page: 403 year: 2006 ident: 10.1016/j.cell.2019.11.039_bib71 article-title: Imaging membrane potential in dendrites and axons of single neurons publication-title: Pflugers Arch. doi: 10.1007/s00424-006-0149-3 – volume: 50 start-page: 165 year: 2009 ident: 10.1016/j.cell.2019.11.039_bib14 article-title: Electrical conductivity and viscosity of borosilicate glasses and melts publication-title: Eur. J. Glass Sci. Technol. B Phys. Chem. Glasses – volume: 108 start-page: 315 year: 1949 ident: 10.1016/j.cell.2019.11.039_bib30 article-title: Evidence for saltatory conduction in peripheral myelinated nerve fibres publication-title: J. Physiol. doi: 10.1113/jphysiol.1949.sp004335 – volume: 8 start-page: 297 year: 1977 ident: 10.1016/j.cell.2019.11.039_bib79 article-title: The conduction properties of axons in central white matter publication-title: Prog. Neurobiol. doi: 10.1016/0301-0082(77)90009-0 – volume: 15 start-page: 1 year: 1985 ident: 10.1016/j.cell.2019.11.039_bib7 article-title: Depolarizing afterpotentials in myelinated axons of mammalian spinal cord publication-title: Neuroscience doi: 10.1016/0306-4522(85)90118-6 – volume: 72 start-page: S159 issue: 4, Suppl year: 1992 ident: 10.1016/j.cell.2019.11.039_bib52 article-title: Matching dendritic neuron models to experimental data publication-title: Physiol. Rev. doi: 10.1152/physrev.1992.72.suppl_4.S159 – volume: 7 start-page: 123 year: 2001 ident: 10.1016/j.cell.2019.11.039_bib27 article-title: NEURON: a tool for neuroscientists publication-title: Neuroscientist doi: 10.1177/107385840100700207 – volume: 91 start-page: 119 year: 2016 ident: 10.1016/j.cell.2019.11.039_bib58 article-title: Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism publication-title: Neuron doi: 10.1016/j.neuron.2016.05.016 – volume: 156 start-page: 277 year: 2014 ident: 10.1016/j.cell.2019.11.039_bib68 article-title: Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue publication-title: Cell doi: 10.1016/j.cell.2013.11.044 – volume: 4 start-page: 307 year: 2008 ident: 10.1016/j.cell.2019.11.039_bib20 article-title: A model of tight junction function in central nervous system myelinated axons publication-title: Neuron Glia Biol. doi: 10.1017/S1740925X09990391 – volume: 107 start-page: 894 year: 2010 ident: 10.1016/j.cell.2019.11.039_bib47 article-title: Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0910716107 – volume: 59 start-page: 1447 year: 2011 ident: 10.1016/j.cell.2019.11.039_bib65 article-title: Paranodal permeability in “myelin mutants” publication-title: Glia doi: 10.1002/glia.21188 – volume: 17 start-page: R29 year: 2007 ident: 10.1016/j.cell.2019.11.039_bib25 article-title: Rapid conduction and the evolution of giant axons and myelinated fibers publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.11.042 – volume: 16 start-page: 147 year: 2015 ident: 10.1016/j.cell.2019.11.039_bib9 article-title: Exploring the origins of grey matter damage in multiple sclerosis publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3900 – volume: 181 start-page: 639 year: 1955 ident: 10.1016/j.cell.2019.11.039_bib73 article-title: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1955.181.3.639 – volume: 31 start-page: 247 year: 2008 ident: 10.1016/j.cell.2019.11.039_bib74 article-title: Multiple sclerosis: an immune or neurodegenerative disorder? publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.30.051606.094313 – volume: 33 start-page: 13 year: 2012 ident: 10.1016/j.cell.2019.11.039_bib63 article-title: Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.08.001 – volume: 175 start-page: 720 year: 1972 ident: 10.1016/j.cell.2019.11.039_bib66 article-title: The fluid mosaic model of the structure of cell membranes publication-title: Science doi: 10.1126/science.175.4023.720 – reference: 32259510 - Curr Biol. 2020 Apr 6;30(7):R326-R328. doi: 10.1016/j.cub.2020.02.037. |
SSID | ssj0008555 |
Score | 2.6037743 |
Snippet | The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or “jumping” action potentials across... The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 311 |
SubjectTerms | action potential action potentials Action Potentials - physiology Animals axon axons Axons - metabolism Axons - physiology circuit computational modelling double cable electric potential difference electron microscopy electronic circuits internode internodes Male Models, Neurological myelin myelin sheath Myelin Sheath - physiology Nerve Fibers, Myelinated - metabolism Nerve Fibers, Myelinated - physiology Patch-Clamp Techniques - methods periaxonal space Pyramidal Cells - physiology Ranvier's Nodes - physiology Rats Rats, Wistar saltatory conduction single cable |
Title | Saltatory Conduction along Myelinated Axons Involves a Periaxonal Nanocircuit |
URI | https://dx.doi.org/10.1016/j.cell.2019.11.039 https://www.ncbi.nlm.nih.gov/pubmed/31883793 https://www.proquest.com/docview/2331429630 https://www.proquest.com/docview/2439384963 https://pubmed.ncbi.nlm.nih.gov/PMC6978798 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EEHwpVm09W2UF30pqsh_Z7KM9FBWUQivc27JfsVeOnGhO9L93Jh-Hp3IPvmZnIZmZnY_szG8IOSyCU2mAA2hVLhMRmU208zwpM6cctwrvmrDa4io_uxYXIzlaIcO-FwbLKjvb39r0xlp3T446bh7djsfY46tZkYNH1Ag_KLDhl4uiaeIb_Zpb40LKdoqBhpMP1F3jTFvjhT_HsbxL_0QkTxwY_r5zeht8vq6hfOGUTjfIpy6apMftC38mK7HaJGvtfMmnLXL5x07q5hqdDqdVaIFiqZ1Mqxt6-YSd6BBpBnr8CKpHzyuwVA_xnlr6G9XyEWN0CtYXxHfnZ-N6m1yfnvwdniXd_ITEQ5BQJ07HILn3OJ1KxzJjsSwLSOjSNHqQXSGEKK2TISjpdcith_AkBBaj5I5LrvgXslpNq7hDKMKOZs5yl9oouGc619hhG8qYWc-YGpCsZ5zxHbg4zriYmL6K7L9BZhtkNmQdBpg9ID_me25baI2l1LKXh1lQEAO2f-m-g154Bk4OLtsqTmf3hnGegTfOebqEBuI1XgggGpCvrcDn7wrWELJ7DStqQRXmBIjcvbhSjf81CN455O5KF7sf_KZvZJ1h2p9mCePfyWp9N4t7EBvVbh89k9xvjsAzQyoPdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwheENdRrkbiDYUldhzHj6Pa1MI6IbFJfbN8C3Sq0mlL0fbvOadJqhVQH3iNjyXn3PzZPheAD2VwKg1ogFYVMskjt4l2XiRV5pQTVtFbE0VbnBSjs_zLVE53YNjnwlBYZef7W5--8tbdl_2Om_sXsxnl-GpeFrgjaio_mJd34C6igYJUezz9vHbHpZRtGwONpo_kXeZMG-RFt-MU36U_USlP6hj-793pb_T5ZxDlrV3p6BE87OAkO2hX_Bh2Yv0E7rUNJm-ewuS7nTerd3Q2XNShrRTL7HxR_2CTG0pFR6gZ2ME16h4b1-iqfsUrZtk30strAukM3S_K79IvZ80zODs6PB2Okq6BQuIRJTSJ0zFI4T21p9KxynisqhJPdGkaPQqvzPO8sk6GoKTXobAe8UkIPEYpnJBCieewWy_q-AIY1R3NnBUutTEXnutCU4ptqGJmPedqAFnPOOO76uLU5GJu-jCyc0PMNsRsPHYYZPYAPq7nXLS1NbZSy14eZkNDDDr_rfPe98IzaDo0bOu4WF4ZLkSG23Eh0i00CNhEmSPRAPZaga_Xiu4Qj_caR9SGKqwJqHT35kg9-7kq4V3g4V3p8uV__tM7uD86nRyb4_HJ11fwgNMdQJolXLyG3eZyGd8gUGrc25Uh_AaYmBG2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saltatory+Conduction+along+Myelinated+Axons+Involves+a+Periaxonal+Nanocircuit&rft.jtitle=Cell&rft.au=Cohen%2C+Charles+C.H.&rft.au=Popovic%2C+Marko+A.&rft.au=Klooster%2C+Jan&rft.au=Weil%2C+Marie-Theres&rft.date=2020-01-23&rft.issn=0092-8674&rft.volume=180&rft.issue=2&rft.spage=311&rft.epage=322.e15&rft_id=info:doi/10.1016%2Fj.cell.2019.11.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cell_2019_11_039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |